

Interchangeable

Instruments
VirtualIVI

VPP-4.3.6:

VISA Implementation
Specification for .NET

January 13, 2025
Revision 7.4.1

NOTICE

VPP-4.3.6: VISA Implementation Specification for .NET is authored by the IVI Foundation member

companies. For a vendor membership roster list, please visit the IVI Foundation web site at

www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation

through the web site at www.ivifoundation.org.

WARRANTY

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The IVI Foundation and its member companies shall not be liable for errors contained herein or for

incidental or consequential damages in connection with the furnishing, performance, or use of this material.

TRADEMARKS

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

file:///C:/Users/jmh00/Documents/10%20My%20Projects/8%20VISA.NET%20Meetings/www.ivifoundation.org
file:///C:/Users/jmh00/Documents/10%20My%20Projects/8%20VISA.NET%20Meetings/www.ivifoundation.org

Table of Contents Page iii

IVI Foundation VPP-4.3.6: VISA Implementation Specification for .NET

Table of Contents

Section 1: Introduction to the IVI Foundation ... 3

Section 2: Overview of VISA.NET I/O Library Specification .. 1
2.1. Objectives of This Specification ... 2
2.2. Audience for This Specification .. 3
2.3. Scope and Organization of This Specification .. 4
2.4. Application of This Specification .. 5
2.5. References ... 6
2.6. Definition of Terms and Acronyms ... 7
2.7. Conventions ... 8

Section 3: VISA.NET Infrastructure .. 1
3.1. Target Operating Systems ... 2
3.2. Target Languages and Application Development Environments .. 3
3.3. Namespace Requirements ... 4
3.4. VISA.NET Data Types.. 5

3.4.1. Enumerations .. 5
3.4.2. Exceptions ... 5

3.5. VISA.NET Events and Asynchronous I/O .. 6
3.5.1. Hardware Events ... 6
3.5.2. Asyncronous I/O ... 6

3.6. VISA.NET Interfaces .. 7
3.7. Initializing a VISA.NET Session .. 8

3.7.1. The VISA.NET Global Resource Manager ... 8
3.7.2. Vendor Specific Resource Managers .. 8
3.7.3. Session Constructors ... 8

3.8. VISA.NET I/O Implementation and Distribution Requirements .. 9

Section 4: VISA.NET Data Types ... 1

Section 5: VISA.NET Enumerations ... 1
5.1. AccessMode .. 2
5.2. AddressSpace .. 3
5.3. AtnMode ... 4
5.4. BinaryEncoding ... 5
5.5. ByteOrder .. 6
5.6. DataWidth ... 7
5.7. EventQueueStatus ... 8
5.8. EventType ... 9
5.9. GpibAddressedState .. 10
5.10. GpibInstrumentRemoteLocalMode ... 11
5.11. GpibInterfaceRemoteLocalMode .. 12
5.12. HardwareInterfaceType ... 13
5.13. IOBuffers ... 14
5.14. IOProtocol ... 15
5.15. LineState ... 16
5.16. NativeVisaAttribute .. 17
5.17. PxiMemoryType .. 21
5.18. ReadStatus ... 22
5.19. RemoteLocalMode .. 23
5.20. ResourceLockState .. 24
5.21. ResourceOpenStatus .. 25
5.22. SerialFlowControlModes .. 26

Page iv Table of Contents

VPP-4.3.6: VISA Implementation Specification for .NET IVI Foundation

5.23. SerialParity .. 27
5.24. SerialTerminationMethod ... 28
5.25. StatusByteFlags ... 29
5.26. SerialStopBitsMode .. 30
5.27. TriggerLine ... 31
5.28. TriggerLines .. 32
5.29. VxiAccessPriviledge ... 33
5.30. VxiCommandMode ... 34
5.31. VxiDeviceClass ... 35
5.32. VxiTriggerProtocol ... 36
5.33. VxiUtilitySignal .. 37

Section 6: VISA.NET Exceptions and Status Codes .. 1
6.1. Exception Overview .. 1
6.2. VISA.NET Exceptions .. 3

6.2.1. Ivi.Visa.VisaException ... 3
6.2.2. Ivi.Visa.IOTimeoutException ... 4
6.2.3. Ivi.Visa.NativeVisaException ... 5
6.2.4. Ivi.Visa.TypeFormatterException ... 6

6.3. NativeErrorCode Class .. 8
6.3.1. GetMacroNameFromStatusCode() ... 10

Section 7: VISA.NET Hardware Events ... 1
7.1. Hardware Event APIs .. 2
7.2. .NET Event Handlers .. 5
7.3. VISA.NET Event Arguments .. 6

7.3.1. VisaEventArgs Class ... 7
7.3.2. GpibControllerInChargeEventArgs .. 9
7.3.3. PxiInterruptEventArgs .. 10
7.3.4. UsbInterruptEventArgs ... 11
7.3.5. VxiSignalProcessorEventArgs .. 12
7.3.6. VxiTriggerEventArgs .. 13
7.3.7. VxiInterruptEventArgs .. 14
7.3.8. INativeVisaEventArgs Interface ... 15

7.4. Vendor Defined Events ... 17
7.5. Event Methods... 18

Section 8: VISA.NET Sessions ... 1
8.1. Session Overview .. 1

8.1.1. Resources and Resource Descriptors .. 1
8.1.2. Resources Managers ... 1
8.1.3. Session Interfaces .. 1
8.1.4. Locking ... 2

8.2. Session Interfaces .. 3
8.3. IVisaSession Interface ... 4

8.3.2. SynchronizeCallbacks ... 8
8.4. INativeVisaSession Interface .. 9

Section 9: Message Based Session Interfaces .. 1
9.1. IMessageBasedSession Interface ... 1
9.2. IMessageBasedRawIO .. 3

9.2.1. Synchronous I/O ... 4
9.2.2. Asynchronous I/O ... 9

9.3. Custom Formatting .. 22
9.3.1. Type Formatters .. 22
9.3.2. ITypeFormatter Interface .. 24

Table of Contents Page v

IVI Foundation VPP-4.3.6: VISA Implementation Specification for .NET

9.4. IMessageBasedFormattedIO ... 28
9.4.2. BinaryEncoding .. 30
9.4.3. ReadBufferSize ... 31
9.4.4. WriteBufferSize .. 32
9.4.5. TypeFormatter ... 33
9.4.6. DiscardBuffers .. 34
9.4.7. FlushWrite... 35
9.4.8. Printf Format Strings ... 36
9.4.9. Printf ... 46
9.4.10. PrintfAndFlush ... 47
9.4.11. PrintfArray ... 48
9.4.12. PrintfArrayAndFlush .. 49
9.4.13. Scanf Format Strings .. 50
9.4.14. Scanf ... 59
9.4.15. ScanfArray ... 62
9.4.16. Introduction to Formatted Write Methods .. 63
9.4.17. Write ... 64
9.4.18. WriteLine ... 65
9.4.19. WriteList .. 66
9.4.20. WriteLineList ... 68
9.4.21. WriteBinary .. 70
9.4.22. WriteBinary AndFlush ... 73
9.4.23. Introduction to Formatted Read Methods ... 76
9.4.24. ReadString .. 77
9.4.25. Read ... 78
9.4.26. ReadLine (String) ... 79
9.4.27. ReadLine .. 80
9.4.28. ReadList ... 81
9.4.29. ReadLineList .. 83
9.4.30. ReadBinaryBlock ... 85
9.4.31. ReadLineBinaryBlock .. 89
9.4.32. ReadWhileMatch .. 93
9.4.33. ReadUntilMatch ... 94
9.4.34. ReadUntilEnd ... 95
9.4.35. Introduction to Formatted Skip Methods ... 96
9.4.36. Skip .. 97
9.4.37. SkipString ... 98
9.4.38. SkipUntilEnd .. 99

9.5. FormattedIO Implementations .. 100
9.5.2. MessageBasedFormattedIO Constructors ... 101

Section 10: Register Based Session Interfaces .. 1
10.1. IRegisterBasedSession .. 2
10.2. IMemoryMap .. 5

Section 11: INSTR Resources .. 1
11.1. IGpibSession ... 1
11.2. IPxiSession .. 3
11.3. ISerialSession .. 6
11.4. ITcpipSession .. 8
11.5. IUsbSession ... 10
11.6. IVxiSession ... 12

Section 12: MEMACC Resources ... 1
12.1. IPxiMemorySession .. 2
12.2. IVxiMemorySession Interface... 3

Page vi Table of Contents

VPP-4.3.6: VISA Implementation Specification for .NET IVI Foundation

Section 13: INTFC Resources .. 1
13.1. IGpibInterfaceSession Interface .. 1

Section 14: SOCKET Resources .. 1
14.1. ITcpipSocketSession ... 1

Section 15: BACKPLANE Resources ... 1
15.1. IPxiBackplaneSession ... 2
15.2. IVxiBackplaneSession... 4

Section 16: VISA.NET I/O Conflict Resolution ... 1

Section 17: Resource Manager Classes ... 1
17.1. The Vendor-Specific Resource Manager Component ... 2
17.2. IResourceManager Interface ... 4
17.3. The Global Resource Manager (GRM) Component .. 5
17.4. GlobalResourceManager Class ... 6
17.5. ParseResult Class .. 8

Section 18: VISA.NET Installation ... 1
18.1. VISA.NET Shared Components .. 1
18.2. Vendor-Specific VISA.NET Installer Requirements .. 2

18.2.1. Prerequisites ... 2
18.2.2. VISA.NET Implementation Location .. 2
18.2.3. VISA.NET Registry Entries ... 2

18.3. VISA.NET Resource Manager Registration ... 3
18.3.2. General Installation Requirements for Vendor Specific Components .. 3

Section 19: Version Control ... 1
19.1. VISA.NET Shared Components .. 1

19.1.1. Versioning with Policy Files .. 1
19.1.2. Maintaining Software Configurations .. 2
19.1.3. Versioning for Policy Files... 2
19.1.4. Naming New Versions of .NET Types ... 2
19.1.5. Versioning Enumerations ... 3
19.1.6. Versioning Interfaces ... 3
19.1.7. Versioning Classes ... 4
19.1.8. Other Considerations .. 5

19.2. VISA.NET Shared Components Installer .. 5
19.3. VISA.NET Implementations ... 5

Section 1: Introduction to the IVI Foundation Page 1-1

IVI VISA.NET Revision History

This section is an overview of the revision history of the IVI VISA.NET specification.

Table 1. IVI VISA.NET Class Specification Revisions

Status Action

Revision 5.4

June 19, 2014

First version of specification.

Revision 5.5

February 11, 2015

A variety of editorial and minor changes to clarify details and

synchronize with the VISA.NET Shared Components.

Revision 5.5

August 6, 2015

Removed Windows 2000 and added Windows 10 to the list of supported

operating systems.

Revision 5.7

February 26, 2016

Added PXI Trigger lines TTL8-TTL11. A variety of editorial changes to

clarify details and synchronize with the VISA.NET Shared Components.

Revision 5.8

June 7, 2016

Removed Windows XP and Windows Vista from the list of supported

operating systems.

Revision 7.2

May 19, 2022

Add support for HiSLIP 2.0. Add support for secure networked

connections.

Revision 7.3

December 19, 2022

Added Windows 11 to the list of supported operating systems.

Revision 7.4

October 30, 2023

February 8, 2024

Added support for .NET (6+) versions of .NET.

Post-review editorial changes:

Change all preprocessor uses ofNET5_0_OR_GREATER to

NET6_0_OR_GREATER

Remove the async keyword from interfaces.

Revision 7.4.1

January 10, 2025

Changed targeted .NET Framework version for VISA.NET Shared

Components to 4.0

When a specification in the following list is revised, the version must be identical to the version of any

other specifications in the list that are revised at the same time. (This accounts for the initial specification

version of this specification.)

• VPP-4.3

• VPP-4.3.2

• VPP-4.3.3

• VPP-4.3.4

• VPP-4.3.5

• VPP-4.3.6

Page 2 Section 2: Overview of VISA.NET I/O Library Specification

Section 1: Introduction to the IVI Foundation

The IVI Foundation is an organization whose members share a common commitment to test system developer

success through open, powerful, instrument control technology. The IVI Foundation’s primary purpose is to

develop and promote specifications for programming test instruments that simplify interchangeability, provide better

performance, and reduce the cost of program development and maintenance. The primary purpose of the Consortium

is to promote the development and adoption of standard specifications for programming test instrument capabilities;

to focus on the needs of the people that use and develop test systems who must take off-the-shelf instrument drivers

and build and maintain high-performance test systems; to build on existing industry standards to deliver

specifications that simplify interchanging instruments and provide for better performing and more easily

maintainable programs that use IVI drivers.

The VISA Implementation Specification for .NET (VPP-4.3.6) is authored by the IVI Foundation member

companies. For a vendor membership roster list, please visit the IVI Foundation web site at

www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation

through the web site at www.ivifoundation.org.

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The IVI Foundation and its member companies shall not be liable for errors contained herein or for

incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

http://www.ivifoundation.org/

Section 2: Overview of VISA.NET I/O Library Specification Page 2-1

Section 2: Overview of VISA.NET I/O Library Specification

This section introduces the VISA.NET specification. The VISA.NET specification is a document authored

by the IVI Foundation. The technical work embodied in this document and the writing of this document

was performed by the VISA.NET Technical Working Group.

This section provides a complete overview of the VISA.NET I/O specification, and gives readers general

information that may be required to understand how to read, interpret, and implement individual aspects of

this specification. This section is organized as follows:

• Objectives of this specification

• Audience for this specification

• Scope and organization of this specification

• Application of this specification

• References

• Definitions of terms and acronyms

• Conventions

• Communication

Page 2-2 Section 2: Overview of VISA.NET I/O Library Specification

2.1. Objectives of This Specification
The VISA.NET I/O specification describes the VISA.NET I/O architectural model, the configuration

model, the VISA.NET interface definitions, and their semantics. In cases where the semantics mirror

functionality in VISA, there will be an annotated link to VPP4-3, The VISA Library Specification. In cases

where VISA.NET supplies new functionality, the semantics will be described in this specification.

Section 2: Overview of VISA.NET I/O Library Specification Page 2-3

2.2. Audience for This Specification
The primary audience is I/O vendors who wish to implement and install VISA-compliant I/O software.

Page 2-4 Section 2: Overview of VISA.NET I/O Library Specification

2.3. Scope and Organization of This Specification
This specification is organized in sections, with each section discussing a particular aspect of the VISA

model.

Section 1: Introduction to the IVI Foundation, describes the IVI Foundation.

Section 2: Overview of VISA.NET I/O Library Specification, provides an overview of this specification,

including the objectives, scope and organization, application, references, definition of terms and acronyms,

and conventions.

Section 3: VISA.NET Infrastructure, describes aspects of the VISA.NET API and implementations that

distinguish them from either VISA C or VISA COM.

Section 4: VISA.NET Data Types, describes the data types that may be used in VISA.NET.

Section 5: VISA.NET Enumerations, describes the enumerations that are defined by VISA.NET.

Section 6: VISA.NET Exceptions and Status Codes, explains how VISA.NET uses exceptions, describes the

exceptions that are defined by VISA.NET, including the status codes that may be used with the Native

VISA exception.

Section 7: VISA.NET Hardware Events, describes the events that are defined in VISA.NET to report

various hardware-related events.

Section 8: VISA.NET Sessions, presents an overview of VISA.NET sessions, and describes the base VISA

session interface.

Section 9: Message Based Session Interfaces, describes the base message-based session interfaces used for

message-based protocols, and in particular the interfaces used for both raw (unformatted) and formatted

I/O.

Section 10: Register Based Session Interfaces, describes the base register-based session interfaces used for

register-based protocols.

Section 11: INSTR Resources, describes the session interfaces used for INSTR resources.

Section 12: MEMACC Resources, describes the session interfaces used for MEMACC resources.

Section 13: INTFC Resources, describes the session interfaces used for INTFC resources.

Section 14: SOCKET Resources, describes the session interfaces used for SOCKET resources.

Section 15: BACKPLANE Resources, describes the session interfaces used for BACKPLANE resources.

Section 16: VISA.NET I/O Conflict Resolution, references the conflict resolution process used for selecting

a particular VISA.NET implementation for a particular resource in cases where implementations from

multiple vendors are available.

Section 17: Resource Manager Classes, describes the Global Resource Manager and vendor-specific

resource managers.

Section 18: VISA.NET Installation, describes installation details for both VISA.NET Shared Components

and VISA.NET implementations.

Section 19: Version Control, describes how VISA.NET Shared Components and VISA.NET

implementations are versioned.

Section 2: Overview of VISA.NET I/O Library Specification Page 2-5

2.4. Application of This Specification
This specification is intended for use by developers of VISA.NET I/O Libraries software, by developers of

instrument driver that use VISA.NET to communicate with instruments, and by developers who wish to use

VISA.NET directly in their programs.

Page 2-6 Section 2: Overview of VISA.NET I/O Library Specification

2.5. References
The following documents contain information that you may find helpful as you read this document:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats, Protocols, and Common

Commands

• ANSI/IEEE Standard 1014-1987, IEEE Standard for a Versatile Backplane Bus: VMEbus

• NI-488.2 User Manual for DOS, National Instruments Corporation

• NI-488.2M User Manual, National Instruments Corporation

• NI-VXI Programmer Reference Manual, National Instruments Corporation

• NI-VXI User Manual, National Instruments Corporation

• ANSI/IEEE Standard 1174-2000, Standard Serial Interface for Programmable Instrumentation

• IVI-6.1, IVI High-Speed LAN Instrument Protocol (HiSLIP), Revision 1.1, IVI Foundation

• VPP-2, System Frameworks Specification

• VPP-4.3, The VISA Library

• VPP-4.3.2, VISA Implementation Specification for Textual Languages

• VPP-4.3.3, VISA Implementation Specification for the G Language

• VPP-4.3.4, VISA Implementation Specification for COM

• VPP-4.3.5, VISA Shared Components

• VPP-6, Installation and Packaging Specification

• VPP-9, Instrument Vendor Abbreviations

• VXI-1, VXIbus System Specification, Revision 1.4, VXIbus Consortium

• VXI-11, TCP/IP Instrument Protocol, VXIbus Consortium

Section 2: Overview of VISA.NET I/O Library Specification Page 2-7

2.6. Definition of Terms and Acronyms
The following are some commonly used terms within this document. This section does not include terms

that are defined in VPP-4.3, The VISA Library. Please refer to that document for a list of generally

applicable VISA terms.

.NET A Microsoft technology for reusable software components.

.NET Class A software construct defined by Microsoft’s .NET specification that represents a

logical object and derives from System.Object. Note that classes are reference

types.

.NET (6+) .NET (6+) refers to .NET versions 6 and after. In this specification, we will only

use “.NET (6+)” when using “.NET” must be differentiated as referring to .NET

(6+) and not .NET Framework.

.NET Delegate A special .NET type that can hold a reference to a method. Unlike other classes, a

delegate class has a signature, and it can hold references only to methods that

match its signature. A delegate is thus equivalent to a type-safe function pointer or

a callback.

.NET Event A message sent by an object to signal the occurrence of an action. The object that

raises the event is the event sender. The object that captures the event and responds

to it is the event receiver.

.NET Exception .NET operations indicate failure by throwing exceptions.

The runtime implements language independent exceptions that may be thrown

across process and even machine boundaries. The techniques for catching

exceptions are specific to each language.

.NET Framework In this specification, se “.NET Framework” is only used to refer to syntax and

behavior that applies only to .NET Framework.

.NET Interface A specification of a group of related features (events, methods, properties, and so

on) containing additional marshalling and other information, but with no

implementation in C#. .NET Classes may implement one or more interfaces, in

which case they must implement all of the features defined by the interfaces.

.NET Object A live instance of a .NET Class.

.NET Property A “smart field” with a private data member accompanied by accessor functions,

which is accessed syntactically as a field of a class. Note that .NET properties are

used in VISA.NET to implement VISA attributes.

Application Policy File A policy file that specifies policies that are applied to a specific application. For

example, an application policy file may be used to redirect the applications

references from an earlier version of a referenced assembly to a later version.

Application policy files have a higher priority than publisher policy files, but lower

priority than machine policy files.

Assembly A DLL or EXE that includes .NET executable code. A VISA.NET vendor-specific

I/O Assembly is always a DLL (and additionally requires that at least one

instantiatable class implement the interface “IVisaSession”).

Attribute A value within a resource that reflects a characteristic of the operational state of a

resource. Also known as a property.

Machine Policy File A policy file that specifies policies that are applied to all application or

components on a particular PC. For example, a machine policy file may be used to

redirect all references on a particular PC from an earlier version of a referenced

assembly to a later version. Machine policy files have the highest priority.

Page 2-8 Section 2: Overview of VISA.NET I/O Library Specification

Publisher Policy File A policy file that specifies policies that the publisher intends to be applied to a

published assembly. For example, a publisher policy file may be used to redirect

all references from an earlier version of an assembly to a later version. Publisher

policy files have the lowest priority.

Side-by-Side

Installation
The ability to install two different versions of the same assembly at the same time

on a single PC.

Section 2: Overview of VISA.NET I/O Library Specification Page 2-9

2.7. Conventions
Throughout this specification you will see the following headings on certain paragraphs. These headings

instill special meaning on these paragraphs.

Rules must be followed to ensure compatibility with the System Framework. A rule is characterized by the

use of the words SHALL and SHALL NOT in bold upper case characters. These words are not used in

this manner for any other purpose other than stating rules.

Recommendations consist of advice to implementers that will affect the usability of the final device. They

are included in this standard to draw attention to particular characteristics that the authors believe to be

important to end user success.

Permissions are included to authorize specific implementations or uses of system components. A

permission is characterized by the use of the word MAY in bold upper case characters. These permissions

are granted to ensure specific System Framework components are well defined and can be tested for

compatibility and interoperability.

Observations spell out implications of rules and bring attention to things that might otherwise be

overlooked. They also give the rationale behind certain rules, so that the reader understands why the rule

must be followed.

A Note on the text of the specification: Any text that appears without heading should be considered as

description of the standard and how the architecture was intended to operate. The purpose of this text is to

give the reader a deeper understanding of the intentions of the specification including the underlying model

and specific required features. As such, the implementer of this standard should take great care to ensure

that a particular implementation does not conflict with the text of the standard.

Section 3: VISA.NET Infrastructure Page 3-1

Section 3: VISA.NET Infrastructure

The VISA.NET I/O API has a few rules that are unique to VISA.NET, that apply across all the interfaces

and components. Most of these rules reflect the ways in which .NET technology differs fundamentally

from ANSI C or Microsoft COM, or standard .NET patterns for writing .NET code. Some of the rules

reflect a conscious choice by the IVI Foundation to support particular .NET alternatives where .NET itself

or the standard patterns are ambiguous. This specification documents these differences.

VISA.NET does not support some of the features of VISA.

• SERVANT resources are not supported in VISA.NET because it is so rarely used and does not

lend itself to the kind of vendor-independent interoperability for which VISA was designed.

• File based I/O methods are not supported in VISA.NET because the .NET framework defines very

capable file I/O classes that are easy to use with VISA.NET’s other I/O methods.

Page 3-2 Section 3: VISA.NET Infrastructure

3.1. Target Operating Systems and Frameworks
VISA.NET (6+)

VISA.NET (6+) implementations work on one or more of the following Microsoft operating

systems: Windows 10 (64-bit editions), and Windows 11. IVI supports Windows-on-Windows 32-

bit apps on 64-bit operating systems.

VISA.NET Framework

VISA.NET Framework implementations work on one or more of the following Microsoft

operating systems: Windows 8 (32 and 64-bit editions), Windows 10 (32 and 64-bit editions), and

Windows 11.

VISA.NET implementations may also work on other versions of Windows, as qualified by VISA.NET

vendors.

For the minimum service pack level required to use the VISA.NET Shared Components on each operating

system, refer to the download page on the IVI Foundation web site, www.ivifoundation.org.

3.1.1. .NET Versions and Frameworks

With the introduction of .NET 5, Microsoft made some significant changes to .NET to better support multi-

platform adoption. Older versions of .NET (2.0 through 4.x) are referred to as.NET Framework, while

versions 5.0 and greater are simply known as .NET or, if additional clarity is needed, “.NET (6+)”.

Versions of the VISA.NET shared components through version 7.2 are .NET Framework versions that

target .NET 2.0.

The VISA.NET shared components version 7.3 and later are available in both .NET Framework versions

that target .NET 4.0, and .NET versions that target .NET 6.0 or after.

There are differences between the VISA.NET Framework API and the newer VISA.NET API. In general,

this specification uses “.NET” and “.NET Framework” as follows.

• .NET is used to refer to all content related to the .NET API, including content that is identical to

the .NET Framework, as well as content that is unique to .NET (6+).

• .NET (6+) is used where it is important to emphasize something that does not apply to .NET

Framework.

• .NET Framework is used when identifying content that is unique to the .NET Framework API, to

distinguish it from the “.NET” API.

3.1.2. Preprocessor Directives

.NET C# code uses preprocessor directives to indicate code that is unique to either .NET or .NET

Framework. The directives are used in this specification to clarify code specific to a version.

Code that is only used for .NET Framework APIs uses the directive #if NETFRAMEWORK.

Code that is not used for .NET Framework APIs uses the directive #if NET6_0_OR_GREATER.

Code that is not bracketed by one of these #if directives is used for .NET in general, including .NET

Framework.

http://www.ivifoundation.org/

Section 3: VISA.NET Infrastructure Page 3-3

3.2. Target Languages and Application Development Environments
VISA.NET works in the target languages and application development environments listed in Table 4-3.

Table-3.1 Target languages and ADEs for VISA.NET

32-bit Native 64-bit

Agilent VEE

MathWorks MATLAB MathWorks MATLAB

Microsoft Visual Basic .NET Microsoft Visual Basic .NET

Microsoft Visual C# Microsoft Visual C#

Microsoft Visual C++ Microsoft Visual C++

National Instruments LabVIEW National Instruments LabVIEW

National Instruments LabWindows/CVI National Instruments LabWindows/CVI

VISA.NET complies with the Common Language Specification (CLS), with the exception of the use of

unsigned integer types. In principle, VISA.NET can work in other development environments in which the

.NET CLR and unsigned integers are supported.

Page 3-4 Section 3: VISA.NET Infrastructure

3.3. Namespace Requirements
The primary IVI VISA.NET namespace is Ivi.Visa. All of the VISA.NET managed code documented

in this specification and in VPP-4.3.5, VISA Shared Components, is defined in the Ivi.Visa namespace.

The Ivi.Visa assembly does contain other undocumented, public namespaces. The code in these

undocumented namespaces contains internal implementation details and is not intended for public use. The

IVI Foundation does not take any responsibility to support or document any of the source code contained in

these undocumented namespaces. Source is available to IVI member companies. IVI member companies

may use this code in their VISA.NET implementations.

IMPLEMENTATION

RULE 3.3.1

All VISA.NET implementations SHALL use the namespace <vendor>.Visa, where vendor is the name of

the vendor. For example, NationalInstruments.Visa.

Section 3: VISA.NET Infrastructure Page 3-5

3.4. VISA.NET Data Types
VISA.NET includes most of the VISA data types, but it also includes a large number of data types that do

not exist in VISA. VISA.NET takes advantage of the strongly typed nature of .NET to provide data types

for enumerations, exceptions, event handlers and event arguments, interfaces that define standard

functionality, and even some classes.

3.4.1. Enumerations

Enumerations specify a limited set of named constants.

In VISA C enumerations are represented by constants with similar names, each of which is assigned a

particular value, but used with integer variables. The integer variables were not limited to the values of the

defined constants, but can be assigned any value.

In VISA.NET, enumerations are used with variables that are strongly typed to the variable, so that values

that are not defined as part of the enumeration cannot be assigned to the variable.

IMPLEMENTATION

RULE 3.4.1

All VISA.NET enumerations, including vendor defined enumerations, SHALL have a member whose

value is zero, unless the enumeration explicitly maps to values in the VISA C specification.

3.4.2. Exceptions

.NET exceptions provide an elegant way of reporting errors to calling programs. Exceptions include more

information about errors, and require less processing until the calling code is actually ready to deal with

them.

Unlike VISA C and VISA COM, which use method return codes or HRESULTS to return a VISA status

code, VISA.NET uses exceptions rather than return codes to report errors to callers. Exceptions generally

include a variety of information about the error that occurred and propagate up the call stack automatically

until they are handled. With exceptions there is no need to check a return code after every call to see if an

error occurred.

While the VISA specification made an attempt to describe all of the status codes that could be returned by a

function, this is impractical for the VISA.NET specification for several reasons. The primary reason is that

implementation of VISA.NET features can vary enough that trying to catalog errors for interfaces is not

possible. Another reason is that some standard exceptions are so common that documenting them for every

method would clutter the documentation. Documentation of exceptions is better left to the implementation's

documentation than the specification for these reasons.

VISA.NET uses .NET Framework exceptions extensively. All exceptions (including all .NET Framework

exceptions) derive from System.Exception, which provides a common set of capabilities to all

exceptions. Derived exceptions may only differ from this base exception by a name that indicates the

reason for the exception. Other exceptions add additional properties for information

VISA.NET defines several exceptions, all of which derive from Ivi.Visa.VisaException. This makes

it possible for client code to catch all VISA.NET specific exceptions by testing for a single exception type

(Ivi.Visa.VisaException).

VISA C and VISA COM may also return positive return codes to indicate a success condition or warning.

VISA.NET does not use exceptions to return this type of information. Where needed, this information is

returned via output arguments to specific methods.

RULE 3.4.2

All VISA.NET error conditions SHALL be communicated to the calling program using exceptions.

Page 3-6 Section 3: VISA.NET Infrastructure

3.5. VISA.NET Events and Asynchronous I/O
VISA.NET includes mechanisms for hardware events such as interrupts and trigger notifications. In

addition there is a set of mechanisms to support asynchronous I/O notification that provides a flexible set of

ways to notify users that asynchronous I/O has completed.

3.5.1. Hardware Events

VISA C provides a number of functions that enable calling programs to register for and receive notification

of hardware events. Each of these functions has an event type parameter that identifies the event.

VISA.NET provides equivalent functionality in two forms. First, it provides a similar set of methods that

allow for blocking waits when asynchronous events are being used. Second, it provides a number of .NET

events, which do not support blocking waits.

3.5.1.1. .NET Events

.NET events provide callback delegates, registration methods, and a notification mechanism that are

specific to particular events. Event handlers are declared in interfaces. Note that .NET events do not

implement a blocking wait mechanism, but are recommended when blocking waits are not required.

In VISA.NET, asynchronous events map to .NET events. When using .NET events, registering for the

event corresponds to calling viInstallHandler and viEnableEvent with the event mechanism of

VI_HNDLR and unregistering the event corresponds to calling viDisableEvent and

viUninstallHandler. There are no equivalents to viDiscardEvent and viWaitOnEvent when using

.NET events. Events are received by registered clients when the event is fired, and can be ignored if

needed.

3.5.1.2. Event Methods

All types of VISA.NET sessions contain methods that allow the calling program to enable and disable

events, discard event notifications that are not needed, and most importantly, wait on an event. Each

method includes an eventType argument that indicates the kind of event to which the method applies.

Event methods are recommended when blocking waits are required.

The VISA.NET methods are similar to the ones found in VISA C. The VISA.NET version of

EnableEvent corresponds to viEnableEvent called with the event mechanism of VI_QUEUE. The

DisableEvent, Discard Event, and WaitOnEvent methods correspond exactly to the corresponding

VISA C functions.

3.5.2. Asyncronous I/O

VISA.NET Raw I/O includes methods for asynchronous operations. By using these methods, calling

programs can do other tasks while waiting for I/O to complete, and multiple I/O operations can be queued

on different sessions.

There are three ways that a calling program can determine when an asynchronous I/O operation is complete

- polling, blocking waits, and callbacks. Note that there is not a .NET event for Asynchronous I/O

completion.

Section 3: VISA.NET Infrastructure Page 3-7

3.6. VISA.NET Interfaces
A session in VISA.NET creates and manages a communication channel to I/O hardware, or to an

instrument (or other device) via I/O hardware. Sessions are specific to the type of connection being used

(for example, GPIB, PXI, or USB). Sessions can also be specific to a connection to an attached device via

an I/O Protocol (for example, a PXI session) or something that manages aspects of the connection (for

example, a PXI backplane).

The VISA.NET standard defines session interfaces that define the APIs for VISA.NET's I/O sessions.

All session interfaces include some elements that are common to all sessions. These elements are defined in

the interface IVisaSession. All VISA.NET session interfaces ultimately derive from IVisaSession,

and so include this common functionality.

In general, session interfaces are either message-based or register-based. All message-based session

interfaces include some elements common to all message-based sessions. These elements are defined in the

interface IMessageBasedSession. All VISA.NET message-based session interfaces derive from

IMessageBasedSession, and so include this common functionality.

Likewise, all register-based session interfaces include some elements common to all register-based

sessions. These elements are defined in the interface IRegisterBasedSession. All VISA.NET register-

based session interfaces derive from IRegisterBasedSession, and so include this common

functionality.

mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/7d8a3185-981d-e96d-7dcd-b439d2108720.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/e6f35734-f27d-45d7-e497-013a09593e02.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/50f5967e-f207-4c87-c3cd-ef56ca0efbd4.htm

Page 3-8 Section 3: VISA.NET Infrastructure

3.7. Initializing a VISA.NET Session
VISA.NET sessions may be initialized in two ways. First, a resource manager may be used to initialize a

session. Second, a vendor specific session may be initialized directly using a constructor provided for the

class.

3.7.1. The VISA.NET Global Resource Manager

The VISA.NET Global Resource Manager (GRM) is part of the VISA.NET Shared Components. The

VISA.NET GRM initializes a session that is based on a client-supplied resource name and is capable of

connecting to the resource from among available implementations.

Where multiple implementations (particularly multiple vendor’s implementations) are available, the GRM

selects based on several criteria. These criteria may be determined by users, but there are also generally

suitable defaults provided by the GRM.

Refer to Section 17.3, The Global Resource Manager (GRM) Component for details on the VISA.NET

Resource Manager.

3.7.2. Vendor Specific Resource Managers

Each vendor must supply a vendor specific resource manager as part of their VISA.NET implementation.

Vendor specific resource managers initialize a session based on a client-supplied resource name, but are

only capable of connecting to resources that are supported by their implementation of VISA.NET.

Refer to Section 17.1, The Vendor-Specific Resource Manager Component for details on the VISA.NET

Resource Manager.

3.7.3. Session Constructors

Implementations of various session interfaces are, by definition, vendor specific, including any constructors

provided to initialize the session class. Vendors may provide several ways of initializing session classes

and make appropriate recommendations to users.

Section 3: VISA.NET Infrastructure Page 3-9

3.8. VISA.NET I/O Implementation and Distribution Requirements
VISA.NET I/O Implementations will redistribute several shared global files and will also provide some

vendor-specific components. The very minimum compliant installation would include the VISA.NET

Shared Components, and provide a Vendor-Specific Resource Manager (SRM) with one VISA.NET I/O

Resource Component that implements IVisaSession.

Example 1:

If a vendor wanted to provide a driver for a PC plug-in card that allowed SCPI string

communication, it would redistribute the VISA.NET Shared Components, provide a resource

manager that knows how to instantiate the plug-in’s session class, and provide a VISA.NET I/O

session class for the plug-in that implements IVisaSession and IMessageBasedSession interfaces.

Example 2:

If a vendor wished to provide a VISA.NET I/O implementation that could create ASRL INSTR

and GPIB INSTR sessions, they would redistribute the VISA.NET Shared Components and

provide an SRM that can parse both kinds of address strings and can find and create resources of

both types. They would also provide two different VISA.NET I/O Resource Components, one

that implemented ISerial, the IMessage interfaces, and the two base interfaces and another that

implemented IGpib, the IMessage interfaces, and the two base interfaces.

The installation rules and requirements for the VISA.NET Shared Components are listed in VPP-4.3.5

VISA Shared Components.

In addition to the shared global files, a VISA.NET I/O implementation must provide several vendor-

specific files to be compatible with the VISA.NET I/O standard.

Table 2.6.1 shows a list of the required files and some optional files.

Component Name Description

Vendor-Specific Resource Manager

(SRM)

An assembly containing a resource manager that can

find and instantiate all of the resources implemented

by the vendor’s VISA.NET I/O implementation.

One or more Resource Components One or more assemblies containing one or more

classes that implement at least the IVisaSession

interface.

Vendor Help File (optional) A help file containing entries describing the errors

returned by the Vendor’s resources, information about

the resources themselves, descriptions of any vendor-

defined classes, and any additional information

deemed appropriate by the vendor.

Table 2.6.1

The installation rules and requirements for the Vendor Specific Components are listed in Section 18.2,

Vendor-Specific VISA.NET Installer Requirements

OBSERVATION 3.8.1

Unlike VPP-4.3.2 and VPP-4.3.3, which rely on a single file named visa32.dll, a VISA.NET I/O

implementation has no name requirements. This allows both .NET-based and non-.NET-based

implementations to reside side-by-side on the same system.

RECOMMENDATION 3.8.2

If a vendor provides both a VISA C and a VISA.NET implementation, and the VISA.NET implementation

invokes a VISA C implementation, the recommendation is that the VISA.NET implementation invokes that

vendor’s VISA C implementation.

Page 3-10 Section 3: VISA.NET Infrastructure

PERMISSION 3.8.1

If a vendor provides both a VISA C and a VISA.NET implementation, and the VISA.NET implementation

invokes a VISA C implementation, the vendor’s VISA.NET implementation may invoke any suitable VISA

C implementation. This permission is necessary because the resource manager may need to select VISA-C

DLLs based on resource type, and that happens after the VISA.NET assembly has been loaded.

OBSERVATION 3.8.2

From a user's perspective, VISA "operations" in their program may follow a "hybrid" path. If a vendor

provides both VISA.NET and VISA-C, that vendor's VISA.NET may invoke their own VISA-C or may

take the hybrid approach.

Section 4: VISA.NET Data Types Page 4-1

Section 4: VISA.NET Data Types

VISA defines a relatively limited set of data types compared to VISA.NET, but since it is important to

understand the relationship between VISA and VISA.NET, it is important to understand how the VISA

types relate to VISA.NET types.

Some basic types including Booleans, numbers, characters, and strings map more or less directly to their

corresponding .NET types. Note that pointer types in VISA map to the corresponding scalar types in

VISA.NET.

VISA.NET defines a variety of new types, including, but not limited to, enumerations, exceptions, events

and event arguments, and interfaces. The types that are new to VISA.NET are defined in the following

sections.

The following table identifies VISA.NET types that correspond to the VISA types defined in VPP-4.3.

VISA.NET Data Type Description Corresponding VISA Types

System.Object The base class for all IVI.NET classes.

Find Lists are returned by viFindResource and

used by viFindNext – will have wait to see what

the VISA.NET API looks like.

ViObject, ViPObject

System.Object[] Variable Arguments – an array of objects ViVAList

System.Byte An 8-bit unsigned integer. ViUInt8, ViPUInt8

ViInt8, ViPInt8

ViByte, ViPByte

System.Byte[] An array of 8-bit unsigned integers. ViAUInt8, ViAInt8

ViAByte

ViBuf, ViPBuf

System.Int16 A 16-bit signed integer. VISA.NET may use

signed integers where VISA used unsigned.

ViInt16, ViPInt16

ViUInt16, ViPUInt16

System.UInt16 A 16-bit unsigned integer. ViUInt16, ViPUInt16

System.Int16[] An array of 16-bit signed integers. ViAInt16, ViAUInt16

System.Int32 A 32-bit signed integer. VISA.NET may use

signed integers where VISA used unsigned.

ViInt32, ViPInt32

ViUInt32, ViPUInt32

System.UInt32 A 32-bit unsigned integer. ViUInt32, ViPUInt32

System.Int32[] An array of 32-bit signed integers. ViAUInt32, ViAInt32

System.Int64 A 64-bit signed integer. ViInt64, ViPInt64

ViUInt64, ViPUInt64

ViBusAddress,

ViPBusAddress

ViBusAddress64,

ViPBusAddress64

ViBusSize

System.Int64[] An array of 64-bit signed integers. ViAInt64,ViAUInt64

System.Single A 32-bit single-precision value. ViReal32, ViPReal32

System.Single[] An array of 32-bit single-precision values. ViAReal32

System.Double A 64-bit double-precision value. ViReal64, ViPReal64

System.Double[] An array of 64-bit double-precision values. ViAReal64

System.Boolean A type with two possible values: true and false. ViBoolean, ViPBoolean

Page 4-2 Section 4: VISA.NET Data Types

System.Boolean[] An array of Boolean. ViABoolean

System.Char A Unicode character ViChar, ViPChar

System.String A Unicode string. ViString, ViPString

ViConstString

ViAChar

ViRsrc, ViPRsrc

ViKeyId, ViPKeyId

System.String[] An array of Unicode strings. ViAString, ViARsrc,

ViFindList,

ViPFindList

System.Version Resource version information. ViVersion, ViPVersion

.NET delegate A value representing an entry point to a VISA C

operation for use as a callback when using C

interop.

ViHndlr

Ivi.Visa.AccessMode An enumeration of the different mechanisms

that control access to a resource.

Refer to Section 5.1, AccessMode for the

definition.

ViAccessMode,

ViPAccessMode

Ivi.Visa.

IVisaAsyncResult
A reference to the result of an asynchronous I/O

operation.

ViJobId, ViPJobId

Ivi.Visa.EventType An enumeration of the possible types for an

event.

Refer to Section 5.8, EventType for the

definition.

ViEventType,

ViPEventType

Ivi.Visa.EventType[] An array of Event Types. ViAEventType

Ivi.Visa.

NativeErrorCode
A class that contains the standard error status

codes.

ViStatus, ViPStatus

IMemoryMap In VISA.NET, address pointers are replaced by

object references.

ViAddr, ViPAddr

A reference to a session

class or to Ivi.Visa.

IResourceManager.

In VISA.NET, sessions are replaced by

instances of classes.

ViSession, ViPSession

Ivi.Visa.

NativeVisaAttribute

In VISA.NET, attributes are implemented as

properties.

Refer to Section 5.16, NativeVisaAttribute for

more information.

ViAttr, ViPAttr

N/A This is the type that you are setting the attribute

to, or that you expect to get. In VISA.NET, this

is accomplished by the Set/Get overloads for the

supported data types.

ViAttrState,

ViPAttrState

Ivi.Visa.

VisaEventArgs

or Ivi.Visa.
NativeEventArgs

(or a derived class)

In VISA.NET, specific events returned from

WaitOnEvent are identified by the instance of

VisaEventArgs returned. This is also true of

handlers that are called with an instance of the

event args.

ViEvent, ViPEvent

Section 5: VISA.NET Enumerations Page 5-1

Section 5: VISA.NET Enumerations

VISA.NET defines the following enumerations. All enumerations are defined in the Ivi.Visa namespace.
• AccessModes

• AddressSpace

• AtnMode

• BinaryEncoding

• ByteOrder

• DataWidth

• EventQueueStatus

• EventType

• GpibAddressedState

• GpibInstrRemoteLocalMode

• GpibInterfaceRemoteLocalMode

• HardwareInterfaceType

• IOBuffers

• IOProtocol

• LineState

• NativeVisaAttribute

• PxiMemoryType

• ReadStatus

• RemoteLocalMode

• ResourceLockState

• ResourceOpenStatus

• SerialFlowControlModes

• SerialParity

• SerialTerminationMethod

• StatusByteFlags

• StopBitMode

• TriggerLine

• TriggerLines

• VxiAccessPrivilege

• VxiCommandMode

• VxiDeviceClass

• VxiTriggerProtocol

• VxiUtilitySignal

Page 5-2 Section 5: VISA.NET Enumerations

5.1. AccessMode

DEFINITION

[Flags]

public enum AccessMode

{

 None = 0,

 ExclusiveLock = 1,

 LoadConfig = 2

}

OBSERVATION 5.1.1

The AccessMode enumeration indicates the modes by which the resource specified in the Open method is

to be accessed. Multiple access modes may be specified by combining multiple values. This enumeration

corresponds to the defined values for the accessMode parameter in VISA’s viOpen functions.

Section 5: VISA.NET Enumerations Page 5-3

5.2. AddressSpace

DEFINITION

public enum AddressSpace

{

 VxiA16 = 0,

 VxiA24 = 1,

 VxiA32 = 2,

 VxiA64 = 3,

 PxiConfiguration = 4,

 PxiBar0 = 5,

 PxiBar1 = 6,

 PxiBar2 = 7,

 PxiBar3 = 8,

 PxiBar4 = 9,

 PxiBar5 = 10,

 PxiAllocation = 11

}

OBSERVATION 5.2.1

The AddressSpace enumeration indicates the bus address space used by VXI or PXI devices. This

enumeration corresponds to the defined values for the space parameter that all register based operation

include.

Page 5-4 Section 5: VISA.NET Enumerations

5.3. AtnMode

DEFINITION

public enum AtnMode

{

 Deassert = 0,

 Assert = 1,

 DeassertHandshake = 2,

 AssertImmediate = 3

}

OBSERVATION 5.3.1

The AtnMode enumeration indicates how to modify the state of the GPIB ATN (ATtentioN) interface line.

This enumeration corresponds to the defined values for the parameter mode in the VISA function

viGpibControlATN.

Section 5: VISA.NET Enumerations Page 5-5

5.4. BinaryEncoding

DEFINITION

enum BinaryEncoding

{

 DefiniteLengthBlockData = 0,

 IndefiniteLengthBlockData = 1,

 RawLittleEndian = 2,

 RawBigEndian = 3

}

OBSERVATION 5.4.1

The BinaryEncoding enumeration indicates, for formatted I/O operations, the default format of binary

data used in formatted I/O. The formats include IEEE definite and indefinite blocks and raw binary data

with little or big endian byte ordering. The following table describes the enumeration members.

Value Description

DefiniteLengthBlockData IEEE-488.2 definite block format.

IndefiniteLengthBlockData IEEE-488.2 indefinite block format.

RawLittleEndian Raw binary data with little endian byte order.

RawBigEndian Raw binary data with big endian byte order.

Page 5-6 Section 5: VISA.NET Enumerations

5.5. ByteOrder

DEFINITION

public enum ByteOrder

{

 BigEndian = 0,

 LittleEndian = 1

}

OBSERVATION 5.5.1

The ByteOrder enumeration indicates the byte order used in various VXI operations. The ByteOrder

enumeration corresponds to the defined values for VISA’s VI_ATTR_SRC_BYTE_ORDER,

VI_ATTR_DEST_BYTE_ORDER, and VI_ATTR_WIN_BYTE_ORDER attributes.

Section 5: VISA.NET Enumerations Page 5-7

5.6. DataWidth

DEFINITION

public enum DataWidth

{

 Width8 = 0,

 Width16 = 1,

 Width32 = 2,

 Width64 = 3

}

OBSERVATION 5.6.1

The DataWidth enumeration indicates the data width for register-based data transfer operations. This

enumeration corresponds to the defined values for the source and destination width parameters in VISA’s

viMove function.

Page 5-8 Section 5: VISA.NET Enumerations

5.7. EventQueueStatus

DEFINITION

enum EventQueueStatus

{

 Empty = 0,

 NotEmpty = 1,

 Overflowed = 2

}

OBSERVATION 5.7.1

The EventQueueStatus enumeration indicates the current state of the event queue. The values include

empty, not empty, and overflowed. Enumeration values are described in the following table.

Value Description

Empty The event queue is empty.

NotEmpty The event queue is not empty.

Overflowed The event queue has overflowed.

These correspond to the success status codes from VISA’s viWaitOnEvent function.

Section 5: VISA.NET Enumerations Page 5-9

5.8. EventType

DEFINITION

public enum EventType

{

 Custom = 0,

 AllEnabled = 1,

 ServiceRequest = 2,

 Clear = 3,

 GpibControllerInCharge = 4,

 GpibTalk = 5,

 GpibListen = 6,

 VxiVmeSystemFailure = 7,

 VxiVmeSystemReset = 8,

 VxiSignalProcessor = 9,

 VxiVmeInterrupt = 10,

 PxiInterrupt = 11,

 UsbInterrupt = 12,

 Trigger = 13

}

Refer to section 7.1, Hardware Event APIs for more information regarding how VISA events map to

VISA.NET event types and events.

