
IviDriverNetGenSource.md 2025-02-06

1 / 11

IVI Driver .NET Specification

Version Number Date of Version Version Notes

1.0 January 21, 2025 Initial Specification Version

Abstract
This specification contains the Microsoft .NET 6+ specific requirements for an IVI.NET driver, it is an IVI
Language-Specific specification. Drivers that comply with this specification are also required to comply with
the IVI Driver Core Specification.

Authorship
This specification is developed by member companies of the IVI Foundation. Feedback is encouraged. To view
the list of member vendors or provide feedback, please visit the IVI Foundation website at
www.ivifoundation.org.

Warranty
The IVI Foundation and its member companies make no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The IVI Foundation and its member companies shall not be liable for errors contained herein or for incidental
or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks
Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

Table of Contents
IVI Driver .NET Specification

Abstract
Authorship
Warranty
Trademarks
Table of Contents
Overview of the IVI.NET Driver Language Specification

Substitutions
IVI.NET Driver Architecture

Operating Systems and Bitness
Target .NET Versions
IVI.NET Namespaces
IVI.NET Driver Classes
IVI.NET Hierarchy

https://www.ivifoundation.org/

IviDriverNetGenSource.md 2025-02-06

2 / 11

Interface Naming
Reference Property Naming

Repeated Capabilities
Collection Style Repeated Capabilities and the Hierarchy
Repeated Capability Reference Property Naming

IVI.NET Error Handling
Documentation and Source Code

Base IVI.NET API
Required Driver API Mapping Table
Constructors

.NET Constructor Prototypes
IIviDriverCore Interface
Direct IO Properties and Methods

Assembly Level Attributes
Packaging Requirements for .NET 6+

Signing
Contents
IVI Driver NuGet Package Fields
IVI Driver General NuGet Package Tags

IVI.NET Driver Conformance
Driver Registration

Overview of the IVI.NET Driver Language Specification
This specification contains the Microsoft .NET 6+ specific requirements for an IVI.NET driver, it is an IVI
Language-Specific specification. Drivers that comply with this specification are also required to comply with
the IVI Driver Core Specification.

Substitutions

This specification uses paired angle brackets to indicate that the text between the brackets is not the actual
text to use, but instead indicates the text that is used in place of the bracketed text. The IVI Driver Core
Specification describes these substitutions.

IVI.NET Driver Architecture
This section describes how IVI.NET instrument drivers use .NET technology. This section does not attempt to
describe the technical features of .NET, except where necessary to explain a particular IVI.NET feature. This
section assumes that the reader is familiar with .NET technology.

Operating Systems and Bitness

IVI.NET drivers work on one or more of the following Microsoft operating systems: Windows 10 (64-bit) or
Windows 11.

IVI.NET drivers may be provided as 32-bit drivers, 64-bit drivers, or both. Users need to acquire drivers with
the correct bitness for their application needs. The compliance document for an IVI driver states whether the
driver is available in a 32-bit version, a 64-bit version, or both.

IviDriverNetGenSource.md 2025-02-06

3 / 11

Target .NET Versions

IVI.NET drivers shall target .NET 6 or later. IVI.NET Framework drivers should target .NET Framework 4.6.2 or
later. Drivers may be dual targeted.

All references to .NET in this document unless specifically qualified that they refer to .NET Framework refer to
.NET 6 or later.

Drivers shall indicate the .NET and .NET FW versions they support in the IVI Compliance document.

IVI.NET Namespaces

The namespace of IVI.NET instrument drivers shall be <CompanyName>.<DriverIdentifier> or
<CompanyName>.<Technology>.<DriverIdentifier>, where:

<CompanyName> is the name of the driver vendor.

<Technology> is an optional field determined by The driver vendor, not by the IVI Foundation.

<DriverIdentifier> is a string that uniquely identifies the driver. <Identifier> is returned by the
required property of the same name.

For example, Agilent.Agilent34411 or NationalInstruments.ModularInstruments.NIDmm are valid
namespaces for IVI.NET drivers.

IVI.NET Driver Classes

IVI.NET instrument drivers shall consist of one or more .NET classes.

One class in the driver assembly, called the main class:

Shall be named <DriverIdentifier>.*

Shall implement the required constructor and interface that are specified by this specification.

Shall implicitly implement IDisposable and shall call Dispose when the driver object is destroyed.

May implicitly implement IServiceProvider if needed to navigate between interfaces that are not
part of the driver hierarchy.

May implement additional interfaces at the developer's discretion.

The driver may (and typically will) define additional classes as needed to fill out the driver's functionality. For
example, additional classes are needed to implement repeated capability collections.