Page 5-10 Section 5: VISA.NET Enumerations

5.9. GpibAddressedState

DEFINITION

public enum GpibAddressedState

{

 Unaddressed = 0,

 Talker = 1,

 Listener = 2

}

OBSERVATION 5.9.1

The GpibAddressedState enumeration indicates whether the GPIB interface is currently addressed to

talk or listen, or is not addressed. This enumeration corresponds to the defined values for the VISA

VI_ATTR_GPIB_ADDR_STATE attribute.

Section 5: VISA.NET Enumerations Page 5-11

5.10. GpibInstrumentRemoteLocalMode

DEFINITION

public enum GpibInstrumentRemoteLocalMode

{

 DeassertRen = 0,

 AssertRen = 1,

 GoToLocalDeassertRen = 2,

 AddressDeviceAssertRen = 3,

 AddressDeviceSendLocalLockout = 4,

 GoToLocal = 5

}

OBSERVATION 5.10.1

The GpibInstrumentRemoteLocalMode enumeration indicates the action to be taken by the

SendRemoteLocalCommand of a GPIB INSTR session. This enumeration corresponds to defined values

for the mode parameter of VISA’s viGpibControlREN function, as shown in the table below. Values that

are not relevant for GPIB instrument sessions are not included in the VISA.NET enumeration.

Enumeration Member VISA C Defined Value

DeassertRen VI_GPIB_REN_DEASSERT

AssertRen VI_GPIB_REN_ASSERT

GoToLocalDeassertRen VI_GPIB_REN_DEASSERT_GTL

AddressDeviceAssertRen VI_GPIB_REN_ASSERT_ADDRESS

AddressDeviceSendLocalLockout VI_GPIB_REN_ASSERT_ADDRESS_LLO

GoToLocal VI_GPIB_REN_ADDRESS_GTL

Page 5-12 Section 5: VISA.NET Enumerations

5.11. GpibInterfaceRemoteLocalMode

DEFINITION

public enum GpibInterfaceRemoteLocalMode

{

 DeassertRen = 0,

 AssertRen = 1,

 LocalLockoutAssertRen = 2

}

OBSERVATION 5.11.1

The GpibInterfaceRemoteLocalMode enumeration indicates the action to be taken by the

SendRemoteLocalCommand of a GPIB INTFC session. This enumeration corresponds to the defined

values for the mode parameter of VISA’s viGpibControlREN function, as shown in the table below.

Values that are not relevant for GPIB interface sessions are not included in the VISA.NET enumeration.

Enumeration Member VISA C Defined Value

DeassertRen VI_GPIB_REN_DEASSERT

AssertRen VI_GPIB_REN_ASSERT

LocalLockoutAssertRen VI_GPIB_REN_ASSERT_LLO

Section 5: VISA.NET Enumerations Page 5-13

5.12. HardwareInterfaceType

DEFINITION

public enum HardwareInterfaceType

{

 Custom = 0,

 Gpib = 1,

 Vxi = 2,

 GpibVxi = 3,

 Serial = 4,

 Pxi = 5,

 Tcp = 6,

 Usb = 7

};

OBSERVATION 5.12.1

The HardwareInterfaceType enumeration indicates the hardware interface type of the current session.

This enumeration corresponds to the defined values for VI_ATTR_INTF_TYPE. The value Custom has been

added to allow for vendor-specific types.

Page 5-14 Section 5: VISA.NET Enumerations

5.13. IOBuffers

DEFINITION

[Flags]

public enum IOBuffers

{

 Read = 1,

 Write = 2,

 ReadWrite = Read | Write

}

OBSERVATION 5.13.1

The IOBuffers enumeration indicates buffer(s) in the low-level I/O interface.This enumeration roughly

corresponds to two defined values (VI_IO_IN_BUF and VI_IO_OUT_BUF) for the mask parameters in

VISA’s viSetBuf and viFlush functions. Note that in VISA.NET, this enumeration is not used for

formatted I/O buffers.

Section 5: VISA.NET Enumerations Page 5-15

5.14. IOProtocol

DEFINITION

public enum IOProtocol

{

 Normal = 0,

 Fdc = 1,

 HS488 = 2,

 Ieee4882 = 3,

 UsbTmcVendor = 4

}

OBSERVATION 5.14.1

The IOProtocol enumeration indicates which protocol to use on a particular session. Choices are

dependent on the session. This enumeration corresponds to the defined values for VISA’s

VI_ATTR_IO_PROT attribute.

Page 5-16 Section 5: VISA.NET Enumerations

5.15. LineState

DEFINITION

public enum LineState

{

 Unknown = -1,

 Unasserted = 0,

 Asserted = 1,

}

OBSERVATION 5.15.1

The LineState enumeration indicates whether the line is asserted or not, or if the state is unknown. This

enumeration corresponds to the defined values for several VISA attributes that describe line state as

asserted or not asserted, including:
VI_ATTR_GPIB_REN_STATE

VI_ATTR_GPIB_ATN_STATE

VI_ATTR_GPIB_NDAC_STATE

VI_ATTR_GPIB_SRQ_STATE

VI_ATTR_ASRL_CTS_STATE

VI_ATTR_ASRL_DCD_STATE

VI_ATTR_ASRL_DSR_STATE

VI_ATTR_ASRL_DTR_STATE

VI_ATTR_ASRL_RI_STATE

VI_ATTR_ASRL_RTS_STATE

VI_ATTR_VXI_VME_SYSFAIL_STATE

Section 5: VISA.NET Enumerations Page 5-17

5.16. NativeVisaAttribute

DEFINITION

public enum NativeVisaAttribute : uint

{

 AllowDma = 0x3fff001e,

 AllowWriteCombining = 0x3fff0246,

 AsyncReturnCount32 = 0x3fff4026,

 AsyncReturnCount64 = 0x3fff4028,

 CommanderLogicalAddress = 0x3fff006b,

 DestinationAccess = 0x3fff0039,

 DestinationByteOrder = 0x3fff003a,

 DestinationIncrement = 0x3fff0041,

 DeviceStatusByte = 0x3fff0189,

 EventType = 0x3fff4010,

 FastDataChannel = 0x3fff000d,

 FastDataChannelMode = 0x3fff000f,

 FastDataChannelUsePair = 0x3fff0013,

 FileAppendEnabled = 0x3fff0192,

 GpibAddressedState = 0x3fff005c,

 GpibAtnState = 0x3fff0057,

 GpibHS488CableLength = 0x3fff0069,

 GpibIsControllerInCharge = 0x3fff005e,

 GpibIsSystemController = 0x3fff0068,

 GpibNdacState = 0x3fff0062,

 GpibPrimaryAddress = 0x3fff0172,

 GpibRepeatAddressingEnabled = 0x3fff001b,

 GpibReceivedIsControllerInCharge = 0x3fff4193,

 GpibRenState = 0x3fff0181,

 GpibSecondaryAddress = 0x3fff0173,

 GpibSrqState = 0x3fff0067,

 GpibUnaddressEnabled = 0x3fff0184,

 Is4882Compliant = 0x3fff019f,

 ImmediateServant = 0x3fff0100,

 InterfaceName = 0xbfff00e9,

 InterfaceParentNumber = 0x3fff0101,

 InterfaceType = 0x3fff0171,

 InterfaceNumber = 0x3fff0176,

 IOProtocol = 0x3fff001c,

 JobId = 0x3fff4006,

 MainframeLogicalAddress = 0x3fff0070,

 ManufacturerId = 0x3fff00d9,

 ManufacturerName = 0xbfff0072,

 MaximumEventQueueLength = 0x3fff0005,

 MemoryBase32 = 0x3fff00ad,

 MemoryBase64 = 0x3fff00d0,

 MemorySize32 = 0x3fff00dd,

 MemorySize64 = 0x3fff00d1,

 MemorySpace = 0x3fff00de,

 ModelCode = 0x3fff00df,

Page 5-18 Section 5: VISA.NET Enumerations

 ModelName = 0xbfff0077,

 OperationName = 0xbfff4042,

 PxiActualLinkWidth = 0x3fff0243,

 PxiBackplaneDestinationTriggerBus = 0x3fff020e,

 PxiBackplaneSourceTriggerBus = 0x3fff020d,

 PxiBusNumber = 0x3fff0205,

 PxiChassis = 0x3fff0206,

 PxiDeviceNumber = 0x3fff0201,

 PxiDStarBus = 0x3fff0244,

 PxiDStarSet = 0x3fff0245,

 PxiFunctionNumber = 0x3fff0202,

 PxiIsExpress = 0x3fff0240,

 PxiMaximumLinkWidth = 0x3fff0242,

 PxiMemoryBase32Bar0 = 0x3fff0221,

 PxiMemoryBase32Bar1 = 0x3fff0222,

 PxiMemoryBase32Bar2 = 0x3fff0223,

 PxiMemoryBase32Bar3 = 0x3fff0224,

 PxiMemoryBase32Bar4 = 0x3fff0225,

 PxiMemoryBase32Bar5 = 0x3fff0226,

 PxiMemoryBase64Bar0 = 0x3fff0228,

 PxiMemoryBase64Bar1 = 0x3fff0229,

 PxiMemoryBase64Bar2 = 0x3fff022a,

 PxiMemoryBase64Bar3 = 0x3fff022b,

 PxiMemoryBase64Bar4 = 0x3fff022c,

 PxiMemoryBase64Bar5 = 0x3fff022d,

 PxiMemorySize32Bar0 = 0x3fff0231,

 PxiMemorySize32Bar1 = 0x3fff0232,

 PxiMemorySize32Bar2 = 0x3fff0233,

 PxiMemorySize32Bar3 = 0x3fff0234,

 PxiMemorySize32Bar4 = 0x3fff0235,

 PxiMemorySize32Bar5 = 0x3fff0236,

 PxiMemorySize64Bar0 = 0x3fff0238,

 PxiMemorySize64Bar1 = 0x3fff0239,

 PxiMemorySize64Bar2 = 0x3fff023a,

 PxiMemorySize64Bar3 = 0x3fff023b,

 PxiMemorySize64Bar4 = 0x3fff023c,

 PxiMemorySize64Bar5 = 0x3fff023d,

 PxiMemoryTypeBar0 = 0x3fff0211,

 PxiMemoryTypeBar1 = 0x3fff0212,

 PxiMemoryTypeBar2 = 0x3fff0213,

 PxiMemoryTypeBar3 = 0x3fff0214,

 PxiMemoryTypeBar4 = 0x3fff0215,

 PxiMemoryTypeBar5 = 0x3fff0216,

 PxiReceivedInterruptData = 0x3fff4241,

 PxiReceivedInterruptSequence = 0x3fff4240,

 PxiSlotLinkWidth = 0x3fff0241,

 PxiSlotLocalBusLeft = 0x3fff0208,

 PxiSlotLocalBusRight = 0x3fff0209,

 PxiSlotPath = 0xbfff0207,

 PxiStarTriggerBus = 0x3fff020b,

 PxiStarTriggerLine = 0x3fff020c,

 PxiTriggerBus = 0x3fff020a,

 ReadBufferOperationMode = 0x3fff002a,

Section 5: VISA.NET Enumerations Page 5-19

 ReadBufferSize = 0x3fff002b,

 ReceivedInterruptLevel = 0x3fff4041,

 ReceivedInterruptStatusId = 0x3fff4023,

 ReceivedSignalProcessorStatusId = 0xbfff4011,

 ReceivedTcpAddress = 0xbfff4198,

 ReceivedTriggerId = 0x3fff4012,

 ResourceManagerSession = 0x3fff00c4,

 ResourceClass = 0xbfff0001,

 ResourceImplementationVersion = 0x3fff0003,

 ResourceLockState = 0x3fff0004,

 ResourceManufacturerId = 0x3fff0175,

 ResourceManufacturerName = 0xbfff0174,

 ResourceName = 0xbfff0002,

 ResourceSpecificationVersion = 0x3fff0170,

 SendEndEnabled = 0x3fff0016,

 SerialAvailableByteCount = 0x3fff00ac,

 SerialBaud = 0x3fff0021,

 SerialCtsState = 0x3fff00ae,

 SerialDataBits = 0x3fff0022,

 SerialDcdState = 0x3fff00af,

 SerialDsrState = 0x3FFF00b1,

 SerialDtrState = 0x3fff00b2,

 SerialEndIn = 0x3fff00b3,

 SerialEndOut = 0x3fff00b4,

 SerialFlowControl = 0x3fff0025,

 SerialParity = 0x3fff0023,

 SerialReplaceCharacter = 0x3fff00be,

 SerialRIState = 0x3fff00bf,

 SerialRtsState = 0x3fff00c0,

 SerialStopBits = 0x3fff0024,

 SerialXOffCharacter = 0x3fff00c2,

 SerialXOnCharacter = 0x3fff00c1,

 Slot = 0x3fff00e8,

 SourceAccess = 0x3fff003c,

 SourceByteOrder = 0x3fff003d,

 SourceIncrement = 0x3fff0040,

 Status = 0x3fff4025,

 SuppressEndEnabled = 0x3fff0036,

 TcpAddress = 0xbfff0195,

 TcpDeviceName = 0xbfff0199,

 TcpHiSLIPMaximumMessageSizeKB = 0x3fff0302,

 TcpHiSLIPOverlapEnabled = 0x3fff0300,

 TcpHiSLIPVersion = 0x3fff0301,

 TcpHostName = 0xbfff0196,

 TcpIsHiSLIP = 0x3fff0303,

 TcpKeepAlive = 0x3fff019b,

 TcpNoDelay = 0x3fff019a,

 TcpPort = 0x3fff0197,

 TerminationCharacter = 0x3fff0018,

 TerminationCharacterEnabled = 0x3fff0038,

 TimeoutValue = 0x3fff001a,

 TriggerId = 0x3fff0177,

 UsbInterfaceNumber = 0x3fff01a1,

Page 5-20 Section 5: VISA.NET Enumerations

 UsbMaximumInterruptSize = 0x3fff01af,

 UsbProtocol = 0x3fff01a7,

 UsbReceivedInterruptSize = 0x3fff41b0,

 UsbSerialNumber = 0xbfff01a0,

 UserData32 = 0x3fff0007,

 VxiDeviceClass = 0x3fff006c,

 VxiLogicalAddress = 0x3fff00d5,

 VxiTriggerStatus = 0x3fff008d,

 VxiTriggerSupport = 0x3fff0194,

 VxiVmeInterruptStatus = 0x3fff008b,

 VxiVmeSystemFailureState = 0x3fff0094,

 WindowAccess = 0x3fff00c3,

 WindowAccessPrivilege0x3fff0045,

 WindowBaseAddress32 = 0x3fff0098,

 WindowBaseAddress64 = 0x3fff009b,

 WindowByteOrder = 0x3fff0047,

 WindowSize32 = 0x3fff009a,

 WindowSize64 = 0x3fff009c,

 WriteBufferOperationMode = 0x3fff002d,

 WriteBufferSize = 0x3fff002e,

}

OBSERVATION 5.16.1

The NativeVisaAttribute enumeration corresponds to the defined values for the VISA attributes.

Section 5: VISA.NET Enumerations Page 5-21

5.17. PxiMemoryType

DEFINITION

public enum PxiMemoryType

{

 None = 0,

 Memory = 1,

 IO = 2,

}

OBSERVATION 5.17.1

The PxiMemoryType enumeration indicates the memory type (memory mapped or I/O mapped) used by

the device in the specified base address register (BAR). This enumeration corresponds to the defined

values for the VISA attributes VI_ATTR_PXI_MEM_TYPE_BARn.

Page 5-22 Section 5: VISA.NET Enumerations

5.18. ReadStatus

DEFINITION

public enum ReadStatus

{

 Unknown = 0,

 EndReceived = 1,

 TerminationCharacterEncountered = 2,

 MaximumCountReached = 3

}

OBSERVATION 5.18.1

The ReadStatus enumeration indicates the success status of a raw I/O read operation. This enumeration

corresponds to the defined success status codes for VISA’s viRead function but adds the Unknown

member. The Unknown member is the default and is used for the initial state, but it will never be returned

for a successful read operation.

Section 5: VISA.NET Enumerations Page 5-23

5.19. RemoteLocalMode

DEFINITION

public enum RemoteLocalMode

{

 LocalWithoutLockout = 0,

 Remote = 1,

 RemoteWithLocalLockout = 2,

 Local = 3

}

OBSERVATION 5.19.1

The RemoteLocalMode enumeration indicates the action to be taken by the SendRemoteLocalCommand

of a GPIB, TCPIP, or USB INSTR session. This enumeration corresponds to the defined values for the

mode parameter of VISA’s viGpibControlREN function, as shown in the table below. Values that are not

relevant are not included in the VISA.NET enumeration.

Enumeration Member VISA C Defined Value

LocalWithoutLockout VI_GPIB_REN_DEASSERT_GTL

Remote VI_GPIB_REN_ASSERT_ADDRESS

RemoteWithLocalLockout VI_GPIB_REN_ASSERT_ADDRESS_LLO

Local VI_GPIB_REN_ADDRESS_GTL

Page 5-24 Section 5: VISA.NET Enumerations

5.20. ResourceLockState

DEFINITION

public enum ResourceLockState

{

 NoLock = 0,

 ExclusiveLock = 1,

 SharedLock = 2

}

OBSERVATION 5.20.1

The RemoteLocalMode enumeration indicates the state of the VISA lock on the resource associated with

this session. This enumeration corresponds to the defined values for the VISA attribute

VI_ATTR_RSRC_LOCK_STATE.

Section 5: VISA.NET Enumerations Page 5-25

5.21. ResourceOpenStatus

DEFINITION

public enum ResourceOpenStatus

{

 Success = 0,

 DeviceNotResponding = 1,

 ConfigurationNotLoaded = 2

}

OBSERVATION 5.21.1

The ResourceOpenStatus enumeration indicates the success status of an open operation. This

enumeration corresponds to the defined success status codes for VISA’s viOpen function.

Page 5-26 Section 5: VISA.NET Enumerations

5.22. SerialFlowControlModes

DEFINITION

[Flags]

public enum SerialFlowControlModes

{

 None = 0,

 XOnXOff = 1,

 RtsCts = 2,

 DtrDsr = 4

}

OBSERVATION 5.22.1

The SerialFlowControlModes enumeration indicates the type of flow control used by the Serial

connection. This enumeration corresponds to the defined values for the VISA attribute

VI_ATTR_ASRL_FLOW_CNTRL.

Section 5: VISA.NET Enumerations Page 5-27

5.23. SerialParity

DEFINITION

public enum SerialParity

{

 None = 0,

 Odd = 1,

 Even = 2,

 Mark = 3,

 Space = 4

}

OBSERVATION 5.23.1

The SerialParity enumeration indicates whether parity checking is being used by the serial connection,

and if so, how it is determined. The specified parity is used with every frame transmitted and received.

This enumeration corresponds to the defined values for the VISA attribute VI_ATTR_ASRL_PARITY.

Page 5-28 Section 5: VISA.NET Enumerations

5.24. SerialTerminationMethod

DEFINITION

public enum SerialTerminationMethod

{

 None = 0,

 HighestBit = 1,

 TerminationCharacter = 2,

 Break = 3

}

OBSERVATION 5.24.1

The SerialTermination enumeration indicates the method used to terminate Serial read and write

operations. This enumeration corresponds to the defined values for the VISA attributes

VI_ATTR_ASRL_END_IN and VI_ATTR_ASRL_END_OUT.

Section 5: VISA.NET Enumerations Page 5-29

5.25. StatusByteFlags

DEFINITION

[Flags]

public enum StatusByteFlags : short

{

 User0 = 0x01,

 User1 = 0x02,

 User2 = 0x04,

 User3 = 0x08,

 MessageAvailable = 0x10,

 EventStatusRegister = 0x20,

 RequestingService = 0x40,

 User7 = 0x80

}

OBSERVATION 5.25.1

The StatusByteFlags enumeration indicates individual bits of the IEEE 488.2 Status Byte. This

enumeration allows possible values for the VISA attribute VI_ATTR_DEV_STATUS_BYTE to be expressed

as a combination of the enumeration values.

Page 5-30 Section 5: VISA.NET Enumerations

5.26. SerialStopBitsMode

DEFINITION

public enum SerialStopBitsMode

{

 One = 0,

 OneAndOneHalf = 1,

 Two = 2

}

OBSERVATION 5.26.1

The SerialStopBitsMode enumeration indicates the number of stop bits used to indicate the end of a

Serial frame. This enumeration corresponds to the defined values for the VISA attribute

VI_ATTR_ASRL_STOP_BITS.

Section 5: VISA.NET Enumerations Page 5-31

5.27. TriggerLine

DEFINITION

public enum TriggerLine

{

 All = -2,

 Ttl0 = 0,

 Ttl1 = 1,

 Ttl2 = 2,

 Ttl3 = 3,

 Ttl4 = 4,

 Ttl5 = 5,

 Ttl6 = 6,

 Ttl7 = 7,

 Ecl0 = 8,

 Ecl1 = 9,

 Ecl2 = 10,

 Ecl3 = 11,

 Ecl4 = 12,

 Ecl5 = 13,

 StarSlot1 = 14,

 StarSlot2 = 15,

 StarSlot3 = 16,

 StarSlot4 = 17,

 StarSlot5 = 18,

 StarSlot6 = 19,

 StarSlot7 = 20,

 StarSlot8 = 21,

 StarSlot9 = 22,

 StarSlot10 = 23,

 StarSlot11 = 24,

 StarSlot12 = 25,

 StarInstrument = 26,

 PanelIn = 27,

 PanelOut = 28,

 StarVxi0 = 29,

 StarVxi1 = 30,

 StarVxi2 = 31,

 Ttl8 = 32,

 Ttl9 = 33,

 Ttl10 = 34,

 Ttl11 = 35

}

OBSERVATION 5.27.1

The TriggerLine enumeration indicates a VXI or PXI trigger line. This enumeration corresponds to the

defined values for VISA triggers. The defined values for VISA triggers include values that begin with

VI_TRIG_, except for VI_TRIG_SW and values that begin with VI_TRIG_PROT_.

Page 5-32 Section 5: VISA.NET Enumerations

5.28. TriggerLines

DEFINITION

[Flags]

public enum TriggerLines

{

 Ecl0 = 1 << TriggerLine.Ecl0,

 Ecl1 = 1 << TriggerLine.Ecl1,

 Ecl1 = 1 << TriggerLine.Ecl2,

 Ecl1 = 1 << TriggerLine.Ecl3,

 Ecl1 = 1 << TriggerLine.Ecl4,

 Ecl1 = 1 << TriggerLine.Ecl5,

 PanelIn = 1 << TriggerLine.PanelIn,

 PanelOut = 1 << TriggerLine.PanelOut,

 StarInstr = 1 << TriggerLine.StarInstrument,

 StarSlot1 = 1 << TriggerLine.StarSlot1,

 StarSlot2 = 1 << TriggerLine.StarSlot2,

 StarSlot3 = 1 << TriggerLine.StarSlot3,

 StarSlot4 = 1 << TriggerLine.StarSlot4,

 StarSlot5 = 1 << TriggerLine.StarSlot5,

 StarSlot6 = 1 << TriggerLine.StarSlot6,

 StarSlot7 = 1 << TriggerLine.StarSlot7,

 StarSlot8 = 1 << TriggerLine.StarSlot8,

 StarSlot9 = 1 << TriggerLine.StarSlot9,

 StarSlot10 = 1 << TriggerLine.StarSlot10,

 StarSlot11 = 1 << TriggerLine.StarSlot11,

 StarSlot12 = 1 << TriggerLine.StarSlot12,

 StarVxi0 = 1 << TriggerLine.StarVxi0,

 StarVxi1 = 1 << TriggerLine.StarVxi1,

 StarVxi2 = 1 << TriggerLine.StarVxi2,

 Ttl0 = 1 << TriggerLine.Ttl0,

 Ttl1 = 1 << TriggerLine.Ttl1,

 Ttl2 = 1 << TriggerLine.Ttl2,

 Ttl3 = 1 << TriggerLine.Ttl3,

 Ttl4 = 1 << TriggerLine.Ttl4,

 Ttl5 = 1 << TriggerLine.Ttl5,

 Ttl6 = 1 << TriggerLine.Ttl6,

 Ttl7 = 1 << TriggerLine.Ttl7

}

OBSERVATION 5.28.1

The TriggerLines enumeration indicates one or more VXI trigger lines. This enumeration corresponds

to the defined values for VISA triggers. The defined values for VISA triggers include values that begin

with VI_TRIG_, except for VI_TRIG_SW and values that begin with VI_TRIG_PROT_. TTL lines 8-11

are not included, as they apply to PXI only.

Section 5: VISA.NET Enumerations Page 5-33

5.29. VxiAccessPriviledge

DEFINITION

public enum VxiAccessPrivilege

{

 DataPrivileged = 0,

 DataNonPrivileged = 1,

 ProgramPrivileged = 2,

 ProgramNonPrivileged = 3,

 BlockPrivileged = 4,

 BlockNonPrivileged = 5,

 D64Privileged = 6,

 D64NonPrivileged = 7

 D64DoubleEdgeVme = 8,

 D64Sst160 = 9,

 D64Sst267 = 10,

 D64Sst320 = 11

 }

OBSERVATION 5.29.1

The VxiAccessPriviledge enumeration indicates the address modifier to be used in high-level access

operations when writing to the destination. This enumeration corresponds to the defined values for the

VISA attributes VI_ATTR_SRC_ACCESS_PRIV and VI_ATTR_DEST_ACCESS_PRIV.

Page 5-34 Section 5: VISA.NET Enumerations

5.30. VxiCommandMode

DEFINITION

public enum VxiCommandMode

{

 Command16Bit = 0,

 Command32Bit = 1,

 Command32BitResponse16Bit = 2,

 CommandResponse16Bit = 3,

 CommandResponse32Bit = 4,

 Response16Bit = 5,

 Response32Bit = 6

}

OBSERVATION 5.30.1

The VxiCommandMode enumeration indicates whether to VISA should issue a command and/or retrieve a

response, and what type or size of command and/or response to use. This enumeration corresponds to the

defined values for the mode parameter of VISA’s viVxiCommandQuery function.

Section 5: VISA.NET Enumerations Page 5-35

5.31. VxiDeviceClass

DEFINITION

public enum VxiDeviceClass

{

 Memory = 0,

 Extended = 1,

 Message = 2,

 Register = 3,

 Other = 4

}

OBSERVATION 5.31.1

The VxiDeviceClass enumeration indicates the VXI-defined device class to which a particular resource

belongs. This enumeration corresponds to the defined values for the VISA attribute

VI_ATTR_VXI_DEV_CLASS.

Page 5-36 Section 5: VISA.NET Enumerations

5.32. VxiTriggerProtocol

DEFINITION

public enum VxiTriggerProtocol

{

 Software = 0,

 On = 1,

 Off = 2,

 Sync = 5,

}

OBSERVATION 5.32.1

The VxiTriggerProtocol enumeration indicates the trigger protocol to be used when a VXI trigger is

asserted. This enumeration corresponds to the defined values for the protocol parameter of VISA’s

viAssertTrigger function, although the Software member corresponds to the case where the VISA

VI_ATTR_TRIG_ID is set to VI_TRIG_SW.

Section 5: VISA.NET Enumerations Page 5-37

5.33. VxiUtilitySignal

DEFINITION

public enum VxiUtilitySignal

{

 AssertSystemReset = 0,

 AssertSystemFailure = 1,

 DeassertSystemFailure = 2,

}

OBSERVATION 5.33.1

The VxiUtilitySignal enumeration indicates the utility bus signal to assert. This is valid only for VXI

BACKPLANE sessions. This enumeration corresponds to the defined values for the line parameter of

VISA’s viAssertUtilSignal function.

Section 6: VISA.NET Exceptions and Status Codes Page 6-1

Section 6: VISA.NET Exceptions and Status Codes

In general, VISA.NET implementations are free to throw applicable exceptions when needed. There are

just a few special cases where particular exceptions are required for specific error conditions in specific

methods or properties.

6.1. Exception Overview
The .NET Framework has a rich list of exceptions and guidelines for using them. Most .NET programmers

will expect these exceptions to be used when they are appropriate. In cases where the exception is specific

to VISA.NET, the exception should either be VisaException or derived from VisaException. If the

VISA.NET implementation overlays a native VISA implementation, and the VISA implementation returns

an error status code, the VISA.NET exception should be NativeVisaException.

VISA.NET defines the following exceptions. All exceptions are defined in the Ivi.Visa namespace.
• VisaException

• VisaIoTimeoutException

• NativeVisaException

• TypeFormatterException

NativeVisaException is specifically for reporting errors from an underlying VISA C implementation.

This exception includes the error status code reported by VISA C. VISA.NET includes a class of error

status codes, NativeErrorCode, that enables calling programs to use a convenient name for errors rather

than a number.

All exceptions defined by VISA.NET derive from VisaException.

Since calling programs routinely need to handle I/O timeout exceptions, there are some specific rules and

observations related to throwing timeout exceptions.

In cases where VISA C would return an error code, the corresponding VISA.NET method or property is

expected to throw an exception unless otherwise specified.

I/O TIMEOUT EXCEPTIONS

RULE 6.1.1

Certain methods specify that Ivi.Visa.IoTimeoutException SHALL be thrown when an I/O

operation times out. Whenever a VISA.NET I/O timeout is reported by one of these methods, it SHALL

be reported with Ivi.Visa.IoTimeoutException, regardless of whether the underlying implementation

delegates to VISA C, or is a native .NET implementation. In these cases in particular, it SHALL NOT be

reported using System.TimeoutException, Ivi.Visa.NativeVisaException, or any other

exception that might otherwise look suitable.

OBSERVATION 6.1.1

In cases where it is specified that Ivi.Visa.IoTimeoutException shall be thrown to report a timeout

condition, calling programs may reliably expect that exception to be thrown when an I/O timeout occurs.

PERMISSION 6.1.1

Methods that do not explicitly specify that Ivi.Visa.IoTimeoutException shall be thrown to report a

timeout condition, may throw System.TimeoutException, Ivi.Visa.NativeVisaException, or

any other exception that might be suitable to report the timeout.

OTHER EXCEPTIONS

RULE 6.1.2

If a VISA.NET I/O implementation throws Ivi.Visa.NativeVisaException or any exception that

derives from Ivi.Visa.NativeVisaException to report an error that was returned by the underlying

Page 6-2 Section 6: VISA.NET Exceptions and Status Codes

VISA C implementation, that exception’s StatusCode property SHALL match the value of the status

code returned by VISA C.

RULE 6.1.3

A VISA.NET I/O implementation SHALL NOT throw Ivi.Visa.NativeVisaException or any

exception that derives from Ivi.Visa.NativeVisaException unless the VISA.NET implementation is

based on an underlying VISA C implementation.

PERMISSION 6.1.2

Except as noted in RULE 6.1.1, if a VISA.NET I/O session’s implementation is layered over a VISA C

implementation, any operation may throw an Ivi.Visa.NativeVisaException with a vendor specific

status code that is not listed in the VISA C specifications.

PERMISSION 6.1.3

VISA.NET implementations may define vendor specific VISA.NET exceptions.

RULE 6.1.4

Vendor defined VISA.NET exceptions SHALL derive from VisaException directly or indirectly, as

appropriate.

RECOMMENDATION 6.1.2

Vendors should not create a vendor specific VISA.NET exception if there is an applicable .NET framework

exception. For example vendors should not define vendor specific VISA.NET exceptions to replace

System.ArgumentNullException or System.ArgumentOutOfRangeException.

PERMISSION 6.1.4

Except as noted in RULE 6.1.1, vendor specific VISA.NET implementations may allow exceptions thrown

by the .NET Framework to propagate up to the calling program.

OBSERVATION 6.1.2

Any VISA.NET operation may throw exceptions, particularly .NET Framework exceptions or vendor-

specific exceptions, not listed in this specification.

OBSERVATION 6.1.3

In light of the previous two permissions, it is important that calling programs (1) follow .NET guidelines

for handling exceptions, (2) not assume that particular exceptions will be returned for a particular error

condition (except as noted in RULE 6.1.1), since different vendors may return different errors in the same

situation, and (3) not restrict error processing to VISA status codes defined by the VISA sepcifications

when an Ivi.Visa.NativeVisaException is caught.

OBSERVATION 6.1.4

Ivi.Visa.NativeVisaException is only thrown when the underlying implementation delegates to a

VISA C implementation.

RULE 6.1.5

A VISA.NET I/O session SHALL NOT throw System.NotImplementedException.

Section 6: VISA.NET Exceptions and Status Codes Page 6-3

6.2. VISA.NET Exceptions

6.2.1. Ivi.Visa.VisaException

DESCRIPTION

A VISA.NET error has occurred.

DEFINITION

public class VisaException : System.Exception

{

 public VisaException(){…}

 public VisaException(String message) {…}

 public VisaException(String message,

 System.Exception innerException) {…}

 protected VisaException(SerializationInfo info,

 StreamingContext context) {…}

}

DEFAULT MESSAGE STRING

Exception of type ‘Ivi.Visa.VisaException’ was thrown.

ARGUMENTS

Name Description Base Type

message A message appropriate to the error being reported. System.String

innerException If not null, the exception that is the cause of the current

exception.

System.Exception or

derived type

IMPLEMENTATION NOTES

VisaException is implemented in the VISA.NET standard components.

Page 6-4 Section 6: VISA.NET Exceptions and Status Codes

6.2.2. Ivi.Visa.IOTimeoutException

DESCRIPTION

A VISA.NET I/O timeout has occured.

DEFINITION

public class Ivi.Visa.IOTimeoutException : Ivi.Visa.VisaException

{

 public IOTimeoutException (Int64 actualCount, Byte[] actualData) {…}

 public IOTimeoutException (Int64 actualCount, Byte[] actualData,

 String message) {…}

 public IOTimeoutException (Int64 actualCount, Byte[] actualData,

 String message,

 System.Exception innerException) {…}

 protected IOTimeoutException (SerializationInfo info,

 StreamingContext context) {…}

 public Int64 ActualCount { get; protected set; }

 public Byte[] ActualData { get; protected set; }

}

DEFAULT MESSAGE STRING

Exception of type ‘Ivi.Visa.IOTimeoutException’ was thrown.

ARGUMENTS

Name Description Base Type

actualCount The actual number of elements read or written before the

timeout occurred. A value of -1 indicates that the actual

number could not be determined.

System.Int64

actualData The actual bytes read or written before the timeout

occurred. If the actual number of elements read could not

be determined, the array is empty.

System.Byte[]

message A message appropriate to the error being reported. System.String

innerException The exception that is the cause of the current exception. If

the innerException parameter is not null, the current

exception is raised in a catch block that handles the inner

exception.

System.Exception or

derived type

PROPERTIES

Name Description Base Type

ActualCount The actual number of elements read or written before the

timeout occurred. A value of -1 indicates that the actual

number could not be determined.

System.Int64

ActualData The actual bytes read or written before the timeout

occurred. If the actual number of elements read could not

be determined, the array is empty.

System.Byte[]

IMPLEMENTATION NOTES

IOTimeoutException is implemented in the VISA.NET standard components.

Section 6: VISA.NET Exceptions and Status Codes Page 6-5

6.2.3. Ivi.Visa.NativeVisaException

DESCRIPTION

An error related to the underlying VISA native C implementation has occurred. The status code indicates

the type of error that occurred.

DEFINITION

public class NativeVisaException : Ivi.Visa.VisaException

{

 public NativeVisaException(int errorCode) {…}

 public NativeVisaException(int errorCode, String message) {…}

 public NativeVisaException(int errorCode, String message,

 System.Exception innerException) {…}

 protected NativeVisaException(SerializationInfo info,

 StreamingContext context) {…}

 public int ErrorCode { get; protected set; }

}

DEFAULT MESSAGE STRING

Exception of type ‘Ivi.Visa.NativeVisaException’ was thrown.

ARGUMENTS

Name Description Base Type

errorCode The underlying VISA status code of the error that

occurred.

System.Int32

message A message appropriate to the error being reported. System.String

innerException The exception that is the cause of the current exception. If

the innerException parameter is not null, the current

exception is raised in a catch block that handles the inner

exception.

System.Exception or

derived type

PROPERTIES

Name Description Base Type

ErrorCode The underlying VISA status code of the error that

occurred.

System.Int32

IMPLEMENTATION NOTES

NativeVisaException is implemented in the VISA.NET standard components.

Page 6-6 Section 6: VISA.NET Exceptions and Status Codes

6.2.4. Ivi.Visa.TypeFormatterException

DESCRIPTION

A Type Formatter error has occurred. This could be an error either in converting the type value to a string,

or in converting a string to the corresponding type value.

A type formatter is a class that implements the ITypeFormatter interface, which is used by Printf and

Scanf methods to format the values of arbitrary types. Refer to 9.3.2, ITypeFormatter Interface for more

information.

Type formatter exceptions are intended to be thrown by classes that implement ITypeFormatter.

DEFINITION

public class TypeFormatterException : System.Exception

{

 public TypeFormatterException(){…}

 public TypeFormatterException(System.Exception innerException) {…}

 public TypeFormatterException(Type type) {…}

 public TypeFormatterException(Type type,

 System.Exception innerException) {…}

 public TypeFormatterException(Type type,

 String instrumentResponse) {…}

 public TypeFormatterException(Type type,

 String instrumentResponse,

 System.Exception innerException) {…}

 public TypeFormatterException(Object obj) {…}

 public TypeFormatterException(Object obj,

 System.Exception innerException) {…}

 protected TypeFormatterException(SerializationInfo info,

 StreamingContext context) {…}

}

DEFAULT MESSAGE STRING

Exception of type ‘Ivi.Visa.TypeFormatterException was thrown.

ARGUMENTS

Name Description Base Type

type The type of the object value being formatted or

parsed.

System.Type

instrumentResponse The instrument response whose format could not be

correctly parsed by the type formatter.

System.String

obj The object whose value is being formatted. System.Object

args The collection of objects to be used in formatting the

message.

System.Object[]

Section 6: VISA.NET Exceptions and Status Codes Page 6-7

message A message appropriate to the error being reported.

For the two constructors with args arguments, the

message is a format string capable of formatting the

accompanying arguments.

StatusCodes

innerException The exception that is the cause of the current

exception. If the innerException parameter is not null,

the current exception is raised in a catch block that

handles the inner exception.

System.Exception or

derived type

IMPLEMENTATION NOTES

OBSERVATION 6.2.1

TypeFormatterException is intended for use by objects that implement the ITypeFormatter

interface. Note that while the ITypeFormatter interface and TypeFormatterException are defined in

the VISA.NET Shared Components, objects that implement the ITypeFormatter interface are not

provided.

OBSERVATION 6.2.2

The following guidelines are provided for selecting an appropriate constructor when throwing

TypeFormatterException from an object that implements ITypeFormatter.

- The first two constructors in the above list, and the last, will typically not be used.

- The two constructors that take a type argument without the instrumentResponse argument, and

the two constructors that take an obj argument, are typically used to throw Printf formatting errors.

- The two constructors that take a type argument with the instrumentResponse argument are

typically used to throw Scanf parsing errors.

Page 6-8 Section 6: VISA.NET Exceptions and Status Codes

6.3. NativeErrorCode Class

DESCRIPTION

The NativeErrorCode class consists of constants for all of the standard error status codes that are defined in

the VISA C specification. This class is provided for convenience when using NativeVisaException. VISA

success and warning status codes are not included in the NativeErrorCode class.

The NativeErrorCode class includes one method that returns the VISA C constant name of the error

code, with the leading “VI_” removed.

DEFINITION

public class NativeErrorCode

{

 public const int SystemError = -1073807360;

 public const int InvalidObject = -1073807346;

 public const int ResourceLocked = -1073807345;

 public const int InvalidExpression = -1073807344;

 public const int ResourceNotFound = -1073807343;

 public const int InvalidResourceName = -1073807342;

 public const int InvalidAccessMode = -1073807341;

 public const int Timeout = -1073807339;

 public const int CloseFailed = -1073807338;

 public const int InvalidDegree = -1073807333;

 public const int InvalidJobId = -1073807332;

 public const int UnsupportedAttribute = -1073807331;

 public const int UnsupportedAttributeValue = -1073807330;

 public const int ReadOnlyAttribute = -1073807329;

 public const int InvalidLockType = -1073807328;

 public const int InvalidAccessKey = -1073807327;

 public const int InvalidEvent = -1073807322;

 public const int InvalidMechanism = -1073807321;

 public const int HandlerNotInstalled = -1073807320;

 public const int InvalidHandlerReference = -1073807319;

 public const int InvalidEventContext = -1073807318;

 public const int QueueOverflow = -1073807315;

 public const int NotEnabled = -1073807313;

 public const int Abort = -1073807312;

 public const int RawWriteProtocolViolation = -1073807308;

 public const int RawReadProtocolViolation = -1073807307;

 public const int OutputProtocolViolation = -1073807306;

 public const int InputProtocolViolation = -1073807305;

 public const int BusError = -1073807304;

 public const int OperationInProgress = -1073807303;

 public const int InvalidSetup = -1073807302;

 public const int QueueError = -1073807301;

 public const int MemoryAllocation = -1073807300;

 public const int InvalidBufferMask = -1073807299;

 public const int IOError = -1073807298;

 public const int InvalidFormatSpecifier = -1073807297;

 public const int UnsupportedFormatSpecifier = -1073807295;

 public const int TriggerLineInUse = -1073807294;

 public const int TriggerLineNotReserved = -1073807293;

Section 6: VISA.NET Exceptions and Status Codes Page 6-9

 public const int UnsupportedMode = -1073807290;

 public const int ServiceRequestNotReceived = -1073807286;

 public const int InvalidAddressSpace = -1073807282;

 public const int InvalidOffset = -1073807279;

 public const int InvalidDataWidth = -1073807278;

 public const int UnsupportedOffset = -1073807276;

 public const int VariableDataWidthNotSupported = -1073807275;

 public const int WindowNotMapped = -1073807273;

 public const int ResponsePending = -1073807271;

 public const int NoListeners = -1073807265;

 public const int NotControllerInCharge = -1073807264;

 public const int NotSystemController = -1073807263;

 public const int OperationNotSupported = -1073807257;

 public const int InterruptPending = -1073807256;

 public const int ParityError = -1073807254;

 public const int FramingError = -1073807253;

 public const int Overrun = -1073807252;

 public const int TriggerNotMapped = -1073807250;

 public const int OffsetNotAligned = -1073807248;

 public const int UserBufferError = -1073807247;

 public const int ResourceBusy = -1073807246;

 public const int WidthNotSupported = -1073807242;

 public const int InvalidParameter = -1073807240;

 public const int InvalidProtocol = -1073807239;

 public const int InvalidWindowSize = -1073807237;

 public const int WindowAlreadyMapped = -1073807232;

 public const int OperationNotImplemented = -1073807231;

 public const int InvalidLength = -1073807229;

 public const int InvalidMode = -1073807215;

 public const int SessionNotLocked = -1073807204;

 public const int MemoryNotShared = -1073807203;

 public const int LibraryNotFound = -1073807202;

 public const int UnsupportedInterrupt = -1073807201;

 public const int InvalidLine = -1073807200;

 public const int FileAccessError = -1073807199;

 public const int FileIOError = -1073807198;

 public const int TriggerLineNotSupported = -1073807197;

 public const int EventMechanismNotSupported = -1073807196;

 public const int InterfaceNumberNotConfigured = -1073807195;

 public const int ConnectionLost = -1073807194;

 public const int MachineNotAvailable = -1073807193;

 public const int AccessDenied = -1073807192;

 public const int ServerCertificateError = -1073807184;

 public const int ServerCertificateUntrusted = -1073807183;

 public const int ServerCertificateExpired = -1073807182;

 public const int ServerCertificateRevoked = -1073807181;

 public const int ServerCertificateInvalidSubject = -1073807180;

 public static string GetMacroNameFromStatusCode(int status) {…}

}

IMPLEMENTATION NOTES

Page 6-10 Section 6: VISA.NET Exceptions and Status Codes

The NativeErrorCode class is implemented in the VISA.NET standard components.

Section 6: VISA.NET Exceptions and Status Codes Page 6-11

6.3.1. GetMacroNameFromStatusCode()

DESCRIPTION

Given a VISA C error status code, this method returns the name of the VISA C defined constant with the

leading “VI_” removed.

DEFINITION

static String GetMacroNameFromStatusCode(Int32 status) {…}

ARGUMENTS

Name Description Base Type

status The error status code. System.Int32

Return Value The name of the VISA C defined constant with the leading

“VI_” removed

System.String

Section 7: VISA.NET Hardware Events Page 7-1

Section 7: VISA.NET Hardware Events

VISA.NET hardware events are used by VISA.NET sessions to report things that the calling program may

need to know about. For the most part, these events are related to the I/O hardware associated with the

session – interrupts, service requests, triggers, and so on.

(These events are designated hardware events to distinguish them from notifications connected with

asynchronous I/O. Asynchronous I/O is described in Section 9.2.2, Asynchronous I/O, along with

associated notification mechanisms.)

Page 7-2 Section 7: VISA.NET Hardware Events

7.1. Hardware Event APIs
VISA.NET handles hardware events two different ways. The first maps very closely to the functions that

VISA C uses for events. The second takes advantage of .NET events.

HARDWARE EVENT METHODS

VISA C provides a number of functions that enable calling programs to register for and receive notification

of hardware events. Each of these functions has an event type parameter that identifies one or more events.

• viEnableEvent() enables the event, so that an event will be “fired” when the corresponding

condition is detected.

• viDisableEvent() disables the event, so that it is never fired.

• viDiscardEvent() discards events from the event queue. (If events happen more quickly than

they can be handled, they are added to a queue until they can be handled.)

• viWaitOnEvent() waits for an event of the specified event type(s) to be fired.

VISA.NET provides methods that correspond to the VISA C methods. The VISA.NET EnableEvent()

method corresponds to viEnableEvent() called with the event mechanism of VI_QUEUE. The

DisableEvent(), DiscardEvent(), and WaitOnEvent() methods correspond exactly to the

corresponding VISA C functions. Each method includes an eventType argument that indicates the kind

of event to which the method applies. These methods are part of IVisaSession, and so are included with

every type of VISA.NET session.

.NET HARDWARE EVENTS

The second way that VISA.NET handles hardware events is with VISA.NET defined .NET events.

VISA.NET defines events that are specific to a particular session interface and event type. These .NET

events provide callback delegates, registration methods, and a notification mechanism that are specific, for

the most part, to particular events. When using .NET events, registering for the event roughly corresponds

to calling viInstallHandler() followed by viEnableEvent() with VI_HNDLR and unregistering the

event roughly corresponds to calling viDisableEvent() followed by viUninstallHandler(). There

are no equivalents to viDiscardEvent() and viWaitOnEvent() when using .NET events. A .NET

event calls an event delegate (e.g. callback method) to handle the event.

VISA.NET uses standard .NET event mechanisms for registering and firing events. Each event delegate

has an event arguments parameter (also called event args) to communicate information back and forth

between VISA.NET and the calling program. Event delegates use either the VISA.NET default for event

args (the VisaEventArgs class) or custom event args that derive from VisaEventArgs, depending on the

event.

Events and event delegates are defined with the .NET EventHandler<T> delegate where T is the type of

the event args.

VISA.NET can synchronize the execution of the callback functions that handle events and asynchronous

I/O so that event handlers (for events) and callback functions (for asynchronous I/O) run in the caller’s

context. If callbacks are synchronized, VISA.NET captures the context when the calling program registers

for the event or (for asynchronous I/O) BeginRead or BeginWrite is executed. It then uses the standard

.NET mechanisms to ensure that events are fired, or callbacks are made in the caller’s original context.

Refer to section 8.3.2, SynchronizeCallbacks, for details.

CORRESPONDING VISA EVENTS

The following table shows the relationship between events in VISA and hardware events in VISA.NET.

Section 7: VISA.NET Hardware Events Page 7-3

VISA Event Name VISA.NET EventType

Used with Event Methods

and EventArgs

VISA.NET .NET Events

Any vendor specific event code. Custom .NET event is vendor defined

VI_EVENT_TRIG Trigger

IGpibInterfaceSession.Trigger

IVxiBackplaneSession.Trigger

IVxiSession.Trigger

VI_EVENT_SERVICE_REQ

ServiceRequest

IGpibInterfaceSession.

 ServiceRequest

IMessageBasedSession.

 ServiceRequest

VI_EVENT_CLEAR Clear IGpibInterfaceSession.Cleared

VI_EVENT_EXCEPTION No VISA.NET event No VISA.NET event

VI_EVENT_GPIB_CIC GpibControllerInCharge
IGpibInterfaceSession.

 ControllerInCharge

VI_EVENT_GPIB_TALK GpibTalk IGpibInterfaceSession.Talk

VI_EVENT_GPIB_LISTEN GpibListen IGpibInterfaceSession.Listen

VI_EVENT_VXI_VME_SYSFAIL VxiVmeSystemFailure
IVxiBackplaneSession.

 SystemFailure

VI_EVENT_VXI_VME_SYSRESET VxiVmeSystemReset
IVxiBackplaneSession.

 SystemReset

VI_EVENT_VXI_SIGP VxiSignalP IVxiSession.SignalProcessor

VI_EVENT_VXI_VME_INTR VxiVmeInterrupt IVxiSession.Interrupt

VI_EVENT_PXI_INTR PxiInterrupt IPxiSession.Interrupt

VI_EVENT_TCPIP_CONNECT No VISA.NET event No VISA.NET event

VI_EVENT_USB_INTR UsbInterrupt IUsbSession.Interrupt

VI_ALL_ENABLED_EVENTS AllEnabled

Not meaningful, since the calling

program has already registered for the

“enabled” events.

VI_EVENT_IO_COMPLETION Refer to the discussion of events in VISA.NET Asynchronous I/O.

IMPLEMENTATION

OBSERVATION 7.1.1

VISA.NET does not support VI_EVENT_EXCEPTION. Exceptions are reported by a .NET
exception in VISA.NET.

OBSERVATION 7.1.2

VISA.NET does not support VI_EVENT_TCPIP_CONNECT. This event type is only used
with SERVANT sessions, which are not supported in VISA.NET.

OBSERVATION 7.1.3

VISA.NET I/O implementations should not assume an event handler will return in any timeframe. Event

handlers may execute blocking waits before returning to the VISA.NET I/O component that fired the event.

If a VISA.NET I/O resource component calls an event handler and the event handler blocks, the event

handler will not return until the block completes.

Page 7-4 Section 7: VISA.NET Hardware Events

OBSERVATION 7.1.4

Event handlers may affect the liveness of the VISA.NET I/O session making the calls. To prevent issues

related to responsiveness, event handlers should make every effort to return in a timely manner.

RULE 7.1.2

VISA.NET implementations SHALL NOT kill threads which they did not start.

RECOMMENDATION 7.1.2

VISA.NET implementations should not hold synchronization objects that would prevent an event handler

or callback routine from executing properly if the event handler or callback routine were to call back into

VISA.NET.

RECOMMENDATION 7.1.3

If a VISA.NET I/O resource component calls an event handler or callback method which in turn throws an

exception, VISA.NET should catch the exception without re-throwing it. This assumes that the customer

has dealt with any exceptions, since the exception was generated from their code. Vendors need to

document that users need to use try/catch in their event handlers or callbacks to handle exceptions.

OBSERVATION 7.1.5

As the effect of an exception leaving the context of an event handler or callback method is not

deterministic, the event handler or callback method should make every effort to not allow this to happen.

Section 7: VISA.NET Hardware Events Page 7-5

7.2. .NET Event Handlers
VISA.NET defines the following event handlers. The following list shows the name of each standard event

handler, the interface in which it is defined, and the event handler and delegate definition, including the

event args class used with the event.

Message Based ServiceRequest in IMessageBasedSession

 event EventHandler<VisaEventArgs> ServiceRequest;

GPIB Interface Cleared in IGpibInterfaceSession

 event EventHandler<VisaEventArgs> Cleared;

GPIB Interface ControllerInCharge in IGpibInterfaceSession

 event EventHandler<GpibControllerInChargeEventArgs> ControllerInCharge;

GPIB Interface Listen in IGpibInterfaceSession

 event EventHandler<VisaEventArgs> Listen;

GPIB Interface ServiceRequest in IGpibInterfaceSession

 event EventHandler<VisaEventArgs> ServiceRequest;

GPIB Interface Talk in IGpibInterfaceSession

 event EventHandler<VisaEventArgs> Talk;

GPIB Interface Trigger in IGpibInterfaceSession

 event EventHandler<VisaEventArgs> Trigger;

PXI Interrupt in IPxiSession

 event EventHandler<PxiInterruptEventArgs> Interrupt;

USB Interrupt in IUsbSession

 event EventHandler<UsbInterruptEventArgs> Interrupt;

VXI Backplane Trigger in IVxiBackplaneSession

 event EventHandler<VxiTriggerEventArgs> Trigger;

VXI Backplane System Failure in IVxiBackplaneSession

 event EventHandler<VisaEventArgs> SystemFailure;

VXI Backplane System Reset in IVxiBackplaneSession

 event EventHandler<VisaEventArgs> SystemReset;

VXI Interrupt in IVxiSession

 event EventHandler<VxiInterruptEventArgs> Interrupt;

VXI Signal Processor in IVxiSession

 event EventHandler<VxiSignalProcessorEventArgs> SignalProcessor;

VXI Trigger in IVxiSession

 event EventHandler<VxiTriggerEventArgs> Trigger;

Page 7-6 Section 7: VISA.NET Hardware Events

7.3. VISA.NET Event Arguments
In .NET, every event handler has an event argument class that is used to communicate information between

the routine that fires the event and the event handler. VISA.NET defines the following event argument

classes.

• VisaEventArgs

• GpibControllerInChargeEventArgs : VisaEventArgs

• PxiInterruptEventArgs : VisaEventArgs

• UsbInterruptEventArgs : VisaEventArgs

• VxiInterruptEventArgs : VisaEventArgs

• VxiSignalProcessorEventArgs : VisaEventArgs

• VxiTriggerEventArgs : VisaEventArgs

VISA.NET also defines an interface that is used in conjuction with VISA.NET event arguments when the

VISA.NET implementation delegates to an underlying VISA C implementation. This interface allows

calling programs to retrieve native VISA C attribute values.

• INativeVisaEventArgs

Section 7: VISA.NET Hardware Events Page 7-7

7.3.1. VisaEventArgs Class

DESCRIPTION

The VisaEventArgs class communicates information about the event being fired. For events defined as

part of this specification, the event is identified by a member of the EventType enumeration. For vendor

specific events, each event is identified by a unique integer.

OBSERVATION 7.3.1

All of the other VISA.NET standard event argument classes defined in this specification derive from

VisaEventArgs.

DEFINITION

public class VisaEventArgs : EventArgs

{

 public VisaEventArgs(EventType eventType) {…}

 public VisaEventArgs(Int32 customType) {…}

 public EventType EventType { get; private set; }

 public Int32 CustomEventType { get; private set; }

}

ARGUMENTS

Name Description Type

eventType The VISA.NET standard event type. EventType

customType A value that uniquely identifies an

implementation-specific event type.

Int32

PROPERTIES

Name Description Type

EventType The VISA.NET standard event type. EventType

CustomType A value that uniquely identifies an

implementation-specific event type.

Int32

CORRESPONDING VISA FEATURES

The VisaEventArgs class has COM properties that corresponds to an attribute defined in VISA. The

following table shows property-attribute correspondence for each property.

Property Name VISA Attribute Name

EventType VI_ATTR_EVENT_TYPE

CustomEventType VI_ATTR_EVENT_TYPE

IMPLEMENTATION

VisaEventArgs is implemented in the VISA.NET standard components.

PERMISSION 7.3.1

Vendors may override the implementation of VisaEventArgs.

Page 7-8 Section 7: VISA.NET Hardware Events

RULE 7.3.1

If VisaEventArgs is instantiated with a standard event type, the CustomType property SHALL return

the value of the EventType enumeration member to which the constructor’s eventType argument was

set.

RULE 7.3.2

If VisaEventArgs is instantiated with a custom event type, the EventType property SHALL return

EventType.Custom.

RULE 7.3.3

Vendor specific implementations of VISA.NET SHALL NOT define custom events with values that are

identical to any of the values assigned to members of the EventType enumeration. Refer to VPP-4.3.2,

Section 3.8, Miscellaneous, for legal ranges for vendor defined events.

Section 7: VISA.NET Hardware Events Page 7-9

7.3.2. GpibControllerInChargeEventArgs

DESCRIPTION

Provides additional data about a GPIB controller in charge (CIC) event. In particular, it indicates whether

the controller is in charge.

DEFINITION

public class GpibControllerInChargeEventArgs : VisaEventArgs

{

 public GpibControllerInChargeEventArgs(Boolean isControllerInCharge) {…}

 public Boolean IsControllerInCharge { get; private set; }

}

ARGUMENTS

Name Description Type

isControllerInCharge True if the controller for the GPIB interface is in

charge.

Boolean

PROPERTIES

Name Description Type

IsControllerInCharge True if the controller for the GPIB interface is in

charge.

Boolean

CORRESPONDING VISA FEATURES

The GpibControllerInChargeEventArgs class has a property that corresponds to an attribute defined

in VISA. The following table shows property-attribute correspondence for each property.

Property Name VISA Attribute Name

IsControllerInCharge VI_ATTR_GPIB_RECV_CIC_STATE

Page 7-10 Section 7: VISA.NET Hardware Events

7.3.3. PxiInterruptEventArgs

DESCRIPTION

Provides additional data about a PXI interrupt event. In particular, it includes the index of the interrupt

sequence that detected the interrupt condition and the first register that was read in the successful interrupt

detection sequence.

DEFINITION

public class PxiInterruptEventArgs : VisaEventArgs

{

 public PxiInterruptEventArgs(Int16 sequence, Int32 data) {…}

 public Int16 Sequence { get; private set; }

 public Int32 Data { get; private set; }

}

ARGUMENTS

Inputs Description Type

sequence The index of the interrupt sequence that detected

the interrupt condition.

Int16

data The first register that was read in the successful

interrupt detection sequence.

Int32

PROPERTIES

Inputs Description Type

Sequence The index of the interrupt sequence that detected

the interrupt condition.

Int16

Data The first register that was read in the successful

interrupt detection sequence.

Int32

CORRESPONDING VISA FEATURES

The PxiInterruptEventArgs class has properties that correspond to attributes defined in VISA. The

following table shows property-attribute correspondence for each property.

Property Name VISA Attribute Name

Sequence VI_ATTR_PXI_RECV_INTR_SEQ

Data VI_ATTR_PXI_RECV_INTR_DATA

Section 7: VISA.NET Hardware Events Page 7-11

7.3.4. UsbInterruptEventArgs

DESCRIPTION

Provides additional data about a USB interrupt event. In particular, it includes the data that was being

transferred over the USB bus, and indicates whether the data exceeded the maximum size expected from

this device.

DEFINITION

public class UsbInterruptEventArgs : VisaEventArgs

{

 public UsbInterruptEventArgs(Boolean exceededMaximumSize, Byte[] data) {…}

 public Boolean ExceededMaximumSize { get; private set; }

 public Byte[] Data { get; private set; }

}

ARGUMENTS

Inputs Description Type

exceededMaximumSize True if the data size exceeded the maximum size

expected from this device.

Boolean

data The data being transferred over the USB bus

when the interrupt occurred, no longer than the

expected maximum size. If no data was

received, this argument SHALL be null.

Byte[]

PROPERTIES

Inputs Description Type

ExceededMaximumSize True if the data size exceeded the maximum size

expected from this device.

Boolean

Data The data being transferred over the USB bus

when the interrupt occurred, no longer than the

expected maximum size. If no data was

received, this property is null.

Byte[]

CORRESPONDING VISA FEATURES

The UsbInterruptEventArgs class has properties that correspond to attributes defined in VISA. The

following table shows property-attribute correspondence for each property.

Property Name VISA Attribute Name

Data (data array content) VI_ATTR_USB_RECV_INTR_DATA

Data (data array size) VI_ATTR_USB_RECV_INTR_SIZE

ExceededMaximumSize VI_ATTR_STATUS

Page 7-12 Section 7: VISA.NET Hardware Events

7.3.5. VxiSignalProcessorEventArgs

DESCRIPTION

Provides additional data about a VXIbus signal or VXIbus interrupt event. In particular, it includes the

status ID included with the interrupt.

DEFINITION

public class VxiSignalProcessorEventArgs : VisaEventArgs

{

 public VxiSignalProcessorEventArgs(Int32 statusId) {…}

 public Int32 StatusId { get; private set; }

}

ARGUMENTS

Inputs Description Type

statusId The status ID of the VXIbus signal or VXIbus

interrupt.

Int32

PROPERTIES

Inputs Description Type

StatusId The status ID of the VXIbus signal or VXIbus

interrupt.

Int32

CORRESPONDING VISA FEATURES

The VxiSignalProcessorEventArgs class has a property that corresponds to an attribute defined in

VISA. The following table shows property-attribute correspondence for each property.

Property Name VISA Attribute Name

StatusID VI_ATTR_SIGP_STATUS_ID

Section 7: VISA.NET Hardware Events Page 7-13

7.3.6. VxiTriggerEventArgs

DESCRIPTION

Provides additional data about a VXI trigger event. In particular, it includes the trigger line that caused the

event.

DEFINITION

public class VxiTriggerEventArgs : VisaEventArgs

{

 public VxiTriggerEventArgs(TriggerLine triggerLine) {…}

 public TriggerLine TriggerLine { get; private set; }

}

ARGUMENTS

Inputs Description Type

triggerLine The trigger line that caused the event. Ivi.Visa.TriggerLine

PROPERTIES

Inputs Description Type

TriggerLine The trigger line that caused the event. Ivi.Visa.TriggerLine

CORRESPONDING VISA FEATURES

The VxiTriggerEventArgs class has a property that corresponds to an attribute defined in VISA. The

following table shows property-attribute correspondence for each property.

Property Name VISA Attribute Name

TriggerLine VI_ATTR_RECV_TRIG_ID

Page 7-14 Section 7: VISA.NET Hardware Events

7.3.7. VxiInterruptEventArgs

DESCRIPTION

Provides additional data about a VXI interrupt event. In particular, it includes the interrupt level and the

status ID included with the interrupt.

DEFINITION

public class VxiInterruptEventArgs : VisaEventArgs

{

 public VxiInterruptEventArgs(Int16 irqLevel, Int32 statusId) {…}

 public Int16 IrqLevel { get; private set; }

 public Int32 StatusId { get; private set; }

}

ARGUMENTS

Inputs Description Type

irqLevel The interrupt level of the VXI VME interrupt. Int16

statusId The status ID of the VXI interrupt. Int32

PROPERTIES

Inputs Description Type

IrqLevel The interrupt level of the VXI VME interrupt. Int16

StatusId The status ID of the VXI interrupt. Int32

CORRESPONDING VISA FEATURES

The VxiInterruptEventArgs class has properties that correspond to attributes defined in VISA. The

following table shows property-attribute correspondence for each property.

Property Name VISA Attribute Name

IrqLevel VI_ATTR_RECV_INTR_LEVEL

StatusID VI_ATTR_INTR_STATUS_ID

Section 7: VISA.NET Hardware Events Page 7-15

7.3.8. INativeVisaEventArgs Interface

DESCRIPTION

The VisaEventArgs class communicates the event being fired. For events defined as part of this

specification, the event is identified by a member of the EventType enumeration. For vendor specific

events, each event is identified by a unique integer.

DEFINITION

public interface INativeVisaEventArgs : IDisposable

{

 VisaEventArgs EventArgs { get; }

 Byte GetAttributeByte(NativeVisaAttribute attribute);

 Byte GetAttributeByte(Int32 attribute);

 Int16 GetAttributeInt16(NativeVisaAttribute attribute);

 Int16 GetAttributeInt16(Int32 attribute);

 Int32 GetAttributeInt32(NativeVisaAttribute attribute);

 Int32 GetAttributeInt32(Int32 attribute);

 Int64 GetAttributeInt64(NativeVisaAttribute attribute);

 Int64 GetAttributeInt64(Int32 attribute);

 Boolean GetAttributeBoolean(NativeVisaAttribute attribute);

 Boolean GetAttributeBoolean(Int32 attribute);

 String GetAttributeString(NativeVisaAttribute attribute);

 String GetAttributeString(Int32 attribute);

}

ARGUMENTS

Inputs Description Type

attribute A constant that identifies a VISA standard

attribute. The type of the method must match

the type of the attribute.

NativeVisaAttribute

A constant that identifies a VISA standard or

vendor-defined attribute. The type of the

method must match the type of the attribute.

Int32

PROPERTIES

Inputs Description Type

EventArgs An event args reference for the native C event.

This may reference an object that derives from

EventArgs, if the event handler for the event

specified by the EventArg.EventType or

EventArg.CustomEventType properties uses a

derived class.

EventArgs

CORRESPONDING VISA FEATURES

Page 7-16 Section 7: VISA.NET Hardware Events

The INativeVisaEventArgs interface has several methods that correspond to VISA functions. The

following table shows method-function correspondence for each method.

Method Name VISA Attribute Name

GetAttributeByte viGetAttribute

GetAttributeInt16 viGetAttribute

GetAttributeInt32 viGetAttribute

GetAttributeInt64 viGetAttribute

GetAttributeBoolean viGetAttribute

GetAttributeString viGetAttribute

IMPLEMENTATION

RULE 7.3.4

Implementors SHALL call viClose on the underlying native VISA event object only when the user

disposes the object that implements INativeVisaEventArgs.

RECOMMENDATION 7.3.1

For vendor-specific attributes, vendors should give guidance on which GetAttribute method to use based on

the VISA C type of the attribute being retrieved.

Section 7: VISA.NET Hardware Events Page 7-17

7.4. Vendor Defined Events
Implementors may create vendor specific events.

IMPLEMENTATION

RULE 7.4.1

All vendor specific VISA.NET event argument classes SHALL either be VisaEventArgs or be derived

from VisaEventArgs directly or indirectly.

PERMISSION 7.4.1

Vendor specific implementations may define event handlers using any of the ways allowed by .NET. They

are not required to use the EventHandler<T> delegate.

Page 7-18 Section 7: VISA.NET Hardware Events

7.5. Event Methods
As mentioned above, VISA.NET event methods include EnableEvent(), DisableEvent(),

DiscardEvent(), and WaitOnEvent(), which exactly correspond to the C functions

viEnableEvent() (called with an event mechanism of VI_QUEUE), viDisableEvent(),

viDiscardEvent(), and viWaitOnEvent(). These methods are part of IVisaSession, and so are

included with every type of VISA.NET session. Refer to VPP-3.4: The VISA Library, section 3.7, Event

Services, and particularly section 3.7.1, Event Handling and Processing, section 3.7.31, viEnableEvent,

section 3.7.3.2, viDisableEvent, section 3.7.3.3, viDiscardEvent, and section 3.7.3.4, viWaitOnEvent, for

details.

For the definition of the event methods in VISA.NET, refer to section 8.3, IVisaSession Interface

When using event methods, the event mechanism is always a queue (VI_QUEUE).

The return type of the WaitOnEvent method is defined as VisaEventArgs, which gives the client

information about the event from the server. This is the same VisaEventArgs that is the base class for all

of the event args defined for VISA.NET’s .NET events. The data returned by the WaitOnEvent method is

either VisaEventArgs or derived from VisaEventArgs. The exact return type can be inferred from the

value of VisaEventArgs.EventType and VisaEventArgs.CustomEventType.

Section 16: VISA.NET I/O Conflict Resolution Page 16-1

Section 8: VISA.NET Sessions

In general terms, a session represents a connection to a unique hardware resource (instrument, interface,

backplane, etc.) using a particular kind of I/O protocol. In VISA.NET, a session is an instance of a

VISA.NET class that is used to communicate with a specific resource. All of the I/O in VISA.NET

happens in sessions.

8.1. Session Overview
VISA.NET supports a variety of different types of sessions, which vary by the I/O protocol and the

resource class of the session interface. Each connected resource is identified by a resource descriptor that

uniquely identifies the resource. A resource manager is capable of accepting a resource descriptor and

returning a session that is ready to use for I/O.

All VISA.NET sessions have some capabilities in common. There are also two broad subcategories of

sessions, message-based sessions and register based sessions. Each of these subcategories also has some

common capabilities. Finally, each session type has capabilities specific to that type. All of these

capabilities are represented in a hierarchy of VISA.NET session interfaces.

Between the the resource manager and the session interfaces, VISA.NET presents a full set of capabilities

related to the session lifecycle, locking, event handling, and resource and I/O specific functionality.

8.1.1. Resources and Resource Descriptors

Resources are categorized into resource classes. The most common resource class is a straightforward

connection to an instrument. Refer to VPP-4.3, Section (TODO) for a list of resource classes and their

acronyms. Note that the SERVANT resource class is not supported in VISA.NET.

Each resource on a system is identified by a unique resource ID called a resource descriptor or resource

name. Resource names begin with the hardware interface type and number followed by "::", and end with

"::" followed by a resource class. The information between the first "::" and the last uniquely identifies the

hardware within the hardware interface type and the resource class. Refer to VPP-4.3, Section (TODO)

for a more complete description of resource names.

In addition to the hardware interfaces that are supported by VISA.NET, vendors may add vendor specific

hardware interfaces and corresponding session types that conform to the requirements for the common

elements that all of the resource types share. In such cases, the vendor specific session interface must

ultimately derive from IVisaSession and may derive from IMessageBasedSession and/or

IRegisterBasedSession.

8.1.2. Resources Managers
Each VISA.NET session class must include a constructor that creates a session and initializes a VISA.NET

I/O Resource. However, the recommended way to create the session is to use a VISA.NET resource

manager. There are two types of resource manager, vendor specific resource managers and the VISA.NET

Shared Components Global Resource Manager (GRM). Refer to Section 17:

Resource Manager Classes for a detailed description of these classes.

8.1.3. Session Interfaces

All session interfaces include some elements that are common to all sessions. These elements are defined in

the interface IVisaSession All VISA.NET session interfaces ultimately derive from IVisaSession,

and so include this common functionality. For VISA.NET session implementations that delegate to an

underlying VISA C implementation, vendors may also choose to implement INativeVisaSession,

which exposes methods that enable clients to access vendor-specific C attributes and events.

Page 8-2 Section 8: VISA.NET Sessions

Nearly all session interfaces are either message-based or register-based. All message-based elements are

defined in the interface IMessageBasedSession. All VISA.NET message-based session interfaces

derive from IMessageBasedSession, and so include this common functionality.

Message-based sessions provide access to two different ways of performing message-based I/O. The first

is raw I/O, which leaves formatting and parsing tasks (including format buffering) to the calling program.

Raw I/O supports asynchronous I/O. The second is formatted I/O, which is capable of some very complex

formatting tasks, and supports a wide variety of formatting options. While it migh be tempting to think of

formatted I/O for convenience and raw I/O for performance, in fact formatted I/O is highly optimized for

performance.

Likewise, all register-based elements are defined in the interface IRegisterBasedSession. All

VISA.NET register-based session interfaces derive from IRegisterBasedSession, and so include this

common functionality.

8.1.4. Locking

Calling programs can open multiple sessions to a VISA.NET I/O resource simultaneously. Applications can

access the VISA.NET I/O resource through these different sessions concurrently. To avoid conflicting

behavior, a session accessing a VISA.NET I/O resource might want to restrict other sessions from

accessing that resource. VISA defines a locking mechanism to restrict how multiple session access the

same resource. These mechanisms are supported by the resource manager Open() method and by the

LockResource() and UnlockResource() methods in the IVisaSession interface.

Section 8: VISA.NET Sessions Page 8-3

8.2. Session Interfaces
VISA.NET defines the following base interfaces for sessions. Derived interfaces are shown to make the

hierarchy of interfaces clear. Note that IMessageBasedSession contains references to two interfaces

that extend message based functionality: IMessageBasedRawIO and IMessageBasedFormattedIO.

• IVisaSession

• INativeVisaSession : IVisaSession

• IMessageBasedSession : IVisaSession

o IMessageBasedRawIO

o IMessageBasedFormattedIO

• IRegisterBasedSession : IVisaSession

IVisaSession, INativeVisaSession, IMessageBasedSession, and IRegisterBasedSession are

not implemented directly for the interface types covered by this specification. The following session

interfaces may be implemented directly by a VISA.NET implementation. One level of inheritance is

shown to make the hierarchy of interfaces clear.

• IGpibInterfaceSession : IVisaSession

• IPxiBackPlaneSession : IVisaSession

• IVxiBackplaneSession : IVisaSession

• IGpibSession : IMessageBasedSession

• ISerialSession : IMessageBasedSession

• ITcpipSession : IMessageBasedSession

• ITcpipSocketSession : IMessageBasedSession

• IUsbSession : IMessageBasedSession

• IVxiSession : IMessageBasedSession, IRegisterBasedSession

• IPxiSession : IRegisterBasedSession

• IPxiMemorySession : IRegisterBasedSession

• IVxiMemorySession : IRegisterBasedSession

IMPLEMENTATION

RULE 8.2.1

A VISA.NET implementation SHALL implement at least one session interface. The interface may be one

of the interfaces in the list of directly implementable interfaces above, or a vendor specific session class or

interface that derives from IVisaSession, INativeVisaSession, IMessageBasedSession, or

IRegisterBasedSession.

Page 8-4 Section 8: VISA.NET Sessions

8.3. IVisaSession Interface

DESCRIPTION

This section summarizes IVisaSession, the interface from which every VISA.NET session must derive.

For the interfaces defined in this specification, IVisaSession is never implemented directly. Rather, one

of the specializations of IVisaSession is implemented. IVisaSession provides common functionality

for all of the specializations.

DEFINITION

public interface IVisaSession : IDisposable

{

 Int32 TimeoutMilliseconds { get; set; }

 String ResourceName { get; }

 String HardwareInterfaceName { get; }

 HardwareInterfaceType HardwareInterfaceType { get; }

 Int16 HardwareInterfaceNumber { get; }

 String ResourceClass { get; }

 String ResourceManufacturerName { get; }

 Int16 ResourceManufacturerId { get; }

 Version ResourceImplementationVersion { get; }

 Version ResourceSpecificationVersion { get; }

 ResourceLockState ResourceLockState { get; }

 void LockResource();

 void LockResource(TimeSpan timeout);

 void LockResource(Int32 timeoutMilliseconds);

 string LockResource(TimeSpan timeout, String sharedKey);

 string LockResource(Int32 timeoutMilliseconds, String sharedKey);

 void UnlockResource();

 Int32 EventQueueCapacity { get; set; }

 Boolean SynchronizeCallbacks { get; set; }

 void EnableEvent(EventType eventType);

 void DisableEvent(EventType eventType);

 void DiscardEvent(EventType eventType);

 VisaEventArgs WaitOnEvent(EventType eventType);

 VisaEventArgs WaitOnEvent(EventType eventType,

 out EventQueueStatus status);

 VisaEventArgs WaitOnEvent(EventType eventType, Int32 timeoutMilliseconds);

 VisaEventArgs WaitOnEvent(EventType eventType, TimeSpan timeout);

 VisaEventArgs WaitOnEvent(EventType eventType, Int32 timeoutMilliseconds,

 out EventQueueStatus status);

 VisaEventArgs WaitOnEvent(EventType eventType, TimeSpan timeout,

 out EventQueueStatus status);

}

CORRESPONDING VISA FEATURES

The IVisaSession Interface has several .NET properties that correspond to attributes defined in VISA.

The following table shows property-attribute equivalence for IVisaSession.

Section 8: VISA.NET Sessions Page 8-5

Property Name VISA Attribute Name

EventQueueCapacity VI_ATTR_MAX_QUEUE_LENGTH

HardwareInterfaceName VI_ATTR_INTF_INST_NAME

HardwareInterfaceType VI_ATTR_INTF_TYPE

HardwareInterfaceNumber VI_ATTR_INTF_NUM

ResourceClass VI_ATTR_RSRC_CLASS

ResourceImplementationVersion VI_ATTR_RSRC_IMPL_VERSION

ResourceLockState VI_ATTR_RSRC_LOCK_STATE

ResourceManufacturerName VI_ATTR_RSRC_MANF_NAME

ResourceManufacturerID VI_ATTR_RSRC_MANF_ID

ResourceName VI_ATTR_RSRC_NAME

ResourceSpecificationVersion VI_ATTR_RSRC_SPEC_VERSION

SynchronizeCallbacks N/A

TimeoutMilliseconds VI_ATTR_TMO_VALUE

The IVisaSession Interface has several methods that map to VISA functions. The following table shows

VISA equivalence for IVisaSession methods.

Method Name VISA Method Name

DisableEvent viDisableEvent

DiscardEvents viDiscardEvents

EnableEvent viEnableEvent

LockResource viLock

UnlockResource viUnlock

WaitOnEvent viWaitOnEvent

IDisposable.Dispose viClose

OBSERVATION 8.3.1

There is not an exact mapping between IVisaSession and the VISA Resource Template. Because the

properties HardwareInterfaceNumber, TimeoutMilliseconds, HardwareInterfaceName, and

HardwareInterfaceType are used by all resource types, they have been placed to IVisaSession to

maximize polymorphism.

OBSERVATION 8.3.2

There is not an exact mapping between LockResource() and VISA’s viLock(), but there is a strong

correspondence between the overloads of LockResource() and viLock() The overloads of

LockResource() that return void obtain an exclusive lock. The overloads that return String obtain a

shared lock with the specified key. Regardless of whether an exclusive or shared lock is being requested, it

is possible to specify a timeout in milliseconds or as a time span.

OBSERVATION 8.3.3

The LockResource() and UnlockResource() methods do not support VISA’s viLock() alternate

success codes.

OBSERVATION 8.3.4

The EnableEvent(),DisableEvent(), and DiscardEvent() methods are the same as the

corresponding C functions with mechanism set to VI_QUEUE.

Page 8-6 Section 8: VISA.NET Sessions

OBSERVATION 8.3.5

There is not an exact mapping between WaitOnEvent() and VISA’s viWaitOnEvent(), but there is a

strong correspondence between them. The WaitOnEvent() overloads do not have an out EventType

argument.

OBSERVATION 8.3.6

In the VISA C API, viWaitOnEvent() returns a positive value to indicate a warning or to provide

additional information about a successful call. The status argument to WaitOnEvent () is used to

indicate the equivalent information. Note that it is an out argument.

OBSERVATION 8.3.7

VISA.NET does not contain any method or property corresponding to VISA’s

VI_ATTR_RSRC_RM_SESSION or VI_ATTR_USER_DATA attributes.

OBSERVATION 8.3.8

The VISA.NET defined special value for an infinite timeout is VisaConstants.InfiniteTimeout.

The value is -1, which is the same 32-bit value as VI_TMO_INFINITE.

OBSERVATION 8.3.9

Negative timeout values other than -1 may or may not be recognized as unsigned integer values, based on

the vendor implementation.

OBSERVATION 8.3.10

Timeout parameters whose type is specified as TimeSpan support a timespan in milliseconds that matches

the range of the Int32 timeout values at a minimum, but may support longer timeout values based on the

vendor implementation. For these parameters, the VISA.NET special value for an infinite timeout is

TimeSpan.MaxValue.

IMPLEMENTATION

RULE 8.3.2

VISA.NET I/O session classes SHALL implement IVisaSession interface properties and methods as

specified in VPP 4.3 for corresponding attributes and functions, except as specified otherwise in this

specification.

RULE 8.3.3

VISA.NET I/O session classes SHALL follow the semantics defined in section 3.2 of VPP 4.3 with the

exceptions noted above.

RULE 8.3.4

Every VISA.NET I/O session class SHALL derive from IVisaSession, or from an interface that derives

from IVisaSession.

RULE 8.3.5

The Dispose() method SHALL cause the resource to clean itself up, and SHALL destroy the .NET

object.

RULE 8.3.6

For a VISA.NET implementation that calls an underlying VISA C implementation, the Dispose() method

SHALL call viClose().

RULE 8.3.7

The value of the attribute ResourceSpecificationVersion SHALL be the following:

• MajorVersion SHALL be the major version of this specification, as shown on the title page.

Section 8: VISA.NET Sessions Page 8-7

• MinorVersion SHALL be the minor version of this specification, as shown on the title page.

• BuildNumber and Revision SHALL be 0.

For example, the value of ResourceSpecificationVersion for version 5.4 of this specification would

be 5.4.0.0.

RULE 8.3.8

The value of ResourceSpecificationVersion for a particular resource SHALL be the oldest

specification version of all of the VISA-compliant binaries that are invoked in the implementation of the

resource instance, including the VISA.NET specification version of the VISA.NET assembly used.

OBSERVATION 8.3.11

The above rule implies that the ResourceSpecificationVersion for a particular resource identifies

the VISA functionality which the resource provides. For example, if a VISA.NET resource is based on

version 6.0 of the VISA.NET specification, but invokes a VISA C implementation based on version 5.4 of

the VISA C specification, ResourceSpecificationVersion would report version5.4.

OBSERVATION 8.3.12

Session classes across multiple implementations of VISA.NET, whether from a single vendor or multiple

vendors, may have different values for ResourceSpecificationVersion depending on the vendor and

implementation version.

RULE 8.3.9

If a session class implements a vendor specific hardware interface type, that class SHALL return

HardwareInterfaceType=HardwareInterfaceType.Custom.

RULE 8.3.10

For session classes that implement VISA.NET defined interface types, the HarwareInterfaceType

property SHALL return the corresponding HardwareInterfaceType value and the

HardwareInterfaceName property SHALL include “ASRL”, “GPIB”, “GPIB-VXI”, “PXI”, “TCPIP”,

“USB”, or “VXI” followed by the interface number.

RULE 8.3.11

For session classes that implement vendor specific interface types, the HarwareInterfaceType property

SHALL return HardwareInterfaceType.Custom and the HardwareInterfaceName property

SHALL include a string that identifies the interface type (not “ASRL”, “GPIB”, “GPIB-VXI”, “PXI”,

“TCPIP”, “USB”, or “VXI”) followed by an interface number.

Page 8-8 Section 8: VISA.NET Sessions

8.3.2. SynchronizeCallbacks

DESCRIPTION

Specifies whether callbacks must be performed in a specific synchronization context. If false, the

implementation is allowed to execute callbacks in any context.

This property applies to both I/O callbacks and events, but the point in time at which the synchronization

context is captured is different. For events, context is captured at event registration, for each event type and

delegate, regardless of the current state of this property. When an event is raised, the implementation uses

this property to determine the context in which to invoke the delegate. For asynchronous I/O, context is

captured at the begin operation (e.g. BeginRead, BeginWrite) if this property is true.

The default value is true.

DEFINITION

Boolean SynchronizeCallbacks { get; set; }

Section 8: VISA.NET Sessions Page 8-9

8.4. INativeVisaSession Interface

DESCRIPTION

This section summarizes INativeVisaSession, which allows access to vendor specific C attributes and

events. For the interfaces defined in this specification, INativeVisaSession is never implemented

directly. Rather, one of the specializations of IVisaSession also implements INativeVisaSession if

the implementation delegates to VISA C. INativeVisaSession provides common functionality for all

of the specializations.

DEFINITION

public interface INativeVisaSession : IVisaSession

{

 Int32 Handle { get; }

 void EnableEvent(Int32 eventType);

 void DisableEvent(Int32 eventType);

 void DiscardEvents(Int32 eventType);

 INativeVisaEventArgs WaitOnEvent(Int32 eventType);

 INativeVisaEventArgs WaitOnEvent(Int32 eventType,

 out EventQueueStatus status);

 INativeVisaEventArgs WaitOnEvent(Int32 eventType,

 Int32 timeoutMilliseconds);

 INativeVisaEventArgs WaitOnEvent(Int32 eventType, TimeSpan timeout);

 INativeVisaEventArgs WaitOnEvent(Int32 eventType, Int32 timeoutMilliseconds,

 out EventQueueStatus status);

 INativeVisaEventArgs WaitOnEvent(Int32 eventType, TimeSpan timeout,

 out EventQueueStatus status);

 Byte GetAttributeByte(NativeVisaAttribute attribute);

 Byte GetAttributeByte(Int32 attribute);

 Int16 GetAttributeInt16(NativeVisaAttribute attribute);

 Int16 GetAttributeInt16(Int32 attribute);

 Int32 GetAttributeInt32(NativeVisaAttribute attribute);

 Int32 GetAttributeInt32(Int32 attribute);

 Int64 GetAttributeInt64(NativeVisaAttribute attribute);

 Int64 GetAttributeInt64(Int32 attribute);

 Boolean GetAttributeBoolean(NativeVisaAttribute attribute);

 Boolean GetAttributeBoolean(Int32 attribute);

 String GetAttributeString(NativeVisaAttribute attribute);

 String GetAttributeString(Int32 attribute);

 void SetAttributeByte(NativeVisaAttribute attribute, Byte value);

 void SetAttributeByte(Int32 attribute, Byte value);

Page 8-10 Section 8: VISA.NET Sessions

 void SetAttributeInt16(NativeVisaAttribute attribute, Int16 value);

 void SetAttributeInt16(Int32 attribute, Int16 value);

 void SetAttributeInt32(NativeVisaAttribute attribute, Int32 value);

 void SetAttributeInt32(Int32 attribute, Int32 value);

 void SetAttributeInt64(NativeVisaAttribute attribute, Int64 value);

 void SetAttributeInt64(Int32 attribute, Int64 value);

 void SetAttributeBoolean(NativeVisaAttribute attribute, Boolean value);

 void SetAttributeBoolean(Int32 attribute, Boolean value);

 void SetAttributeString(NativeVisaAttribute attribute, String value);

 void SetAttributeString(Int32 attribute, String value);

}

CORRESPONDING VISA FEATURES

The INativeVisaSession Interface has a .NET property that corresponds to the vi parameter defined in

VISA. The following table shows the correspondence for INativeVisaSession.

Property Name VISA Attribute Name

Handle vi parameter returned by viOpen()

The INativeVisaSession Interface has several methods that map to VISA functions. The following

table shows VISA equivalence for INativeVisaSession methods. Note that the VISA functions are not

type specific, whereas the VISA.NET methods are.

Method Name VISA Function Name

EnableEvent viEnableEvent

DisableEvent viDisableEvent

DiscardEvents viDiscardEvents

WaitOnEvent viWaitOnEvent

GetAttribute<Type> viGetAttribute

SetAttribute<Type> viSetAttribute

IMPLEMENTATION

OBSERVATION 8.4.1

A VISA.NET implementation is not required to implement INativeVisaSession even if the

implementation delegates to an underlying VISA C I/O.

PERMISSION 8.4.1

A VISA.NET implementation may implement INativeVisaSession either implicitly or explicitly.

Section 9: Message Based Session Interfaces Page 9-1

Section 9: Message Based Session Interfaces

Message based resources support basic stream I/O to instruments. While there are some special features

that support 488.2, other basic message-based resources are supported. See VPP-4.3 section 5.1 for more

information about these resources. The functionality of INSTR resources is broken up into several

interfaces in VISA.NET I/O. Users can write code that polymorphically acts on any INSTR resource type

by using only these resources and the Init string to create, instantiate, and use instruments.

9.1. IMessageBasedSession Interface

DESCRIPTION

This section summarizes IMessageBasedSession, the interface from which every VISA.NET message-

based session must derive. Message based session classes defined in this specification implement

interfaces that derive from IMessageBasedSession. IMessageBasedSession provides common

functionality for all of the derived interfaces.

IMessageBasedSession includes a few basic message-based properties and methods, but the bulk of

message based I/O is handled by two other interfaces, IMessageBasedRawIO and

IMessageBasedFormattedIO. IMessageBasedSession contains properties that refer to these

interfaces.

IMessageBasedRawIO allows calling programs to send string or byte array data to the instrument without

any formatting or transformation. IMessageBasedRawIO may be synchronous or ansynchronous.

IMessageBasedFormattedIO formats data before sending it to the instrument. This means that calling

programs can represent data in a variety of familiar numeric and enumerated types that are appropriate to

the program and let VISA.NET do the work of formatting the data for the instrument.

IMessageBasedFormattedIO operations are always synchronous. VISA.NET formatted I/O is

optimized for IEEE-488, but works with many other message-based protocols as well.

DEFINITION

public interface IMessageBasedSession : IVisaSession

{

 event EventHandler<VisaEventArgs> ServiceRequest;

 IOProtocol IOProtocol { get; set; }

 Boolean SendEndEnabled { get; set; }

 Byte TerminationCharacter { get; set; }

 Boolean TerminationCharacterEnabled { get; set; }

 void AssertTrigger();

 void Clear();

 StatusByteFlags ReadStatusByte();

 IMessageBasedFormattedIO FormattedIO { get; }

 IMessageBasedRawIO RawIO { get; }

}

INTERFACE REFERENCES

The IMessageBasedSession interface has two properties that return references to other VISA.NET

interfaces. The following table shows these properties and the interfaces to which they refer.

Property Name Interface

Page 9-2 Section 9: Message Based Session Interfaces

FormattedIO IMessageBasedFormattedIO

RawIO IMessageBasedRawIO

CORRESPONDING VISA FEATURES

The IMessageBasedSession interface has several properties that correspond to attributes defined in

VISA. The following table shows property-attribute equivalence for IMessageBasedSession.1

Property Name VISA Attribute Name

IOProtocol VI_ATTR_IO_PROT

SendEndEnabled VI_ATTR_SEND_END_EN

TerminationCharacter VI_ATTR_TERMCHAR

TerminationCharacterEnabled VI_ATTR_TERMCHAR_EN

The IMessageBasedSession interface has several methods that correspond to functions defined in

VISA. The following table shows method-function correspondence for IMessageBasedSession.

Method Name VISA Function Name

AssertTrigger viAssertTrigger

Clear viClear

ReadStatusByte viReadSTB

The IMessageBasedSession interface has one .NET event that corresponds to an event defined in

VISA. The following table shows correspondence for IMessageBasedSession.

Event Name VISA Function Name

ServiceRequest VI_EVENT_SERVICE_REQ

The IMessageBasedSession interface has one .NET event, ServiceRequest, that corresponds to

functionality defined in VISA. There are some message based session types (for example, TCPIP

SOCKET) that do not support service request events. For those session types, attempts to register a handler

should fail with an exception.

IMPLEMENTATION

RULE 9.1.1

Message based VISA.NET I/O session classes SHALL implement IMessageBasedSession interface

properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except where

specified otherwise in this specification.

OBSERVATION 9.1.1

All VISA.NET I/O session classes that implement the GPIB, TCPIP, VXI, USB, GPIB-VXI, and ASRL

INSTR resources derive from IMessageBasedSession indirectly.

RULE 9.1.2

When AssertTrigger is implemented by calling an underlying VISA, the underlying call to viAssertTrigger

uses a protocol of VI_TRIG_PROT_DEFAULT.

If the FormattedIO member is not null, then the implementation of the Clear() method SHALL invoke

FormattedIO.DiscardBuffers().

1 The VISA attribute VI_ATTR_SUPPRESS_END_EN is intentionally not represented in the VISA.NET API as a

property because it was intended to support old instruments that are not 488.2 compliant. It may be accessed using

the INativeVisaSession interface.

Section 9: Message Based Session Interfaces Page 9-3

9.2. IMessageBasedRawIO

DESCRIPTION

This section summarizes IMessageBasedRawIO. Note that IMessageBasedRawIO allows calling

programs to send string or byte array data to the instrument without any formatting or parsing. This is

contrasted to formatted I/O, which can format and parse a variety of data types.

IMessageBasedRawIO supports both synchronous and ansynchronous I/O.

IMessageBasedSession provides a property that returns a reference to IMessageBasedRawIO. This

property is the only specified way to access the IMessageBasedRawIO interface from a message-based

session.

DEFINITION

The IMessageBasedRawIO interface declaration is shown below. The body of the interface is

documented in the sections that document individual properties and methods.

public interface IMessageBasedRawIO

CORRESPONDING VISA FEATURES

The IMessageBasedRawIO interface has several .NET methods that start asynchronous operations. These

methods return a reference to IVisaAsyncResult, which returns information about the asynchronous

operation implemented by the method. IVisaAsyncResult is described in detail below.

The IMessageBasedRawIO interface’s methods that perform I/O correspond to functions defined in

VISA. The following table shows method-function correspondence for IMessageBasedRawIO. Note that

in most cases these methods are not equivalent to the functions due to slight differences in behavior

between VISA C and VISA.NET. The methods that perform asynchronous operations are significantly

different from VISA C. For this reason, all of the methods in IMessageBasedRawIO are described in

detail below.

Method Name VISA Function Name

Write viWrite

Read viRead

ReadString viRead

BeginWrite viWriteAsync

EndWrite viWaitOnEvent (w/ IO Completion event)

BeginRead viReadAsync

EndRead viWaitOnEvent (w/ IO Completion event)

AbortAsyncOperation viTerminate

ReadAsync viReadAsync, viWaitOnEvent, viTerminate

WriteAsync viWriteAsync, viWaitOnEvent, viTerminate

mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/d05dafe4-6926-c641-6bf0-425bd5d90753.htm

Page 9-4 Section 9: Message Based Session Interfaces

9.2.1. Synchronous I/O

The raw I/O synchronous methods perform the requested I/O and return only after the I/O operation is

complete.

Section 9: Message Based Session Interfaces Page 9-5

9.2.1.1. Read

DESCRIPTION

All overloads of the Read method read bytes from the device and return them as an array of bytes.

The overloads of the Read method that return an array of bytes allocate the array themselves. For other

overloads, the calling program must allocate the array before making the call, and the array must contain at

least index + count elements if index and count are used.

Bytes are returned exactly as they are read from the device, in exactly the same order.

Reading continues until one of the following conditions is met:

• An END indicator is read from the data coming from the device. This will only happen if END is

supported by the protocol being used, and is enabled.

• A termination character is read in the data coming from the device, and

IMessageBasedSession.TerminationCharacterEnabled is true. In this case, the

termination character is included in the data buffer.

• Exactly count bytes have been read from the device, if the overload includes the count

argument.

• The amount of time spent reading (or trying to read) data from the device exceeds

IVisaSession.TimeoutMilliseconds, in which case an exception is thrown.

DEFINITION

Byte[] Read();

Byte[] Read(Int64 count);

Byte[] Read(Int64 count, out ReadStatus readStatus);

void Read(Byte[] buffer, Int64 index, Int64 count,

 out Int64 actualCount, out ReadStatus readStatus);

unsafe void Read(Byte* buffer, Int64 index, Int64 count,

 out Int64 actualCount, out ReadStatus readStatus);

#if NET6_0_OR_GREATER

IVisaReadResult Read(Span<Byte> buffer);

#endif

ARGUMENTS

Name Description Type

count The maximum number of bytes to be returned

from the device. The default is to read until an

end condition is received.

Int64

actualCount The actual count of bytes stored in the buffer

parameter during the read operation.

Int64

index In the array, the index where the method places

the first byte returned from the device. The

default is 0.

Int64

buffer An array of bytes allocated by the calling

program, into which bytes returned by the device

are placed.

A reference to the array

A span of bytes.

Byte[]

Byte*

Span<Byte>

Page 9-6 Section 9: Message Based Session Interfaces

readStatus Indicates how the read terminated. If an END

was received, ReadStatus.EndReceived is

returned. Otherwise, if a termination character

was received and

TerminationCharacterEnabled is true,
ReadStatus.TerminationCharacterEncou

ntered is returned. Otherwise

ReadStatus.MaximumCountReached is

returned.

ReadStatus

RETURN VALUES

Name Description Type

return value An array of bytes allocated by the method, into

which bytes returned by the device are placed.

The size of the array returned is the number of

bytes actually read.

Byte[]

The number of bytes that were read and placed

into the data array.

Int64

An interface reference that provides both the

number of bytes that were read and placed into

the data array and the read status of the

operation.

IVisaReadResult

EXCEPTIONS

This method uses the Ivi.Visa.IoTimeoutException to report a timeout.

IMPLEMENTATION

OBSERVATION 9.2.1

Count and index parameters are not needed for the overload that uses Span<Byte> for the buffer. When

the client creates the span object to pass to the method, it can create the span with the correct count and at

the correct index if needed.

Section 9: Message Based Session Interfaces Page 9-7

9.2.1.2. ReadString

DESCRIPTION

All overloads of the ReadString method reads characters from the device, converts them to a zero-

extended UNICODE string, and returns the string.

Characters are returned in exactly the same order as they are read from the device.

Reading continues until one of the following conditions is met:

• An END indicator is read from the data coming from the device. This will only happen if END is

supported by the protocol being used.

• A termination character is read in the data coming from the device, and

IMessageBasedSession.TerminationCharacterEnabled is true. In this case, the

termination character is included in the data.

• Exactly count characters have been read from the device, if the overload includes the count

argument.