IVI.NET Hierarchy

An IVI.NET driver shall organize the driver's API as a hierarchy of interfaces and classes. Each of the interfaces
is implemented by one of the driver's classes. Classes may implement zero, one, or more than one interface.

The root of the hierarchy shall be the main class <DriverIdentifier>.*.

The main class shall include properties that return references to child interfaces or classes. A child interface or
class may in turn include properties that return references to its child interfaces or classes, and so on. These

IviDriverNetGenSource.md 2025-02-06

4 / 11

reference properties may then be used to navigate to any instrument functionality from the main class. The
hierarchy may be arbitrarily deep.

Consider the following example code:

Kt1234.Itf2.Cls3.Measure();

Kt1234 is a reference to an instance of the main class. Kt1234 contains an interface reference property named
Itf2, which returns a reference to an interface IItf2. IItf2 contains a reference property named Cls3,
which returns a reference to a class Cls3. Cls3 contains the method Measure().

Observation:

As the user types each of these names, IntelliSense makes navigating the hierarchy easy. It
displays a dropdown list of methods and properties in the corresponding class or interface.
After typing KT1234 followed by a period, a list of all the properties and methods in Kt1234
appears, allowing the user to select one. After selecting Itf2 and typing the period, a list of the
methods and properties in Itf2 appears. After selecting Cls3 and typing the period, a list of
the methods and properties in Cls3 appears, and the user can see and select Measure().

Interface Naming

Interfaces defined for IVI.NET drivers should begin with I followed by one or more words that describe the
interface. If the IVI.NET driver has a root interface, it shall be named I<DriverIdentifier>.

Drivers should include the prefix I<DriverIdentifier> on driver interface names. For instance a Trigger
interface should be named I<DriverIdentifier>Trigger. This convention avoids interface name conflicts if
the driver implements externally defined interfaces.

Reference Property Naming

The names of reference properties should be the trailing words of the type of interface the property returns.

For interfaces, the I<DriverIdentifier> is omitted.

For example:

IKt1234DmmTrigger Trigger { get; }

Repeated Capabilities

Repeated capabilities may be represented in two ways in IVI .NET drivers. Repeated capability instances may
be specified by a method that selects the active instance (the selector style) or by selecting a particular
instance from an IVI .NET collection (the collection style). See the IVI Core Driver Specification for details.

For IVI.NET drivers, collection style repeated capabilities are recommended.

IviDriverNetGenSource.md 2025-02-06

5 / 11

Collection Style Repeated Capabilities and the Hierarchy

Collection style repeated capabilities consist of at least two interfaces or classes. The first is the collection
itself, and the second is an item in the collection. In the hierarchy, a reference property returns the collection
interface or class. Then the collection's Item operator [] is used to return an item from the collection. Each
item in the collection represents one instance of the repeated capability.

Collection style repeated capabilities may be indexed by a string, integer, or other .NET object.

Consider the following example code:

Kt1234.Trace["B"].Peak

Kt1234 is a reference to the main class. Kt1234 contains an interface reference property named Trace, which
returns a reference to the Trace collection. The ["B"] item operator selects the item named "B" from the
collection and returns a reference to an interface or class that uniquely represents the "B" trace. That interface
or class contains the property Peak.

Collections may be implemented in a variety of ways.

Many collections do not need to add or remove members after they are constructed. These can be
implemented directly as .NET read-only collections, preferably dictionaries.

Collections that do need to add or remove members after they are constructed can be implemented
directly as .NET writeable collections, but this carries the risk that clients will add or delete members
that they shouldn't. Developers concerned about this risk may wrap the collection and hide features or
provide appropriate methods to manipulate the collection.

Developers may create a custom collection that derives from IEnumerable, and implement only the
features that are needed.

Repeated Capability Reference Property Naming

Drivers should name the classes and interfaces associated with Repeated Capability Reference Properties as
described in this section.

In the following <RcName> is the name of the repeated capability.

Repeated capability collection interfaces should be named: I<DriverIdentifier>
<RcName>Collection

The interface or class returned by the collection's Item operator should be named:
I<DriverIdentifier><RcName>

The interface or class returned by the collection's Item operator should include a property called Name.
Name returns the physical repeated capability identifier defined by the specific driver for the repeated
capability that corresponds to the index that the user specifies. If the driver defines a qualified repeated
capability name, this property returns the qualified name.

IviDriverNetGenSource.md 2025-02-06

6 / 11

For example, consider a Trigger repeated capability on an Acme 123A instrument:

interface IAcme123ATrigger {
 String Name;
 // ...
}

interface IAcme123ATriggerCollection {
 IAcme123ATrigger operator[](int index) {};
 // ...
}

IVI.NET Error Handling

All IVI.NET instrument drivers shall consistently use the standard .NET exception mechanism to report errors.
Neither return values nor out parameters shall be used to return error information.