• The amount of time spent reading (or trying to read) data from the device exceeds

IVisaSession.TimeoutMilliseconds, in which case an exception is thrown.

DEFINITION

String ReadString();

String ReadString(Int64 count);

String ReadString(Int64 count, out ReadStatus readStatus);

ARGUMENTS

Name Description Type

count The maximum number of bytes to be returned

from the device.

Int64

readStatus Indicates how the read terminated. If an END

was received, ReadStatus.EndReceived is

returned. Otherwise, if a termination character

was received and

TerminationCharacterEnabled is true,
ReadStatus.TerminationCharacterEncou

ntered is returned. Otherwise

ReadStatus.MaximumCountReached is

returned.

ReadStatus

EXCEPTIONS

This method uses the Ivi.Visa.IoTimeoutException to report a timeout.

Page 9-8 Section 9: Message Based Session Interfaces

9.2.1.3. Write

DESCRIPTION

Overloads of the Write method that include a buffer argument of type Byte[], Byte*, or Span<Byte>

send the bytes to the device exactly as they appear in the array.

Overloads of the Write method that include a buffer argument of type String convert the string from

UNICODE to 8-bit ASCII before sending it to the device. If the string contains a character that cannot be

converted to an 8-bit ASCII character, the method throws an exception that identifies the invalid character.

Characters are written in exactly the same order as they occur in the array or string.

Writing continues until one of the following conditions is met:

• Exactly count characters have been written to the device, if the overload includes the count

argument.

• The entire buffer has been written to the device, if the overload does not include the count

argument.

• The amount of time spent writing (or trying to write) data to the device exceeds

IVisaSession.TimeoutMilliseconds, in which case an exception is thrown.

An END is signaled with the last byte if SendEndEnabled is true.

Termination characters must be explicitly sent when writing to a device. The Write method does not send

a termination character to the device that is not included in the buffer argument for all session types except

those that define a WriteTermination property.

RULE 9.2.1

If the Write method is called with the parameter count smaller than the size of the array passed in, only the

first count bytes SHALL be written to the instrument resource.

DEFINITION

void Write(Byte[] buffer);

void Write(Byte[] buffer, Int64 index, Int64 count);

void Write(String buffer);

void Write(String buffer, Int64 index, Int64 count);

unsafe void Write(Byte* buffer, Int64 index, Int64 count);

#if NET6_0_OR_GREATER

void Write(ReadOnlySpan<Byte> buffer);

#endif

ARGUMENTS

Name Description Type

count The maximum number of bytes to be sent to the

device.

Int64

index In the array or string, the index of the first byte or

character to be sent to the device.

Int64

buffer The array or string to be sent to the device.

A reference to the array.

A span of bytes

Byte[]

String

Byte*

ReadOnlySpan<Byte>

EXCEPTIONS

Section 9: Message Based Session Interfaces Page 9-9

This method uses the Ivi.Visa.IoTimeoutException to report a timeout.

IMPLEMENTATION

OBSERVATION 9.2.2

Count and index parameters are not needed for the overload that uses Span<Byte> for the buffer. When

the client creates the span object to pass to the method, it can create the span with the correct count and at

the correct index if needed.

Page 9-10 Section 9: Message Based Session Interfaces

9.2.1.4. IVisaReadResult

DESCRIPTION

After a Read method has completed, it is useful to know the actual number of bytes read and the reason the

the read operation terminated. IVisaReadResult provides this information.

.NET DEFINITION

#if NET6_0_OR_GREATER

public interface IVisaReadResult

{

 Int64 ActualCount { get; }

 ReadStatus ReadStatus { get; }

}

#endif

Section 9: Message Based Session Interfaces Page 9-11

9.2.2. Asynchronous I/O

VISA.NET Raw I/O asynchronous operations are implemented as a set of methods that allow a calling

program to start an I/O operation and then do other tasks while waiting for I/O to complete.

The interface supports both the Event-Based Asynchronous Pattern (EAP) and Task-based Asynchronous

Pattern (TAP). EAP requires multiple calls to complete an asynchronous operation. The TAP methods

defined in this section require only one call to initiate and complete an asynchronous operation. Note that

the TAP methods are omitted from the .NET Framework API.

Raw I/O includes methods that begin write and read operations, but return without waiting to see if the

operations have completed. Several techniques may be used to check the status of that I/O operation, and to

get the results when the I/O operation is complete.

ASYNCHRONOUS BEHAVIOR

Depending on the implementation, only one operation per resource may be allowed at a time, or several

may be allowed at a time. If several asynchronous I/O operations for a resource are allowed at once, they

are processed in the order in which they are initiated, so that reads and writes happen in a predictable order.

EAP I/O METHODS

EAP I/O starts with a call to a BeginWrite or BeginRead method. These methods return a reference to

the IVisaAsyncResult interface. The interface includes information that uniquely identifies the

operation, and can be used to communicate status and results.

EAP I/O can be aborted by calling AbortAsyncOperation Note that these methods take an

IVisaAsyncResult argument that identifies the particular asynchronous I/O operation to abort.

EAP I/O operations are officialy completed by calling EndWrite, EndRead, or EndReadString. Note

that these methods also take an IVisaAsyncResult argument that identifies the particular asynchronous

I/O operation to end.

The appropriate End method must be called whenever a Begin method executed and returned a valid

reference to IVisaAsyncResult. End methods perform required clean-up and disposal functions, and the

implementation is free to leak if the End method is not called by the user. Note that calling

AbortAsyncOperation does not relieve the user of the need to call an End method.

DETERMINING WHEN EAP ASYNCHRONOUS I/O IS COMPLETE

There are three ways that a calling program can determine when an EAP operation is complete - polling,

blocking waits, and callbacks. Once a program has returned from a BeginWrite or BeginRead method

call, it can poll the IVisaAsyncResult.IsCompleted property, waiting until it is set to true. Once a

program has returned from a BeginWrite or BeginRead method call, it can wait on the

IVisaAsyncResult.AsyncResultHandle event handle. The program will block on that event handle

until the EAP I/O operation completes. Finally, if the BeginWrite or BeginRead method call includes a

callback argument, the the callback method is invoked (exactly once) when the EAP I/O operation

completes.

EAP ASYNCHRONOUS I/O RESULTS

EAP I/O uses the IVisaAsyncResult interface to identify particular asynchronous I/O operations, and to

communicate status and results. IVisaAsyncResult derives from the Microsoft class

System.IAsyncResult.

mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/56bd8808-c192-a608-1bae-0f166cf30bea.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/65e6487b-fb35-d686-7d97-6f9870136fa8.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/727c4b41-3b39-beb6-0e03-cdc637c04510.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/d05dafe4-6926-c641-6bf0-425bd5d90753.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/727c4b41-3b39-beb6-0e03-cdc637c04510.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/280ac337-8d48-8553-ad75-a71ea5966649.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/6f7790c1-6731-55a3-1ed0-fba0aa134ed6.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/c8728d29-9cfe-796e-8627-b9cbfedc1288.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/727c4b41-3b39-beb6-0e03-cdc637c04510.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/d05dafe4-6926-c641-6bf0-425bd5d90753.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/727c4b41-3b39-beb6-0e03-cdc637c04510.htm

Page 9-12 Section 9: Message Based Session Interfaces

TAP ASYNCHRONOUS I/O METHODS

TAP methods are self-contained – multiple methods are not required to complete an asynchronous

operation. The TAP methods are ReadAsync and WriteAsync.

TAP I/O can be aborted using the cancellationToken parameter (refer to Microsoft documentation for

details).

TAP I/O operations are complete when the method returns.

TAP ASYNCHRONOUS I/O RESULTS

The TAP I/O read methods use the IVisaReadResult interface to return the read status and actual count.

mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/d05dafe4-6926-c641-6bf0-425bd5d90753.htm
mk:@MSITStore:C:/mstf/IOLS/NoBranch/Prototypes/VISA.NET/2011-12-13/VisaNetHelp/Help/VisaNet.chm::/html/727c4b41-3b39-beb6-0e03-cdc637c04510.htm

Section 9: Message Based Session Interfaces Page 9-13

9.2.2.1. IVisaAsyncResult

DESCRIPTION

When a BeginWrite or BeginRead method is called, it creates a new object that implements

IVisaAsyncResult and returns a reference to the interface to the calling program. The calling program

may use the reference to track certain information about the asynchronous operation that was initiated by

the BeginWrite or BeginRead call.

Though IVisaAsyncResult roughly corresponds to ViJobID in VISA C, IVI.NET synchronous

operations are significantly different from VISA C. For this reason, IVisaAsyncResult is described in

detail in this section.

IVisaAsyncResult derives from IAsyncResult, which is described in MSDN documentation.

IVisaAsyncResult includes the following useful properties inherited from System.IAsyncResult:

• AsyncState is typed as an object. This contains application specific state information

regarding the operation that was supplied by an argument to the BeginRead or BeginWrite

method.

• AsyncWaitHandle is a .NET WaitHandle that can be used to wait for the completion of the

asynchronous operation.

• IsCompleted indicates whether the asynchronous operation has completed.

IVisaAsyncResult defines the following additional properties:

• IsAborted indicates whether the asynchronous operation was aborted by a call to

AbortAsyncOperation.

• Buffer is a reference to an array of bytes that holds the data being written or read.

• Before the operation has completed, Count is unspecified. After the operation has completed, it is

the number of bytes actually read or written.

• Index is the value of the index argument to the BeginRead or BeginWrite method that

initiated the I/O operation. If the method did not include an index argument, the value is zero.

DEFINITION

public interface IVisaAsyncResult : IAsyncResult

{

 Boolean IsAborted { get; }

 Byte[] Buffer { get; }

 Int64 Count { get; }

 Int64 Index { get; }

}

IMPLEMENTATION

RULE 9.2.2

For a particular asynchronous operation, if BeginWrite or BeginRead is called with the state parameter

specified, the value of IAsyncResult.AsyncState in the returned IVisaAsyncResult reference

SHALL be the value of the state parameter. If BeginWrite or BeginRead is called without the state

parameter, the value of IAsyncResult.AsyncState SHALL be Null.

RULE 9.2.3

For a particular asynchronous read operation, IVisaAsyncResult.Buffer is unspecified until the

operation has completed successfully. Once the operation has completed successfully, Buffer SHALL

contain the bytes (starting at Index, if specified) that were read from the instrument.

Page 9-14 Section 9: Message Based Session Interfaces

RULE 9.2.4

For a particular asynchronous write operation, IVisaAsyncResult.Buffer SHALL contain the bytes

that will actually be written to the instrument. For overloads of BeginWrite that take string buffer

arguments, IVisaAsyncResult.Buffer contains the equivalent ASCII string after it has been converted

from UNICODE.

RULE 9.2.5

For a particular asynchronous read or write operation, IAsyncResult.AsyncWaitHandle SHALL be

signaled after the operation completes.

Section 9: Message Based Session Interfaces Page 9-15

9.2.2.2. AbortAsyncOperation

DESCRIPTION

Requests the session to terminate normal execution of an asynchronous read or write operation.

Note that the associated asynchronous operation is considered to be complete after it has been aborted.

If the associated asynchronous operation was completed before it could be aborted by this method, it is not

considered to have been aborted, even though this method was called. In this case, the method does not

throw an exception, and the calling program must examine the result.IsAborted property to determine

whether the operation completed successfully or not.

.

DEFINITION

void AbortAsyncOperation(IVisaAsyncResult result);

ARGUMENTS

Name Description Type

result The reference to the pending asynchronous request

to abort. The meaning of IVisaAsyncResult

members after the call completes is listed below:

IVisaAsyncResult

 .AsyncState Unaffected by this method. Object

 .AsyncWaitHandle Always signaled. WaitHandle

 .CompletedSynchro

nously
Unaffected by this method. Boolean

 .IsCompleted Always true after this method completes.

Boolean

 .IsAborted
Set to true if this method aborted the associated

asynchronous operation, otherwise false (if the

asynchronous operation was completed before it

could be aborted by this method).

Boolean

 .Buffer Undefined. Byte[]

 .Count Undefined Int64

 .Index Unaffected by this method. Int64

EXCEPTIONS

Some exceptions (such as argument exceptions) are thrown immediately from this method. Errors that

occur during an asynchronous read request, such as an instrument communication failure during the IO

request, occur on the thread pool thread and the corresponding exception will be thrown upon a call to

EndRead or EndWrite.

Page 9-16 Section 9: Message Based Session Interfaces

9.2.2.3. BeginRead

DESCRIPTION

Begins an asynchronous read.

The calling program must call EndRead exactly once for every call to BeginRead. Failing to end an

asynchronous operation before beginning another one can cause undesirable behavior such as a memory

leak.

DEFINITION

IVisaAsyncResult BeginRead(Int32 count);

IVisaAsyncResult BeginRead(Int32 count, Object state);

IVisaAsyncResult BeginRead(Int32 count, VisaAsyncCallback callback,

 Object state);

IVisaAsyncResult BeginRead(Byte[] buffer);

IVisaAsyncResult BeginRead(Byte[] buffer, Object state);

IVisaAsyncResult BeginRead(Byte[] buffer, Int64 index, Int64 count);

IVisaAsyncResult BeginRead(Byte[] buffer, Int64 index, Int64 count,

 Object state);

IVisaAsyncResult BeginRead(Byte[] buffer, VisaAsyncCallback callback,

 Object state);

IVisaAsyncResult BeginRead(Byte[] buffer, Int64 index, Int64 count,

 VisaAsyncCallback callback, Object state);

ARGUMENTS

Name Description Type

buffer The buffer to read data into. For overloads that

include buffer, the calling program is expected to

allocate the buffer. For overloads that do not

include buffer, the implementation of this method

allocates the buffer.

Byte[]

count The maximum number of bytes to read. For

overloads that do not include count, the default is

the buffer size.

Int64

index The byte offset in buffer at which to begin writing

the data read. For overloads that do not include

index, the default is 0.

Int64

callback The method to be called when the asynchronous

read operation is completed. Overloads that do not

include callback leave it to the calling program to

check for completion.

.

IVisaAsyncCallback

state A reference to an object that contains arbitrary

information of interest to the calling program, and

related to the asynchronous operation. This allows

the asynchronous operation to provide the reference

back to the calling program (as context) when the

operation is complete. This is particularly useful

when callbacks are used. Note that the object is not

used by the asynchronous operation.

Object

Section 9: Message Based Session Interfaces Page 9-17

RETURNS

Return Value Description Type

return value An object that implements IVisaAsyncResult,

which represents the status of an asynchronous

operation. The object is constructed by this method.

The meaning of IVisaAsyncResult members in

this context is listed below:

IVisaAsyncResult

 .AsyncState A reference to the state object passed as a parameter

to this method. This will be null if no state object

was passed to this method.

Object

.AsyncWaitHandle A handle that can be used to wait for the read to

complete.

WaitHandle

.CompletedSynchro

nously
true if the read operation completed synchronously,

otherwise false.

Boolean

.IsCompleted true if the asynchronous operation is complete,

otherwise false.

Boolean

.IsAborted IsAborted is always false when returned by this

method since this method begins the asynchronous

read operation.

Boolean

.Buffer Undefined. Byte[]

.Count Undefined. Int64

 .Index The value of the index argument passed to this

method. The value is zero if the method does not

take an index argument.

Int64

EXCEPTIONS

Some exceptions (such as argument exceptions) are thrown immediately from this method. Errors that

occur during an asynchronous read request, such as an instrument communication failure during the IO

request, occur on the thread pool thread and become visible upon a call to EndRead.

IMPLEMENTATION

PERMISSION 9.2.1

If a call by a session class to the callback method fails, the failure MAY be ignored.

OBSERVATION 9.2.3

VISA.NET I/O implementations should not assume a client callback will return in any timeframe. Calling

programs may execute blocking waits from callbacks. If a VISA.NET I/O resource component calls a

callback, and the callback blocks in the same thread on which the callback was called, the callback will not

return until the block completes.

OBSERVATION 9.2.4

The callback and state parameters are allowed to be null.

RULE 9.2.6

If CompletedSynchronously is true when this method returns, IsCompleted SHALL also be true.

OBSERVATION 9.2.5

If CompletedSynchronously is false, then depending on the timing of the I/O, it is possible for

IsCompleted to be true when this method returns.

Page 9-18 Section 9: Message Based Session Interfaces

RULE 9.2.7

If a callback method is specified, the implementation SHALL call the callback exactly once for every

successful call to BeginRead.

RULE 9.2.8

If a callback method is specified, the implementation SHALL allow the callback to call EndRead or

EndReadString.

RULE 9.2.9

If a buffer is specified, the implementation of BeginRead SHALL NOT resize it.

Section 9: Message Based Session Interfaces Page 9-19

9.2.2.4. BeginWrite

DESCRIPTION

Begins an asynchronous write.

The calling program must call EndWrite exactly once for every call to BeginWrite. Failing to end an

asynchronous operation before beginning another one can cause undesirable behavior such as a memory

leak.

DEFINITION

IVisaAsyncResult BeginWrite(String buffer);

IVisaAsyncResult BeginWrite(String buffer, Object state);

IVisaAsyncResult BeginWrite(String buffer, VisaAsyncCallback callback,

 Object state);

IVisaAsyncResult BeginWrite(Byte[] buffer);

IVisaAsyncResult BeginWrite(Byte[] buffer, Object state);

IVisaAsyncResult BeginWrite(Byte[] buffer, Int64 index, Int64 count);

IVisaAsyncResult BeginWrite(Byte[] buffer, Int64 index, Int64 count,

 Object state);

IVisaAsyncResult BeginWrite(Byte[] buffer, VisaAsyncCallback callback,

 Object state);

IVisaAsyncResult BeginWrite(Byte[] buffer, Int64 index, Int64 count,

 VisaAsyncCallback callback, Object state);

ARGUMENTS

Name Description Type

buffer The buffer from which data is written. Byte[]

String

count The maximum number of bytes to write. For

overloads that do not include count, the default is

the buffer size.

Int64

index The byte offset in buffer at which to begin reading

the data to be written. For overloads that do not

include index, the default is 0.

Int64

callback The method to be called when the asynchronous

write operation is completed. Overloads that do not

include callback leave it to the calling program to

check for completion.

VisaAsyncCallback

state A reference to an object that contains arbitrary

information of interest to the calling program. This

allows the asynchronous operation to provide the

reference back to the calling program when the

operation is complete. Note that the object is not

used by the asynchronous operation.

Object

RETURNS

Return Value Description Type

Page 9-20 Section 9: Message Based Session Interfaces

return value An object that implements IVisaAsyncResult,

which represents the status of an asynchronous

operation. The object is constructed by this method.

The meaning of IVisaAsyncResult members in

this context is listed below:

IVisaAsyncResult

 .AsyncState A reference to the state object passed as a parameter

to this method. This will be null if no state object

was passed to this method.

Object

.AsyncWaitHandle A handle that can be used to wait for the write to

complete.

WaitHandle

.CompletedSynchro

nously
true if the write operation completed synchronously,

otherwise false.

Boolean

.IsCompleted true if the asynchronous operation is complete,

otherwise false.

Boolean

.IsAborted IsAborted is always false when returned by this

method since this method begins the asynchronous

write operation.

Boolean

.Buffer The buffer that was passed into the call to

BeginWrite that initiated this asynchronous

operation, or a buffer that includes only the bytes

that will actually be written by this asynchronous

operation.

Byte[]

.Count Undefined Int64

 .Index The value of the index argument passed to this

method. The value is zero if the method does not

take an index argument.

Int64

EXCEPTIONS

Some exceptions (such as argument exceptions) are thrown immediately from this method. Errors that

occur during an asynchronous write request, such as an instrument communication failure during the IO

request, occur on the thread pool thread and become visible upon a call to EndWrite.

IMPLEMENTATION

RULE 9.2.10

All BeginWrite methods that write a string SHALL convert the .NET string passed in to an ASCII string.

If there is a UNICODE character that has an ambiguous or no conversion to ASCII, the method SHALL

throw an exception.

PERMISSION 9.2.2

If a call by a session class to the callback method fails, the failure MAY be ignored.

OBSERVATION 9.2.6

VISA.NET I/O implementations should not assume a client callback will return in any timeframe. Calling

programs may execute blocking waits from callbacks. If a VISA.NET I/O resource component calls a

callback, and the callback blocks in the same thread on which the callback was called, the callback will not

return until the block completes.

OBSERVATION 9.2.7

The callback and state parameters are allowed to be null.

Section 9: Message Based Session Interfaces Page 9-21

RULE 9.2.11

If CompletedSynchronously is true when this method returns, IsCompleted SHALL also be true.

OBSERVATION 9.2.8

If CompletedSynchronously is false, then depending on the timing of the I/O, it is possible for

IsCompleted to be true when this method returns.

RULE 9.2.12

If a callback method is specified, the implementation SHALL call the callback exactly once for every

successful call to BeginWrite.

RULE 9.2.13

If a callback method is specified, the implementation SHALL allow the callback to call EndWrite.

Page 9-22 Section 9: Message Based Session Interfaces

9.2.2.5. EndRead

DESCRIPTION

Waits for the pending asynchronous read to complete. This method is always blocking.

DEFINITION

Int64 EndRead(IVisaAsyncResult result);

String EndReadString(IVisaAsyncResult result);

ARGUMENTS

The following table reflects the value of the result parameter upon completion of this method.

Name Description Type

result The reference to the asynchronous request. The

meaning of IVisaAsyncResult members after the

call completes is listed below:

IVisaAsyncResult

 .AsyncState Unaffected by this method. Object

.AsyncWaitHandle Not specified after this method completes. WaitHandle

.CompletedSynchro

nously
 Unaffected by this method. Boolean

.IsCompleted IsCompleted is always true when returned by this

method since this method waits until the

asynchronous operation ends.

Boolean

.IsAborted Unaffected by this method. Boolean

.Buffer A buffer is a valid buffer whose contents depends on

which overload of BeginRead was called for this

asynchronous operation.

Byte[]

.Count The number of bytes read by this ansynchronous

operation.

Int64

 .Index Unaffected by this method. Int64

RETURN VALUE

Name Description Type

Return value The number of bytes read by this ansynchronous

operation intoIVisaAsyncResult.Buffer.

Int64

IVisaAsyncResult.Buffer converted to a

Unicode string.

String

EXCEPTIONS

Some exceptions (such as argument exceptions) are thrown immediately from this method. In addition, any

errors detected during the asynchronous operation will be thrown as exceptions from this method.

This method uses the Ivi.Visa.IoTimeoutException to report a timeout.

IMPLEMENTATION

Section 9: Message Based Session Interfaces Page 9-23

RULE 9.2.14

The EndReadString method SHALL convert the entire contents of IVisaAsyncResult.Buffer to a .NET

string. If there is an ambiguous conversion to ASCII, the method SHALL throw an exception.

OBSERVATION 9.2.9

The intent of EndReadString is to convert an entire response from the instrument to a string. If the

overload of BeginRead used to initiate the operation used a user-allocated buffer that is larger than the

number of bytes read, the results may be unexpected.

Page 9-24 Section 9: Message Based Session Interfaces

9.2.2.6. EndWrite

DESCRIPTION

Waits for the pending asynchronous write to complete. This method is always blocking.

DEFINITION

void EndWrite(IVisaAsyncResult result);

ARGUMENTS

The following table reflects the value of the result parameter upon completion of this method.

Name Description Type

result The reference to the asynchronous request. The

meaning of IVisaAsyncResult members after the

call completes is listed below:

IVisaAsyncResult

 .AsyncState Unaffected by this method. Object

.AsyncWaitHandle Not specified after this method completes. WaitHandle

.CompletedSynchro

nously
Unaffected by this method. Boolean

.IsCompleted IsCompleted is always true when returned by this

method since this method waits until the

asynchronous operation ends.

Boolean

.IsAborted Unaffected by this method. Boolean

.Buffer The buffer that was passed into the call to

BeginWrite that initiated this asynchronous

operation, or a buffer that includes only the bytes

that were actually to be written by this asynchronous

operation.

Byte[]

.Count The number of bytes actually written by this

operation.

Int64

 .Index Unaffected by this method. Int64

EXCEPTIONS

Some exceptions (such as argument exceptions) are thrown immediately from this method. In addition, any

errors detected during the asynchronous operation will be thrown as exceptions from this method.

This method uses the Ivi.Visa.IoTimeoutException to report a timeout.

OBSERVATION 9.2.10

The Buffer value returned as part of the IVisaAsyncResult return value for this method is the same as

the Buffer value returned as part of the IVisaAsyncResult return value for BeginWrite().

Section 9: Message Based Session Interfaces Page 9-25

9.2.2.7. ReadAsync

DESCRIPTION

Performs a TAP asynchronous read.

DEFINITION

#if NET6_0_OR_GREATER

Task<IVisaReadResult> ReadAsync(

 Memory<Byte> buffer,

 CancellationToken token = default);

Task<IVisaReadResult> ReadAsync(

 Byte[] buffer,

 Int64 index = 0,

 Int64 count = -1,

 CancellationToken token = default);

#endif

ARGUMENTS

Name Description Type

buffer The buffer to read data into. The calling program is

expected to allocate the buffer.

Byte[]

Memory<Byte>

index The byte offset in buffer at which to begin writing

the data read.

If the buffer is Memory<Byte>, the index is

assumed to be 0.

Int64

count The maximum number of bytes to read.

If the buffer is Memory<Byte>, the count is

assumed to be the size of the memory object.

If count is -1, count defaults to the buffer size.

Int64

token A token that can be used to cancel the asynchronous

operation if needed.

CancellationToken

RETURNS

Return Value Description Type

return value An interface reference that includes the actual

number of bytes read and the reason for termination.

IVisaReadResult

EXCEPTIONS

Some exceptions (such as argument exceptions) are thrown immediately from this method. Errors that

occur during an asynchronous read request, such as an instrument communication failure during the IO

request, are returned from the ReadAsync method per TAP pattern conventions.

IMPLEMENTATION

OBSERVATION 9.2.11

VISA.NET I/O implementations should not assume an awaited call to ReadAsync will return in any

timeframe. The implementation may use callbacks that are not visible to the client, and those callbacks

may execute blocking waits. If the callback blocks in the same thread on which the callback was called, the

callback will not return until the block completes.

Page 9-26 Section 9: Message Based Session Interfaces

RULE 9.2.15

The implementation of ReadAsync SHALL NOT resize the buffer.

Section 9: Message Based Session Interfaces Page 9-27

9.2.2.8. WriteAsync

DESCRIPTION

Performs a TAP asynchronous write.

DEFINITION

#if NET6_0_OR_GREATER

Task WriteAsync(

 ReadOnlyMemory<Byte> buffer,

 CancellationToken token = default);

Task WriteAsync(Byte[] buffer,

 Int64 index = 0,

 Int32 count = -1,

 CancellationToken token = default);

#endif

ARGUMENTS

Name Description Type

buffer The buffer from which data is written. Byte[]

String

index The byte offset in buffer at which to begin reading

the data to be written. For overloads that do not

include index, the default is 0.

Int64

count The maximum number of bytes to write. For

overloads that do not include count, the default is

the buffer size.

If count is -1, count defaults to the buffer size.

Int64

token A token that can be used to cancel the asynchronous

operation if needed.

CancellationToken

RETURNS

Return Value Description Type

return value A Task object that allows the method to be used

with the await keyword.

Task

EXCEPTIONS

Some exceptions (such as argument exceptions) are thrown immediately from this method. Errors that

occur during an asynchronous write request, such as an instrument communication failure during the IO

request, are returned from the WriteAsync method per TAP pattern conventions.

IMPLEMENTATION

OBSERVATION 9.2.12

VISA.NET I/O implementations should not assume an awaited call to WriteAsync will return in any

timeframe. The implementation may use callbacks that are not visible to the client, and those callbacks

may execute blocking waits. If the callback blocks in the same thread on which the callback was called, the

callback will not return until the block completes.

Page 9-28 Section 9: Message Based Session Interfaces

9.3. Custom Formatting
When using the VISA.NET formatted I/O Printf and Scanf methods, the bulk of formatting and parsing

is accomplished with the standard format specifiers. These specifiers work with common, simple types like

strings, integers, and floating point numbers. Furthermore, these standard conversions are tightly

specified, and the IVI Foundation provides a standard implementation for each one.

However, Printf and Scanf only have format specifiers for a few common .NET data types. Most .NET

data types do not have format specifiers, and of course there are no format specifiers for user-defined types.

When Printf and Scanf are called upon to format or parse a data type for which no format specifier

exists, the end user must provide a custom conversion to do the job. A type formatter is a .NET class that

allows Printf and Scanf to perform these custom conversions directly.

Example: Custom Formatting Challenge

Suppose an instrument accepts a SCPI command for setting the trigger source. Such a command might

look something like the following:

TRIGger:SOURce [EXTernal|INTernal|SOFTware]

The three different values for the trigger source could be very naturally represented in programming

languages by an enumeration, such as the following C# enumeration:

public enum TriggerSource

{

External,

Internal,

Software

}

However, there is no format specifier to convert the enumeration values to the values used in the

instrument’s SCPI command. A custom conversion is needed to format and parse the instrument values.

In VISA C and VISA COM, custom conversions must be done in the calling program either before calling

Printf (when formatting) or after calling Scanf (when parsing results), since both Printf and Scanf

deal nicely with strings using standard format specifiers. However, VISA.NET provides the infrastructure

for performing custom conversions inside of the Printf and Scanf methods themselves, which makes the

calling program cleaner, isolates the custom conversions in a class designed just for that purpose, and

allows Printf and Scanf to do a better job at the tasks for which they were designed (formatting and

parsing, respectively).

9.3.1. Type Formatters

INTRODUCTION

A VISA.NET type formatter class (or type formatter) implements whatever logic is necessary to perform

custom conversions between custom types and strings inside of Printf and Scanf.

Imagine a type formatter named MyFormatter that converts the TriggerSource enumeration values

External, Internal, and Software (from the example in the previsous section) to the strings “EXT”, “INT”,

and “SOFT”. The code to use this formatter in a VISA.NET client would look something like this (where

session is the VISA.NET session):

TriggerSource source = TriggerSource.Internal;

session.FormattedIO.TypeFormatter = (ITypeFormatter)MyFormatter;

session.FormattedIO.Printf(“TRIG:SOUR %s\n”, source);

When the VISA.NET implementation encounters the %s format specification in the above call, it

recognizes that the associated parameter (source) is not a data type that it natively understands. It then

Section 9: Message Based Session Interfaces Page 9-29

looks to see if an object that implements ITypeFormatter has been associated with the session. Since

that was done in line two, VISA.NET invokes the ITypeFormatter.IsSupported method with the

source argument to see if that type is supported by the type formatter. If it is, then the

ITypeFormatter.ToString method is invoked to convert the TriggerSource value to the

corresponding string. If it is not supported or if a type formatter has not been associated with the session,

the VISA.NET implementation throws ArgumentException.

IMPLEMENTATION

OBSERVATION 9.3.1

The TypeFormatter is used with the %s and %c formatters.

OBSERVATION 9.3.2

For Printf, if the format specifier is “%s” (or “%,s”) and the corresponding argument is type String, the

string argument is used directly. If TypeFormatter is not null and TypeFormatter.IsSupported = true, Printf

will use TypeFormatter to format the string; otherwise Printf will throw an exception.

OBSERVATION 9.3.3

For Scanf, if the format specifier is “%s” (or “%,s”) the type formatter is consulted if it is not null. If

TypeFormatter.IsSupported = true, Scanf will use the TypeFormatter to parse the string. If the

TypeFormatter is null, and the argument supplied is a string, then the data scanned is returned directly in

the user supplied argument. If the TypeFormatter is null or TypeFormatter.IsSupported = false, and the

argument supplied is not a string, then a format exception is thrown.

OBSERVATION 9.3.4

Type formatters must implement the standard ITypeFormatter interface.

• A type formatter is associated with a VISA.NET formatted I/O session by assigning its

ITypeFormatter interface to the TypeFormatter property in the

IMessageBasedFormattedIO interface.

• Once this assignment is done, the Printf and Scanf methods will use the ITypeFormatter

interface of the type formatter assigned to the TypeFormatter property as they format and parse

instrument strings.

OBSERVATION 9.3.5

There is no single, standard type formatter.

• Different applications may use different formats for the same .NET type. For example, one

application may format Boolean values as “true” and “false”, another as “0” and “1”, and another

as “ON” and “OFF”

• Many types are application specific. For example, an enumeration whose members denote the

channels of a particular instrument will be specific to applications that connect to that instrument.

OBSERVATION 9.3.6

In general, type formatters are application specific. VISA.NET users should be prepared to create one or

more custom type formatters for their applications if they choose to use the type formatting features of

VISA.NET.

OBSERVATION 9.3.7

Since only one type formatter can be associated with a formatted I/O session at a time (the

TypeFormatter property is a scalar), a type formatter must be capable of performing all of the “custom”

conversions that a single Printf or Scanf method call might encounter. An implementor may choose to

implement all of the custom conversions needed for a particular application or component in a single type

formatter, or implement them in several type formatters - that implementation decision is left to developers.

CORRESPONDING VISA FEATURES

VISA.NET type formatters have no corresponding feature in VISA C or VISA COM.

Page 9-30 Section 9: Message Based Session Interfaces

9.3.2. ITypeFormatter Interface

DESCRIPTION

The ITypeFormatter interface provides methods that perform custom conversions of supported .NET

types to and from a string. It also provides a method for determining whether a particular type is supported.

DEFINITION

public interface ITypeFormatter

{

 Boolean IsSupported(Type type);

 String ToString(Object obj);

 Object Parse(Type type, String data);

}

CORRESPONDING VISA FEATURES

The ITypeFormatter interface methods have no corresponding functions in VISA C or VISA COM.

Section 9: Message Based Session Interfaces Page 9-31

9.3.2.1. IsSupported

DESCRIPTION

Returns true if type is supported by the type formatter object. If true, the object must support

converting a type value to a string (formatting) and converting a string to a type value (parsing).

DEFINITION

Boolean IsSupported(Type type);

ARGUMENTS

Name Description Type

type The type which is tested to determine if it is

supported by the formatter object.

Type

RETURNS

Return Value Description Type

return value true if type is supported by the type formatter

object, otherwise false.

Boolean

Page 9-32 Section 9: Message Based Session Interfaces

9.3.2.2. ToString

DESCRIPTION

Returns a string representation of obj that is suitable for use in a string that is formatted by Printf.

DEFINITION

String ToString(Object obj);

ARGUMENTS

Name Description Type

obj The object to be formatted as a string. Object

RETURNS

Return Value Description Type

return value The string to which the object has been formatted. String

EXCEPTIONS

This method throws the Ivi.Visa. TypeFormatterException when obj cannot be formatted as a

string by the type formatter object.

Section 9: Message Based Session Interfaces Page 9-33

9.3.2.3. Parse

DESCRIPTION

Returns an object of type type, the value of which is determined by parsing the data string.

DEFINITION

Object Parse(Type objectType, String data);

ARGUMENTS

Name Description Type

type The data type of the returned object. Type

data The string data which is parsed to create the object

returned by this method. The type formatter object

must be able to parse data and convert it to an

object of type type.

String

RETURNS

Return Value Description Type

return value An object of type type, the value of which is

determined by parsing the data string.

Object

EXCEPTIONS

This method throws the Ivi.Visa. TypeFormatterException when data cannot be parsed to an

object of type type by the type formatter object.

Page 9-34 Section 9: Message Based Session Interfaces

9.4. IMessageBasedFormattedIO

DESCRIPTION

This section summarizes IMessageBasedFormattedIO. Note that IMessageBasedFormattedIO

allows calling programs to use a variety of common data types. Given the necessary formatting direction,

formatted I/O methods format and parse instrument string or buffer data appropriately.

IMessageBasedFormattedIO is all synchronous.

IMessageBasedSession provides a property that returns a reference to IMessageBasedFormattedIO.

This property is the recommended way to access the IMessageBasedFormattedIO interface from a

message-based session.

DEFINITION

The IMessageBasedFormattedIO interface declaration is shown below. The body of the interface is

documented in the sections that document individual properties and methods.

public interface IMessageBasedFormattedIO

Refer to section 9.5, FormattedIO Implementations, for information about formatted I/O implementation

options, and the standard IVI implementation of IMessageBasedFormattedIO in particular.

CORRESPONDING VISA FEATURES

The IMessageBasedFormattedIO interface has several .NET properties that correspond to attributes

defined in VISA. The following table shows property-attribute equivalence for

IMessageBasedFormattedIO.

Property Name VISA Attribute Name

BinaryEncoding N/A

ReadBufferSize VI_ATTR_RD_BUF_SIZE

WriteBufferSize VI_ATTR_WR_BUF_SIZE

TypeFormatter N/A

The IMessageBasedFormattedIO interface has several .NET methods that correspond to functions

defined in VISA. The following table shows method-function correspondence for

IMessageBasedFormattedIO.

Method Name VISA Method Name

DiscardBuffers viFlush

FlushWrite viFlush

Skip, SkipUntilEnd viScanf with %* modifier

Printf viPrintf

PrintfAndFlush

PrintArray

PrintArrayAndFlush

Scanf viScanf

ScanfArray

Write viPrintf with specific format specifiers.

WriteLine viPrintf with specific format specifiers.

WriteList viPrintf with specific format specifiers.

Section 9: Message Based Session Interfaces Page 9-35

WriteLineList viPrintf with specific format specifiers.

WriteBinary viPrintf with specific format specifiers.

WriteBinaryAndFlush viPrintf with specific format specifiers.

ReadType viScanf with specific format specifiers.

ReadLine

ReadLineType

viScanf with specific format specifiers.

ReadListOfType viScanf with specific format specifiers.

ReadLineListOfType viScanf with specific format specifiers.

ReadBinaryBlockOfType viScanf with specific format specifiers.

ReadLineBinaryBlockOfType viScanf with specific format specifiers.

ReadWhileMatch, ReadUntilMatch,

ReadUntilEnd
viScanf with specific format specifiers.

IMPLEMENTATION

OBSERVATION 9.4.1

Most of the properties and methods in IMessageBasedFormattedIO have corresponding attributes and

functions in VISA C, but the properties and methods in IMessageBasedFormattedIO differ, some

slightly and some significantly, from the corresponding VISA C attributes and functions. For this reason,

all of the methods in this interface are described in detail below.

Page 9-36 Section 9: Message Based Session Interfaces

9.4.2. BinaryEncoding

DESCRIPTION

The binary encoding used by Write and Read methods when formatting or parsing an array of numeric

data.

DEFINITION

BinaryEncoding BinaryEncoding { get; set; }

IMPLEMENTATION

The formatting and parsing rules associated with each of the enumerated values for BinaryEncoding

correspond to Printf and Scanf format specifiers as shown in the following table.

Value Format Specifier

DefiniteLengthBlockData %b

IndefiniteLengthBlockData %B

RawLittleEndian %!oly

RawBigEndian %!oby

Section 9: Message Based Session Interfaces Page 9-37

9.4.3. ReadBufferSize

DESCRIPTION

The size of the internal formatted I/O read buffer.

DEFINITION

Int32 ReadBufferSize { get; set; }

Page 9-38 Section 9: Message Based Session Interfaces

9.4.4. WriteBufferSize

DESCRIPTION

The size of the internal formatted I/O write buffer.

DEFINITION

Int32 WriteBufferSize { get; set; }

Section 9: Message Based Session Interfaces Page 9-39

9.4.5. TypeFormatter

DESCRIPTION

A reference to the ITypeFormatter interface implemented by the type formatter that will be used by

Printf and Scanf to format and parse the types that it supports.

DEFINITION

ITypeFormatter TypeFormatter { get; set; }

Page 9-40 Section 9: Message Based Session Interfaces

9.4.6. DiscardBuffers

DESCRIPTION

Discards all of the data in both the formatted I/O read and write buffers, but does not send anything to the

instrument.

DEFINITION

void DiscardBuffers();

Section 9: Message Based Session Interfaces Page 9-41

9.4.7. FlushWrite

DESCRIPTION

Flushes all the data from the write buffer and sends it to the instrument.

If an exception occurs during this method, the buffer will be cleared. The calling program does not need to

explicitly call FlushWrite or DiscardBuffers before attempting another Write or Printf operation.

DEFINITION

void FlushWrite(Boolean sendEnd);

IMPLEMENTATION

RULE 9.4.2

The FlushWritemethod SHALL send the buffer to the instrument with END if sendEnd is true,

otherwise it SHALL send the buffer without END.

RULE 9.4.3

If the SendEndEnabled property is different from the value of the sendEnd parameter, the FlushWrite

method SHALL change it on the I/O session, commit the write buffer, and then restore it.

RULE 9.4.4

FlushWrite method SHALL NOT change the characters in the buffer. For example, it will not add a

termchar to the contents of the buffer.

Page 9-42 Section 9: Message Based Session Interfaces

9.4.8. Printf Format Strings

The Printf method formats data provided by input arguments. The data is created by replacing each

format specifier in the format parameter with the corresponding parameter argument formatted according

to the format specifier. The data is formatted as ASCII strings, IEEE-488.2 arbitrary blocks, and raw

binary blocks.

9.4.8.1. Printf Format Argument

The format argument consists of ordinary characters, and format specifiers. Format specifiers describe the

format in which associated input arguments are to be written. When the string is written to the device, the

formatted data is substituted for the format specifier. Any UNICODE character may be used in a format

argument, as long as the formatted string can be converted to ASCII.

When a newline (0x000A) is encountered in the format string, the following actions are taken (in order):

• A newline is appended to the write buffer.

• All data is flushed from the write buffer and sent to the instrument with an END indicator.

OBSERVATION 9.4.2

The mechanism used to represent a newline (0x000A) in a format string is language dependent.

9.4.8.2. Printf Format Specifiers
Printf format strings may include one or more format specifiers, each of which provides information

about how to format one of the variable arguments to Printf. Format specifiers for Printf are very

similar to those for the VISA viPrintf function, though there are some differences. For example, ‘a’,

‘A’, ‘C’, ‘n’, ‘p’, and ‘S’ are not supported in .NET. Refer to VPP-4.3: The VISA Library, Section 6.2.3,

viPrintf(vi, writeFmt, arg1, arg2,...), for a description of format specifiers in VISA.

A basic format specifier always starts with a ‘%’ (percent character) and ends with a format type, which

indicates the data type of the value to be formatted. For example, “%d” is a format specifier that will print

a signed integer as a sequence of decimal digits. If the integer is negative, it will be preceeded by a minus

sign.

A variety of optional modifiers may be added to the basic format specifier to provide a rich set of

formatting options. The general syntax of a VISA.NET format specifier is,

“%[flags][width][.precision][,array_size][size_modifier]type”

For example, “%+@3d” is a format specifier that will print a signed integer in scientific notation, with a

plus sign if the integer is non-negative and a minus sign if it is negative. Note that some modifiers are not

valid with some format types, and some modifiers have different meanings, depending on the type.

For each format specifier, there is one value argument that corresponds to the format specifier type, and

there may be additional dynamic arguments (indicated by a ‘*’ in the specifier) that provide information

about the format specifier’s modifiers. In the argument list, the dynamic arguments for a format specifier

always come before the value argument. Printf formats a value (from a value argument) using a format

specifier that may need additional information from dynamic arguments to be complete. For example,

Printf("[%-*.*s]", 10, 20, "John");

will print the string “[John]”. The first dynamic argument, 10, is the width - the minimum

number of characters to print. The second dynamic argument, 20, is the precision – the maximum number

of characters to print. If the string to be printed were longer than 20 characters, only twenty would be

printed. The ‘-‘ indicates that if the string is shorter than the number of characters to be printed, the string

should be left justified and, by default, padded with spaces.

The following sections describe the format specifier types and modifiers in more detail:

• Format types

http://127.0.0.1:47873/help/2-6768/ms.help?method=page&id=B00CBDC9-1E5C-4B30-9F56-C1EF8D383767&product=VS&productVersion=100&topicVersion=100&locale=EN-US&topicLocale=EN-US&embedded=true
http://127.0.0.1:47873/help/2-6768/ms.help?method=page&id=8B4A1B1E-BF6E-414F-A1B6-A9B6F1B6CE92&product=VS&productVersion=100&topicVersion=100&locale=EN-US&topicLocale=EN-US&embedded=true
http://127.0.0.1:47873/help/2-6768/ms.help?method=page&id=DC59EA4E-D23A-4F1F-9881-2C919EBEFB82&product=VS&productVersion=100&topicVersion=100&locale=EN-US&topicLocale=EN-US&embedded=true
http://127.0.0.1:47873/help/2-6768/ms.help?method=page&id=699CB438-CD14-402E-9F81-C7A32ACC3317&product=VS&productVersion=100&topicVersion=100&locale=EN-US&topicLocale=EN-US&embedded=true

Section 9: Message Based Session Interfaces Page 9-43

• Flags

• Width, Precision, and Array Size

• Size Modifiers

Page 9-44 Section 9: Message Based Session Interfaces

FORMAT TYPES

Every format specifier has a format type that indicates the data type of the corresponding value argument,

and by extension determines that the format will be appropriate to the data. In VISA.NET, format types

may correspond to several .NET data types. In general, if the corresponding value argument can be

correctly formatted using a format specifier, it will be.

Note that since the .NET version of Printf can determine the data types of all of the input arguments,

format types are not needed for that purpose, as they are in VISA. Format types are only needed to help

describe the desired format. However, if the type of a corresponding value argument is not compatible with

the format type, Printf will throw an exception.

The following table lists the format types recognized by Printf, along with a basic description of the type

and the valid .NET data types for the corresponding value argument.

Printf Format Specifier Types

Types Format Corresponding

Input Argument As

Valid Value Argument Types

Characters and Strings

c

An ASCII character. If the input argument is a

String or StringBuilder variable, only the first

character is formatted.

Char,

String (Must contain exactly one

character)

s An ASCII string. String

Integer Numbers (formatted as strings)

d, i,

u

An integer formatted as an ASCII string.

(Unsigned types are cast to Int64 and then

formatted. UInt64 numbers greater that

Int64.MaxValue will be formatted as negative

numbers.)

SByte, SByte[], Int16,

Int16[], Int32, Int32[],

Int64, Int64[],

Byte, Byte[], UInt16,

UInt16[], UInt32, UInt32[],

UInt64, UInt64[]

o

An unsigned integer formatted as an octal

ASCII string. Signed integer values are treated

as unsigned for formatting.

x

An unsigned integer formatted as a

hexadecimal ASCII string. Signed integer

values are treated as unsigned for formatting.

Digits ‘a’-‘f’ are lowercase. If there is a “0x”

prefix, the x is also lowercase.

X

An unsigned integer formatted as a

hexadecimal ASCII string. Signed integer

values are treated as unsigned for formatting.

Digits ‘A’-‘F’ are uppercase. If there is a

“0X” prefix, the X is also uppercase.

Real Numbers (formatted as strings)

e

A real number formatted as an ASCII string

using scientific notation. The ‘e’ that

introduces the exponent is lowercase.

Single, Single[], Double,

Double[]

E

A real number formatted as an ASCII string

using scientific notation. The ‘E’ that

introduces the exponent is uppercase.

Single, Single[], Double,

Double[]

f
A real number formatted as an ASCII string

using arithmetic notation.

Single, Single[], Double,

Double[]

Section 9: Message Based Session Interfaces Page 9-45

g

A real number formatted as an ASCII string

using arithmetic or scientific notation,

depending on the scale of the number. If

scientific notation is used, the ‘e’ that

introduces the exponent is lowercase.

Single, Single[], Double,

Double[]

G

A real number formatted as an ASCII string

using arithmetic or scientific notation,

depending on the scale of the number. If

scientific notation is used, the ‘E’ that

introduces the exponent is lowercase.

Single, Single[], Double,

Double[]

IEEE 488.2 Blocks

b

An array of numbers formatted as an IEEE-

488.2 definite length block. The sign is not

specified. A size modifier must be specified to

properly format the block. The size modifier

must match the type of the corresponding array

argument.

Byte[], SByte[], Int16[],

UInt16[], Int32[],

UInt32[],Single[], Double[]

(Int64[] and UInt64[] are not

supported at this time.)

B

An array of numbers formatted as an IEEE-

488.2 indefinite length block. The sign is not

specified. A size modifier must be specified to

properly format the block. The size modifier

must match the type of the corresponding array

argument.

Byte[], SByte[], Int16[],

UInt16[], Int32[],

UInt32[],Single[], Double[]

(Int64[] and UInt64[] are not

supported at this time.)

Raw Binary

y

An array of signed or unsigned integers

formatted as a binary array. The array may be

specified as big endian or little endian. A size

modifier must be specified to properly format

the array. The size modifier must match the

type of the corresponding array argument.

Byte order may be specified for raw binary

arrays by using “!ol” (little Endian) or “!ob”

(big Endian) immediately after the ‘%’

character that introduces the specifier. The

default is big Endian.

Byte[], SByte[],

Int16[],UInt16[], Int32[],

UInt32[], Int64[], UInt64[]

Not Valid for Printf: ‘t’, ‘T’

Not Valid in VISA.NET: ‘a’, ‘A’, ‘C’, ‘n’, ‘p’, ‘S’

Page 9-46 Section 9: Message Based Session Interfaces

FLAGS

Flags are optional characters or strings that control justification of output and printing of signs, blanks,

decimal points, and octal and hexadecimal prefixes. Flags immediately follow the ‘%’ character that

begins the format specifier. More than one flag can appear in a format specification. Format specifiers that

include an invalid flag, an invalid combination of flags, or flags that are out of order should not be used.

The results are undefined and Printf may throw an exception or return arbitrary results.

VISA.NET recognizes several ANSI defined flags (space, ‘+’, ‘0’, ‘-‘, and ‘#’) and several VISA specific

flags that support IEEE 488.2 formatting (‘@1’, ‘@2’, ‘@3’, ‘@H’, ‘@Q’, and ‘@B’). The following

general rules are observed when determining what combinations of flags are valid in a format specifier.

1. A particular flag may only be used once in a format specifier.

2. You can’t use a ‘#’ flag and one of the IEEE ‘@’ flags in the same format specifier, because every

combination inherently conflicts.

3. The formatting specified by an IEEE ‘@’ flag overrides the default formatting of the format

specifier type.

4. Only one ‘@’ flag may be included in a format specifier.

5. If a format specifier is not listed next to an “@” flag in the table below, the results are undefined,

may throw an exception, and should not be used.

6. The ANSI flags (space, ‘+’, ‘0’, ‘-‘, and ‘#’) are order independent, but precede the ‘@’ flags.

Additional, more specific rules are also noted in the table below.

Flag Valid For Types Description

‘-‘ c, s

d, i, o, u, x, X

e, E, f, g, G

Left align the formatted string within the given field width. Note that

‘-‘ is only valid if the width is specified. If the ‘-’ flag is not

included, the formatted string is right aligned within the given field

width.

‘ ‘

(space)

d, i, o, u, x, X

e, E, f, g, G

Prefix the output value with a space if the output value is signed and

positive; if the format specifier includes both a space flag and a ‘+’

flag, the space is ignored. The space flag is ignored if the specifier

also includes one of the IEEE ‘@H’, ‘@Q’, or ‘@B’ flags.

‘0’ d, i, o, u, x, X

e, E, f, g, G

Pad the output value with the ‘0’ character. Note that ‘0’is ignored if

the width is not specified, or the specifier also includes the ‘-‘ flag or

one of the IEEE ‘@H’, ‘@Q’, or ‘@B’ flags.

‘+‘ d, i, o, u, x, X

e, E, f, g, G

Prefix the output value(s) with a sign (+ or –). If the ‘+’ flag is not

included, the sign is only printed if the integer is negative. The ‘+’

flag is ignored if the specifier also includes one of the ‘@H’, ‘@Q’,

or ‘@B’ flags.

‘Q’, ‘q’ s Enclose strings in double (‘Q’) or single (‘q’) quotes. For string

arrays, individual elements are enclosed in double or single quotes.

‘@1‘ d, i, u

e, E, f, g, G

The output value(s) are formatted in IEEE_488.2 NR1 format. This

is the default format for format types d, i, and u. For real types, the

real is truncated before formatting.

‘@2‘ d, i, u

e, E, f, g, G

The output value(s) are formatted in IEEE_488.2 NR2 format. This

is the default format for format type f.

‘@3‘ d, i, u

e, E, f, g, G

The output value(s) are formatted in IEEE_488.2 NR3 format. This

is the default format for format type E.

Section 9: Message Based Session Interfaces Page 9-47

‘@H‘ d, i, u, x, X

e, E, f, g, G

The output value(s) are formatted in IEEE_488.2

<HEXADECIMAL_NUMERIC_RESPONSE_DATA> format. For

real types, the real is truncated before formatting.

‘@Q‘ d, i, o, u

e, E, f, g, G

The output value(s) are formatted in IEEE_488.2

<OCTAL_NUMERIC_RESPONSE_DATA> format. For real types,

the real is truncated before formatting.

‘@B‘ d, i, o, u, x, X

e, E, f, g, G

The output value(s) are formatted in IEEE_488.2

<BINARY_NUMERIC_RESPONSE_DATA> format. For real

types, the real is truncated before formatting.

The VISA “#” flag is not currently recognized in VISA.NET, but will be added at a future date.

Page 9-48 Section 9: Message Based Session Interfaces

WIDTH, PRECISION, AND ARRAY SIZE MODIFIERS

The width, precision, and array size modifiers are all integers that describe either the size of the space in

which a value is to be formatted, or the number of array elements to be formatted. The values may be

explicitly given as part of the format specifier, or they may be implicitly indicated by a ‘*’ character, and

filled in from the Printf argument list. These modifiers follow the format specifier flags.

Modifier Valid For Types Description

width c, s

d, i, o, u, x, X

e, E, f, g, G

Optional. The minimum width of the formatted value. The string

is padded with spaces on the left if ‘-‘ is not specified, and on the

right if ‘-‘ is specified.

If an array is specified, width applies to each element

individually.

If width is ‘*’, then the value of width is read from an input

argument. The argument preceeds the precision and array_size

input arguments, if they are specified, and the value input

argument. The width input argument may be a signed or

unsigned positive integer. For other values (zero, fractions,

negative), the results are undefined, may throw an exception, and

should not be used.

.precision c, s

d, i, o, u, x, X

e, E, f, g, G

Optional.

For integer types (d, i, o, u, x, X): The maximum width of the

printed value. If the full formatted value is longer than

<precision> characters, the first precision characters are printed

and the rest are discarded.

For the real types e and f: The actual number of digits after the

decimal point

For real type g: The actual number of significant digits.For type s:

The maximum number of characters printed.

For type c: The precision is ignored.

If an array is specified, precision applies to each element

individually.

If precision is ‘*’, then the value of precision is read from an

input argument. The argument preceeds the array_size input

argument, if there is one, and the value input argument. The

precision input argument may be a signed or unsigned positive

integer. For other values (zero, fractions, negative), the results

are undefined, may throw an exception, and should not be used.

http://127.0.0.1:47873/help/2-6768/ms.help?method=page&id=8B4A1B1E-BF6E-414F-A1B6-A9B6F1B6CE92&product=VS&productVersion=100&topicVersion=100&locale=EN-US&topicLocale=EN-US&embedded=true
http://127.0.0.1:47873/help/2-6768/ms.help?method=page&id=DC59EA4E-D23A-4F1F-9881-2C919EBEFB82&product=VS&productVersion=100&topicVersion=100&locale=EN-US&topicLocale=EN-US&embedded=true

Section 9: Message Based Session Interfaces Page 9-49

,array_size d, i, o, u, x, X

e, E, f, g, G
Optional. The ‘,’ character indicates an array of numbers,

optionally followed by the number of elements to be formatted. It

is only necessary to include array_size if the number of elements

to be printed is less than the number of elements in the input array

argument.

Arrays indicated by the ‘,’ modifier are formatted as comma

separated lists, with each element formatted according to the

format specifier.

The array size is determined as follows:

• If array_size is ‘*’, then the value of array size is read from

an input argument. The argument preceeds the value input

argument. The array_size input argument may be a signed or

unsigned positive integer.

• If array_size is a positive integer, that is the array size.

• If array_size is not included in the format specifier,

array_size is derived automatically from the number of

elements in the corresponding argument if it is an array,

otherwise the behavior is undefined.

• If array_size is less than or equal to 0, greater than the size of

the associated array, or fractional, , the results are undefined,

may throw an exception, and should not be used.

Page 9-50 Section 9: Message Based Session Interfaces

SIZE MODIFIERS

Size modifiers indicate the size of the data to be formatted.

When formatting numbers as ASCII strings, VISA.NET, unlike VISA or the standard version of printf(),

does not need size modifiers to determine the size of the value argument. As a result, size modifiers are

ignored when formatting numbers as ASCII strings.

When formatting character and strings, size modifiers are invalid.

Size modifiers are required when formatting IEEE-488.2 arbitrary blocks and raw binary arrays. In these

cases, the type of the array argument to Printf that corresponds to the format specifier must match the size

modifier. For example, if the format specifier is “%ly”, the corresponding argument must be an array of

32-bit integers.

Modifier Valid For Types Description

none b, B, y 8-bit integers (the default for b and B)

h b, B, y 16-bit integers

l b, B, y 32-bit integers

ll y 64-bit integers

z b, B 32-bit reals in IEEE 754 format.

Z b, B 64-bit reals in IEEE 754 format.

For size modifiers not listed in the above table, the results are undefined, may throw an exception, and

should not be used.

Section 9: Message Based Session Interfaces Page 9-51

9.4.8.3. Printf Format Specifier Usage Summary

The printf method uses a regular expression to verify each format specifier type. The regular expression is,

@"
(?<literalChars> [^%]+|(%%)) |

(?<number> % \s*
 (?<flags> (\+ ((\-0)|(0?\-?))?) | (\- ((\+0)|(0?\+?))?) | (0 ((\+\-)|(\-?\+?))?))? \s*
 (?<IeeeType> @[123HQB])? \s*
 (?<width> \d+|*)? \s*
 (\. (?<precision> \d+|*))? \s*
 (?<sizeModifier> [hlL]|(ll))? \s*
 (?<typeCode> [dDiIoOuUxXfeEgG])) |

(?<numberList> % \s*
 (?<flags> (\+ ((\-0)|(0?\-?))?) | (\- ((\+0)|(0?\+?))?) | (0 ((\+\-)|(\-?\+?))?))? \s*
 (?<IeeeType> @[123HQB])? \s*
 (?<width> \d+|*)? \s*
 (\. (?<precision> \d+|*))? \s*
 (?<delimiter> ,) \s*
 (?<length> \d+|*)? \s*
 (?<sizeModifier> [hlL]|(ll))? \s*
 (?<typeCode> [dDiIoOuUxXfeEgG])) |

(?<binaryBlock> % \s*
 (?<length> \d+|*)? \s*
 (?<sizeModifier> [hlLzZ])? \s*
 (?<typeCode> [bB])) |

(?<rawBinary> % \s*
 (?<length> \d+|*)? \s*
 (?<byteOrder> (!ol) | (!ob))? \s*
 (?<sizeModifier> [hl]|(ll))? \s*
 (?<typeCode> y)) |

(?<char> % \s*
 (?<flags> (\+\-)|(\-\+?))? \s*
 (?<width> \d+|*)? \s*
 (\. (?<precision> \d+|*))? \s*
 (?<typeCode> c)) |

(?<string> % \s*
 (?<flags> (\+\-)|(\-\+?))? \s*
 (?<width> \d+|*)? \s*
 (\. (?<precision> \d+|*))? \s*
 (?<quotes>q|Q)? \s*
 (?<typeCode> s)) |

(?<stringList> % \s*
 (?<flags> (\+\-)|(\-\+?))? \s*
 (?<width> \d+|*)? \s*
 (\. (?<precision> \d+|*))? \s*
 (?<delimiter> ,) \s*
 (?<length> \d+|*)? \s*
 (?<quotes>q|Q)? \s*
 (?<typeCode> s))”

Page 9-52 Section 9: Message Based Session Interfaces

9.4.9. Printf

DESCRIPTION

Writes formatted data to the formatted write buffer. The data is created by replacing each format specifier

in the format parameter with the corresponding parameter argument formatted according the format

specifier. The data is formatted as ASCII strings, IEEE-488.2 arbitrary blocks, and raw binary blocks.

DEFINITION

void Printf(String data);

void Printf(String format, params object[] args);

ARGUMENTS

Name Description Type

format The format string, including all format specifiers. String

data The string literal to be printed. String

args[] A variable number of arguments, each of which is either

• data to be formatted into the format string using the

corresponding format specifiers in the format string,

or

• width, precision, or array size values to be substituted

for occurrences of ‘*’ in format specifiers

object

IMPLEMENTATION

RULE 9.4.5

Printf SHALL throw appropriate exceptions for the following conditions:

• The format argument is null or an empty string.

• One or more of the format specifiers in format is not supported.

• One or more of the format specifiers is not valid.

• One or more of the format specifiers does not match the data type of the corresponding input argument.

• The number of format specifiers exceeds the number of input arguments

RULE 9.4.6

All characters placed in the formatted I/O write buffer SHALL be formatted as ASCII strings, IEEE-488.2

blocks, or raw binary blocks. All characters copied directly from the format parameter SHALL be

formatted as ASCII strings.

RULE 9.4.7

IF Printf fails to write a character to the write buffer because it cannot convert the character to an ASCII

character, it SHALL throw an exception that describes the problem and identifies the character.

RULE 9.4.8

For IEEE-488.2 block format specifier types ‘b’, ‘B’, and ‘y’, IF the type of the input argument array does

not match the size modifier of the block format specifier, the method SHALL throw an

ArgumentException exception.

Section 9: Message Based Session Interfaces Page 9-53

9.4.10. PrintfAndFlush

DESCRIPTION

The behavior for PrintfAndFlush is the same as Printf followed by a FlushWrite with sendEnd

equal to true.

If an exception occurs during this method, the buffer will be cleared. The calling program does not need to

explicitly call FlushWrite or DiscardBuffers before attempting another Write or Printf operation.

DEFINITION

void PrintfAndFlush(String data);

void PrintfAndFlush(String format, params object[] args);

ARGUMENTS

Name Description Type

format The format string, including all format specifiers. String

data The string literal to be printed. String

args[] A variable number of arguments, each of which is either

• data to be formatted into the format string using the

corresponding format specifiers in the format string,

or

• width, precision, or array size values to be substituted

for occurrences of ‘*’ in format specifiers.

object

Page 9-54 Section 9: Message Based Session Interfaces

9.4.11. PrintfArray

DESCRIPTION

Writes formatted numeric array data to the formatted write buffer without requiring the calling program to

make a copy of the data. The behavior for PrintfArray is the same as Printf for a single array.

DEFINITION

unsafe void PrintfArray(String format, Byte* pArray, params Int64[] inputs);

unsafe void PrintfArray(String format, SByte* pArray, params Int64[] inputs);

unsafe void PrintfArray(String format, Int16* pArray, params Int64[] inputs);

unsafe void PrintfArray(String format, UInt16* pArray, params Int64[] inputs);

unsafe void PrintfArray(String format, Int32* pArray, params Int64[] inputs);

unsafe void PrintfArray(String format, UInt32* pArray, params Int64[] inputs);

unsafe void PrintfArray(String format, Int64* pArray, params Int64[] inputs);

unsafe void PrintfArray(String format, UInt64* pArray, params Int64[] inputs);

unsafe void PrintfArray(String format, Single* pArray, params Int64[] inputs);

unsafe void PrintfArray(String format, Double* pArray, params Int64[] inputs);

ARGUMENTS

Name Description Type

format The format string, including all format specifiers. String

pArray A pointer to an array of numbers. Byte, SByte,

Int16, UInt16,

Int32, UInt32,

Int64, UInt64,

Single, Double

inputs A variable number of integer arguments consisting of

width, precision, or array size values to be substituted for

occurrences of ‘*’ in format specifiers

Int64[]

Section 9: Message Based Session Interfaces Page 9-55

9.4.12. PrintfArrayAndFlush

DESCRIPTION

The behavior for PrintfArrayAndFlush is the same as PrintfArray followed by a WriteFlush with

sendEnd equal to true.

If an exception occurs during this method, the buffer will be cleared. The calling program does not need to

explicitly call FlushWrite or DiscardBuffers before attempting another Write or Printf operation.

DEFINITION

unsafe void PrintfArrayAndFlush(String format, Byte* pArray,

 params Int64[] inputs);

unsafe void PrintfArrayAndFlush(String format, SByte* pArray,

 params Int64[] inputs);

unsafe void PrintfArrayAndFlush(String format, Int16* pArray,

 params Int64[] inputs);

unsafe void PrintfArrayAndFlush(String format, UInt16* pArray,

 params Int64[] inputs);

unsafe void PrintfArrayAndFlush(String format, Int32* pArray,

 params Int64[] inputs);

unsafe void PrintfArrayAndFlush(String format, UInt32* pArray,

 params Int64[] inputs);

unsafe void PrintfArrayAndFlush(String format, Int64* pArray,

 params Int64[] inputs);

unsafe void PrintfArrayAndFlush(String format, UInt64* pArray,

 params Int64[] inputs);

unsafe void PrintfArrayAndFlush(String format, Single* pArray,

 params Int64[] inputs);

unsafe void PrintfArrayAndFlush(String format, Double* pArray,

 params Int64[] inputs

ARGUMENTS

Name Description Type

format The format string, including all format specifiers. String

pArray A pointer to an array of numbers. Byte, SByte,

Int16, UInt16,

Int32, UInt32,

Int64, UInt64,

Single, Double

inputs A variable number of integer arguments consisting of

width, precision, or array size values to be substituted for

occurrences of ‘*’ in format specifiers

Int64[]

Page 9-56 Section 9: Message Based Session Interfaces

9.4.13. Scanf Format Strings

The Scanf method reads and parses data into input arguments. The parsing is done by examining the input

data for element(s) that correspond to each format specifier in the format parameter, and then storing the

results in the corresponding output parameter arguments. The input data is formatted as ASCII strings,

IEEE-488.2 arbitrary blocks, and raw binary blocks.

9.4.13.1. Scanf Format Argument

The format argument consists of ordinary characters and format specifiers. Format specifiers describe the

format from which associated input arguments are to be parsed. When the string is read from the device,

the format specifier is used to parse the data that corresponds to the format specifier. Any UNICODE

character that has an ASCII equivalent may be used in a format argument.

When a newline (0x000A) is encountered in the format string, either the newline is considered to be a

whitespace character or there must be a corresponding newline in the read buffer, depending on the context.

OBSERVATION 9.4.3

The mechanism used to represent a newline in a format string is language dependent.

9.4.13.2. Scanf Format Specifiers
Scanf format strings may include one or more format specifiers, each of which provides information about

how to parse the input and extract a value for one of the variable arguments to Scanf. Format specifiers

for Scanf are very similar to those for the VISA viScanf function, though there are some differences.

For example, ‘a’, ‘A’, ‘C’, ‘n’, ‘p’, and ‘S’ are not supported in .NET. Refer to VPP-4.3: The VISA

Library, Section 6.2.8, viScanf(vi, readFmt, arg1, arg2,...), for a description of format specifiers in VISA.

A basic format specifier always starts with a ‘%’ (percent character) and ends with a format type, which

indicates the data type of the value to be parseed. For example, “%d” is a format specifier that will read a

signed integer as a sequence of decimal digits. If the integer is negative, it will be preceeded by a minus

sign.

A variety of optional modifiers may be added to the basic format specifier to provide a rich set of parsing

options. The general syntax of a VISA.NET format specifier is,

“%[flags] [width] [,array_size] [size_modifier] type”

For example, “%+@3d” is a format specifier that will read a signed integer in scientific notation, with a

plus sign if the integer is non-negative and a minus sign if it is negative. Note that some modifiers are not

valid with some format types, and some modifiers have different meanings, depending on the type.

For each format specifier, there is one value argument that corresponds to the format specifier type, and

there may be additional modifier arguments (indicated by a ‘#’ in the specifier) that provide information

about the format specifier’s modifiers. In the argument list, the modifier arguments for a format specifier

are elements in the inputs argument. Scanf parses a value (from a value argument) using a format

specifier that may need additional information from modifier arguments to be complete. For example,

Scanf(“[%-#s]”, {10}, “John”);

will read the string “John”. The first valiable argument, 10, is the width – the maximum number of

characters to be read for this format specifier. If the input string in the formatted read buffer were longer

than 10 characters, only ten would be read.

The following sections describe the format specifier types and modifiers in more detail:

• Format types

• Flags

• Width and Array Size Modifiers

• Size Modifiers

http://127.0.0.1:47873/help/2-6768/ms.help?method=page&id=B00CBDC9-1E5C-4B30-9F56-C1EF8D383767&product=VS&productVersion=100&topicVersion=100&locale=EN-US&topicLocale=EN-US&embedded=true
http://127.0.0.1:47873/help/2-6768/ms.help?method=page&id=8B4A1B1E-BF6E-414F-A1B6-A9B6F1B6CE92&product=VS&productVersion=100&topicVersion=100&locale=EN-US&topicLocale=EN-US&embedded=true
http://127.0.0.1:47873/help/2-6768/ms.help?method=page&id=699CB438-CD14-402E-9F81-C7A32ACC3317&product=VS&productVersion=100&topicVersion=100&locale=EN-US&topicLocale=EN-US&embedded=true

Section 9: Message Based Session Interfaces Page 9-57

Page 9-58 Section 9: Message Based Session Interfaces

FORMAT TYPES

Every format specifier has a format type that indicates the data type of the corresponding output argument,

and by extension determines that the format of the input data that is appropriate to the corresponding value

argument. In VISA.NET, format types may correspond to several .NET data types. In general, if the

corresponding value argument can be correctly determined using a format specifier, it will be.

Note that since the VISA.NET version of Scanf can determine the data types of all of the input

arguments, format types are not needed for that purpose, as they are in VISA. Format types are only

needed to help describe the desired format. However, if the type of a corresponding value argument is not

compatible with the format type, Scanf will throw an exception.

The following table lists the format types recognized by Scanf, along with a basic description of the type

and the valid .NET data types for the corresponding value argument.

Scanf Format Specifier Types

Types Parse Corresponding Input As Valid Value Argument Types

Characters and Strings

c An ASCII character. Char, String

s An ASCII string. String

[<m>]
An ASCII string consisting of characters

that match characters in the string <m>.
String

[^<m>]
An ASCII string consisting of characters

that match characters not in the string <m>.
String

t/T An ASCII string. String

Integer Numbers (formatted as strings)

d

A signed integer formatted as a decimal

ASCII string. When used to scan a floating

point number, the number is rounded to the

nearest integer according to IEEE 488.2

rules.

SByte, SByte[], Int16,

Int16[], Int32, Int32[],

Int64, Int64[],Byte, Byte[],

UInt16, UInt16[], UInt32,

UInt32[], UInt64,

UInt64[],Object

i

An integer formatted as an ASCII string. It

may be formatted as a decimal, octal, or

hexadecimal string. When used to scan a

floating point number, the number is

rounded to the nearest integer according to

IEEE 488.2 rules.

SByte, SByte[], Int16,

Int16[], Int32, Int32[],

Int64, Int64[],Byte, Byte[],

UInt16, UInt16[], UInt32,

UInt32[], UInt64,

UInt64[],Object

o

An unsigned integer formatted as an octal

ASCII string. When used to scan a floating

point number, the number is rounded to the

nearest integer according to IEEE 488.2

rules.

SByte, SByte[], Int16,

Int16[], Int32, Int32[],

Int64, Int64[],Byte, Byte[],

UInt16, UInt16[], UInt32,

UInt32[], UInt64, UInt64[],

Object

u

An unsigned integer formatted as an ASCII

string. When used to scan a floating point

number, the number is rounded to the

nearest integer according to IEEE 488.2

rules.

SByte, SByte[], Int16,

Int16[], Int32, Int32[],

Int64, Int64[],Byte, Byte[],

UInt16, UInt16[], UInt32,

UInt32[], UInt64, UInt64[],

Object

Section 9: Message Based Session Interfaces Page 9-59

x/X

An unsigned integer formatted as a

hexadecimal ASCII string. When used to

scan a floating point number, the number is

rounded to the nearest integer according to

IEEE 488.2 rules.

SByte, SByte[], Int16,

Int16[], Int32, Int32[],

Int64, Int64[],Byte, Byte[],

UInt16, UInt16[], UInt32,

UInt32[], UInt64, UInt64[],

Object

Real Numbers (formatted as strings)

e/E
A real number formatted as an ASCII string

using scientific notation.

Single, Single[], Double,

Double[]

f
A real number formatted as an ASCII string

using arithmetic notation.

Single, Single[], Double,

Double[]

g/G
A real number formatted as an ASCII string

using arithmetic or scientific notation.

Single, Single[], Double,

Double[]

IEEE 488.2 Blocks

b

An array of integers formatted as an IEEE-

488.2 block. The sign is not specified. A

size modifier must be specified to properly

format the block. The size modifier must

match the type of the corresponding array

argument.

Byte[], SByte[], Int16[],

UInt16[], Int32[],

UInt32[],Single[], Double[]

(Int64[] and UInt64[] are not

supported at this time.)

Raw Binary

y

An array of signed or unsigned integers

formatted as a binary array. The array may

be specified as big endian or little endian. A

size modifier must be specified to properly

format the array. The size modifier must

match the type of the corresponding array

argument.

Byte order may be specified for raw binary

arrays by using “!ol” (little Endian) or “!ob”

(big Endian) immediately after the ‘%’

character that introduces the specifier. The

default is big Endian.

Byte[], SByte[],

Int16[],UInt16[], Int32[],

UInt32[], Int64[], UInt64[]

Not Valid for Scanf: ‘a’, ‘A’, ‘B’

Not Valid in VISA.NET: ‘C’, ‘n’, ‘p’, ‘S’

For type ’s’, initial whitespace characters (including newline) are discarded. Characters starting with the

first non-whitespace character are read into the output argument until the first whitespace character or an

END indicator is found. The whitespace character is not included in the output argument, and does not

remain in the buffer. If an END indicator is found on a non-whitespace character, that character is removed

from the buffer and returned.

For type ’[<m>]’, characters are read into the output argument until the first character not included in <m>

or an END indicator is found. The character not included in <m> is not included in the output argument,

and is not removed from the buffer. If an END indicator is found on a matching character, that character is

removed from the buffer and returned. The <m> token may include character ranges such as “0-9”.

For type ’[^<m>]’, characters are read into the output argument until the first character included in <m> or

an END indicator is found. The character included in <m> is not included in the output argument, and is

not removed from the buffer. If an END indicator is found on a non-matching character, that character is

removed from the buffer and returned.

Page 9-60 Section 9: Message Based Session Interfaces

For type ’t’, characters are read into the output argument until the END indicator is found. The character

on which the END indicator was received is included in the output argument, and is removed from the

buffer.

For type ‘T’, characters are read into the output argument until the first newline character or an END

indicator is found. The newline character is included in the output argument, and is removed from the

buffer. If an END indicator is found on a non-newline character, that character is removed from the buffer

and returned.

For integer format specifier types, if the corresponding argument is typed as an unsigned integer and the

number being scanned is negative, an exception is thrown.

For numeric types, initial whitespace characters (including newlines) are read and discarded. Then

characters are read until a character that cannot be interpreted as part of the number is encountered. That

character remains in the buffer.

OBSERVATION 9.4.4

The implementation uses RegEx.IsMatch() when using ‘[<m>]’, which does recognize ranges. Other

RegEx matching characters are also recognized by Scanf.

Section 9: Message Based Session Interfaces Page 9-61

FLAGS

Flags are optional characters or strings that control justification of output and printing of signs, blanks,

decimal points, and octal and hexadecimal prefixes. Flags immediately follow the ‘%’ character that

begins the format specifier. More than one flag can appear in a format specification. Format specifiers that

include an invalid flag, an invalid combination of flags, or flags that are out of order should not be used.

The results are undefined and Scanf may throw an exception or return arbitrary results.

VISA.NET recognizes one ANSI defined flag (‘*’) and several VISA specific flags that support parsing

IEEE 488.2 formats (‘@1’, ‘@2’, ‘@3’, ‘@H’, ‘@Q’, and ‘@B’). The following general rules are

observed when determining what combinations of flags are valid in a format specifier.

1. The formatting specified by an IEEE ‘@’ flag overrides the default formatting of the format

specifier type.

2. If a format specifier is not listed next to an “@” flag in the table below, the results are undefined,

may throw an exception, and should not be used.

3. Only one ‘@’ flag may be included in a format specifier.

Flag Valid For Types Description

‘*’ c, s, t, T

[<m>], [^<m>]

d, i, o, u, x, X

e, E, f, g, G

b, y

The field in the input that corresponds to this format specifier is read

but not stored in an output argument.

‘Q’, ‘q’ s Strings are enclosed in quotes. For string arrays, individual elements

are enclosed in quotes. The quotes are stripped when returning the

scanned value.

‘@1‘ d, i, u

The input value(s) are formatted as a number. There is not

necessarily an expectation that the number is formatted in

IEEE_488.2 NR1 format.

‘@2‘ d, i, u

e, E, f, g, G

The input value(s) are formatted as a number. There is not

necessarily an expectation that the number is formatted in

IEEE_488.2 NR2 format.

‘@3‘ d, i, u

e, E, f, g, G

The input value(s) are formatted as a number. There is not

necessarily an expectation that the number is formatted in

IEEE_488.2 NR3 format.

‘@H‘ d, i, u, x, X Optional. The input value(s) are formatted in IEEE_488.2

<HEXADECIMAL_NUMERIC_RESPONSE_DATA> format.

‘@Q‘ d, i, o, u Optional. The input value(s) are formatted in IEEE_488.2

<OCTAL_NUMERIC_RESPONSE_DATA> format.

‘@B‘ d, i, o, u, x, X Optional. The input value(s) are formatted in IEEE_488.2

<BINARY_NUMERIC_RESPONSE_DATA> format.

Page 9-62 Section 9: Message Based Session Interfaces

WIDTH AND ARRAY SIZE MODIFIERS

The width and array size modifiers are all integers that describe either the size of the space in which a value

is to be formatted, or the number of array elements to be formatted. The values may be explicitly given as

part of the format specifier, or they may be implicitly indicated by a ‘#’ character, and filled in from a value

in the Scanf inputs parameter. These modifiers follow the format specifier flags.

Modifier Valid For Types Description

width c, s, t, T

[<m>], [^<m>]

d, i, o, u, x, X

e, E, f, g, G

Optional. The maximum number of characters to be parsed for

this specifier. Fewer than width characters may be read if a

whitespace character (space, tab, or newline) or a character that

cannot be converted according to the given format occurs before

width is reached.

If width is ‘#’, then the value of width is read from a value in the

Scanf inputs parameter. The width input argument may be a

signed or unsigned positive integer. For other values (zero,

fractions, negative), the results are undefined, may throw an

exception, and should not be used.

,array_size d, i, o, u, x, X

e, E, f, g, G

b, y

Optional. The ‘,’ character indicates an array of numbers,

optionally followed by the number of elements to be read. It is

only necessary to include array_size if the number of elements to

be read is less than the number of elements in the corresponding

output array argument.

Arrays indicated by the ‘,’ modifier are formatted as comma

separated lists.

The array size is determined as follows:

• If array_size is ‘#’, then the value of array_size is read from

a value in the Scanf inputs parameter.

• If array_size is a positive integer, that is the array size.

• If array_size is less than or equal to 0, or fractional , the

results are undefined, may throw an exception, and should

not be used.

http://127.0.0.1:47873/help/2-6768/ms.help?method=page&id=8B4A1B1E-BF6E-414F-A1B6-A9B6F1B6CE92&product=VS&productVersion=100&topicVersion=100&locale=EN-US&topicLocale=EN-US&embedded=true

Section 9: Message Based Session Interfaces Page 9-63

SIZE MODIFIERS

Size modifiers indicate the size of the data to be read.

When reading numbers as ASCII strings, VISA.NET, unlike VISA or the standard version of scanf(), does

not need size modifiers to determine the size of the value argument. As a result, size modifiers are ignored

when parsing numbers as ASCII strings.

When reading character and strings, size modifiers are invalid.

Size modifiers are required when formatting IEEE-488.2 arbitrary blocks and raw binary arrays. In these

cases, the type of the array argument to Scanf that corresponds to the format specifier must match the size

modifier. For example, if the format specifier is “%ly”, the corresponding argument must be an array of

32-bit integers.

Modifier Valid For Types Description

none b, y 8-bit integers

h b, y 16-bit integers

l b, y 32-bit integers

ll y 64-bit integers

z b 32-bit reals

Z b 64-bit reals

Size modifiers not listed in the above table are invalid if they are inherently inconsistent with the format

type, and otherwise they are ignored.

Page 9-64 Section 9: Message Based Session Interfaces

9.4.13.3. Scanf Format Specifier Usage Summary

Regular expressions are used to parse each format specifier type. The regular expression is:

@"
(?<literalChars> [^%]+|(%%)) |

(?<number> % \s*
 (?<suppress> *)? \s*
 (?<IeeeType> @[123HQB])? \s*
 (?<width> \d+|\#)? \s*
 (?<sizeModifier> [hlL]|(ll))? \s*
 (?<typeCode> [dDiIoOuUxXfeEgG])) |

(?<numberList> % \s*
 (?<suppress> *)? \s*
 (?<IeeeType> @[123HQB])? \s*
 (?<width> \d+|\#)? \s*
 (?<delimiter> ,) \s*
 (?<length> \d+|\#)? \s*
 (?<sizeModifier> [hlL]|(ll))? \s*
 (?<typeCode> [dDiIoOuUxXfeEgG])) |

(?<binaryBlock> % \s*
 (?<suppress> *)? \s*
 (?<length> \d+|\#)? \s*
 (?<sizeModifier> [hlLzZ])? \s*
 (?<typeCode> b)) |

(?<rawBinary> % \s*
 (?<suppress> *)? \s*
 (?<length> \d+|\#)? \s*
 (?<byteOrder> (!ol) | (!ob))? \s*
 (?<sizeModifier> [hl]|(ll))? \s*
 (?<typeCode> y)) |

(?<char> % \s*
 (?<suppress> *)? \s*
 (?<width> \d+|\#)? \s*
 (?<typeCode> [cTt])) |

(?<stringNoWhitespace> % \s*
 (?<suppress> *)? \s*
 (?<width> \d+|\#)? \s*
 (?<quotes>q|Q)? \s*
 (?<typeCode> s)) |

(?<stringWithWhitespace> % \s*
 (?<suppress> *)? \s*
 (?<width> \d+|\#)? \s*
 (?<charSet> \[\^? [^\]]* \])) |

(?<stringList> % \s*
 (?<suppress> *)? \s*
 (?<width> \d+|\#)? \s*
 (?<delimiter> ,) \s*
 (?<length> \d+|\#)? \s*
 (?<quotes>q|Q)? \s*
 (?<typeCode> s))”

Section 9: Message Based Session Interfaces Page 9-65

9.4.14. Scanf

DESCRIPTION

Reads a formatted string from the formatted read buffer, and parses the string according to the specified

format. The parsing process extracts typed values from the formatted string into out arguments, based on

corresponding format specifiers in the format string.

DEFINITION

void Scanf<T>(String format,

 out T output);

void Scanf<T1, T2>(String format,

 out T1 output1, out T2 output2);

void Scanf<T1, T2, T3>(String format,

 out T1 output1, out T2 output2, out T3 output3);

void Scanf<T1, T2, T3, T4>(String format,

 out T1 output1, out T2 output2, out T3 output3, out T4 output4);

void Scanf<T1, T2, T3, T4, T5>(String format,

 out T1 output1, out T2 output2, out T3 output3, out T4 output4,

 out T5 output5);

void Scanf<T1, T2, T3, T4, T5, T6>(String format,

 out T1 output1, out T2 output2, out T3 output3, out T4 output4,

 out T5 output5, out T6 output6);

void Scanf<T1, T2, T3, T4, T5, T6, T7>(String format,

 out T1 output1, out T2 output2, out T3 output3, out T4 output4,

 out T5 output5, out T6 output6, out T7 output7);

void Scanf<T>(String format, Int32[] inputs,

 out T output);

void Scanf<T1, T2>(String format, Int32[] inputs,

 out T1 output1, out T2 output2);

void Scanf<T1, T2, T3>(String format, Int32[] inputs,

 out T1 output1, out T2 output2, out T3 output3);

void Scanf<T1, T2, T3, T4>(String format, Int32[] inputs,

 out T1 output1, out T2 output2, out T3 output3, out T4 output4);

void Scanf<T1, T2, T3, T4, T5>(String format, Int32[] inputs,

 out T1 output1, out T2 output2, out T3 output3, out T4 output4,

 out T5 output5);

void Scanf<T1, T2, T3, T4, T5, T6>(String format, Int32[] inputs,

 out T1 output1, out T2 output2, out T3 output3, out T4 output4,

 out T5 output5, out T6 output6);

void Scanf<T1, T2, T3, T4, T5, T6, T7>(String format, Int32[] inputs,

 out T1 output1, out T2 output2, out T3 output3, out T4 output4,

 out T5 output5, out T6 output6, out T7 output7);

ARGUMENTS

Name Description Type

format The format string, including all format specifiers. String

inputs The values that are substituted for the ‘#’ characters in

format specifiers. Values are substituted in the order in

which the ‘#’ characters appear in the specifiers.

Int32[]

Page 9-66 Section 9: Message Based Session Interfaces

output,

output1,

output2,

output3,

output4,

output5,

output6,

output7

A variable number of argumentsthat all represent values to

be parsed from the format string using the corresponding

format specifiers in the format string.

Types listed in

the format type

table in Section

9.4.13.2, or

supported by the

registered type

converter.

IMPLEMENTATION

RULE 9.4.9

Scanf SHALL throw appropriate exceptions for the following format specifier errors:

• The format argument is null or an empty string.

• One or more of the format specifiers in format is not supported.

• One or more of the format specifiers in format is not valid.

• One or more of the format specifiers does not match the data type of the corresponding output

argument.

• The number of format specifiers exceeds the number of output arguments

RULE 9.4.10

The Scanf operation accepts input until an END indicator is read or characters corresponding to the

format argument (including all format specifiers) are read. Thus, detecting an END indicator before the

format argument is fully consumed will result in ignoring the rest of the format string. Also, if some data

remains in the buffer after all format specifiers in the format argument are satisfied, the data will be kept

in the buffer and will be used by the next Scanf operation.

OBSERVATION 9.4.5

The raw I/O Read method is used for the actual low-level read from the device. Therefore, Read should

not be used in the same session with formatted I/O operations, including Scanf. Also, if multiple sessions

using formatted I/O resources are connected to the same device, the client is responsible for synchronizing

the actual low-level reads.

OBSERVATION 9.4.6

Notice that when an END indicator is received, not all arguments in the format argument may be

consumed. However, the operation still returns successfully, and the remaining unscanned output

arguments are assigned the value default(T).

RULE 9.4.11 (VISA - 6.2.11)

The formatted I/O read operations SHALL honor the state of the TerminationCharacterEnabled

property.

OBSERVATION 9.4.7 (VISA - 6.2.9)

Although formatted I/O operations generally read until an END indicator is received, RULE 9.4.11RULE

9.4.11 allows the user to also specify a termination character that, if read as part of string data, will cause

the formatted I/O operations to stop reading from the device.

RULE 9.4.12

Scanf SHALL disable the termination character (if it is enabled) while reading data from a definate binary

block, but must turn it back on before reading data lying outside the block.

RULE 9.4.13 (VISA-COM 7.1.21)

If a timeout occurs during a formatted read method, but enough data was retrieved to complete the request,

the method SHALL NOT throw an exception.

Section 9: Message Based Session Interfaces Page 9-67

OBSERVATION 9.4.8 (VISA-COM OBS 7.1.1)

A timeout can occur but the operation can still be successful if the END signal is suppressed and the

termination character is disabled, in which case the only way to complete reading data of indefinite size is

to encounter a timeout.

RULE 9.4.14 (VISA - 6.2.15)

IF the low level read operation used by Scanf times out,, but enough data was not retrieved to complete

the request, THEN the formatted I/O read buffer SHALL be cleared before Scanf throws an exception.

OBSERVATION 9.4.9 (VISA - 6.2.11)

When the low level read operation used by Scanf times out, the next call to Scanf will read from an

empty buffer and force a read from the device.

RULE 9.4.15 (VISA - 6.2.16)

IF there is no remaining data to be parsed in the internal buffer, AND a new call to Scanf is made, THEN

Scanf SHALL attempt to read more data from the instrument.

OBSERVATION 9.4.10 (VISA - 6.2.11)

Note that if an instrument returns a single piece of data such as “123\n” with an END indicator, the

behavior is different if a user makes one call to Scanf with two numeric arguments versus two calls to

Scanf each with one numeric argument. In the first case, OBSERVATION 9.4.6 points out that the single

call will return VI_SUCCESS even though argument #2 is ignored. In the second case, RULE 9.4.15 points

out that call #2 will not be ignored but will in fact read more data (or time out trying to do so).

OBSERVATION 9.4.11

When there is data in the internal buffer, whether that data can be parsed depends on the format modifier.

For example, assume that only a newline remains in the internal buffer. If a user calls Scanf with a

numeric argument such as %d, then the newline is treated as whitespace and is ignored. Thus, VISA will

read more data. The format types to which Rule 9.4.8 applies are the string (s) and numeric (d, i, u, o, x, X,

e, E, f, g, G) types (including lists). However, if a user calls Scanf with %c, then the newline is character

data that can be parsed that will satisfy the argument. Thus, VISA will not read more data at that time. The

rule 9.4.8 does not apply to the remaining format types (c, t, T, [], b, y).

Page 9-68 Section 9: Message Based Session Interfaces

9.4.15. ScanfArray

DESCRIPTION

Reads a formatted numeric array data from the formatted read buffer without requiring the calling program

to make a copy of the data. The behavior for ScanfArray is the same as Scanf for a single array.

DEFINITION

unsafe Int64 ScanfArray(String format, Byte* pArray, params Int64[] inputs);

unsafe Int64 ScanfArray(String format, SByte* pArray, params Int64[] inputs);

unsafe Int64 ScanfArray(String format, Int16* pArray, params Int64[] inputs);

unsafe Int64 ScanfArray(String format, UInt16* pArray, params Int64[] inputs);

unsafe Int64 ScanfArray(String format, Int32* pArray, params Int64[] inputs);

unsafe Int64 ScanfArray(String format, UInt32* pArray, params Int64[] inputs);

unsafe Int64 ScanfArray(String format, Int64* pArray, params Int64[] inputs);

unsafe Int64 ScanfArray(String format, UInt64* pArray, params Int64[] inputs);

unsafe Int64 ScanfArray(String format, Single* pArray, params Int64[] inputs);

unsafe Int64 ScanfArray(String format, Double* pArray, params Int64[] inputs);

ARGUMENTS

Name Description Type

format The format string, including all format specifiers. String

pArray A pointer to an array of numbers. Byte, SByte,

Int16, UInt16,

Int32, UInt32,

Int64, UInt64,

Single, Double

inputs A variable number of arguments consisting of width,

precision, or array size values to be substituted for

occurrences of ‘*’ in format specifiers

Int64[]

Section 9: Message Based Session Interfaces Page 9-69

9.4.16. Introduction to Formatted Write Methods

Formatted write methods include Write, WriteList, WriteLine, WriteLineList, WriteBinary, and

WriteBinaryAndFlush in the IMessageBasedFormattedIO interface. The section that describes each

method also includes the equivalent Printf format specifier. To determine the equivalent behavior, refer

to sections 9.4.8.3, Printf Format Specifier Usage Summary and 9.4.9, Printf for details.

Page 9-70 Section 9: Message Based Session Interfaces

9.4.17. Write

DESCRIPTION

Converts the specified data to an ASCII string and appends the resulting string to the write buffer.

DEFINITION

void Write(Char data);

void Write(String data);

void Write(Int64 data);

void Write(UInt64 data);

void Write(Double data);

ARGUMENTS

Name Description Type

data A single character, string, integer, or real number to be

converted to an ASCII string and sent to the instrument.

Char, String,

Int64, UInt64,

Double

PRINTF EQUIVALENTS

The Write method implementations exhibit exactly the same behavior (but not necessarily implemented

exactly as shown) as a corresponding call to Printf, as shown in the following table.

Write Method Equivalent Printf Call

void Write(Char data); Printf(“%c”), data)

void Write(String data); Printf(“%s”), data)

void Write(Int64 data); Printf(“%@1d”), data)

void Write(UInt64 data); Printf(“%@1u”), data)

void Write(Double data); Printf(“%@2f”), data)

Section 9: Message Based Session Interfaces Page 9-71

9.4.18. WriteLine

DESCRIPTION

Performs the following operations in order:

• Converts the data specified to an ASCII string. The data is followed by a new line.

• Appends the resulting string to the write buffer.

• Writes the buffer to the instrument.

• Sends an END to the instrument if SendEndEnabled is true.

• Flushes the buffer.

DEFINITION

void WriteLine();

void WriteLine(Char data);

void WriteLine(String data);

void WriteLine(Int64 data);

void WriteLine(UInt64 data);

void WriteLine(Double data);

ARGUMENTS

Name Description Type

data A single character, string, integer, or real number to be

converted to an ASCII string and sent to the instrument.

Char, String,

Int64, UInt64,

Double

PRINTF EQUIVALENTS

The WriteLine method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Printf, as shown in the following table.

WriteLine Method Equivalent Printf Call

void WriteLine(Char data); Printf(“%c\n”), data)

void WriteLine(String data); Printf(“%s\n”), data)

void WriteLine(Int64 data); Printf(“%@1d\n”), data)

void WriteLine(UInt64 data); Printf(“%@1u\n”), data)

void WriteLine(Double data); Printf(“%@2f\n”), data)

Page 9-72 Section 9: Message Based Session Interfaces

9.4.19. WriteList

DESCRIPTION

Performs the following operations in order:

• Converts the data array specified to an ASCII string. Commas are placed between each element in

the string.

• Appends the resulting string to the write buffer.

DEFINITION

void WriteList(Byte[] data);

void WriteList(Byte[] data, Int64 index, Int64 count);

void WriteList(SByte[] data);

void WriteList(SByte[] data, Int64 index, Int64 count);

void WriteList(Int16[] data);

void WriteList(Int16[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteList(UInt16[] data);

[CLSCompliant(false)]

void WriteList(UInt16[] data, Int64 index, Int64 count);

void WriteList(Int32[] data);

void WriteList(Int32[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteList(UInt32[] data);

[CLSCompliant(false)]

void WriteList(UInt32[] data, Int64 index, Int64 count);

void WriteList(Int64[] data);

void WriteList(Int64[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteList(UInt64[] data);

[CLSCompliant(false)]

void WriteList(UInt64[] data, Int64 index, Int64 count);

void WriteList(Single[] data);

void WriteList(Single[] data, Int64 index, Int64 count);

void WriteList(Double[] data);

void WriteList(Double[] data, Int64 index, Int64 count);

ARGUMENTS

Name Description Type

Section 9: Message Based Session Interfaces Page 9-73

data An array of numbers to be converted to an ASCII

separated list sent to the instrument. The separator

character is a comma.

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], Uint64[],

Single[], Double[]

index The index of the first element from data to be sent to the

instrument.

Int64

count The number of elements from data to be sent to the

instrument, starting from index. count must be positive,

and index + count <= data.length.

Int64

PRINTF EQUIVALENTS

The WriteList method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Printf, as shown in the following table.

WriteList Method Equivalent Printf Call

void WriteList(Byte[] data);

void WriteList(UInt16[] data);

void WriteList(UInt32[] data);

void WriteList(UInt64[] data);

Printf(“%@1,u”, data)

void WriteList(SByte[] data);

void WriteList(Int16[] data);

void WriteList(Int32[] data);

void WriteList(Int64[] data);

Printf(“%@1,d”, data)

void WriteList(Single[] data);

void WriteList(Double[] data);
Printf(“%@2,f”, data)

Page 9-74 Section 9: Message Based Session Interfaces

9.4.20. WriteLineList

DESCRIPTION

Performs the following operations in order:

• Converts the data array specified to an ASCII string. Commas are placed between each element in

the string. The data is followed by a new line.

• Appends the resulting string to the write buffer.

• Writes the buffer to the instrument.

• Sends an END to the instrument.

• Flushes the buffer.