Observation:

The IVI method QueryInstrumentError() is used to handle errors within the instrument that
may not be thrown as .NET exceptions.

Documentation and Source Code

This specification does not have specific requirements on the format or distribution method of documentation
and source code other than those called out in IVI Driver Core Specification.

Observation:

Driver developers are discouraged from including full documentation and source code in the
driver NuGet package. This is because numerous occurrences of the NuGet package could be
present on the target system.

Base IVI.NET API
This section gives a complete description of each constructor, method, or property required for an IVI.NET
Core driver. The following table shows the mapping between the required base driver APIs described in the IVI
Driver Core specification and the corresponding IVI.NET specific APIs described in this section.

Required Driver API Mapping Table

Required Driver API (IVI Driver Core) Core IVI.NET API

Initialization Core Driver Constructors

Driver Version Property: ComponentVersion

Driver Vendor Property: ComponentVendor

Driver Setup Property: DriverSetup

IviDriverNetGenSource.md 2025-02-06

7 / 11

Required Driver API (IVI Driver Core) Core IVI.NET API

Error Query Method: ErrorQuery()

Instrument Manufacturer Property:InstrumentManufacturer

Instrument Model Property: InstrumentModel

Query Instrument Status Enabled Property:QueryInstrumentStatus

Reset Method: Reset()

Simulate Enabled Property: Simulate

Supported Instrument Models Method: GetSupportedInstrumentModels()

Observation:

The properties ComponentVersion and ComponentVendor are so named for backwards
compatibility, drivers may also include more intuitively named properties such as DriverVersion
and DriverVendor.

Constructors

In IVI.NET, constructors provide the initialization functionality described in IVI Driver Core Specification. This
section specifies the required IVI.NET specific driver constructors.

.NET Constructor Prototypes

The IVI.NET drivers shall implement two constructors with the following prototypes.

<DriverClassName>(String resourceName, Boolean idQuery, Boolean reset)

IVI.NET drivers shall implement an additional constructor that provides a way for the client to specify driver
options (such as simulation). The mechanism by which these parameters are passed is driver-specific.

IVI.NET drivers may implement additional constructors.

The parameters are defined in the IVI Driver Core Specification. The following table shows their names and
types for .NET:

Inputs Description Data Type

resourceName Resource Name String

idQuery ID Query Boolean

reset Reset Boolean

Notes:

IviDriverNetGenSource.md 2025-02-06

8 / 11

IVI Driver .NET constructors are implemented in the namespace of the specific driver, on the main driver
class.

IIviDriverCore Interface

namespace "Ivi.DriverCore"

public struct ErrorQueryResult
{
 Int32 Code { get; }
 String Message { get; }
}

public interface IIviDriverCore
{
 String DriverVersion { get; }
 String DriverVendor { get; }
 String DriverSetup { get; }
 String InstrumentManufacturer { get; }
 String InstrumentModel { get; }
 Boolean QueryInstrumentStatus { get; set; }
 Boolean Simulate { get; }
 ErrorQueryResult ErrorQuery();
 void Reset();
 String[] GetSupportInstrumentModels();
}

IVI publishes the interface shown above. Devices shall implement either this interface or an IVI published
interface that provides the same functionality to satisfy the method and property requirements of the IVI Core
Driver Specification.

Observation:

The intent of permitting drivers to implement other IVI published interfaces is to permit drivers
that are migrated from earlier IVI .NET architectures to retain their implementations of this
functionality.

.NET-specific Notes (see IVI Driver Core Specification for general requirements):

The return value for ErrorQuery is null if there is no error.

The return value for GetSupportedInstrumentModels is an array of strings that returns the list of
supported models, one per array element.

Drivers are permitted to implement a Set accessor on Simulate. However, if they do so, they shall
properly manage the driver state when turning simulation on and off.

Direct IO Properties and Methods

Per the IVI Driver Core specification, IVI Drivers for instruments that have an ASCII command set such as SCPI
shall also provide API for sending messages to and from the instrument over the ASCII command channel.

IviDriverNetGenSource.md 2025-02-06

9 / 11

This section specifies those properties and methods.

IVI does not publish an interface for Direct IO. Drivers may implement these wherever in the driver hierarchy it
makes sense.

Required Driver API (IVI Driver Core) Core IVI.NET API

I/O Timeout Property: Timeout (read/write)

Read Bytes Method: ReadBytes

Read String Method: ReadString

Write Bytes Method: WriteBytes

Write String Method: WriteString

.NET Property Prototypes

Timespan Timeout { get; set; }
<type-See Note> Session { get; } // Optional
Byte[]ReadBytes();
String ReadString();
void WriteBytes(Byte[] buffer);
void WriteString(String data);

Notes:

The optional Session property should return a strongly typed session for the underlying IO library.