DEFINITION

void WriteLineList(Byte[] data);

void WriteLineList(Byte[] data, Int64 index, Int64 count);

void WriteLineList(SByte[] data);

void WriteLineList(SByte[] data, Int64 index, Int64 count);

void WriteLineList(Int16[] data);

void WriteLineList(Int16[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteLineList(UInt16[] data);

[CLSCompliant(false)]

void WriteLineList(UInt16[] data, Int64 index, Int64 count);

void WriteLineList(Int32[] data);

void WriteLineList(Int32[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteLineList(UInt32[] data);

[CLSCompliant(false)]

void WriteLineList(UInt32[] data, Int64 index, Int64 count);

void WriteLineList(Int64[] data);

void WriteLineList(Int64[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteLineList(UInt64[] data);

[CLSCompliant(false)]

void WriteLineList(UInt64[] data, Int64 index, Int64 count);

void WriteLineList(Single[] data);

void WriteLineList(Single[] data, Int64 index, Int64 count);

void WriteLineList(Double[] data);

void WriteLineList(Double[] data, Int64 index, Int64 count);

ARGUMENTS

Name Description Type

Section 9: Message Based Session Interfaces Page 9-75

data An array of numbers to be converted to an ASCII

separated list sent to the instrument. The separator

character is a comma.

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], Uint64[],

Single[], Double[]

index The index of the first element from data to be sent to the

instrument.

Int64

count The number of elements from data to be sent to the

instrument, starting from index. count must be positive,

and index + count <= data.length.

Int64

PRINTF EQUIVALENTS

The WriteLineList method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Printf, as shown in the following table.

WriteLineList Method Equivalent Printf Call

void WriteLineList(Byte[] data);

void WriteLineList(UInt16[] data);

void WriteLineList(UInt32[] data);

void WriteLineList(UInt64[] data);

Printf(“%@1,u\n”, data)

void WriteLineList(SByte[] data);

void WriteLineList(Int16[] data);

void WriteLineList(Int32[] data);

void WriteLineList(Int64[] data);

Printf(“%@1,d\n”, data)

void WriteLineList(Single[] data);

void WriteLineList(Double[] data);
Printf(“%@2,f\n”, data)

Page 9-76 Section 9: Message Based Session Interfaces

9.4.21. WriteBinary

DESCRIPTION

Performs the following operations in order:

• Converts the data array specified to a binary array. The BinaryEncoding property specifies

whether to write a definite length IEEE-488.2 block, an indefinite length IEEE-488.2 block, a raw

binary block in big endian format, or a raw binary block in little endian format.

• Appends the resulting data to the write buffer.

DEFINITION

void WriteBinary(Byte[] data);

void WriteBinary(Byte[] data, Int64 index, Int64 count);

void WriteBinary(SByte[] data);

void WriteBinary(SByte[] data, Int64 index, Int64 count);

void WriteBinary(Int16[] data);

void WriteBinary(Int16[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteBinary(UInt16[] data);

[CLSCompliant(false)]

void WriteBinary(UInt16[] data, Int64 index, Int64 count);

void WriteBinary(Int32[] data);

void WriteBinary(Int32[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteBinary(UInt32[] data);

[CLSCompliant(false)]

void WriteBinary(UInt32[] data, Int64 index, Int64 count);

void WriteBinary(Int64[] data);

void WriteBinary(Int64[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteBinary(UInt64[] data);

[CLSCompliant(false)]

void WriteBinary(UInt64[] data, Int64 index, Int64 count);

void WriteBinary(Single[] data);

void WriteBinary(Single[] data, Int64 index, Int64 count);

void WriteBinary(Double[] data);

void WriteBinary(Double[] data, Int64 index, Int64 count);

ARGUMENTS

Name Description Type

Section 9: Message Based Session Interfaces Page 9-77

data An array of numbers to be converted to a binary form

(determined by BinaryEncoding) and placed in the

output buffer.

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], Uint64[],

Single[], Double[]

index The index of the first element from data to be sent to the

instrument.

Int64

count The number of elements from data to be sent to the

instrument, starting from index. count must be positive,

and index + count <= data.length.

Int64

PRINTF EQUIVALENTS

The WriteBinary method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Printf, as shown in the following table.

WriteLineList Method Equivalent Printf Call

If BinaryEncoding = DefiniteLengthBlockData

void WriteBinary(Byte[] data);

void WriteBinary(SByte[] data);
Printf(“%b”, data)

void WriteBinary(UInt16[] data);

void WriteBinary(Int16[] data);
Printf(“%hb”, data)

void WriteBinary(UInt32[] data);

void WriteBinary(Int32[] data);
Printf(“%lb”, data)

void WriteBinary(UInt64[] data);

void WriteBinary(Int64[] data);

WriteBinary(UInt64[]) and

WriteBinary(Int64[]) for definite length

blocks and the corresponding Printf format

specifier (%llb) are not supported at this time.

void WriteBinary(Single[] data); Printf(“%zb”, data)

void WriteBinary(Double[] data); Printf(“%Zb”, data)

If BinaryEncoding = IndefiniteLengthBlockData

void WriteBinary(Byte[] data);

void WriteBinary(SByte[] data);
Printf(“%B”, data)

void WriteBinary(UInt16[] data);

void WriteBinary(Int16[] data);
Printf(“%hB”, data)

void WriteBinary(UInt32[] data);

void WriteBinary(Int32[] data);
Printf(“%lB”, data)

void WriteBinary(UInt64[] data);

void WriteBinary(Int64[] data);

WriteBinary(UInt64[]) and

WriteBinary(Int64[]) for indefinite length

blocks and the corresponding Printf format

specifier (%llB) are not supported at this time.

void WriteBinary(Single[] data); Printf(“%zB”, data)

void WriteBinary(Double[] data); Printf(“%ZB”, data)

If BinaryEncoding = RawBigEndian

void WriteBinary(Byte[] data);

void WriteBinary(SByte[] data);
Printf(“%!oby”, data)

void WriteBinary(UInt16[] data);

void WriteBinary(Int16[] data);
Printf(“%!obhy”, data)

Page 9-78 Section 9: Message Based Session Interfaces

void WriteBinary(UInt32[] data);

void WriteBinary(Int32[] data);
Printf(“%!obly”, data)

void WriteBinary(UInt64[] data);

void WriteBinary(Int64[] data);
Printf(“%!oblly”, data)

void WriteBinary(Single[] data);

WriteBinary(Single[]) for raw big endian

arrays is supported.

The corresponding Printf format specifier

(%!obzy) is not supported at this time.

void WriteBinary(Double[] data);

WriteBinary(Double[]) for raw big endian

arrays is supported.

The corresponding Printf format specifier

(%!obZy) is not supported at this time.

If BinaryEncoding = RawLittleEndian

void WriteBinary(Byte[] data);

void WriteBinary(SByte[] data);
Printf(“%!oly”, data)

void WriteBinary(UInt16[] data);

void WriteBinary(Int16[] data);
Printf(“%!olhy”, data)

void WriteBinary(UInt32[] data);

void WriteBinary(Int32[] data);
Printf(“%!olly”, data)

void WriteBinary(UInt64[] data);

void WriteBinary(Int64[] data);
Printf(“%!ollly”, data)

void WriteBinary(Single[] data);

WriteBinary(Single[]) for raw little endian

arrays is supported.

The corresponding Printf format specifier

(%!olzy) is not supported at this time.

void WriteBinary(Double[] data);

WriteBinary(Double[]) for raw little endian

arrays is supported.

The corresponding Printf format specifier

(%!olZy) is not supported at this time.

Section 9: Message Based Session Interfaces Page 9-79

9.4.22. WriteBinary AndFlush

DESCRIPTION

Performs the following operations in order:

• Converts the data array specified to a binary aray. The BinaryEncoding property specifies

whether to write a definite length IEEE-488.2 block, an indefinite length IEEE-488.2 block, a raw

binary block in big endian format, or a raw binary block in little endian format.

• Appends the resulting data to the write buffer.

• Writes the buffer to the instrument.

• Sends an END to the instrument.

• Flushes the buffer.

DEFINITION

void WriteBinaryAndFlush(Byte[] data);

void WriteBinaryAndFlush(Byte[] data, Int64 index, Int64 count);

void WriteBinaryAndFlush(SByte[] data);

void WriteBinaryAndFlush(SByte[] data, Int64 index, Int64 count);

void WriteBinaryAndFlush(Int16[] data);

void WriteBinaryAndFlush(Int16[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteBinaryAndFlush(UInt16[] data);

[CLSCompliant(false)]

void WriteBinaryAndFlush(UInt16[] data, Int64 index, Int64 count);

void WriteBinaryAndFlush(Int32[] data);

void WriteBinaryAndFlush(Int32[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteBinaryAndFlush(UInt32[] data);

[CLSCompliant(false)]

void WriteBinaryAndFlush(UInt32[] data, Int64 index, Int64 count);

void WriteBinaryAndFlush(Int64[] data);

void WriteBinaryAndFlush(Int64[] data, Int64 index, Int64 count);

[CLSCompliant(false)]

void WriteBinaryAndFlush(UInt64[] data);

[CLSCompliant(false)]

void WriteBinaryAndFlush(UInt64[] data, Int64 index, Int64 count);

void WriteBinaryAndFlush(Single[] data);

void WriteBinaryAndFlush(Single[] data, Int64 index, Int64 count);

void WriteBinaryAndFlush(Double[] data);

void WriteBinaryAndFlush(Double[] data, Int64 index, Int64 count);

ARGUMENTS

Page 9-80 Section 9: Message Based Session Interfaces

Name Description Type

data An array of numbers to be converted to a binary form

(determined by BinaryEncoding) and sent to the

instrument.

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], Uint64[],

Single[], Double[]

index

The index of the first element from data to be sent to the

instrument.

Int64

count The number of elements from data to be sent to the

instrument, starting from index. count must be positive,

and index + count <= data.length.

Int64

PRINTF EQUIVALENTS

The WriteBinaryAndFlush method implementations exhibit exactly the same behavior (but not

necessarily implemented exactly as shown) as a corresponding call to Printf, as shown in the following

table.

WriteLineList Method Equivalent Printf Call

If BinaryEncoding = DefiniteLengthBlockData

void WriteBinaryAndFlush(Byte[] data);

void WriteBinaryAndFlush(SByte[] data);
PrintfAndFlush(“%b”, data)

void WriteBinaryAndFlush(UInt16[] data);

void WriteBinaryAndFlush(Int16[] data);
PrintfAndFlush(“%hb”, data)

void WriteBinaryAndFlush(UInt32[] data);

void WriteBinaryAndFlush(Int32[] data);
PrintfAndFlush(“%lb”, data)

void WriteBinaryAndFlush(UInt64[] data);

void WriteBinaryAndFlush(Int64[] data);

WriteBinaryAndFlush(UInt64[]) and

WriteBinaryAndFlush(Int64[]) for definite

length blocks and the corresponding Printf format

specifier (%llb) are not supported at this time.

void WriteBinaryAndFlush(Single[] data); PrintfAndFlush(“%zb”, data)

void WriteBinaryAndFlush(Double[] data); PrintfAndFlush(“%Zb”, data)

If BinaryEncoding = IndefiniteLengthBlockData

void WriteBinaryAndFlush(Byte[] data);

void WriteBinaryAndFlush(SByte[] data);
PrintfAndFlush(“%B”, data)

void WriteBinaryAndFlush(UInt16[] data);

void WriteBinaryAndFlush(Int16[] data);
PrintfAndFlush(“%hB”, data)

void WriteBinaryAndFlush(UInt32[] data);

void WriteBinaryAndFlush(Int32[] data);
PrintfAndFlush(“%lB”, data)

void WriteBinaryAndFlush(UInt64[] data);

void WriteBinaryAndFlush(Int64[] data);

WriteBinaryAndFlush(UInt64[]) and

WriteBinaryAndFlush(Int64[]) for indefinite

length blocks and the corresponding Printf format

specifier (%llB) are not supported at this time.

void WriteBinaryAndFlush(Single[] data); PrintfAndFlush(“%zB”, data)

void WriteBinaryAndFlush(Double[] data); PrintfAndFlush(“%ZB”, data)

If BinaryEncoding = RawBigEndian

void WriteBinaryAndFlush(Byte[] data);

void WriteBinaryAndFlush(SByte[] data);
PrintfAndFlush(“%!oby”, data)

Section 9: Message Based Session Interfaces Page 9-81

void WriteBinaryAndFlush(UInt16[] data);

void WriteBinaryAndFlush(Int16[] data);
PrintfAndFlush(“%!obhy”, data)

void WriteBinaryAndFlush(UInt32[] data);

void WriteBinaryAndFlush(Int32[] data);
PrintfAndFlush(“%!obly”, data)

void WriteBinaryAndFlush(UInt64[] data);

void WriteBinaryAndFlush(Int64[] data);
PrintfAndFlush(“%!oblly”, data)

void WriteBinaryAndFlush(Single[] data);

WriteBinaryAndFlush(Single[]) for raw big

endian arrays is supported.

The corresponding Printf format specifier

(%!obzy) is not supported at this time.

void WriteBinaryAndFlush(Double[] data);

WriteBinaryAndFlush(Double[]) for raw big

endian arrays is supported.

The corresponding Printf format specifier

(%!obZy) is not supported at this time.

If BinaryEncoding = RawLittleEndian

void WriteBinaryAndFlush(Byte[] data);

void WriteBinaryAndFlush(SByte[] data);
PrintfAndFlush(“%!oly”, data)

void WriteBinaryAndFlush(UInt16[] data);

void WriteBinaryAndFlush(Int16[] data);
PrintfAndFlush(“%!olhy”, data)

void WriteBinaryAndFlush(UInt32[] data);

void WriteBinaryAndFlush(Int32[] data);
PrintfAndFlush(“%!olly”, data)

void WriteBinaryAndFlush(UInt64[] data);

void WriteBinaryAndFlush(Int64[] data);
PrintfAndFlush(“%!ollly”, data)

void WriteBinaryAndFlush(Single[] data);

WriteBinaryAndFlush(Single[]) for raw

little endian arrays is supported.

The corresponding Printf format specifier

(%!olzy) is not supported at this time.

void WriteBinaryAndFlush(Double[] data);

WriteBinaryAndFlush(Double[]) for raw

little endian arrays is supported.

The corresponding Printf format specifier

(%!olZy) is not supported at this time.

Page 9-82 Section 9: Message Based Session Interfaces

9.4.23. Introduction to Formatted Read Methods

Formatted read methods include Read<Type>, ReadList<Type>, ReadLine<Type>,

ReadLineList<Type>, ReadBinaryBlock<Type>, and ReadLineBinaryBlock<Type>,

ReadWhileMatch, ReadUntilMatch, and ReadUntilEnd in the IMessageBasedFormattedIO

interface. The section that describes each method also includes the equivalent Scanf format specifier. To

determine the equivalent behavior, refer to sections 9.4.13.3, Scanf Format Specifier Usage Summary, and

9.4.14, Scanf, for details.

Section 9: Message Based Session Interfaces Page 9-83

9.4.24. ReadString

DESCRIPTION

Reads a string from the formatted read buffer.

DEFINITION

String ReadString();

String ReadString(Int32 count);

Int32 ReadString(StringBuilder data);

Int32 ReadString(StringBuilder data, Int32 count);

ARGUMENTS

Name Description Type

data A StringBuilder object created by the calling program

to hold the string to be read from the formatted read

buffer. This method appends the output string to data.

StringBuilder

count The number of characters to be read from the read buffer. Int32

RETURN VALUE

Type Description

String The string actually read from the formatted read buffer.

Int32 The number of characters actually appended to the StringBuilder parameter.

SCANF EQUIVALENTS

The ReadString method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Scanf, as shown in the following table.

ReadString Method Equivalent Scanf Call

String ReadString();
Scanf(“%s”, out result);

(return result)

Int32 ReadString(StringBuilder data);
Scanf(“%s”, out data);

(return data.Length)

String ReadString(Int32 count);
Scanf(“%#s”, count, out result);

(return result)

Int32 ReadString(StringBuilder data,

Int32 count);

Scanf(“%#s”, count, out data);

(return data.Length)

Page 9-84 Section 9: Message Based Session Interfaces

9.4.25. Read

DESCRIPTION

Reads the specified data from the formatted read buffer, and converts it to the type specified by the return

type of the method.

DEFINITION

Char ReadChar();

Int64 ReadInt64();

UInt64 ReadUInt64();

Double ReadDouble();

RETURN VALUE

Type Description

Char, Int64,

UInt64, Double
The value read from the formatted read buffer, converted to the specified type.

SCANF EQUIVALENTS

The ReadType method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Scanf, as shown in the following table.

ReadType Method Equivalent Scanf Call

Char ReadChar();
Scanf(“%c”, out result);

(return result)

UInt64 ReadUInt64();

Int64 ReadInt64();

Scanf(“%d”, out result);

(return result)

Double ReadDouble();
Scanf(“%g”, out result);

(return result)

Section 9: Message Based Session Interfaces Page 9-85

9.4.26. ReadLine (String)

DESCRIPTION

Reads a string from the formatted read buffer. The read stops when an EOL character is reached.

DEFINITION

String ReadLine();

Int32 ReadLine(StringBuilder data);

ARGUMENTS

Name Description Type

data A StringBuilder object created by the calling program

to hold the string to be read from the formatted read

buffer. This method appends the output string to data.

StringBuilder

RETURN VALUE

Type Description

String The string actually read from the formatted read buffer.

Int32 The number of characters actually appended to the StringBuilder parameter.

SCANF EQUIVALENTS

The ReadLine method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Scanf, as shown in the following table.

ReadLine Method Equivalent Scanf Call

String ReadLine(); Scanf(“%T”, out result);

(return result)

Int32 ReadLine(StringBuilder data); Scanf(“%T”, out data);

(return data.Length)

Page 9-86 Section 9: Message Based Session Interfaces

9.4.27. ReadLine

DESCRIPTION

Reads the specified data from the formatted read buffer, reading through the first EOL character, and

converts it to the type specified by the return type of the method.

DEFINITION

Char ReadLineChar();

Int64 ReadLineInt64();

UInt64 ReadLineUInt64();

Double ReadLineDouble();

RETURN VALUE

Type Description

Char, Int64,

UInt64, Double
The value read from the formatted read buffer, converted to the specified type.

SCANF EQUIVALENTS

The ReadLineType method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Scanf, as shown in the following table.

ReadLineType Method Equivalent Scanf Call

Char ReadLineChar(); Scanf(“%c%*T”, out result);

(return result)

Int64 ReadLineUInt64();

Int64 ReadLineInt64();

Scanf(“%d%*T”, out result);

(return result)

Double ReadLineDouble(); Scanf(“%g%*T”, out result);

(return result)

Section 9: Message Based Session Interfaces Page 9-87

9.4.28. ReadList

DESCRIPTION

Reads the specified comma separated list data from the formatted read buffer, and converts it to an array of

the type specified by the return type of the method.

DEFINITION

Byte[] ReadListOfByte(Int64 count);

Int64 ReadListOfByte(Byte[] data, Int64 index, Int64 count);

SByte[] ReadListOfSByte(Int64 count);

Int64 ReadListOfSByte(SByte[] data, Int64 index, Int64 count);

Int16[] ReadListOfInt16(Int64 count);

Int64 ReadListOfInt16(Int16[] data, Int64 index, Int64 count);

UInt16[] ReadListOfUInt16(Int64 count);

Int64 ReadListOfUInt16(UInt16[] data, Int64 index, Int64 count);

Int32[] ReadListOfInt32(Int64 count);

Int64 ReadListOfInt32(Int32[] data, Int64 index, Int64 count);

UInt32[] ReadListOfUInt32(Int64 count);

Int64 ReadListOfUInt32(UInt32[] data, Int64 index, Int64 count);

Int64[] ReadListOfInt64(Int64 count);

Int64 ReadListOfInt64(Int64[] data, Int64 index, Int64 count);

UInt64[] ReadListOfUInt64(Int64 count);

Int64 ReadListOfUInt64(UInt64[] data, Int64 index, Int64 count);

Single[] ReadListOfSingle(Int64 count);

Int64 ReadListOfSingle(Single[] data, Int64 index, Int64 count);

Double[] ReadListOfDouble(Int64 count);

Int64 ReadListOfDouble(Double[] data, Int64 index, Int64 count);

ARGUMENTS

Name Description Type

data An array of numbers to be converted from a comma

separated list of numbers from the instrument.

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], Uint64[],

Single[], Double[]

index The index of the first element of data into which values

from the list are placed.

Int64

count The number of elements from the list to be placed into

data, starting from index (if the overload includes

index) or the beginning of the array (if the overload does

not include index).

Int64

Page 9-88 Section 9: Message Based Session Interfaces

RETURN VALUE

Type Description

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], UInt64[],

Single[], Double[]

The values read from the formatted read buffer, converted to the specified type.

Int64 The number of elements in the list actually read from the formatted read buffer.

SCANF EQUIVALENTS

The ReadListOfType method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Scanf, as shown in the following table.

ReadListOfType Method Equivalent Scanf Call

Byte[] ReadListOfByte();

UInt16[] ReadListOfUInt16();

UInt32[] ReadListOfUInt32();

UInt64[] ReadListOfUInt64();

Scanf(“%,u”, out result);

(return result)

SByte[] ReadListOfSByte();

Int16[] ReadListOfInt16();

Int32[] ReadListOfInt32();

Int64[] ReadListOfInt64();

Scanf(“%,d”, out result);

(return result)

Single[] ReadListOfSingle();

Double[] ReadListOfDouble();

Scanf(“%,g”, out result);

(return result)

Section 9: Message Based Session Interfaces Page 9-89

9.4.29. ReadLineList

DESCRIPTION

Reads the specified comma separated list data from the formatted read buffer, reading through the first

EOL character, and converts it to an array of the type specified by the return type of the method.

DEFINITION

Byte[] ReadLineListOfByte();

Int64 ReadLineListOfByte(Byte[] data, Int64 index);

SByte[] ReadLineListOfSByte();

Int64 ReadLineListOfSByte(SByte[] data, Int64 index);

Int16[] ReadLineListOfInt16();

Int64 ReadLineListOfInt16(Int16[] data, Int64 index);

UInt16[] ReadLineListOfUInt16();

Int64 ReadLineListOfUInt16(UInt16[] data, Int64 index);

Int32[] ReadLineListOfInt32();

Int64 ReadLineListOfInt32(Int32[] data, Int64 index);

UInt32[] ReadLineListOfUInt32();

Int64 ReadLineListOfUInt32(UInt32[] data, Int64 index);

Int64[] ReadLineListOfInt64();

Int64 ReadLineListOfInt64(Int64[] data, Int64 index);

UInt64[] ReadLineListOfUInt64();

Int64 ReadLineListOfUInt64(UInt64[] data, Int64 index);

Single[] ReadLineListOfSingle();

Int64 ReadLineListOfSingle(Single[] data, Int64 index);

Double[] ReadLineListOfDouble();

Int64 ReadLineListOfDouble(Double[] data, Int64 index);

ARGUMENTS

Name Description Type

data An array of numbers to be converted from a comma

separated list of numbers from the instrument.

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], Uint64[],

Single[], Double[]

index The index of the first element of data into which values

from the list are placed.

Int64

count The number of elements from the list to be placed into

data, starting from index.

Int64

RETURN VALUE

Page 9-90 Section 9: Message Based Session Interfaces

Type Description

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], UInt64[],

Single[], Double[]

The values read from the formatted read buffer, converted to the specified type.

Int64 The number of elements in the list actually read from the formatted read buffer.

SCANF EQUIVALENTS

The ReadLineListOfType method implementations exhibit exactly the same behavior (but not

necessarily implemented exactly as shown) as a corresponding call to Scanf, as shown in the following

table.

ReadLineListOfType Method Equivalent Scanf Call

Byte[] ReadLineListOfByte();

UInt16[] ReadLineListOfUInt16();

UInt32[] ReadLineListOfUInt32();

UInt64[] ReadLineListOfUInt64();

Scanf(“%,u%*T”, out result);

(return result)

SByte[] ReadLineListOfSByte();

Int16[] ReadLineListOfInt16();

Int32[] ReadLineListOfInt32();

Int64[] ReadLineListOfInt64();

Scanf(“%,d%*T”, out result);

(return result)

Single[] ReadLineListOfSingle();

Double[] ReadLineListOfDouble();

Scanf(“%,g%*T”, out result);

(return result)

Section 9: Message Based Session Interfaces Page 9-91

9.4.30. ReadBinaryBlock

DESCRIPTION

Reads a raw binary array or IEEE_488 definite or indefinite block from the formatted read buffer, and

converts it to an array of the type specified by the method name.

DEFINITION

Byte[] ReadBinaryBlockOfByte();

Byte[] ReadBinaryBlockOfByte(Boolean seekToBlock);

Int64 ReadBinaryBlockOfByte(Byte[] data, Int64 index, Int64 count);

Int64 ReadBinaryBlockOfByte(Byte[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

SByte[] ReadBinaryBlockOfSByte();

SByte[] ReadBinaryBlockOfSByte(Boolean seekToBlock);

Int64 ReadBinaryBlockOfSByte(SByte[] data, Int64 index, Int64 count);

Int64 ReadBinaryBlockOfSByte(SByte[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

Int16[] ReadBinaryBlockOfInt16();

Int16[] ReadBinaryBlockOfInt16(Boolean seekToBlock);

Int64 ReadBinaryBlockOfInt16(Int16[] data, Int64 index, Int64 count);

Int64 ReadBinaryBlockOfInt16(Int16[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

UInt16[] ReadBinaryBlockOfUInt16();

UInt16[] ReadBinaryBlockOfUInt16(Boolean seekToBlock);

Int64 ReadBinaryBlockOfUInt16(UInt16[] data, Int64 index, Int64 count);

Int64 ReadBinaryBlockOfUInt16(UInt16[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

Int32[] ReadBinaryBlockOfInt32();

Int32[] ReadBinaryBlockOfInt32(Boolean seekToBlock);

Int64 ReadBinaryBlockOfInt32(Int32[] data, Int64 index, Int64 count);

Int64 ReadBinaryBlockOfInt32(Int32[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

UInt32[] ReadBinaryBlockOfUInt32();

UInt32[] ReadBinaryBlockOfUInt32(Boolean seekToBlock);

Int64 ReadBinaryBlockOfUInt32(UInt32[] data, Int64 index, Int64 count);

Int64 ReadBinaryBlockOfUInt32(UInt32[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

Int64[] ReadBinaryBlockOfInt64();

Int64 ReadBinaryBlockOfInt64(Int64[] data, Int64 index, Int64 count);

UInt64[] ReadBinaryBlockOfUInt64();

Int64 ReadBinaryBlockOfUInt64(UInt64[] data, Int64 index, Int64 count);

Single[] ReadBinaryBlockOfSingle();

Single[] ReadBinaryBlockOfSingle(Boolean seekToBlock);

Page 9-92 Section 9: Message Based Session Interfaces

Int64 ReadBinaryBlockOfSingle(Single[] data, Int64 index, Int64 count);

Int64 ReadBinaryBlockOfSingle(Single[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

Double[] ReadBinaryBlockOfDouble();

Double[] ReadBinaryBlockOfDouble(Boolean seekToBlock);

Int64 ReadBinaryBlockOfDouble(Double[] data, Int64 index, Int64 count);

Int64 ReadBinaryBlockOfDouble(Double[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

ARGUMENTS

Name Description Type

data An array of numbers be converted from the raw binary

array or IEEE-488 block of numbers from the instrument.

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], Uint64[],

Single[], Double[]

index The index of the first element of data into which values

from the block are placed.

Int64

count The number of elements from the block to be placed into

data, starting from index.

Int64

seekToBlock If true, read and discard characters that preceed the

IEEE-488 block. If false, the first character read must

be the start of the block.

This argument is only used if the BinaryEncoding is

DefiniteLengthBlockData or
IndefiniteLengthBlockData

The default value is false.

Boolean

RETURN VALUE

Type Description

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], UInt64[],

Single[], Double[]

The values read from the formatted read buffer, converted to the specified type.

Int64 The number of elements in the list actually read from the formatted read buffer.

SCANF EQUIVALENTS

The ReadBinaryBlockOfType method implementations exhibit exactly the same behavior (but not

necessarily implemented exactly as shown) as a corresponding call to Scanf, as shown in the following

table.

ReadBinaryBlockOfOfType Method Equivalent Scanf Call

If BinaryEncoding = DefiniteLengthBlockData

Byte[] ReadBinaryBlockOfByte();

SByte[] ReadBinaryBlockOfSByte();

Scanf(“%b”, out result)

(return result)

Int16[] ReadBinaryBlockOfInt16();

UInt16[] ReadBinaryBlockOfUInt16();

Scanf(“%hb”, out result)

(return result)

Int32[] ReadBinaryBlockOfInt32();

UInt32[] ReadBinaryBlockOfUInt32();

Scanf(“%lb”, out result)

(return result)

Section 9: Message Based Session Interfaces Page 9-93

Int64[] ReadBinaryBlockOfInt64();

UInt64[] ReadBinaryBlockOfUInt64();

ReadBinaryBlockOfInt64() and

ReadBinaryBlockOfUInt64() for definite

length blocks and the corresponding Scanf format

specifier (%llb) are not supported at this time.

Single[] ReadBinaryBlockOfSingle(); Scanf(“%zb”, out result)

(return result)

Double[] ReadBinaryBlockOfDouble(); Scanf(“%Zb”, out result)

(return result)

If BinaryEncoding = IndefiniteLengthBlockData

Byte[] ReadBinaryBlockOfByte();

SByte[] ReadBinaryBlockOfSByte();

Scanf(“%b”, out result)

(return result)

Int16[] ReadBinaryBlockOfInt16();

UInt16[] ReadBinaryBlockOfUInt16();

Scanf(“%hb”, out result)

(return result)

Int32[] ReadBinaryBlockOfInt32();

UInt32[] ReadBinaryBlockOfUInt32();

Scanf(“%lb”, out result)

(return result)

Int64[] ReadBinaryBlockOfInt64();

UInt64[] ReadBinaryBlockOfUInt64();

ReadBinaryBlockOfInt64() and

ReadBinaryBlockOfUInt64() for indefinite

length blocks and the corresponding Scanf format

specifier (%llb) are not supported at this time.

Single[] ReadBinaryBlockOfSingle(); Scanf(“%zb”, out result)

(return result)

Double[] ReadBinaryBlockOfDouble(); Scanf(“%Zb”, out result)

(return result)

If BinaryEncoding = RawBigEndian

Byte[] ReadBinaryBlockOfByte();

SByte[] ReadBinaryBlockOfSByte();

Scanf(“%!oby”, out result)

(return result)

Int16[] ReadBinaryBlockOfInt16();

UInt16[] ReadBinaryBlockOfUInt16();

Scanf(“%!obhy”, out result)

(return result)

Int32[] ReadBinaryBlockOfInt32();

UInt32[] ReadBinaryBlockOfUInt32();

Scanf(“%!obly”, out result)

(return result)

Int64[] ReadBinaryBlockOfInt64();

UInt64[] ReadBinaryBlockOfUInt64();

Scanf(“%!oblly”, out result)

(return result)

Single[] ReadBinaryBlockOfSingle();

ReadBinaryBlockOfSingle() for raw big

endian arrays and the corresponding Scanf format

specifier (%!obzy) are not supported at this time.

Double[] ReadBinaryBlockOfDouble();

ReadBinaryBlockOfDouble()for raw big

endian arrays and the corresponding Scanf format

specifier (%!obZy) are not supported at this time.

If BinaryEncoding = RawLittleEndian

Byte[] ReadBinaryBlockOfByte();

SByte[] ReadBinaryBlockOfSByte();

Scanf(“%!oly”, out result)

(return result)

Page 9-94 Section 9: Message Based Session Interfaces

Int16[] ReadBinaryBlockOfInt16();

UInt16[] ReadBinaryBlockOfUInt16();

Scanf(“%!olhy”, out result)

(return result)

Int32[] ReadBinaryBlockOfInt32();

UInt32[] ReadBinaryBlockOfUInt32();

Scanf(“%!olly”, out result)

(return result)

Int64[] ReadBinaryBlockOfInt64();

UInt64[] ReadBinaryBlockOfUInt64();

Scanf(“%!ollly”, out result)

(return result)

Single[] ReadBinaryBlockOfSingle();

ReadBinaryBlockOfSingle() for raw little

endian arrays and the corresponding Scanf format

specifier (%!olzy) are not supported at this time.

Double[] ReadBinaryBlockOfDouble();

ReadBinaryBlockOfDouble() for raw little

endian arrays and the corresponding Scanf format

specifier (%!olZy) are not supported at this time.

The way that the binary data is treated is not affected by the value of the seekToBlock parameter.

Section 9: Message Based Session Interfaces Page 9-95

9.4.31. ReadLineBinaryBlock

DESCRIPTION

Reads a raw binary array or IEEE_488 definite or indefinite block from the formatted read buffer, reading

through the first EOL character, and converts it to an array of the type specified by the method name.

DEFINITION

Byte[] ReadLineBinaryBlockOfByte();

Byte[] ReadLineBinaryBlockOfByte(Boolean seekToBlock);

Int64 ReadLineBinaryBlockOfByte(Byte[] data, Int64 index, Int64 count);

Int64 ReadLineBinaryBlockOfByte(Byte[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

SByte[] ReadLineBinaryBlockOfSByte();

SByte[] ReadLineBinaryBlockOfSByte(Boolean seekToBlock);

Int64 ReadLineBinaryBlockOfSByte(SByte[] data, Int64 index, Int64 count);

Int64 ReadLineBinaryBlockOfSByte(SByte[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

Int16[] ReadLineBinaryBlockOfInt16();

Int16[] ReadLineBinaryBlockOfInt16(Boolean seekToBlock);

Int64 ReadLineBinaryBlockOfInt16(Int16[] data, Int64 index, Int64 count);

Int64 ReadLineBinaryBlockOfInt16(Int16[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

UInt16[] ReadLineBinaryBlockOfUInt16();

UInt16[] ReadLineBinaryBlockOfUInt16(Boolean seekToBlock);

Int64 ReadLineBinaryBlockOfUInt16(UInt16[] data, Int64 index, Int64 count);

Int64 ReadLineBinaryBlockOfUInt16(UInt16[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

Int32[] ReadLineBinaryBlockOfInt32();

Int32[] ReadLineBinaryBlockOfInt32(Boolean seekToBlock);

Int64 ReadLineBinaryBlockOfInt32(Int32[] data, Int64 index, Int64 count);

Int64 ReadLineBinaryBlockOfInt32(Int32[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

UInt32[] ReadLineBinaryBlockOfUInt32();

UInt32[] ReadLineBinaryBlockOfUInt32(Boolean seekToBlock);

Int64 ReadLineBinaryBlockOfUInt32(UInt32[] data, Int64 index, Int64 count);

Int64 ReadLineBinaryBlockOfUInt32(UInt32[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

Int64[] ReadLineBinaryBlockOfInt64();

Int64 ReadLineBinaryBlockOfInt64(Int64[] data, Int64 index, Int64 count);

UInt64[] ReadLineBinaryBlockOfUInt64();

Int64 ReadLineBinaryBlockOfUInt64(UInt64[] data, Int64 index, Int64 count);

Single[] ReadLineBinaryBlockOfSingle();

Single[] ReadLineBinaryBlockOfSingle(Boolean seekToBlock);

Page 9-96 Section 9: Message Based Session Interfaces

Int64 ReadLineBinaryBlockOfSingle(Single[] data, Int64 index, Int64 count);

Int64 ReadLineBinaryBlockOfSingle(Single[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

Double[] ReadLineBinaryBlockOfDouble();

Double[] ReadLineBinaryBlockOfDouble(Boolean seekToBlock);

Int64 ReadLineBinaryBlockOfDouble(Double[] data, Int64 index, Int64 count);

Int64 ReadLineBinaryBlockOfDouble(Double[] data, Int64 index, Int64 count,

 Boolean seekToBlock);

ARGUMENTS

Name Description Type

data An array of numbers be converted from the raw binary

array or IEEE-488 block of numbers from the instrument.

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], Uint64[],

Single[], Double[]

index The index of the first element of data into which values

from the block are placed.

Int64

count The number of elements from the block to be placed into

data, starting from index.

Int64

seekToBlock If true, read and discard characters that preceed the

IEEE-488 block. If false, the first character read must

be the start of the block.

This argument is only used if the BinaryEncoding is

DefiniteLengthBlockData or
IndefiniteLengthBlockData

The default value is false.

Boolean

RETURN VALUE

Type Description

Byte[], SByte[],

Int16[], UInt16[],

Int32[], UInt32[],

Int64[], UInt64[],

Single[], Double[]

The values read from the formatted read buffer, converted to the specified type.

Int64 The number of elements in the list actually read from the formatted read buffer.

SCANF EQUIVALENTS

The ReadLineBinaryBlockOfType method implementations exhibit exactly the same behavior (but not

necessarily implemented exactly as shown) as a corresponding call to Scanf, as shown in the following

table.

ReadLineBinaryBlockOfOfType Method Equivalent Scanf Call

If BinaryEncoding = DefiniteLengthBlockData

Byte[] ReadLineBinaryBlockOfByte();

SByte[] ReadLineBinaryBlockOfSByte();

Scanf(“%b%*T”, out result)

(return result)

Int16[] ReadLineBinaryBlockOfInt16();

UInt16[] ReadLineBinaryBlockOfUInt16();

Scanf(“%hb%*T”, out result)

(return result)

Int32[] ReadLineBinaryBlockOfInt32();

UInt32[] ReadLineBinaryBlockOfUInt32();

Scanf(“%lb%*T”, out result)

(return result)

Section 9: Message Based Session Interfaces Page 9-97

Int64[] ReadLineBinaryBlockOfInt64();

UInt64[] ReadLineBinaryBlockOfUInt64();

ReadLineBinaryBlockOfInt64() and

ReadLineBinaryBlockOfUInt64() for definite

length blocks and the corresponding Scanf format

specifier (%llb) are not supported at this time.

Single[] ReadLineBinaryBlockOfSingle(); Scanf(“%zb%*T”, out result)

(return result)

Double[] ReadLineBinaryBlockOfDouble(); Scanf(“%Zb%*T”, out result)

(return result)

If BinaryEncoding = IndefiniteLengthBlockData

Byte[] ReadLineBinaryBlockOfByte();

SByte[] ReadLineBinaryBlockOfSByte();

Scanf(“%b%*T”, out result)

(return result)

Int16[] ReadLineBinaryBlockOfInt16();

UInt16[] ReadLineBinaryBlockOfUInt16();

Scanf(“%hb%*T”, out result)

(return result)

Int32[] ReadLineBinaryBlockOfInt32();

UInt32[] ReadLineBinaryBlockOfUInt32();

Scanf(“%lb%*T”, out result)

(return result)

Int64[] ReadLineBinaryBlockOfInt64();

UInt64[] ReadLineBinaryBlockOfUInt64();

ReadLineBinaryBlockOfInt64() and

ReadLineBinaryBlockOfUInt64() for

indefinite length blocks and the corresponding

Scanf format specifier (%llb) are not supported at

this time.

Single[] ReadLineBinaryBlockOfSingle(); Scanf(“%zb%*T”, out result)

(return result)

Double[] ReadLineBinaryBlockOfDouble(); Scanf(“%Zb%*T”, out result)

(return result)

If BinaryEncoding = RawBigEndian

Byte[] ReadLineBinaryBlockOfByte();

SByte[] ReadLineBinaryBlockOfSByte();

Scanf(“%y%*T”, out result)

(return result)

Int16[] ReadLineBinaryBlockOfInt16();

UInt16[] ReadLineBinaryBlockOfUInt16();

Scanf(“%hy%*T”, out result)

(return result)

Int32[] ReadLineBinaryBlockOfInt32();

UInt32[] ReadLineBinaryBlockOfUInt32();

Single[] ReadLineBinaryBlockOfSingle();

Scanf(“%ly%*T”, out result)

(return result)

Int64[] ReadLineBinaryBlockOfInt64();

UInt64[] ReadLineBinaryBlockOfUInt64();

Double[] ReadLineBinaryBlockOfDouble();

Scanf(“%lly%*T”, out result)

(return result)

Single[] ReadLineBinaryBlockOfSingle(); ReadLineBinaryBlockOfSingle() for raw big

endian arrays and the corresponding Scanf format

specifier (%!obzy) are not supported at this time.

Double[] ReadLineBinaryBlockOfDouble(); ReadLineBinaryBlockOfDouble()for raw big

endian arrays and the corresponding Scanf format

specifier (%!obZy) are not supported at this time.

If BinaryEncoding = RawLittleEndian

Page 9-98 Section 9: Message Based Session Interfaces

Byte[] ReadLineBinaryBlockOfByte();

SByte[] ReadLineBinaryBlockOfSByte();

Scanf(“%!oly%*T”, out result)

(return result)

Int16[] ReadLineBinaryBlockOfInt16();

UInt16[] ReadLineBinaryBlockOfUInt16();

Scanf(“%!olhy%*T”, out result)

(return result)

Int32[] ReadLineBinaryBlockOfInt32();

UInt32[] ReadLineBinaryBlockOfUInt32();

Single[] ReadLineBinaryBlockOfSingle();

Scanf(“%!olly%*T”, out result)

(return result)

Int64[] ReadLineBinaryBlockOfInt32();

UInt64[] ReadLineBinaryBlockOfUInt32();

Double[] ReadLineBinaryBlockOfDouble();

Scanf(“%!ollly%*T”, out result)

(return result)

Single[] ReadLineBinaryBlockOfSingle(); ReadLineBinaryBlockOfSingle() for raw

little endian arrays and the corresponding Scanf

format specifier (%!olzy) are not supported at this

time.

Double[] ReadLineBinaryBlockOfDouble(); ReadLineBinaryBlockOfDouble() for raw

little endian arrays and the corresponding Scanf

format specifier (%!olZy) are not supported at this

time.

The way that the binary data is treated is not affected by the value of the seekToBlock parameter.

Section 9: Message Based Session Interfaces Page 9-99

9.4.32. ReadWhileMatch

DESCRIPTION

Reads an arbitrary number of characters that match a specified list of characters. The method stops reading

at the first non-matching character, which remains in the read buffer. There is no processing of ranges or

other meta-characters. The method will read additional characters from the instrument to perform this

operation, if necessary.

DEFINITION

String ReadWhileMatch(String characters);

ARGUMENTS

Name Description Type

characters A string of literal characters to be matched as individual

characters.

String

RETURN VALUE

Type Description

String The string actually read from the formatted read buffer.

SCANF EQUIVALENTS

The ReadWhileMatch method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Scanf, as shown in the following table. There is

no processing of ranges or other meta-characters associated with the “[]” flag in Scanf.

ReadWhileMatch Method Equivalent Scanf Call

String ReadWhileMatch(String

characters);

Scanf(“%[<characters>]”, out result);

(return result)

Page 9-100 Section 9: Message Based Session Interfaces

9.4.33. ReadUntilMatch

DESCRIPTION

Reads an arbitrary number of characters until a matching character is found. The method stops reading at

the first matching character, which is discarded from the read buffer unless the discardMatch parameter

is specified and is false. The string returned does not include the matched character. There is no

processing of ranges or other meta-characters. The method will read additional characters from the

instrument to perform this operation, if necessary.

DEFINITION

String ReadUntilMatch(Char ch);

String ReadUntilMatch(String characters, Boolean discardMatch);

ARGUMENTS

Name Description Type

ch A single literal character to be matched. String

characters A string of literal characters to be matched as individual

characters.

String

discardMatch If true, the first character in the read buffer that matches

a character in characters is consumed and discarded. If

false, the matched character remains in the formatted

I/O buffer. The default value is true.

Boolean

RETURN VALUE

Type Description

String The string actually read from the formatted read buffer. This string does not

include the matched character.

SCANF EQUIVALENTS

The ReadUntilMatch method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Scanf, as shown in the following table. There is

no processing of ranges or other meta-characters associated with the “[]” flag in Scanf.

ReadUntilMatch Method Equivalent Scanf Call

String ReadUntilMatch(Char ch);
Scanf(“%[^<ch>]”, out result);

(return result)

String ReadUntilMatch(String characters,

Boolean discardMatch);

Scanf(“%[^<characters>]”, out

result);

(return result)

Section 9: Message Based Session Interfaces Page 9-101

9.4.34. ReadUntilEnd

DESCRIPTION

Reads an arbitrary number of characters until an END or termination character is found. The method stops

reading at the first END or termination character. The string returned includes the character with the END

indicator or termination character.

If the underlying protocol does not support END or the termination character, this method may time out or

exhibit other implementation-specific behavior.

DEFINITION

String ReadUntilEnd();

RETURN VALUE

Type Description

String The string actually read from the formatted read buffer.

SCANF EQUIVALENTS

The ReadUntilEnd method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Scanf, as shown in the following table.

ReadUntilEnd Method Equivalent Scanf Call

String ReadUntilEnd();
Scanf(“%t”, out result);

(return result)

Page 9-102 Section 9: Message Based Session Interfaces

9.4.35. Introduction to Formatted Skip Methods

Formatted skip methods include Skip, SkipString, and SkipUntilEnd in the

IMessageBasedFormattedIO interface.

Skip methods differ from Read methods in that Skip methods do not return the data skipped.

The section that describes each Skip method also includes the equivalent Scanf format specifier. To

determine the corresponding behavior, refer to sections 9.4.13.3, Scanf Format Specifier Usage Summary,

and 9.4.14, Scanf, for details.

Section 9: Message Based Session Interfaces Page 9-103

9.4.36. Skip

DESCRIPTION

Reads and removes up to count characters from the formatted read buffer. The method will read

additional characters from the instrument to perform this operation, if necessary, but will not skip over an

END.

DEFINITION

void Skip(Int64 count);

ARGUMENTS

Name Description Type

count The number of characters to remove from the buffer. Int64

SCANF EQUIVALENTS

The Skip method implementations exhibit exactly the same behavior (but not necessarily implemented

exactly as shown) as a corresponding call to Scanf, as shown in the following table, where the data read is

discarded as indicated by the ‘*’ flag.

Skip Method Equivalent Scanf Call

void Skip(Int64 count); Scanf(“%*<count>c”);

Page 9-104 Section 9: Message Based Session Interfaces

9.4.37. SkipString

DESCRIPTION

Skip and discard the exact string specified by data from the formatted I/O read buffer. Multiple

whitespace characters in the read buffer may match a single whitespace in the data string. If data contains a

% character, the method throws an exception. The method will read additional characters from the

instrument to perform this operation, if necessary, but will not skip over an END.

This method will throw an exception if the data read is not a match for the specified data.

DEFINITION

void SkipString (String data);

ARGUMENTS

Name Description Type

data The string to be read from the formatted read buffer. The

string may not contain the ‘%’ character.

String

SCANF EQUIVALENTS

The SkipString method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Scanf, as shown in the following table, where

the data read (in the dataRead parameter) is discarded.

SkipString Method Equivalent Scanf Call

void SkipString (String data); Scanf(data, out dataRead);

Section 9: Message Based Session Interfaces Page 9-105

9.4.38. SkipUntilEnd

DESCRIPTION

Discards the entire formatted I/O read buffer. If the previous formatted I/O buffer did not include an END

or termination character, this method reads from the device until an END or termination character is

encountered and discards the data.

 DEFINITION

void SkipUntilEnd();

SCANF EQUIVALENTS

The SkipUntilEnd method implementations exhibit exactly the same behavior (but not necessarily

implemented exactly as shown) as a corresponding call to Scanf, as shown in the following table, where

the data read is discarded as indicated by the ‘*’ flag.

SkipUntilEnd Method Equivalent Scanf Call

void SkipUntilEnd(); Scanf(“%*t”);

Page 9-106 Section 9: Message Based Session Interfaces

9.5. FormattedIO Implementations
The IVI Foundation provides a standard implementation of the IMessageBasedFormattedIO interface.

The implementation is the MessageBasedFormattedIO class.

RECOMMENDATION 9.5.1

The recommendation is that VISA.NET vendors use the standard IVI MessageBasedFormattedIO class

for formatted I/O.

OBSERVATION 9.5.1

The MessageBasedFormattedIO class is public, and the IVI Foundation cannot prevent arbitrary clients

from using it. However, it is intended for use by VISA.NET vendors only. Because it is intended for use

by VISA.NET vendors only, there are no IntelliSense comments that describe the class API.

Section 9: Message Based Session Interfaces Page 9-107

9.5.2. MessageBasedFormattedIO Constructors

DESCRIPTION

Create an instance of the MessageBasedFormattedIO class.

DEFINITION

public MessageBasedFormattedIO(IMessageBasedSession session)

ARGUMENTS

Name Description Type

session A reference to the message based session to be used by

formatted I/O to perform lower level I/O operations.

IMessageBasedSession

IMPLEMENTATION

OBSERVATION 9.5.2

The session parameter must reference a complete implementation of IMessageBasedSession, as this

is required for the proper operation of the MessageBasedFormattedIO class.

Section 10: Register Based Session Interfaces Page 10-1

Section 10: Register Based Session Interfaces

Register based resources are controlled by accessing device registers or memory, or both. Depending on

the resource type, they may also support message based operations. Refer to VPP4.3 section 5.1 for more

information about register based resources. The functionality of INSTR resources is broken up into several

interfaces in VISA.NET I/O.

Page 10-2 Section 10: Register Based Session Interfaces

10.1. IRegisterBasedSession

DESCRIPTION

The base session type for register-based devices.

DEFINITION

public interface IRegisterBasedSession : IVisaSession

{

 Boolean AllowDma { get; set; }

 Int32 DestinationIncrement { get; set; }

 Int32 SourceIncrement { get; set; }

 IMemoryMap MapAddress(AddressSpace space, Int64 offset, Int64 size);

 Byte In8(AddressSpace space, Int64 sourceOffset);

 Int16 In16(AddressSpace space, Int64 sourceOffset);

 Int32 In32(AddressSpace space, Int64 sourceOffset);

 Int64 In64(AddressSpace space, Int64 sourceOffset);

 void Out8(AddressSpace space, Int64 destinationOffset, Byte value);

 void Out16(AddressSpace space, Int64 destinationOffset, Int16 value);

 void Out32(AddressSpace space, Int64 destinationOffset, Int32 value);

 void Out64(AddressSpace space, Int64 destinationOffset, Int64 value);

 Byte[] MoveIn8(AddressSpace space, Int64 sourceOffset, Int64 count);

 void MoveIn8(AddressSpace space, Int64 sourceOffset, Int64 count,

 Byte[] destinationBuffer, Int64 destinationIndex);

 Int16[] MoveIn16(AddressSpace space, Int64 sourceOffset, Int64 count);

 void MoveIn16(AddressSpace space, Int64 sourceOffset, Int64 count,

 Int16[] destinationBuffer, Int64 destinationIndex);

 Int32[] MoveIn32(AddressSpace space, Int64 sourceOffset, Int64 count);

 void MoveIn32(AddressSpace space, Int64 sourceOffset, Int64 count,

 Int32[] destinationBuffer, Int64 destinationIndex);

 Int64[] MoveIn64(AddressSpace space, Int64 sourceOffset, Int64 count);

 void MoveIn64(AddressSpace space, Int64 sourceOffset, Int64 count,

 Int64[] destinationBuffer, Int64 destinationIndex);

 void MoveOut8(AddressSpace space, Int64 destinationOffset,

 Byte[] sourceBuffer);

 void MoveOut8(AddressSpace space, Int64 destinationOffset,

 Byte[] sourceBuffer, Int64 sourceIndex, Int64 count);

 void MoveOut16(AddressSpace space, Int64 destinationOffset,

 Int16[] sourceBuffer);

 void MoveOut16(AddressSpace space, Int64 destinationOffset,

 Int16[] sourceBuffer, Int64 sourceIndex, Int64 count);

Section 10: Register Based Session Interfaces Page 10-3

 void MoveOut32(AddressSpace space, Int64 destinationOffset,

 Int32[] sourceBuffer);

 void MoveOut32(AddressSpace space, Int64 destinationOffset,

 Int32[] sourceBuffer, Int64 sourceIndex, Int64 count);

 void MoveOut64(AddressSpace space, Int64 destinationOffset,

 Int64[] sourceBuffer);

 void MoveOut64(AddressSpace space, Int64 destinationOffset,

 Int64[] sourceBuffer, Int64 sourceIndex, Int64 count);

}

CORRESPONDING VISA FEATURES

The IRegisterBasedSession interface has several .NET properties that correspond to attributes defined

in VISA. The following table shows property-attribute equivalence for IRegisterBasedSession.

Property Name VISA Attribute Name

AllowDma VI_ATTR_DMA_ALLOW_EN

DestinationIncrement VI_ATTR_DEST_INCREMENT

SourceIncrement VI_ATTR_SRC_INCREMENT

The IRegisterBasedSession interface has several .NET methods that correspond to functions defined

in VISA. The following table shows method-function correspondence for IRegisterBasedSession.

Method Name VISA Function Name

MapAddress viMapAddressEx

In8 viIn8Ex

In16 viIn16Ex

In32 viIn32Ex

In64 viIn64Ex

Out8 viOut8Ex

Out16 viOut16Ex

Out32 viOut32Ex

Out64 viOut64Ex

MoveIn8 viMoveIn8Ex

MoveIn16 viMoveIn16Ex

MoveIn32 viMoveIn32Ex

MoveIn64 viMoveIn64Ex

MoveOut8 viMoveOut8Ex

MoveOut16 viMoveOut16Ex

MoveOut32 viMoveOut32Ex

MoveOut64 viMoveOut64Ex

IMPLEMENTATION

RULE 10.1.1

VISA.NET I/O register based session classes SHALL implement IRegisterBasedSession interface

properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except as

specified otherwise in this specification.

Page 10-4 Section 10: Register Based Session Interfaces

RULE 10.1.2
All VISA.NET I/O session classes that implement the VXI and GPIB-VXI INSTR resources SHALL

implement the IRegisterBasedSession interface.

Section 10: Register Based Session Interfaces Page 10-5

10.2. IMemoryMap

DESCRIPTION

Provides memory mapping services for register-based devices.

DEFINITION

public interface IMemoryMap : IDisposable

{

 AddressSpace AddressSpace { get; }

 Int64 BaseAddress { get; }

 Int64 Size { get; }

 IntPtr VirtualAddress { get; }

 Byte Peek8(Int64 offset);

 Int16 Peek16(Int64 offset);

 Int32 Peek32(Int64 offset);

 Int64 Peek64(Int64 offset);

 void Poke8(Int64 offset, Byte value);

 void Poke16(Int64 offset, Int16 value);

 void Poke32(Int64 offset, Int32 value);

 void Poke64(Int64 offset, Int64 value);

}

CORRESPONDING VISA FEATURES

The IMemoryMap interface has several .NET properties that correspond to attributes defined in VISA. The

following table shows property-attribute correspondence for IMemoryMap.

Property Name VISA Attribute Name

AddressSpace
N/A (this is the parameter passed to

MapAddress.)

BaseAddress VI_ATTR_WIN_BASE_ADDR_64

Size VI_ATTR_WIN_SIZE_64

VirtualAddress

N/A (this is the output pointer from

viMapAddressEx if the pointer can be

dereferenced; otherwise, this is

IntPtr.Zero)

The IMemoryMap interface has several .NET methods that correspond to functions defined in VISA. The

following table shows method-function correspondence for IMemoryMap.

Method Name VISA Function Name

Peek8 viPeek8

Peek16 viPeek16

Peek32 viPeek32

Peek64 viPeek64

Poke8 viPoke8

Poke16 viPoke16

Poke32 viPoke32

Poke64 viPoke64

Page 10-6 Section 10: Register Based Session Interfaces

Dispose viUnmapAddress

Section 11: INSTR Resources Page 11-1

Section 11: INSTR Resources

The INSTR session type lets a controller interact with the device associated with this session type, by

providing the controller with services to send blocks of data to the device, request blocks of data from the

device, send the device clear command to the device, trigger the device, and find information about the

device’s status. In addition, it allows the controller to access registers on devices that reside on memory-

mapped buses.

11.1. IGpibSession

DESCRIPTION

The INSTR session type for GPIB devices.

DEFINITION

public interface IGpibSession : IMessageBasedSession

{

 Boolean AllowDma { get; set; }

 Int16 PrimaryAddress { get; }

 Boolean ReaddressingEnabled { get; set; }

 LineState RenState { get; }

 Int16 SecondaryAddress { get; }

 Boolean UnaddressingEnabled { get; set; }

 void SendRemoteLocalCommand(RemoteLocalMode mode);

 void SendRemoteLocalCommand(GpibInstrumentRemoteLocalMode mode);

}

CORRESPONDING VISA FEATURES

The IGpibSession interface has several .NET properties that correspond to attributes defined in VISA.

The following table shows property-attribute equivalence for IGpibSession.

Property Name VISA Attribute Name

AllowDma VI_ATTR_DMA_ALLOW_EN

PrimaryAddress VI_ATTR_GPIB_PRIMARY_ADDR

ReaddressingEnabled VI_ATTR_GPIB_READDR_EN

RenState VI_ATTR_GPIB_REN_STATE

SecondaryAddress VI_ATTR_GPIB_SECONDARY_ADDR

UnaddressingEnabled VI_ATTR_GPIB_UNADDR_EN

The IGpibSession interface has several .NET methods that correspond to functions defined in VISA.

The following table shows method-function correspondence for IGpibSession.

Method Name VISA Function Name

SendRemoteLocalCommand viGpibControlREN

IMPLEMENTATION

Page 11-2 Section 11: INSTR Resources

RULE 11.1.1

VISA.NET I/O GPIB and GPIB_VXI INSTR session classes SHALL implement IGpibSession interface

properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except as

specified otherwise in this specification.

RULE 11.1.2
All VISA.NET I/O session classes that implement the GPIB and GPIB-VXI INSTR resources SHALL

implement the interface IGpibSession.

Section 11: INSTR Resources Page 11-3

11.2. IPxiSession

DESCRIPTION

The INSTR session type for PXI devices.

DEFINITION

public interface IPxiSession : IRegisterBasedSession

{

 event EventHandler<PxiInterruptEventArgs> Interrupt;

 Int16 ActualLinkWidth { get; }

 Boolean AllowWriteCombining { get; set; }

 Int16 BusNumber { get; }

 Int16 ChassisNumber { get; }

 Int16 DeviceNumber { get; }

 Int16 DstarBusNumber { get; }

 Int16 DstarLineSet { get; }

 Int16 FunctionNumber { get; }

 Boolean IsExpress { get; }

 Int16 ManufacturerId { get; }

 String ManufacturerName { get; }

 Int16 MaxLinkWidth { get; }

 PxiMemoryType MemTypeBar0 { get; }

 PxiMemoryType MemTypeBar1 { get; }

 PxiMemoryType MemTypeBar2 { get; }

 PxiMemoryType MemTypeBar3 { get; }

 PxiMemoryType MemTypeBar4 { get; }

 PxiMemoryType MemTypeBar5 { get; }

 Int64 MemBaseBar0 { get; }

 Int64 MemBaseBar1 { get; }

 Int64 MemBaseBar2 { get; }

 Int64 MemBaseBar3 { get; }

 Int64 MemBaseBar4 { get; }

 Int64 MemBaseBar5 { get; }

 Int64 MemSizeBar0 { get; }

 Int64 MemSizeBar1 { get; }

 Int64 MemSizeBar2 { get; }

 Int64 MemSizeBar3 { get; }

 Int64 MemSizeBar4 { get; }

 Int64 MemSizeBar5 { get; }

 Int16 ModelCode { get; }

 String ModelName { get; }

 Int16 Slot { get; }

 Int16 SlotLinkWidth { get; }

 Int16 SlotLocalBusLeft { get; }

 Int16 SlotLocalBusRight { get; }

 String SlotPath { get; } Int16 StarTriggerBus { get; }

 Int16 StarTriggerLine { get; }

 Int16 TriggerBus { get; }

#if NET6_0_OR_GREATER

Page 11-4 Section 11: INSTR Resources

 Int16 SlotOffset { get; }

 Int16 SlotWidth { get; }

#endif

 void ReserveTrigger(TriggerLine line);

 void UnreserveTrigger(TriggerLine line);

}

CORRESPONDING VISA FEATURES

The IPxiSession interface has several .NET properties that correspond to attributes defined in VISA.

The following table shows property-attribute equivalence for IPxiSession.

Property Name VISA Attribute Name

ActualLinkWidth VI_ATTR_PXI_ACTUAL_LWIDTH

AllowWriteCombining VI_ATTR_PXI_ALLOW_WRITE_COMBINE

BusNumber VI_ATTR_PXI_BUS_NUM

ChassisNumber VI_ATTR_PXI_CHASSIS

DeviceNumber VI_ATTR_PXI_DEV_NUM

DstarBusNumber VI_ATTR_PXI_DSTAR_BUS

DstarLineSet VI_ATTR_PXI_DSTAR_SET

FunctionNumber VI_ATTR_PXI_FUNC_NUM

IsExpress VI_ATTR_PXI_IS_EXPRESS

ManufacturerId VI_ATTR_MANF_ID

ManufacturerName VI_ATTR_MANF_NAME

MaxLinkWidth VI_ATTR_PXI_MAX_LWIDTH

MemTypeBar0 VI_ATTR_PXI_MEM_TYPE_BAR0

MemTypeBar1 VI_ATTR_PXI_MEM_TYPE_BAR1

MemTypeBar2 VI_ATTR_PXI_MEM_TYPE_BAR2

MemTypeBar3 VI_ATTR_PXI_MEM_TYPE_BAR3

MemTypeBar4 VI_ATTR_PXI_MEM_TYPE_BAR4

MemTypeBar5 VI_ATTR_PXI_MEM_TYPE_BAR5

MemBaseBar0 VI_ATTR_PXI_MEM_BASE_BAR0

MemBaseBar1 VI_ATTR_PXI_MEM_BASE_BAR1

MemBaseBar2 VI_ATTR_PXI_MEM_BASE_BAR2

MemBaseBar3 VI_ATTR_PXI_MEM_BASE_BAR3

MemBaseBar4 VI_ATTR_PXI_MEM_BASE_BAR4

MemBaseBar5 VI_ATTR_PXI_MEM_BASE_BAR5

MemSizeBar0 VI_ATTR_PXI_MEM_SIZE_BAR0

MemSizeBar1 VI_ATTR_PXI_MEM_SIZE_BAR1

MemSizeBar2 VI_ATTR_PXI_MEM_SIZE_BAR2

MemSizeBar3 VI_ATTR_PXI_MEM_SIZE_BAR3

MemSizeBar4 VI_ATTR_PXI_MEM_SIZE_BAR4

MemSizeBar5 VI_ATTR_PXI_MEM_SIZE_BAR5

ModelCode VI_ATTR_MODEL_CODE

ModelName VI_ATTR_MODEL_NAME

Slot VI_ATTR_SLOT

Section 11: INSTR Resources Page 11-5

SlotLinkWidth VI_ATTR_PXI_SLOT_LWIDTH

SlotLocalBusLeft VI_ATTR_PXI_SLOT_LBUS_LEFT

SlotLocalBusRight VI_ATTR_PXI_SLOT_LBUS_RIGHT

SlotPath VI_ATTR_PXI_SLOTPATH

StarTriggerBus VI_ATTR_PXI_STAR_TRIG_BUS

StarTriggerLine VI_ATTR_PXI_STAR_TRIG_LINE

TriggerBus VI_ATTR_PXI_TRIG_BUS

SlotOffset VI_ATTR_PXI_SLOT_WIDTH

SlotWidth VI_ATTR_PXI_SLOT_OFFSET

The IPxiSession interface has several .NET methods that correspond to functions defined in VISA. The

following table shows method-function correspondence for IPxiSession.

Method Name VISA Function Name

ReserveTrigger viAssertTrigger with

VI_TRIG_PROT_RESERVE

UnreserveTrigger viAssertTrigger with

VI_TRIG_PROT_UNRESERVE

N/A viMoveEx1

viMoveAsyncEx

The IPxiSession interface has one .NET event that correspond to an event defined in VISA. The

following table shows correspondence for IPxiSession.

Event Name VISA Function Name

Interrupt VI_EVENT_PXI_INTR

IMPLEMENTATION

OBSERVATION 11.2.1

SlotOffset and SlotWidth are omitted from the .NET Framework API for this interface. In the .NET

Framework API, they are located in IPxiSession2.

RULE 11.2.2

VISA.NET I/O PXI session classes SHALL implement IPxiSession interface properties and methods as

specified in VPP 4.3 for corresponding attributes and functions, except as specified otherwise in this

specification.

RULE 11.2.3
All VISA.NET I/O session classes that implement the PXI resources SHALL implement the interface

IPxiSession.

11.2.2. IPxiSession2 (.NET Framework Only)

DESCRIPTION

In the .NET Framework API, the INSTR session type for PXI devices. This derives from and supercedes

IPxiSession for the .NET Framework API only.

DEFINITION

1 Refer to the footnote in Section 12.2.

Page 11-6 Section 11: INSTR Resources

#if NETFRAMEWORK

public interface IPxiSession2 : IPxiSession

{

 Int16 SlotWidth { get; }

 Int16 SlotOffset { get; }

}

#endif

CORRESPONDING VISA FEATURES

The IPxiSession2 interface has several .NET properties that correspond to attributes defined in VISA.

The following table shows property-attribute equivalence for IPxiSession2.

Property Name VISA Attribute Name

SlotWidth VI_ATTR_PXI_SLOT_WIDTH

SlotOffset VI_ATTR_PXI_SLOT_OFFSET

IMPLEMENTATION

RULE 11.2.4

.NET Framework versions of VISA.NET I/O PXI session classes SHALL implement IPxiSession2

interface properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except

as specified otherwise in this specification.

RULE 11.2.5
.NET Framework versions of VISA.NET I/O session classes that implement the PXI resources SHALL

implement the interface IPxiSession2.

Section 11: INSTR Resources Page 11-7

11.3. ISerialSession

DESCRIPTION

The INSTR session type for serial (RS-232) devices.

DEFINITION

public interface ISerialSession : IMessageBasedSession

{

 Int32 BytesAvailable { get; }

 Int32 BaudRate { get; set; }

 LineState ClearToSendState { get; }

 Int16 DataBits { get; set; }

 LineState DataCarrierDetectState { get; }

 LineState DataSetReadyState { get; }

 LineState DataTerminalReadyState { get; set; }

 SerialFlowControlModes FlowControl { get; set; }

 SerialParity Parity { get; set; }

 SerialTerminationMethod ReadTermination { get; set; }

 Byte ReplacementCharacter { get; set; }

 LineState RequestToSendState { get; set; }

 LineState RingIndicatorState { get; }

 SerialStopBitsMode StopBits { get; set; }

 SerialTerminationMethod WriteTermination { get; set; }

 Byte XOffCharacter { get; set; }

 Byte XOnCharacter { get; set; }

 void Flush(IOBuffers buffers, Boolean discard);

 Boolean SetBufferSize(IOBuffers buffers, Int32 size); }

CORRESPONDING VISA FEATURES

The ISerialSession interface has several .NET properties that correspond to attributes defined in VISA.

The following table shows property-attribute equivalence for ISerialSession.

Property Name VISA Attribute Name

BytesAvailable VI_ATTR_ASRL_AVAIL_NUM

BaudRate VI_ATTR_ASRL_BAUD

ClearToSendState VI_ATTR_ASRL_CTS_STATE

DataBits VI_ATTR_ASRL_DATA_BITS

DataCarrierDetectState VI_ATTR_ASRL_DCD_STATE

DataSetReadyState VI_ATTR_ASRL_DSR_STATE

DataTerminalReadyState VI_ATTR_ASRL_DTR_STATE

FlowControl VI_ATTR_ASRL_FLOW_CNTRL

Parity VI_ATTR_ASRL_PARITY

ReadTermination VI_ATTR_ASRL_END_IN

ReplacementCharacter VI_ATTR_ASRL_REPLACE_CHAR

RequestToSendState VI_ATTR_ASRL_RTS_STATE

RingIndicatorState VI_ATTR_ASRL_RI_STATE

StopBits VI_ATTR_ASRL_STOP_BITS

Page 11-8 Section 11: INSTR Resources

WriteTermination VI_ATTR_ASRL_END_OUT

XOffCharacter VI_ATTR_ASRL_XOFF_CHAR

XOnCharacter VI_ATTR_ASRL_XON_CHAR

The ISerialSession interface has several .NET methods that correspond to functions defined in VISA.

The following table shows method-function correspondence for ISerialSession.

Method Name VISA Function Name

Flush viFlush

SetBufferSize viSetBuf

IMPLEMENTATION

RULE 11.3.1

VISA.NET I/O ASRL INSTR session classes SHALL implement ISerialSession interface properties

and methods as specified in VPP 4.3 for corresponding attributes and functions, except as specified

otherwise in this specification.

RULE 11.3.2
All VISA.NET I/O session classes that implement the ASRL INSTR resource SHALL implement the

interface ISerialSession.

Section 11: INSTR Resources Page 11-9

11.4. ITcpipSession

DESCRIPTION

The INSTR session type for LAN devices.

DEFINITION

public interface ITcpipSession : IMessageBasedSession

{

 String Address { get; }

 String DeviceName { get; }

 String HostName { get; }

 Int16 Port { get; }

 Boolean IsHiSLIP { get; }

 Boolean HiSLIPOverlapEnabled { get; set; }

 Version HiSLIPProtocolVersion { get; }

 Int32 HiSLIPMaximumMessageKBytes { get; set; }

#if NET6_0_OR_GREATER

 Boolean EncryptionEnabled { get; set; }

 String SaslMechanism { get; }

 String ServerCertificate { get; }

 System.DateTime ServerCertificateExpirationDate { get; }

 Boolean ServerCertificateIsPerpetual { get; }

 String ServerCertificateIssuerName { get; }

 String ServerCertificateSubjectName { get; }

 String TlsCipherSuite { get; }

#endif

 Boolean SetBufferSize(IOBuffers buffers, Int32 size);

 void SendRemoteLocalCommand(RemoteLocalMode mode);

}

CORRESPONDING VISA FEATURES

The ITcpipSession interface has several .NET properties that correspond to attributes defined in VISA.

The following table shows property-attribute equivalence for ITcpipSession.

Property Name VISA Attribute Name

Address VI_ATTR_TCPIP_ADDR

DeviceName VI_ATTR_TCPIP_DEVICE_NAME

HostName VI_ATTR_TCPIP_HOSTNAME

Port VI_ATTR_TCPIP_PORT

IsHiSLIP VI_ATTR_TCPIP_IS_HISLIP

HiSLIPProtocolVersion VI_ATTR_TCPIP_HISLIP_VERSION

HiSLIPMaximumMessageKBytes VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB

HiSLIPOverlapEnabled VI_ATTR_TCPIP_HISLIP_OVERLAP_EN

EncryptionEnabled VI_ATTR_TCPIP_HISLIP_ENCRYPTION_ENABLED

SaslMechanism VI_ATTR_TCPIP_SASL_MECHANISM

ServerCertificate VI_ATTR_TCPIP_SERVER_CERT

ServerCertificateExpirationDate VI_ATTR_TCPIP_SERVER_CERT_EXPIRATION_DATE

Page 11-10 Section 11: INSTR Resources

ServerCertificateIsPerpetual VI_ATTR_TCPIP_SERVER_CERT_IS_PERPETUAL

ServerCertificateIssuerName VI_ATTR_TCPIP_SERVER_CERT_ISSUER_NAME

ServerCertificateSubjectName VI_ATTR_TCPIP_SERVER_CERT_SUBJECT_NAME

TlsCipherSuite VI_ATTR_TCPIP_TLS_CIPHER_SUITE

The ITcpipSession interface has several .NET methods that correspond to functions defined in VISA.

The following table shows method-function correspondence for ITcpipSession.

Method Name VISA Function Name

SetBufferSize viSetBuf

SendRemoteLocalCommand viGpibControlRen

IMPLEMENTATION

OBSERVATION 11.4.1

Security related properties EncryptionEnabled, SaslMechanism, ServerCertificate,

ServerCertificateExpirationDate, ServerCertificateIsPerpetual,

ServerCertificateIssuerName, ServerCertificateSubjectName, and TlsCipherSuite are

omitted from the .NET Framework API for this interface. In the .NET Framework API, they are located in

IPxiSession2.

RULE 11.4.2

VISA.NET I/O TCPIP INSTR session classes SHALL implement ITcpipSession interface properties

and methods as specified in VPP 4.3 for corresponding attributes and functions, except as specified

otherwise in this specification.

RULE 11.4.3
All VISA.NET I/O session classes that implement the TCPIP INSTR resource SHALL implement the

interface ITcpipSession.

OBSERVATION 11.4.2

.NET Framework classes implement ITcpipSession2, which declares the security properties enumerated

in OBSERVATION 11.4.1. Because of this, .NET Framework TCPIP session classes must implement the

security properties, and so are functionally equivalent to .NET TCPIP session classes that only implement

ITcpipSession.

RULE 11.4.4
For implementations of ITcpipSession for VXI-11 devices, IsHiSLIP SHALL return false.

OBSERVATION 11.4.3

If IsHiSLIP returns false, accessing the following properties may result in an exception: Port,
HiSLIPProtocolVersion, HiSLIPMaximumMessageKBytes, HiSLIPOverlapEnabled.

11.4.2. ITcpipSession2 (.NET Framework Only)

DESCRIPTION

In the .NET Framework API only, the INSTR session type for LAN devices. This derives from and

supercedes ITcpipSession for the .NET Framework API only.

DEFINITION

#if NETFRAMEWORK

public interface ITcpipSession2 : ITcpipSession

{

 Boolean EncryptionEnabled { get; set; }

Section 11: INSTR Resources Page 11-11

 String SaslMechanism { get; }

 String ServerCertificate { get; }

 System.DateTime ServerCertificateExpirationDate { get; }

 Boolean ServerCertificateIsPerpetual { get; }

 String ServerCertificateIssuerName { get; }

 String ServerCertificateSubjectName { get; }

 String TlsCipherSuite { get; }

}

#endif

CORRESPONDING VISA FEATURES

The ITcpipSession2 interface has several .NET properties that correspond to attributes defined in VISA.

The following table shows property-attribute equivalence for ITcpipSession2.

Property Name VISA Attribute Name

EncryptionEnabled VI_ATTR_TCPIP_HISLIP_ENCRYPTION_ENABLED

SaslMechanism VI_ATTR_TCPIP_SASL_MECHANISM

ServerCertificate VI_ATTR_TCPIP_SERVER_CERT

ServerCertificateExpirationDate VI_ATTR_TCPIP_SERVER_CERT_EXPIRATION_DATE

ServerCertificateIsPerpetual VI_ATTR_TCPIP_SERVER_CERT_IS_PERPETUAL

ServerCertificateIssuerName VI_ATTR_TCPIP_SERVER_CERT_ISSUER_NAME

ServerCertificateSubjectName VI_ATTR_TCPIP_SERVER_CERT_SUBJECT_NAME

TlsCipherSuite VI_ATTR_TCPIP_TLS_CIPHER_SUITE

IMPLEMENTATION

RULE 11.4.5

.NET Framework versions of VISA.NET I/O TCPIP INSTR session classes SHALL implement

ITcpipSession2 interface properties and methods as specified in VPP 4.3 for corresponding attributes,

except as specified otherwise in this specification.

RULE 11.4.6
.NET Framework versions of VISA.NET I/O session classes that implement the TCPIP INSTR resource

SHALL implement the interface ITcpipSession2.

OBSERVATION 11.4.4

If ITcpipSession.IsHiSLIP returns false, accessing the EncryptionEnabled property may result in

an exception.

Page 11-12 Section 11: INSTR Resources

11.5. IUsbSession

DESCRIPTION

The INSTR session type for USBTMC devices.

DEFINITION

public interface IUsbSession : IMessageBasedSession

{

 event EventHandler<UsbInterruptEventArgs> Interrupt;

 Boolean Is4882Compliant { get; }

 Int16 MaximumInterruptSize { get; set; }

 Int16 ManufacturerId { get; }

 String ManufacturerName { get; }

 Int16 ModelCode { get; }

 String ModelName { get; }

 Int16 UsbInterfaceNumber { get; }

 Int16 UsbProtocol { get; }

 String UsbSerialNumber { get; }

 Byte[] ControlIn(Int16 requestType,

 Int16 request,

 Int16 value,

 Int16 index,

 Int16 length);

 void ControlOut(Int16 requestType,

 Int16 request,

 Int16 value,

 Int16 index);

 void ControlOut(Int16 requestType,

 Int16 request,

 Int16 value,

 Int16 index,

 Byte[] data);

 void SendRemoteLocalCommand(RemoteLocalMode mode);

}

CORRESPONDING VISA FEATURES

The IUsbSession interface has several .NET properties that correspond to attributes defined in VISA.

The following table shows property-attribute equivalence for IUsbSession.

Property Name VISA Attribute Name

Is4882Compliant VI_ATTR_4882_COMPLIANT

MaximumInterruptSize VI_ATTR_USB_MAX_INTR_SIZE

ManufacturerId VI_ATTR_MANF_ID

ManufacturerName VI_ATTR_MANF_NAME

ModelCode VI_ATTR_MODEL_CODE

ModelName VI_ATTR_MODEL_NAME

Section 11: INSTR Resources Page 11-13

UsbInterfaceNumber VI_ATTR_USB_INTFC_NUM

UsbProtocol VI_ATTR_USB_PROTOCOL

UsbSerialNumber VI_ATTR_USB_SERIAL_NUM

The IUsbSession interface has several .NET methods that correspond to functions defined in VISA. The

following table shows method-function correspondence for IUsbSession.

Method Name VISA Function Name

ControlIn viUsbControlIn

ControlOut viUsbControlOut

SendRemoteLocalCommand viGpibControlREN

The IUsbSession interface has one .NET event that corresponds to an event defined in VISA. The

following table shows correspondence for IUsbSession.

Event Name VISA Event Name

Interrupt VI_EVENT_USB_INTR

IMPLEMENTATION

RULE 11.5.1

VISA.NET I/O USB INSTR session classes SHALL implement IUsbSession interface properties and

methods as specified in VPP 4.3 for corresponding attributes and functions, except as specified otherwise in

this specification.

RULE 11.5.2
All VISA.NET I/O session classes that implement the USB INSTR resource SHALL implement the

interface IUsbSession.

Page 11-14 Section 11: INSTR Resources

11.6. IVxiSession

DESCRIPTION

The INSTR session type for VXI devices.

DEFINITION

public interface IVxiSession : IMessageBasedSession, IRegisterBasedSession

{

 event EventHandler<VxiInterruptEventArgs> Interrupt;

 event EventHandler<VxiSignalProcessorEventArgs> SignalProcessor;

 event EventHandler<VxiTriggerEventArgs> Trigger;

 Int16 CommanderLogicalAddress { get; }

 VxiAccessPrivilege DestinationAccessPrivilege { get; set; }

 ByteOrder DestinationByteOrder { get; set; }

 VxiDeviceClass DeviceClass { get; }

 Int16 FastDataChannelNumber { get; set; }

 Boolean FastDataChannelUseStreaming { get; set; }

 Boolean FastDataChannelUsePair { get; set; }

 Boolean Is4882Compliant { get; }

 Boolean IsImmediateServant { get; }

 Int16 LogicalAddress { get; }

 Int16 ChassisLogicalAddress { get; }

 Int16 ManufacturerId { get; }

 String ManufacturerName { get; }

 VxiAccessPrivilege MemoryMapAccessPrivilege { get; set; }

 ByteOrder MemoryMapByteOrder { get; set; }

 Int64 MemoryBase { get; }

 Int64 MemorySize { get; }

 AddressSpace MemorySpace { get; }

 ByteOrder SourceByteOrder { get; set; }

 Int16 ModelCode { get; }

 String ModelName { get; }

 Int16 Slot { get; }

 VxiAccessPrivilege SourceAccessPrivilege { get; set; }

 TriggerLine TriggerLine { get; set; }

 TriggerLines TriggerSupport { get; }

 void AssertTrigger(VxiTriggerProtocol protocol);

 Int32 CommandQuery(VxiCommandMode mode, Int32 command);

 Int64 MemoryAllocate(Int64 size);

 void MemoryFree(Int64 offset);}

CORRESPONDING VISA FEATURES

The IVxiSession interface has several .NET properties that correspond to attributes defined in VISA.

The following table shows property-attribute equivalence for IVxiSession.

Property Name VISA Attribute Name

CommanderLogicalAddress VI_ATTR_CMDR_LA

DestinationAccessPriviledge VI_ATTR_DEST_ACCESS_PRIV

Section 11: INSTR Resources Page 11-15

DestinationByteOrder VI_ATTR_DEST_BYTE_ORDER

DeviceClass VI_ATTR_VXI_DEV_CLASS

FastDataChannelNumber VI_ATTR_FDC_CHNL

FastDataChannelUseStreaming VI_ATTR_FDC_MODE

FastDataChannelUsePair VI_ATTR_FDC_USE_PAIR

Is4882Compliant VI_ATTR_4882_COMPLIANT

ImmediateServant VI_ATTR_IMMEDIATE_SERV

Logical Address VI_ATTR_VXI_LA

ChassisLogicalAddress VI_ATTR_MAINFRAME_LA

ManufacturerID VI_ATTR_MANF_ID

ManufacturerName VI_ATTR_MANF_NAME

MemoryMapAccessPrivilege VI_ATTR_WIN_ACCESS_PRIV

MemoryMapByteOrder VI_ATTR_WIN_BYTE_ORDER

MemoryBase VI_ATTR_MEM_BASE

MemorySize VI_ATTR_MEM_SIZE

MemorySpace VI_ATTR_MEM_SPACE

SourceByteOrder VI_ATTR_SRC_BYTE_ORDER

ModelCode VI_ATTR_MODEL_CODE

ModelName VI_ATTR_MODEL_NAME

Slot VI_ATTR_SLOT

SourceAccessPrivilege VI_ATTR_SRC_ACCESS_PRIV

TriggerLine VI_ATTR_TRIG_ID

TriggerSupport VI_ATTR_VXI_TRIG_SUPPORT

The IVxiSession interface has several .NET methods that correspond to functions defined in VISA. The

following table shows method-function correspondence for IVxiSession.

Method Name VISA Function Name

AssertTrigger viAssertTrigger

CommandQuery viVxiCommandQuery

MemoryAllocate viMemAllocEx

MemoryFree viMemFreeEx

The IVxiSession interface has several .NET events that correspond to events defined in VISA. The

following table shows correspondence for IVxiSession.

Event Name VISA Event Name

Interrupt VI_EVENT_VXI_VME_INTR

SignalProcessor VI_EVENT_VXI_SIGP

Trigger VI_EVENT_TRIG

IMPLEMENTATION

RULE 11.6.1

VISA.NET I/O VXI and GPIB-VXI INSTR session classes SHALL implement IVxiSession interface

properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except as

specified otherwise in this specification.

Section 12: MEMACC Resources Page 12-1

Section 12: MEMACC Resources

The MEMACC session type lets a controller perform memory access operations. It does this by providing

the controller with services to access arbitrary registers or memory addresses on memory-mapped buses.

Two MEMACC session types are defined for VISA.NET I/O. The first is for VXI MEMACC resources

and GPIB-VXI resources, and the second is for PXI. For VXI, MEMACC sessions access the individual

VXI memory spaces on the VXI backplane (A16, A24, A32, A64). For PXI, MEMACC sessions access

the physical memory on the PCI bus.

Page 12-2 Section 12: MEMACC Resources

12.1. IPxiMemorySession

DESCRIPTION

The MEMACC session type for PXI devices.

DEFINITION

public interface IPxiMemorySession : IRegisterBasedSession

{

 Int64 MemoryAllocate(Int64 size);

 Int64 MemoryAllocate(Int64 size, Boolean require32BitRegion);

 void MemoryFree(Int64 offset);

}

CORRESPONDING VISA FEATURES

The IPxiMemorySession interface has several .NET methods that correspond to functions defined in

VISA. The following table shows method-function correspondence for IPxiMemorySession.

Method Name VISA Function Name

MemoryAllocate viMemAlloc (result must fit in 32 bits.)

viMemAllocEx

MemoryFree viMemFreeEx

N/A viMoveEx1

viMoveAsyncEx

IMPLEMENTATION

RULE 12.1.1

VISA.NET I/O PXI MEMACC session classes SHALL implement IPxiMemorySession interface

properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except as

specified otherwise in this specification.

1 Refer to the footnote in Section 12.2.

Section 12: MEMACC Resources Page 12-3

12.2. IVxiMemorySession Interface

DESCRIPTION

The MEMACC session type for VXI devices.

DEFINITION

public interface IVxiMemorySession : IRegisterBasedSession

{

 Int16 LogicalAddress { get; }

 void Move(AddressSpace sourceSpace,

 Int64 sourceOffset,

 DataWidth sourceWidth,

 AddressSpace destinationSpace,

 Int64 destinationOffset,

 DataWidth destinationWidth,

 Int64 sourceCount);

}

CORRESPONDING VISA FEATURES

The IVxiMemorySession interface has several .NET properties that correspond to attributes defined in

VISA. The following table shows property-attribute equivalence for IVxiMemorySession.

Property Name VISA Attribute Name

LogicalAddress VI_ATTR_VXI_LA

The IVxiMemorySession interface has several .NET methods that correspond to functions defined in

VISA. The following table shows method-function correspondence for IVxiMemorySession.

Method Name VISA Function Name

Move viMoveEx1

N/A viMoveAsyncEx2

IMPLEMENTATION

RULE 12.2.1

VISA.NET I/O VXI MEMACC session classes SHALL implement IVxiMemorySession interface

properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except as

specified otherwise in this specification.

1 The intent of this method in this interface is to move data from one device to another. The same is not true of PXI,

where such moves are not defined. Moves from a device to local space can be accomplished with MoveIn or

MoveOut. The decision not to include Move in IPxiSession or IPxiMemorySession was a deliberate one.
2 viMoveAsync was deliberately omitted from this interface because it is not a common use case. The equivalent

behavior can be controlled with more precision by a multi-threaded client.

Section 13: INTFC Resources Page 13-1

Section 13: INTFC Resources

The only INTFC session type defined for VISA.NET I/O resources is the GPIB INTFC resource. The

INTFC session type lets a GPIB controller interact with any devices connected to the board associated with

this session type. Services are provided to send blocks of data onto the bus, request blocks of data from the

bus, trigger devices on the bus, and send miscellaneous commands to any or all devices. In addition, the

controller can directly query and manipulate specific lines on the bus, and also pass control to other devices

with controller capability.

13.1. IGpibInterfaceSession Interface

DESCRIPTION

The INTFC session type for GPIB buses.

DEFINITION

public interface IGpibInterfaceSession : IVisaSession

{

 event EventHandler<VisaEventArgs> Cleared;

 event EventHandler<GpibControllerInChargeEventArgs> ControllerInCharge;

 event EventHandler<VisaEventArgs> Listen;

 event EventHandler<VisaEventArgs> ServiceRequest;

 event EventHandler<VisaEventArgs> Talk;

 event EventHandler<VisaEventArgs> Trigger;

 GpibAddressedState AddressState { get; }

 Boolean AllowDma { get; set; }

 LineState AtnState { get; }

 Int16 HS488CableLength { get; set; }

 Byte DeviceStatusByte { get; set; }

 IOProtocol IOProtocol { get; set; }

 Boolean IsControllerInCharge { get; }

 Boolean IsSystemController { get; set; }

 LineState NdacState { get; }

 Int16 PrimaryAddress { get; set; }

 LineState RenState { get; }

 Int16 SecondaryAddress { get; set; }

 public bool SendEndEnabled { get; set; }

 LineState SrqState { get; }

 public byte TerminationCharacter { get; set; }

 public bool TerminationCharacterEnabled { get; set; }

 public void AssertTrigger();

 void PassControl(Int16 primaryAddress);

 void PassControl(Int16 primaryAddress, Int16 secondaryAddress);

 void ControlAtn(AtnMode command);

 Int32 SendCommand(Byte[] data);

 void SendRemoteLocalCommand(GpibInterfaceRemoteLocalMode mode);

 void SendInterfaceClear();

 IMessageBasedRawIO RawIO { get; }

Page 13-2 Section 13: INTFC Resources

}

CORRESPONDING VISA FEATURES

The IGpibInterfaceSession interface has several .NET properties that correspond to attributes defined

in VISA. The following table shows property-attribute equivalence for IGpibInterfaceSession.

Property Name VISA Attribute Name

AddressingState VI_ATTR_GPIB_ADDR_STATE

AllowDma VI_ATTR_DMA_ALLOW_EN

AtnState VI_ATTR_GPIB_ATN_STATE

DeviceStatusByte VI_ATTR_DEV_STATUS_BYTE

IOProtocol VI_ATTR_IO_PROT

IsControllerInCharge VI_ATTR_GPIB_CIC_STATE

IsSystemController VI_ATTR_GPIB_SYS_CNTRL_STATE

HS488CableLength VI_ATTR_GPIB_HS488_CBL_LEN

NdacState VI_ATTR_GPIB_NDAC_STATE

PrimaryAddress VI_ATTR_GPIB_PRIMARY_ADDR

RenState VI_ATTR_GPIB_REN_STATE

SecondaryAddress VI_ATTR_GPIB_SECONDARY_ADDR

SrqState VI_ATTR_GPIB_SRQ_STATE

The IGpibInterfaceSession interface has several .NET methods that correspond to functions defined

in VISA. The following table shows method-function correspondence for IGpibInterfaceSession.

Method Name VISA Function Name

SendCommand viGpibCommand

ControlAtn viGpibControlATN

SendRemoteLocalCommand viGpibControlREN

PassControl viGpibPassControl

SendInterfaceClear viGpibSendIFC

The IGpibInterfaceSession interface has several .NET events that correspond to events defined in

VISA. The following table shows correspondence for IGpibInterfaceSession.

Event Name VISA Function Name

Cleared VI_EVENT_CLEAR

ControllerInCharge VI_EVENT_GPIB_CIC

Listen VI_EVENT_GPIB_LISTEN

ServiceRequest VI_EVENT_SERVICE_REQ

Talk VI_EVENT_GPIB_TALK

Trigger VI_EVENT_TRIG

IMPLEMENTATION

RULE 13.1.1

VISA.NET I/O GPIB INTFC session classes SHALL implement IGpibInterfaceSession interface

properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except as

specified otherwise in this specification.

Section 14: SOCKET Resources Page 14-1

Section 14: SOCKET Resources

The SOCKET session type exposes the capability of a raw network socket connection over TCP/IP. This

ususally means Ethernet but the protocol is not restricted to that physical interface. Services are provided to

send and receive blocks of data. If the device is capable of communicating with 488.2-style strings, an

attribute setting also allows sending software triggers, querying a 488-style status byte, and sending a

device clear message.

14.1. ITcpipSocketSession

DESCRIPTION

The SOCKET session type for TCPIP devices.

DEFINITION

public interface ITcpipSocketSession : IMessageBasedSession

{

 String Address { get; }

 String HostName { get; }

 Boolean KeepAlive { get; set; }

 Boolean NoDelay { get; set; }

 Int16 Port { get; }

#if NET6_0_OR_GREATER

 String ServerCertificate { get; }

 System.DateTime ServerCertificateExpirationDate { get; }

 Boolean ServerCertificateIsPerpetual { get; }

 String ServerCertificateIssuerName { get; }

 String ServerCertificateSubjectName { get; }

 String TlsCipherSuite { get; }

#endif

 void Flush(IOBuffers buffers, Boolean discard);

 Boolean SetBufferSize(IOBuffers buffers, Int32 size);

}

CORRESPONDING VISA FEATURES

The ITcpipSocketSession interface has several .NET properties that correspond to attributes defined in

VISA. The following table shows property-attribute equivalence for ITcpipSocketSession.

Property Name VISA Attribute Name

Address VI_ATTR_TCPIP_ADDR

HostName VI_ATTR_TCPIP_HOSTNAME

KeepAlive VI_ATTR_TCPIP_KEEPALIVE

NoDelay VI_ATTR_TCPIP_NODELAY

Port VI_ATTR_TCPIP_PORT

ServerCertificate VI_ATTR_TCPIP_SERVER_CERT

ServerCertificateExpirationDate VI_ATTR_TCPIP_SERVER_CERT_EXPIRATION_DATE

ServerCertificateIsPerpetual VI_ATTR_TCPIP_SERVER_CERT_IS_PERPETUAL

ServerCertificateIssuerName VI_ATTR_TCPIP_SERVER_CERT_ISSUER_NAME

ServerCertificateSubjectName VI_ATTR_TCPIP_SERVER_CERT_SUBJECT_NAME

Page 4-2 INTFC Resources

TlsCipherSuite VI_ATTR_TCPIP_TLS_CIPHER_SUITE

The ITcpipSocketSession interface has several .NET methods that correspond to functions defined in

VISA. The following table shows method-function correspondence for ITcpipSocketSession.

Method Name VISA Function Name

Flush viFlush()

SetBufferSize viSetBuf()

IMPLEMENTATION

OBSERVATION 14.1.1

Security related properties ServerCertificate, ServerCertificateExpirationDate,

ServerCertificateIsPerpetual, ServerCertificateIssuerName,

ServerCertificateSubjectName, and TlsCipherSuite are omitted from the .NET Framework API

for this interface. In the .NET Framework API, they are located in ITcpipSocketSession2.

RULE 14.1.2

VISA.NET I/O TCPIP SOCKET session classes SHALL implement ITcpipSocketSession interface

properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except as

specified otherwise in this specification.

14.1.2. ITcpipSocketSession2 (.NET Framework Only)

DESCRIPTION

In the .NET Framework API only, the SOCKET session type for TCPIP devices. This derives from and

supercedes ITcpipSocketSession for the .NET Framework API only,.

DEFINITION

#if NETFRAMEWORK

public interface ITcpipSocketSession2 : ITcpipSocketSession

{

 String ServerCertificate { get; }

 System.DateTime ServerCertificateExpirationDate { get; }

 Boolean ServerCertificateIsPerpetual { get; }

 String ServerCertificateIssuerName { get; }

 String ServerCertificateSubjectName { get; }

 String TlsCipherSuite { get; }

}
#endif

CORRESPONDING VISA FEATURES

The ITcpipSocketSession2 interface has several .NET properties that correspond to attributes defined

in VISA. The following table shows property-attribute equivalence for ITcpipSocketSession2.

Property Name VISA Attribute Name

ServerCertificate VI_ATTR_TCPIP_SERVER_CERT

ServerCertificateExpirationDate VI_ATTR_TCPIP_SERVER_CERT_EXPIRATION_DATE

ServerCertificateIsPerpetual VI_ATTR_TCPIP_SERVER_CERT_IS_PERPETUAL

ServerCertificateIssuerName VI_ATTR_TCPIP_SERVER_CERT_ISSUER_NAME

ServerCertificateSubjectName VI_ATTR_TCPIP_SERVER_CERT_SUBJECT_NAME

Section 14: SOCKET Resources Page 14-3

TlsCipherSuite VI_ATTR_TCPIP_TLS_CIPHER_SUITE

IMPLEMENTATION

RULE 14.1.3

.NET Framework versions of VISA.NET I/O TCPIP SOCKET session classes SHALL implement

ITcpipSocketSession2 interface properties and methods as specified in VPP 4.3 for corresponding

attributes, except as specified otherwise in this specification.

RULE 14.1.4
.NET Framework versions of VISA.NET I/O session classes that implement the TCPIP INSTR resource

SHALL implement the interface ITcpipSocketSession2.

Section 16: VISA.NET I/O Conflict Resolution Page 16-1

Section 15: BACKPLANE Resources

The BACKPLANE session type lets a controller query and manipulate specific lines on a specific

mainframe in a given VXI or PXI system. Services are provided to map, unmap, assert, and receive

hardware triggers, and also to assert various utility and interrupt signals. This includes advanced

functionality that may not be available in all implementations or all vendors’ controllers. These services are

described in detail in the remainder of this section.

There is generally one BACKPLANE resource per configured chassis.

Backplane session types differ from other session types in that they provide no communication (messaging

or register) operations.

Page 4-2 INTFC Resources

15.1. IPxiBackplaneSession

DESCRIPTION

The BACKPLANE session type for PXI backplanes.

DEFINITION

public interface IPxiBackplaneSession : IVisaSession

{

 Int16 ChassisNumber { get; }

 String ManufacturerName { get; }

 String ModelName { get; }

 void ReserveTrigger(Int16 bus, TriggerLine line);

 void ReserveTriggers(Int16[] buses, TriggerLine[] lines);

 void UnreserveTrigger(Int16 bus, TriggerLine line);

 void MapTrigger(Int16 sourceBus, TriggerLine sourceLine,

 Int16 destinationBus, TriggerLine destinationLine);

 void MapTrigger(Int16 sourceBus, TriggerLine sourceLine,

 Int16 destinationBus, TriggerLine destinationLine,

 out Boolean alreadyMapped);

 void UnmapTrigger(Int16 sourceBus, TriggerLine sourceLine);

 void UnmapTrigger(Int16 sourceBus, TriggerLine sourceLine,

 Int16 destinationBus, TriggerLine destinationLine);

}

CORRESPONDING VISA FEATURES

The IPxiBackplaneSession interface has several .NET properties that correspond to attributes defined

in VISA. The following table shows property-attribute equivalence for IPxiBackplaneSession.