Assembly Level Attributes
.NET Assembly Attributes shall be included for:

AssemblyTitle. AssemblyTitle shall be the file name of the assembly.

AssemblyDescription. AssemblyDescription shall be free-form; it is required to exist, but it does
not have a particular value.

AssemblyCompany. AssemblyCompany shall be the driver vendor's company name.

AssemblyCulture. AssemblyCulture shall be "" for assemblies that are not globalized. If localized,
AssemblyCulture shall be the value of the culture to which the assembly is localized.

AssemblyProduct. AssemblyProduct shall be "IVI <DriverIdentifier> .NET Assembly".

AssemblyVersion. AssemblyVersion shall be the same as the version resource values for the same
item, as defined in File Versioning in IVI Driver Core Specification.

AssemblyFileVersion. AssemblyFileVersion shall be the same as the version resource values for
the same item, as defined in File Versioning in IVI Driver Core Specification.

IviDriverNetGenSource.md 2025-02-06

10 / 11

.NET Assembly Attributes should be included (if applicable) for:

AssemblyCopyright

AssemblyTrademark

Observation:

In MS Build projects the attributes may be generated automatically by MS Build, so will be in the
MS Build file and not source code.

Packaging Requirements for .NET 6+
IVI.NET drivers are provided as NuGet packages provided via a NuGet feed. Vendors may operate their own
feed or use public ones such as https://www.nuget.org.

Generally, drivers should follow the guidance provided by Microsoft for NuGet package properties. However,
IVI requires:

Versions be specified per IVI Driver Core Specification, File Versioning section, however:

No field for "Internal Version" may be included

Consistent with the Microsoft guidance, "-Suffix" may be appended to indicate pre-release
versions.

Driver NuGet packages shall specify the license terms. Drivers may use any of the common open-source
licenses or use explicit licenses.

Drivers that use explicit licenses shall include the text of the license in the NuGet package and reference it in
the NuGet metadata license element.

Drivers may be dual-targeted. Driver NuGet packages for dual-targeted .NET Core drivers include .NET
Framework reference assemblies to enable end-customers to develop dual-targeted applications.

Observation:

Drivers, and their NuGet packages, may have dependencies on tools that are not included in the
NuGet package dependencies. For instance, a driver may require a license manager due to its
use of licensed software.

Signing

IVI Driver NuGet packages shall be signed. The driver vendor shall publish the public key. The same key
should be used to sign all the IVI.NET drivers provided by a driver vendor.

Driver suppliers shall also sign their drivers.

Contents

All IVI.NET driver NuGet packages shall include the following files:

The assembly containing the driver

https://www.nuget.org/

IviDriverNetGenSource.md 2025-02-06

11 / 11

An XML IntelliSense file

Readme File (README.md)

The name of the assembly for the main driver executable shall be <Namespace> followed by ".dll". For
example, if the driver namespace is Agilent.Ag34401A, the name of the dynamic link library shall be
Agilent.Ag34401A.dll.

IVI Driver NuGet Package Fields

The IVI.NET driver NuGet package should follow Microsoft recommendations regarding NuGet package Fields.

IVI Driver General NuGet Package Tags

The IVI.NET driver NuGet package SHALL have the following NuGet tags:

Tag indicating IVI conformance: IVI-Driver-NET-Conformant

Tag indicating IVI registration: Registered-IVI-Driver

Tag indicating component type: IVI-Driver (or IVI-Driver-SharedComponents)

IVI.NET Driver Conformance
IVI.NET Drivers are required to conform to all of the rules in this document. They are also required to be
registered on the IVI website.

Drivers that satisfy these requirements are IVI.NET drivers and may be referred to as such.

Registered conformant drivers are permitted to use the IVI Conformant Logo.

Driver Registration

Driver providers wishing to obtain and use the IVI Conformance logo shall submit to the IVI Foundation the
driver compliance document described in IVI Driver Core Specification, Section Driver Conformance along with
driver information and a point of contact for the driver. The information shall be submitted to the IVI
Foundation website. Complete upload instructions are available on the site. Driver vendors who submit
compliance documents may use the IVI Conformant logo graphics.

The IVI Foundation may make some driver information available to the public for the purpose of promoting
IVI drivers. All information is maintained in accordance with the IVI Privacy Policy, which is available on the IVI
Foundation website.

https://github.com/IviFoundation/IviDrivers/blob/main/IviDriverCore/1.0/Spec/IviDriverCore.md#driver-conformance
https://ivifoundation.org/