Property Name VISA Attribute Name

ChassisNumber VI_ATTR_PXI_CHASSIS

ManufacturerName VI_ATTR_MANF_NAME

ModelName VI_ATTR_MODEL_NAME

The IPxiBackplaneSession interface has several .NET methods that correspond to functions defined in

VISA. The following table shows method-function correspondence for IPxiBackplaneSession.

Method Name VISA Function Name

ReserveTrigger viPxiReserveTriggers

ReserveTriggers viPxiReserveTriggers

UnreserveTrigger viAssertTrigger w/
VI_TRIG_PROT_UNRESERVE

MapTrigger viMapTrigger

UnmapTrigger viUnmapTrigger

IMPLEMENTATION

Section 16: VISA.NET I/O Conflict Resolution Page 16-3

RULE 15.1.1

VISA.NET I/O PXI BACKPLANE session classes SHALL implement IPxiBackplaneSession

interface properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except

as specified otherwise in this specification.

Page 4-4 INTFC Resources

15.2. IVxiBackplaneSession

DESCRIPTION

The BACKPLANE session type for VXI backplanes.

DEFINITION

public interface IVxiBackplaneSession : IVisaSession

{

 event EventHandler<VxiTriggerEventArgs> Trigger;

 event EventHandler<VisaEventArgs> SystemFailure;

 event EventHandler<VisaEventArgs> SystemReset;

 Int16 ChassisLogicalAddress { get; }

 TriggerLines TriggerStatus { get; }

 TriggerLines TriggerSupport { get; }

 Int16 InterruptStatus { get; }

 LineState SystemFailureStatus { get; }

 void AssertInterrupt(Int16 irqLevel, Int32 statusId);

 void AssertTrigger(TriggerLine line, VxiTriggerProtocol protocol);

 void AssertUtilitySignal(VxiUtilitySignal signal);

 void MapTrigger(TriggerLine sourceLine, TriggerLine destinationLine);

 void MapTrigger(TriggerLine sourceLine, TriggerLine destinationLine,

 out Boolean alreadyMapped);

 void UnmapTrigger(TriggerLine sourceLine);

 void UnmapTrigger(TriggerLine sourceLine, TriggerLine destinationLine);

}

CORRESPONDING VISA FEATURES

The IVxiBackplaneSession interface has several .NET properties that correspond to attributes defined

in VISA. The following table shows property-attribute equivalence for IVxiBackplaneSession.

Property Name VISA Attribute Name

ChassisLogicalAddress VI_ATTR_MAINFRAME_LA

TriggerLine1 VI_ATTR_TRIG_ID

TriggerStatus VI_ATTR_VXI_TRIG_STATUS

TriggerSupport VI_ATTR_VXI_TRIG_SUPPORT

InterruptStatus VI_ATTR_VXI_VME_INTR_STATUS

SystemFailureStatus VI_ATTR_VXI_VME_SYSFAIL_STATE

The IVxiBackplaneession interface has several .NET methods that correspond to functions defined in

VISA. The following table shows method-function correspondence for IVxiBackplaneSession.

Method Name VISA Function Name

AssertInterruptSignal viAssertIntrSignal

AssertTrigger
Set VI_ATTR_TRIG_ID and then execute
viAssertTrigger

AssertUtilSignal viAssertUtilSignal

1 Refer to 0 on why this is not listed in IVxiBackplaneSession.

Section 16: VISA.NET I/O Conflict Resolution Page 16-5

MapTrigger viMapTrigger

UnmapTrigger viUnmapTrigger

The IVxiBackplaneSession interface has several .NET events that correspond to events defined in

VISA. The following table shows correspondence for IVxiBackplaneSession.

Event Name VISA Function Name

SystemFailure VI_EVENT_VXI_VME_SYSFAIL

SystemReset VI_EVENT_VXI_VME_SYSRESET

Trigger VI_EVENT_TRIG

IMPLEMENTATION

RULE 15.2.1

VISA.NET I/O VXI BACKPLANE session classes SHALL implement IVxiBackplaneSession

interface properties and methods as specified in VPP 4.3 for corresponding attributes and functions, except

as specified otherwise in this specification.

OBSERVATION 15.2.1

TriggerLine was accidentally omitted from IVxiBackplaneSession. Vendor implementations are

encouraged to provide the TriggerLine property in a class that implements IVxiBackplaneSession.

TriggerLine may be added to IVxiBackplaneSession in a future version of the specification.

Page 4-6 INTFC Resources

Section 16: VISA.NET I/O Conflict Resolution

In cases where more than one vendor-specific VISA.NET library can connect to an interface, the conflict

resolution manager provides information regarding available vendor-specific VISA.NET libraries and user

preferences. It also provides the same services for C (64-bit) and COM implementations.

There is one implementation of the conflict resolution manager for VISA C, COM, and .NET. This

implementation is provided by the IVI Foundation and installed as part of the VISA Shared Components.

The behavior and both the C and .NET APIs are described in VPP-4.3.5: VISA Shared Components.

VISA.NET conflict resolution information is used by the VISA.NET Global Resource Manager (GRM),

which is described in more detail in section 17.2,IResourceManager Interface. The Conflict Manager API

may be used by vendor-specific utilities or user programs to maintain conflict resolution information.

Note that there are installation requirements for VISA.NET implementations, which enable the

implementations to be managed by the conflict manager. These requirements are described in Section 18.2

Vendor-Specific VISA.NET Installer Requirements.

Section 17: Resource Manager Classes Page 17-1

Section 17: Resource Manager Classes

Each VISA.NET session class must include a constructor that creates a session and initializes a VISA.NET

I/O Resource. However, the recommended way to create the session is to use a VISA.NET resource

manager. (Note that this provides a consistent way to instantiate session classes, since the signature for

session class constructors is not specified.) There are two types of resource manager, vendor specific

resource managers and the VISA.NET Shared Components Global Resource Manager, or GRM.

Vendor specific resource managers are provided as part of a particular vendor’s implementation of

VISA.NET. A vendor specific resource manager knows what session types can be instantiated by the

implementation, what resource descriptors will be recognized, and what sessions can actually be

instantiated. Its most important capability, however, is that it can instantiate and return a session that

allows communication with a resource.

The vendor specific resource managers implement the IResourceManager interface, so that the API for

all vendor specific resource managers is standard. IResourceManager references to various resource

managers may also be interchanged.

The VISA.NET Shared Components GRM is a static class that is one of the VISA.NET shared

components. It does not know what session types can be instantiated by the implementation, what resource

descriptors will be recognized, and thus what sessions can actually be instantiated. However, it does know

how to query vendor specific resource managers to discover this information. It can be used when multiple

implementations of VISA.NET are installed to consolidate information from all of them and select one to

instantiate a session. Note that while the methods and properties defined by the GRM correspond in name

to those defined by IResourceManager, there are some differences in parameters, and all of the GRM

methods and properties are static.

This section also includes the definition of the ParseResult class, which consolidates all of the

information returned by the Parse methods into one object.

Page 17-2 Section 17: Resource Manager Classes

17.1. The Vendor-Specific Resource Manager Component
Vendor specific resource managers are provided as part of a particular vendor’s implementation of

VISA.NET. Each vendor specific resource manager derives from IResourceManager and includes a public

constructor with no parameters for use by the GRM.

RULE 17.1.1

A vendor-specific resource manager component SHALL be implemented as a non-static class. The class

SHALL derive from IResourceManager.

RULE 17.1.2

Vendor Specific RMs SHALL have a public constructor with no parameters. They may have other

constructors.

RULE 17.1.3

A vendor-specific resource manager component SHALL be able to create instances of one or more session

classes provided by that vendor.

RULE 17.1.4

There SHALL be exactly one Vendor specific RM per registered assembly qualified name.

PERMISSION 17.1.1

There may be more than one vendor-specific resource manager for a particular session component.

RULE 17.1.5

The ImplementationVersion property of the vendor-specific manager SHALL relate to the VISA attribute

VI_ATTR_RSRC_IMPL_VERSION as follows.

• Major value is treated the same as .NET MajorVersion.

• Minor value is treated the same as .NET MinorVersion.

• .NET Build and Revision - build.revision is monotonically increasing.

OBSERVATION 17.1.1

The ImplementationVersion, SpecificationVersion, ManufacturerID, and ManufacturerName properties

reflect the VISA.NET implementation. If there is an underlying VISA C I/O implementation, these

properties need not reflect the corresponding values of the underlying VISA C I/O.

RULE 17.1.6

The SpecificationVersion property SHALL be identical to the version of the specification with which the

shared components used conform. Build and revision SHALL both be zero.

RULE 17.1.7

The set of resources returned by Find SHALL be identical to the set returned in VISA by a call to

viFindRsrc followed by viFindNext until all discovered resources are found.

RULE 17.1.8

The vendor-specific Parse method SHALL have the same behavior as the viParseRsrcEx method described

in VPP-4.3 with the following exceptions.

• The vendor-specific Parse SHALL understand resource strings for only the interface types,

session types, and interface numbers for which it provides an implementation.

• The Parse method SHALL NOT perform operations that would affect other operations in progress

on the resource.

Section 17: Resource Manager Classes Page 17-3

RULE 17.1.9

IF a vendor-specific resource manager can create any particular resource on a given hardware interface,

THEN it SHALL be capable of creating all available resources on that interface. The vendor-specific

resource manager’s Find() method, with an pattern argument equal to “*”, will return all of the available

resources for the vendor’s VISA.NET implementation.

RULE 17.1.10

The vendor-specific resource manager SHALL be registered as described in Section 18.2.3, VISA.NET

Registry Entries.

Page 17-4 Section 17: Resource Manager Classes

17.2. IResourceManager Interface

DESCRIPTION

The IResourceManager interface provides methods that instantiate a VISA.NET session for the specified

resource, parse resource names and return the individual pieces of information that they conveys, and find

the resources (by resource name) configured by VISA.NET that match the specified pattern.

DEFINITION

public interface IResourceManager : IDisposable

{

 IEnumerable<String> Find(String pattern);

 ParseResult Parse(String resourceName);

 IVisaSession Open(String resourceName);

 IVisaSession Open(String resourceName,

 AccessModes accessMode,

 Int32 timeoutMilliseconds);

 IVisaSession Open(String resourceName,

 AccessModes accessModes,

 Int32 timeoutMilliseconds,

 out ResourceOpenStatus openStatus);

 String ManufacturerName { get; }

 Int16 ManufacturerId { get; }

 Version ImplementationVersion { get; }

 Version SpecificationVersion { get; }

}

CORRESPONDING VISA FEATURES

The IResourceManager interface methods all map to VISA functions. The following table shows VISA

correspondence for IResourceManager methods.

Method Name VISA Function Name

Find() viFindRsrc(), viFindNext()

Parse() viParseRsrcEx()

Open() viOpen()

The IResourceManager interface properties all map to VISA attributes. The following table shows

VISA correspondence for IResourceManager properties.

Property Name VISA Attribute Name

ManufacturerName VI_ATTR_RSRC_MANF_NAME

ManufacturerID VI_ATTR_RSRC_MANF_ID

ImplementationVersion VI_ATTR_RSRC_IMPL_VERSION

SpecificationVersion VI_ATTR_RSRC_SPEC_VERSION

OBSERVATION 17.2.1

In the VISA C API, viOpen() returns a positive value to indicate a warning or to provide additional

information about a successful call. The openStatus argument to Open() is used to indicate the

equivalent information. Note that it is an out argument.

Section 17: Resource Manager Classes Page 17-5

17.3. The Global Resource Manager (GRM) Component
The Global Resource Manager’s (GRM) main responsibilities are locating, instantiating, and using the

vendor managers and resolving any overlapping functionality between vendor-specific managers. It is

distributed with the VISA.NET Shared Components.

RULE 17.3.1

The ManufacturerName property SHALL return “IVI Foundation” and the ManufacturerID property

SHALL return 0x3FFF.

RULE 17.3.2

The ImplementationVersion property of the vendor-specific manager SHALL relate to the VISA attribute

VI_ATTR_RSRC_IMPL_VERSION as follows.

• Major value is treated the same as .NET MajorVersion.

• Minor value is treated the same as .NET MinorVersion.

• .NET Build and Revision - build.revision is monotonically increasing.

RULE 17.3.3

The SpecificationVersion property SHALL be identical to the version of the specification with which the

GRM conforms. Build and revision SHALL both be zero.

RULE 17.3.4

The Find method SHALL call the Find method on all the vendor-specific resource managers. Any

resource strings that are equivalent according to the rules defined in VPP 4.3: The VISA Library, section

4.3.1, Address String, for resource strings SHALL be discarded, and a new array of strings with the

combined results SHALL be returned to the user.

OBSERVATION 17.3.1

The GRM ignores a given RM if the RM implementation is not compatible for any reason with the current

runtime & process.

RULE 17.3.5

When an implementation of IResourceManager is released, it SHALL NOT cause the sessions that it

opened to be closed.

OBSERVATION 17.3.2

The previous rule is inconsistent with the way resource sessions are handled in VISA C. It is a better match

to .NET paradigms.

OBSERVATION 17.3.3

GlobalResourceManager methods will not hold references to the vendor specific resource manager sessions

that they use to accomplish their tasks after the method exits. This is the reason for RULE 17.3.5.

17.3.2. Vendor VISA.NET Loading

The IVI VISA.NET assembly contains the GRM (Global Resource Manager) that is responsible for loading

individual vendor VISA assemblies that provide the actual IO semantics. This dynamic loading requires

that the GRM be able to locate the vendor assemblies, and determine that they implement a version of the

VISA interfaces that is compatible with the IVI VISA.NET assembly (which was loaded by the client).

This section describes the requirements of vendor VISA libraries, and the required behavior of the IVI

VISA.NET GRM to ensure that correct versions are loaded.

Page 17-6 Section 17: Resource Manager Classes

17.3.2.1. IVI VISA.NET Version

RULE 17.3.6

The vendor VISAs loaded by the IVI VISA.NET may be built against a different version of the IVI

VISA.NET assembly than the version that is attempting to dynamically load them. The version of the IVI

VISA upon which the vendor VISA is dependent is used by the GRM to determine if the vendor VISA is

compatible as follows:

MajorVersion The IVI VISA assembly will only load vendor VISA that is dependent on (was compiled

against) an IVI VISA assembly of the same MajorVersion.

 The Major Version is incremented when API changes are incompatible with the

previous version. Refer to section 19.3, Maintaining Backwards Compatibility.

MinorVersion If and only if the major version is the same, the IVI VISA assembly will only load a

vendor VISA that is dependent on (was compiled against) on IVI VISA assembly with

the same or an earlier IVI VISA MinorVersion.

 The Minor Version is incremented when API changes are backwards compatible with

other releases of the same Major verion.

The third field of the IVI VISA.NET version corresponds to the Build and increases with each release. The

fourth field is always zero.

OBSERVATION 17.3.4

Following these version rules for the IVI VISA assembly may lead to decoupling the assembly version

from the specification version. Historically the specification major version has been more of a external

indication of the amount of changes, not reflecting backwards compatibility.

17.3.2.2. Vendor VISA.NET Version

PERMISSION 17.3.1

Vendors are permitted to assign version numbers to their assemblies however they like.

17.3.2.3. IVI Global Resource Manager Algorithm to locate Vendor VISA libraries

Refer to Section 18.1, Vendor VISA .NET (6+) Installation for details related to installation of vendor

implementations.

The GRM will prefer vendor VISAs that are already loaded and bypass the loading algorithm for

assemblies that were loaded by the runtime, or previously loaded by the GRM.

To load a vendor VISA, the GRM will locate and load the vendor VISA as follows:

1. The GRM determines the path to the VISA installation directory.

If the environment variable <IviVisaVendorAssembliesPath> is not null, it sets the VISA installation

directory. If <IviVisaVendorAssembliesPath> is null, then the VISA installation directory

is<VXIPNPPATH64>\Microsoft.NET\VendorAssemblies>. If that directory does not exist, or the

registry key/value does not exist, then the path is set to be VisaVendorAssemblies subdirectory of the

application bin directory.

(<VXIPNPPATH64> is the target directory for VISA components. Refer to VPP-4.3.5, section 4.2 for

the default value and relevant constraints)

Section 17: Resource Manager Classes Page 17-7

OBSERVATION 17.3.5

Customers can use this environement variable to load vendor assmblies from a location of their

choosing on a per-process basis. For instance, an application may deploy with application specific

versions of the assemblies.

2. The GRM locates and loads compatible vendor assemblies

The directory path for the VendorAssemblies directory has the following appended to the path to the

VISA installation directory from the previous step:

 …\<vendors designation>\<Dependent VISA version>\<visa libraries>

These directories are defined as follows:

Vendor designation This is the 2-character vendor abbreviation assigned in VPP-9. The GRM

determines this abbreviation using the ResourceManufacturerID property as

described in section 8.3, IVisaSession Interface.

If the ResourceManufacturerID is 0xfff or less, it designates a VXI resource

manufacturer ID which the GRM translates to a VPP-9 abbreviation.

If the ResourceManufacturerID is greater than 0x6100 it represents the 2-

character VPP-9 manufacturer as packed UNICODE 8 (lexical order). Note

that only alphabetic characters are valid VPP-9 IDs. These characters shall be

lower case (from 0x61 through 0x7a inclusive).

Dependent VISA Version This field indicates the Major.Minor version of the IVI VISA library

upon which this vendor VISA depends. Notice that this is not the version of

the vendor VISA.

This declaration of the IVI VISA dependency is used by the GRM to

determine if a vendor VISA is suitable for use with the running version of the

GRM.VISA Libraries.

The files in the <Dependent VISA Version> folder are loaded by the GRM

to load a vendor VISA. A deps.json file must be included to described the

dependencies of the vendor VISA that the GRM must load.

Note: that the vendor VISAs are named <vendor>.visa.dll. The <vendor> in

this name is not the VPP-9 ID. The GRM will load any vendor visa.dll found

in this directory.

Page 17-8 Section 17: Resource Manager Classes

17.4. GlobalResourceManager Class

DESCRIPTION

The GlobalResourceManager class provides methods that instantiate a VISA.NET session for the

specified resource, parse resource names and return the individual pieces of information that they convey,

and find the resources (by resource name) configured by the vendor specific VISA.NET implementations

that match the specified pattern.

DEFINITION

public static class GlobalResourceManager

{

 public static IEnumerable<String> Find() {…}

 public static IEnumerable<String> Find(String pattern) {…}

 public static ParseResult Parse(String resourceName) {…}

 public static Boolean TryParse(String resourceName,

 out ParseResult result) {…}

 public static IVisaSession Open(String resourceName) {…}

 public static IVisaSession Open(String resourceName,

 AccessModes accessMode,

 Int32 timeoutMilliseconds) {…}

 public static IVisaSession Open(String resourceName,

 AccessModes accessModes,

 Int32 timeoutMilliseconds,

 out ResourceOpenStatus openStatus) {…}

 public static String ManufacturerName { get; }

 public static Int16 ManufacturerId { get; }

 public static Version ImplementationVersion { get; }

 public static Version SpecificationVersion { get; }

}

CORRESPONDING VISA FEATURES

The IResourceManager interface methods all map to VISA functions. The following table shows VISA

correspondence for IResourceManager methods.

Method Name VISA Method Name

Find() viFindRsrc(), viFindNext()

Open() viOpen()

Parse() viParseRsrcEx()

TryParse() viParseRsrcEx()

The IResourceManager interface properties all map to VISA attributes. The following table shows

VISA correspondence for IResourceManager properties.

Property Name VISA Attribute Name

ManufacturerName VI_ATTR_RSRC_MANF_NAME

ManufacturerID VI_ATTR_RSRC_MANF_ID

ImplementationVersion VI_ATTR_RSRC_IMPL_VERSION

SpecificationVersion VI_ATTR_RSRC_SPEC_VERSION

Section 17: Resource Manager Classes Page 17-9

OBSERVATION 17.4.1

In the VISA C API, viOpen() returns a positive value to indicate a warning or to provide additional

information about a successful call. The openStatus argument to Open() is used to indicate the

equivalent information. Note that it is an out argument.

Page 17-10 Section 17: Resource Manager Classes

17.5. ParseResult Class

DESCRIPTION

The ParseResult class provides the parsing information returned by the Parse methods in the

IResourceManager interface and the GlobalResourceManager class.

DEFINITION

public class ParseResult

{

 public String OriginalResourceName { get; private set; }

 public HardwareInterfaceType InterfaceType { get; private set; }

 public Int32 InterfaceNumber { get; private set; }

 public String ResourceClass { get; private set; }

 public String ExpandedUnaliasedName { get; private set; }

 public String AliasIfExists { get; private set; }

 public ParseResult(String originalResourceName,

 HardwareInterfaceType interfaceType,

 Int16 interfaceNumber,

 String resourceClass,

 String expandedUnaliasedName,

 String aliasIfExists) {…}

 public static Boolean operator ==(ParseResult parse1, ParseResult parse2)

 public static Boolean operator !=(ParseResult parse1, ParseResult parse2)

}

CORRESPONDING VISA FEATURES

The ParseResult class properties all map to parameters to the VISA viParseRsrcEx method. The

following table shows the VISA correspondence for ParseResult properties.

Property Name VISA viParseRsrcEx Parameter Name

OriginalResourceName rsrcName

InterfaceType intfType

InterfaceNumber intfNum

ResourceClass rsrcClass

ExpandedUnaliasedName unaliasedExpandedRsrcName

AliasIfExists aliasIfExists

See VPP-4.3.5 for additional details about the Global Resource Manager implementation.

STANDARD .NET FEATURES

Two standard .NET operators, == and !=, are defined to facilitate comparing parse results.

Section 18: VISA.NET Installation Page 18-1

Section 18: VISA.NET Installation

18.1. Vendor VISA .NET (6+) Installation
This section describes the installation requirements for vendor VISA.NET installation. These requirements

are heavily driven by the behavior of the GRM per Section 17.3.2, Vendor VISA.NET Loading.

Vendors are permitted to use any mechanism they prefer to install their VISA libraries.

The IVI VISA.NET Assembly is provided in a NuGet package as described in VPP-4.3.5. This section

describes the installation of vendor VISA.NET assemblies.

RULE 18.1.1

Vendor VISA.NET assemblies and their dependencies shall be installed by the vendor to:

<VXIPNPPATH64>\Microsoft.NET\VendorAssemblies\<vendor>\<dependent VISA version>\<assembly>

Where:

• <VXIPNPPATH64> is the target directory for VISA components. Refer to VPP-4.3.5, section 4.2

for the default value and relevant constraints.

• <vendor> is the lower-case 2-character abbreviation for the vendor as defined in VPP-9.

• <dependent VISA version> is the Major.Minor version of the IVI.VISA library on which this

version of the vendor VISA depends.

• <assembly> is the name of the assembly.

A deps.json files must be included to describe any dependencies that are to be loaded by the GRM.

RULE 18.1.2

Vendor should either install, or leave installed, all versions of their VISA.NET library that they support

with the installed VISA.C libraries. This will maximize the applicability of the VISA.NET install to clients

that may be using earlier versions of the IVI VISA.NET library.

OBSERVATION 18.1.1

Vendors MAY provide nuget packages for their VISA.NET to enable customers to easily acquire and use

vendor-specific APIs. Users need to be cautious mixing static references and dynamic references to

libraries.

18.1.2. General Installation Requirements for Vendor Specific Components

RULE 18.1.3
 Each VISA.NET I/O implementation SHALL consist of one Vendor-Specific Resource Manager (SRM)

and one or more Session classes.

PERMISSION 18.1.1

A Vendor may provide more than one version of the vendor VISA.NET I/O implementation.

RULE 18.1.4
A vendor’s VISA.NET uninstaller or its SRM uninstaller SHALL NOT silently uninstall the IVI

VISA.NET Shared Components.

RULE 18.1.5
If a vendor’s VISA installer calls the VISA.NET Standard Components installer, it SHALL invoke the

VISA.NET Standard Components installer with admin privileges.

Page 18-2 Section 18: VISA.NET Installation

18.2. VISA.NET Framework Installation

This section covers the installation of the VISA.NET Shared Components and vendor VISA.NET

implementations.

For VISA.NET Shared Components, it includes

• Prerequisites

• Files and directories.

For vendor VISA.NET implementations, it includes

• Registry entries that need to be added to identify the implementation.

18.2.1. VISA.NET Shared Components

VISA.NET Shared Components is an IVI Foundation provided installer that provides the common

components needed to provide consistency across VISA.NET implementations from multiple vendors. The

VISA.NET Shared Components installer is documented in VPP-4.3.5: VISA Shared Components.

Multiple versions of the VISA.NET Shared Components may coexist on a system. If there are more than

one version installed at once, publisher policy files will redirect references to earlier versions of the

VISA.NET assembly to the latest installed version. This behavior may be overridden using application or

machine policy files.

18.2.2. Vendor-Specific VISA.NET Installer Requirements

Vendor-specific VISA.NET installers are created by vendors, but must meet the requirements detailed in

this section.

18.2.2.1. Prerequisites

The following software must be installed before a vendor-specific VISA.NET implementation is installed.

• VISA.NET Shared Components.

RULE 18.2.1

Vendor-specific VISA.NET installers SHALL either install a suitable version of the VISA.NET Shared

Components, or require that a suitable version of the VISA.NET Shared Components is installed before

making any VISA.NET related modifications to the install PC.

OBSERVATION 18.2.1

Vendor-specific VISA.NET installers may choose whether to install a suitable version of the VISA.NET

Shared Components.

18.2.2.2. VISA.NET Implementation Location

In general, vendors are free to install their vendor-specific implementation of VISA.NET wherever they

choose. If they choose to install in the standard VISA directory structure, then there are a few requirements

that must be observed. For more information regarding the standard VISA directory structure, refer to

Section 4.3, The Directory Structure in VPP-6: Installation and Packaging Specification. Note that the

default value for VXIPNPPATH is either “C:\Program Files\IVI Foundation\VISA” or “C:\Program Files

(x86)\IVI Foundation\VISA” depending on the OS bitness and execution context.

PERMISSION 18.2.1

Vendors may install vendor-specific VISA.NET files in the directory

<VXIPNPPATH>\Microsoft.NET\Framework32\<FrameworkVersion>\<Vendor Name> <Optional

Product ID Text> VISA.NET <Version Text>\, where <Version Text> is derived from the installer version.

Section 18: VISA.NET Installation Page 18-3

This directory is known as the vendor-specific VISA.NET install directory. Vendors may also install

vendor-specific VISA.NET files in directories other than in the <VXIPNPPATH> directory tree.

RULE 18.2.2
The format of the installer version SHALL be <MajorVersion>.<MinorVersion>.<Build> (<Revision>

does not apply to installers).

RULE 18.2.3
The format of the <Version Text> SHALL be either <MajorVersion>.<MinorVersion> or

<MajorVersion>.<MinorVersion>.<Build>, with the value of each field matching the corresponding field

of the installer version.

RULE 18.2.4

A vendor SHALL NOT install VISA.NET to any location under <IVI_ROOT_DIR>, with the exception of

the vendor-specific VISA.NET install directory.

RULE 18.2.5

In the vendor-specific VISA.NET install directory name, <VendorName> SHALL be the name reported by

the vendor-specific resource managers’ ManufacturerName property.

PERMISSION 18.2.2

The directory name may include additional arbitrary text, <Optional Product ID Text>, to distinguish

multiple products from the same vendor that provide VISA.NET implementations. This text is optional,

and does not need to match the actual product name.

18.2.3. VISA.NET Registry Entries

Vendor-specific VISA.NET installers must register their vendor-specific Resource Manager so that the

Global Resource Manager can locate and instantiate it.

RULE 18.2.6

Vendor-specific VISA.NET installers SHALL add the registry key

HKLM\SOFTWARE\IVI\VISA.NET\<GUID>\<version> where <GUID> is a GUID that is unique to the

vendor’s VISA.NET product and <version> is the installer version. This registry entry is in the 32-bit hive.

RULE 18.2.7

For each product that provides an implementation of VISA.NET, there SHALL be exactly one GUID in

the registry.

OBSERVATION 18.2.2

One vendor may have more than one product that provides an implementation of VISA.NET. In this case,

there would be a unique GUID for each product, but not for each version of each product.

RULE 18.2.8

There SHALL be exactly one version key for each installed version of a product that provides an

implementation of VISA.NET, with the key name in the format specified in RULE 18.2.2.

RULE 18.2.9

The version key SHALL have the following values with data types:

• Comments (REG_SZ)

• FriendlyName (REG_SZ)

• VendorID (REG_DWORD)

• Location (REG_SZ)

RULE 18.2.10

The Location and FriendlyName values SHALL NOT be empty.

Page 18-4 Section 18: VISA.NET Installation

RULE 18.2.11

The Location value SHALL be the assembly qualified name of the vendor-specific resource manager class.

This name consists of the fully qualified type name of the class and the assembly qualified path, for

example, “TmCo.Visa.ResourceManager, TmCo.Visa, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=f372f203818f2407, processorArchitecture=MSIL”.

RECOMMENDATION 18.2.1

The recommended format for the FriendlyName is “<ManufacturerName> VISA.NET Resource Manager”.

In some cases a manufacturer may register more than one resource manager, in which case appropriate

friendly names may be selected for each one.

RULE 18.2.12

The VendorID SHALL match the value of the ManufacturerID property returned by the vendor-specific

resource manager referenced by the Location value.

18.2.4. VISA.NET Resource Manager Registration

RULE 18.2.13

The assembly containing the vendor-specific resource manager SHALL be installed into the Global

Assembly Cache (GAC).

18.2.4.2. General Installation Requirements for Vendor Specific Components

RULE 18.2.14

 Each VISA.NET I/O implementation SHALL consist of one Vendor-Specific Resource Manager (SRM)

and one or more Session classes.

PERMISSION 18.2.3

A Vendor may provide more than one VISA.NET I/O implementation.

RULE 18.2.15

A vendor’s VISA.NET uninstaller or its SRM uninstaller SHALL NOT silently uninstall the VISA.NET

Standard Components.

RULE 18.2.16

On Windows 7, Windows 8, Windows 10, and Windows 11, if a vendor’s VISA installer calls the

VISA.NET Standard Components installer, it SHALL invoke the VISA.NET Standard Components

installer with admin privileges.

Section 19: Version Control Page 19-1

Section 19: .NET Version Control

IVI provides interoperability of VISA.NET implementations from multiple vendors released at various

times and without coordination of release schedules between the vendors. At the same time, IVI must

periodically revise the IVI VISA.NET assembly to support new features and correct defects.

In principle, IVI versioning is designed to make it possible to create an application that uses different

vendors’ VISA.NET implementations. The vendor implementations may be created with different versions

of the VISA.NET shared components provided by the IVI Foundation. Applications or libraries that use

VISA do not need to adopt a special internal architecture to accommodate the different versions. This is

key to the interoperability features of VISA.NET.

19.1. Versioning Concepts
All IVI .NET versioning strategies share a basic objective. If IVI creates a new version of a .NET

assembly, the new version should be created in a manner which does not make existing applications

inoperable. To do this, the APIs in the new version of the assembly must include all the elements of the

older version. After all, if parts of the API are deleted, applications or libraries that reference the assembly

might suddenly find that new versions of the referenced assembly don’t include features that they use. In

such cases, .NET will fail to load the assembly, or if it does, will report an exception of some sort. To

address this problem, features are never deleted from .NET APIs,1 so that the newer APIs are backwards

compatible with the older ones.

19.2. Versioning Scenarios
Applications or libraries that use the IVI VISA.NET GRM reference a specific version of the IVI

VISA.NET assembly. The GRM will attempt to dynamically load a vendor implementation, which also

references a specfic version (often a different specific version) of the IVI VISA.NET assembly. If the

GRM is built with a reference to a newer VISA.NET assembly, and the vendor implementation is built with

a reference to an older assembly, this is a “down-version” scenario. If the GRM is built with a reference to

an older VISA.NET assembly, and the vendor implementation is built with a reference to a newer

assembly, this is an “up-version” scenario.

.NET Framework and .NET (6+) have different strategies for handling down- and up-versioning, assuming

that the APIs are backwards compatible.

• .NET Framework: Policy files may redirect older versions of an assembly to newer ones. If the

backwards compatible types are otherwise identical, references to types in the older assembly will

be redirected to the newer one. This means that all references to an assembly use the newer

version of the assembly regardless of which assembly was referenced by the program at build

time. At execution time, down-versioning scenarios are converted to up-versioning by redirecting

references to the latest version of an assembly. If the policy files redirect an older version of an

assembly to a newer one, and if a .NET program references an older version of an assembly and

tries to load a newer version of the assembly to satisfy the reference, the program will not fail

because the reference is redirected to the newer version to begin with.

• .NET (6+): If a .NET program references an older version of an assembly, it can load a newer one

and use only the older features, assuming that they are available. .NET (6+) handles this under the

covers. However, if a .NET program references a newer version of an assembly and tries to load

an older version of the assembly to satisfy the reference, the program will always fail. .NET (6+)

doesn’t have policy files or any equivalent.

• The most important consequence of this difference for VISA is that up-versioning is not supported

in .NET (6+). This limits the flexibility of .NET (6+) versioning, and requires more customer

1 In theory, massive changes to the IVI APIs might lead to deletions in the VISA.NET API. This would likely be interpreted as

a completely new set of APIs rather than new versions of existing APIs. In any case, we do not anticipate changes on this scale,

and have not made any such changes in the past.

Page 19-2 Section 19: Version Control

intervention to handle cases where up-versioing is an issue.

19.3. Maintaining Backwards Compatibility
This section describes the practices needed to maintain backwards compatibility. The versioning style

described in this section does not cover all of the possible ways in which the VISA.NET Shared

Components could change from version to version, but it does describe most of the situations that would

impact VISA.NET. In particular, it discuses the kinds of changes that are allowed for enumerations,

interfaces, and classes, and calls out changes that break backwards compatibility.

19.3.1. Naming New Versions of .NET Types

Each .NET type declared in an VISA.NET Shared Components assembly shall have a base name that is

version independent. The first version shall use this name without modification. For each subsequent

version, the base name shall have an integer appended, starting with “2” and incrementing by 1.

For example, the first version of the Ivi.Visa GPIB session interface is named IGpibSession. The second

published version of this interface would be named IGpibSession2, the third would be named

IGpibSession3, and so on.

19.3.2. Versioning Enumerations

Enumerations shall not be deleted or renamed. New enumerations may be added.

Enumeration members shall not be deleted or renamed. The numeric value of an existing enumeration

member shall not be changed, since it is the same as deleting the member with the old value and adding the

member with the new value.

If an enumeration member must be deleted or renamed, or existing numeric values must be changed, a new

enumeration shall be created. The new enumeration shall be named as described in section 0, This section

describes the practices needed to maintain backwards compatibility. The versioning style described in this

section does not cover all of the possible ways in which the VISA.NET Shared Components could change

from version to version, but it does describe most of the situations that would impact VISA.NET. In

particular, it discuses the kinds of changes that are allowed for enumerations, interfaces, and classes, and

calls out changes that break backwards compatibility.

Naming New Versions of .NET Types. Since the intent is to allow users to migrate to the new enumeration

with a minimum of change, enumeration members that are common to both the old and new versions of the

enumeration shall have the same spelling and numeric values.

Enumeration members may be added if they are added in a way that does not cause the value of any

existing members to change. For enumerations where numeric values are not specified, this means that

new members shall only be added to the end of the enumeration.

EXAMPLE

If an enumeration named “TriggerLines” includes a trigger line called “TriggerLine0” that is no longer

needed, the following versioning strategy is used:

• The “TriggerLines” enumeration is not modified.

• A new enumeration is created, named “TriggerLines2”, that includes all of the old members

except for “TriggerLine0”.

• The new members match the old members in spelling and value. If the “TriggerLines”

enumeration uses default values, values may need to be specified for “TriggerLines2” if the

removal of the “TriggerLine0” member leaves a gap in the values.

19.3.3. Versioning Interfaces

Interfaces shall not be deleted or renamed. New interfaces may be added.

Section 19: Version Control Page 19-3

Interface members shall not be added or deleted, and the signatures of existing members shall not be

changed in any way, including:

• The return type of an existing member shall not be changed.

• Parameters shall not be added or deleted to any member, and

• Parameter names and types shall not be changed.

If an interface member must be added, deleted, or changed in some way, a new interface shall be created.

The new interface shall be named as described in section 0, This section describes the practices needed to

maintain backwards compatibility. The versioning style described in this section does not cover all of the

possible ways in which the VISA.NET Shared Components could change from version to version, but it

does describe most of the situations that would impact VISA.NET. In particular, it discuses the kinds of

changes that are allowed for enumerations, interfaces, and classes, and calls out changes that break

backwards compatibility.

Naming New Versions of .NET Types. Since the intent is to allow users to migrate to the new interface

with a minimum of change, interface members that are common to both the old and new versions of the

interface shall have the same signatures.

If a new interface is created to version an older interface, it shall be created in one of two ways:

• The new interface is cloned from the older interface, and then modified within the constraints

listed above. This technique will always work.

• The new interface derives from the older interface. However, derivation has pitfalls - interface

reference properties may need to return references to newer interfaces, for example, and members

from the derived interface may not be deleted. To accommodate these situations, the following

process is followed when deriving a new interface from an older one:

o New members are added to the new interface.

o Where a new method or property that matches an older method or property except for the

return type, the new method or property uses the “new” modifier to hide the older one.

(This addresses the issue with interface reference properties.)

o Obsolete members are tagged with the “Obsolete” attribute in the older interface. The

“Obsolete” attribute is constructed so that trying to build code that uses the member

generates a build warning or error (at the discretion of the VISA WG). Note that the

member is still available and does not generate a runtime error for an executable built

against the older version of the interface.

EXAMPLE

For example assume an interface named “IMessageBasedSession”. “IMessageBasedSession” is missing a

property named “AvailableBytes”, and the “ReadStatusByte” method is missing a “timeout” parameter. In

addition, an interface reference property called “FormattedIO” is modified to return a reference to the

“IMessageBasedFormattedIO2” interface instead of the “IMessageBasedFormattedIO” interface. The

following versioning strategy is used:

• The “IMessageBasedSession” interface is not modified.

• A new interface is created, named “IMessageBasedSession2”, that includes the following

members

o All of the old members with the same signatures. The old “ReadStatusByte” overload is

omitted.

o A new overload of the “ReadStatusByte” method with the “timeoutMilliseconds”

parameter.

o The new “AvailableBytes” property.

o The modified “FormattedIO” property.

• Where new members match the old members, the signatures also match.

EXAMPLE - CLONING CODE

public interface IMessageBasedSession : IVisaSession

{

 public Int16 ReadStatusByte ();

Page 19-4 Section 19: Version Control

 // Other methods …

 public IMessageBasedFormattedIO FormattedIO { get; }

 // Other properties …

}

public interface IMessageBasedSession2 : IVisaSession

{

 public Int16 ReadStatusByte (Int32 timeoutMilliseconds);

 // Other methods …

 public IMessageBasedFormattedIO2 FormattedIO { get; }

 public Int32 AvailableBytes { get; }

 // Other properties …

}

EXAMPLE - DERIVATION CODE

public interface IMessageBasedSession : IVisaSession

{

 [Obsolete, false] // This generates an warning on build.

 public Int16 ReadStatusByte ();

 // Other methods …

 public IMessageBasedFormattedIO FormattedIO { get; }

 // Other properties …

}

public interface IMessageBasedSession2: IMessageBasedSession

{

 public Int16 ReadStatusByte (Int32 timeoutMilliseconds);

 // Use new to hide the old Display property.

 new public IMessageBasedFormattedIO2 FormattedIO { get; }

 public Int32 AvailableBytes { get; }

}

19.3.4. Versioning Classes

Classes shall not be deleted or renamed. New classes may be added.

Class members shall not be deleted, and the signatures of existing members shall not be changed in any

way, including:

• The return type of an existing member shall not be changed.

• Parameters shall not be added or deleted.

• Parameter names and types shall not be changed.

• For members derived from interfaces, implementation shall not be changed from explicit to

implicit or vice versa.

If a class member must be deleted, or changed in some way, a new class shall be created. The new class

shall be named as described in section 0, This section describes the practices needed to maintain backwards

compatibility. The versioning style described in this section does not cover all of the possible ways in

which the VISA.NET Shared Components could change from version to version, but it does describe most

of the situations that would impact VISA.NET. In particular, it discuses the kinds of changes that are

allowed for enumerations, interfaces, and classes, and calls out changes that break backwards compatibility.

Naming New Versions of .NET Types. Since the intent is to allow users to migrate to the new class with a

minimum of change, class members that are common to both the old and new versions of the class shall

have the same signatures.

New class members (including overloads) may be added to existing classes.

In general, the range of behavioral changes that don’t affect the class API is fairly broad, and the decision

to implement a new class or not in response to a particular behavioral change is left to the discretion of the

VISA Working Group.

Section 19: Version Control Page 19-5

The only significant difference between versioning interfaces and classes is the way that new members are

treated. Therefore, the techniques used to version classes are nearly the same as those used to version

interfaces, with the exception that if the only change to a class is to add new members, the new members

may be added to the existing class.

Exceptions are just a specialization of a class, and are versioned like classes.

19.3.5. Changes and Version Numbers

All API changes result in a change to the major or minor version number of the assembly. The decision is

left to the discretion of the VISA Working Group.

Behavioral changes result in a change to the major, minor, or build version number of the assembly. The

decision is left to the discretion of the VISA Working Group.

XML comments may be changed freely, and result in a change to the build version number of the assembly

(if there are no other changes).

The VISA.NET Shared Components are delivered in a single assembly for ease of use.

19.4. How Versioning Works For .NET (6+)
The .NET (6+) runtime and the GRM work together to load the best possible version of the vendor

VISA.NET assembly. The following description assumes that newer versions of the assembly are

backwards compatible with older versions with the same major IVI VISA.NET version as described above.

19.4.1. .NET (6+) Versioning Techniques

Although .NET (6+) frequently uses application local versions of assemblies to manage versions, this

approach is not sufficient to support VISA.NET. In particular,

• An application may choose to directly reference more than one vendor VISA.NET assembly. In

this case NuGet is responsible for choosing the appropriate IVI VISA.NET assembly for the

application. Most likely this application does not use the GRM to dynamically load vendor

VISA.NETs.

• An application may choose to only directly reference the IVI VISA assembly by using the GRM.

In this case the GRM dynamically loads the vendor VISAs.

A VISA.NET application or library might dynamically load more than one vendor VISA.NET

assembly. Each of those assemblies references a IVI VISA.NET assembly, but there is no

guarantee that they would both reference the same version. In this case, the runtime could not

decide what to load, since both libraries are dynamically loaded. The GRM will do it’s best to

load a compatible version. Once loaded, the runtime can satisfy older API references from the

newer assembly, assuming that backwards compatibility rules have been followed.

In some cases, application developers will have to upgrade their application to directly reference the

latest version of the IVI VISA.NET assembly.

19.4.2. Maintaining Software Configurations

Some programs that use VISA.NET are rigorously qualified with a given software configuration, and once

qualified, are expected to build and run against that exact configuration.

Application local deployment in .NET (6+) is designed just to support this kind of scenario. If all the

software is installed with an application, including all the vendor VISA.NET assemblies that can be

dynamically loaded, then the application can be copied to new locations and expected to run as it did on the

original system, as long as the rest of the system configuration that might impact the application is qualified

also.

Page 19-6 Section 19: Version Control

Note that most VISA.NET implementations delegate most, if not all, of their functionality to the vendor’s

corresponding VISA-C implementation, and vendor VISA-C implementations are global, not local. When

rigorously qualifying an application, the versions of any installed vendor VISA-C implementations should

be considered.

19.4.3. VISA.NET Shared Components NuGet Package

The VISA.NET NuGet package version major/minor version shall be the same as the VISA.NET assembly

major/minor version. The package build number is created by the build and independent of the

major/minor version requirements.

Note that the Conflict Manager C DLL is installed by the VISA Shared Components (which are a pre-

requisite for the VISA.NET Shared Components), and so there is no connection between the version of that

DLL and the VISA.NET assembly or shared components installer.

19.5. How Versioning Works For .NET Framework
For .NET Framework assemblies, side-by-side installation allows multiple versions of a .NET assembly to

be installed side-by-side (e.g. at the same time) and publisher policy files direct references from older

versions of an assembly to a newer version of the assembly, The following description assumes that newer

versions of the assembly are backwards compatible with older versions as described above.1

19.5.1. Versioning with Policy Files

In order to meet versioning objectives, the VISA.NET Framework shared components provide publisher

policy files to redirect references from older versions of the assembly to the newer version.2 (When the

term “policy file” is used in this document without qualification, it refers to publisher policy files.)

Using side-by-side versioning without policy files for shared component versioning violates this principle.

• User code that references shared components data types would be exposed to different versions of

the same shared component data types.

• An application that used multiple VISA.NET implementations would not be able to

simultaneously reference or use implementations that referenced different versions of the

VISA.NET Shared Components without taking measures that violate the versioning principle

(such as isolating the calls to drivers that use different versions of the shared components into

separate DLLs).

Using publisher policy files implies that the assemblies continue to provide the older versions of the

interfaces along with new ones. If assemblies do not continue to support older versions, the versioning

principle is also violated.

• If an application uses Vendor A’s implementation built with an older version of the

shared components and Vendor B’s implementation built with a newer version of the shared

components that revises an Interface that Vendor A’s implementation uses, Vendor A’s

implementation would break when the shared components are loaded, because the older version of

the interface would not be available.

1 Side-by-side versioning without policy files is only absolutely required when the target .NET Framework of the assemblies

change, and the change results in using a version of the .NET Common Language Runtime (CLR) that is not compatible with the

previous version. The IVI Foundation will only make changes for this reason when the current target .NET Framework version

becomes unsupported. Massive changes to the IVI APIs could also trigger such a change, but this would likely be interpreted as

a completely new set of APIs, and we do not anticipate changes on this scale.

2 The following are relevant observations about .NET, and are not within the control of the IVI Foundation:

• .NET requires exactly one publisher policy file for each old major/minor version when using policy files to version up. The

old major and minor version numbers are part of the policy file name.

• Adding methods or properties to an interface will break components built against the old interface, because the new

method/property will not be implemented by the component.

Section 19: Version Control Page 19-7

19.5.2. Maintaining Software Configurations

Some programs that use VISA.NET are rigorously qualified with a given software configuration, and once

qualified, are expected to build and run against that exact configuration. Installing publisher policy files

that redirect assembly references to new versions of an assembly might violate this expectation.

To accommodate users who need to strictly control their software configuration, multiple versions of the

VISA.NET Shared Components can be installed side-by-side with later versions. In these cases, references

to older versions of the VISA.NET assembly will, by default, be redirected to the latest installed version

using publisher policy files. The default behavior may be overridden by using application or machine

policy files. VISA.NET vendors are responsible for providing instructions for end users who might wish to

do this.

Ordinarily these versions will not be used at run time, since any run time reference to them will “policy up”

to the newest installed version. However, if a client wishes to continue using an older version of an

assembly, an application configuration file (probably most common) or machine configuration file may be

created that maintains references to the older version. VISA.NET vendors should be prepared to support

customers who need to use older versions of an assembly.

When developing code, references to the specific version required for the application can be added to a

project and will be used consistently after that point for editing and building the project, as long as that

specific version is installed.

19.5.3. Versioning for Policy Files

Any changes to an assembly require that the assembly have a new version number and that the policy

file(s) be updated to refer to the new version of the assembly.

19.5.4. VISA.NET Shared Components Installer

The VISA.NET installer version major/minor version shall be the same as the VISA.NET assembly

major/minor version. In some cases where the only changes are to the installer, the installer build number

may be greater than the assembly build numbers.

Note that the Conflict Manager DLL is installed by the VISA Shared Components (which are a pre-

requisite for the VISA.NET Shared Components), and so there is no connection between the version of that

DLL and the VISA.NET assembly or shared components installer.

19.6. VISA.NET Implementations
It is recommended that VISA.NET implementations use the versioning style for the VISA.NET Shared

Components, except that one of the restrictions on interface versioning may be loosened. In particular,

interface members may be added to an interface without creating a new numbered version of the interface

(and retaining the original interface) if the vendor does not support any other interface implementations

outside of the assembly.

