interchangeable
Virtual
lnstruments

IVI-3.2: Inherent Capabilities Specification

February 7, 2017 Edition
Revision 2.1

Important Information

The IVI1-3.2: Inherent Capabilities Specification is authored by the IVI Foundation member companies. For a
vendor membership roster list, please visit the IVl Foundation web site at www. ivifoundation.org.

The V1 Foundation wants to receive your comments on this specification. You can contact the Foundation
through the web site at www. ivifoundation.org.

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The IVI Foundation and its member companies shall not be liable for errors contained herein or for incidental
or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks
Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

IVl Foundation 2 IVI-3.2: Inherent Capabilities Specification

Table

Coments
Inherent Capabilities Specification...........cccovvviiiiii i, 7
1. Overview of the Inherent Capabilities Specification.......................... 9
L1 INEFOUUCTION 1ttt b bbbt bt b s 9
1.2 Inherent CapabilitieS OVEIVIEWccviiiiiiiirieieiteseie e e sttt st st et e et e e e e e eneesae e eneanenneans 9
1.3 RETEIENCES ...ttt Rt 9
1.4 Definitions of Terms ant ACIONYMSciiiirierieiieieieeereeeeesseesesesese e e seesresaesaessessesaessessesessessessessenns 9
2. Specification Section LayOuUtccouuiiiiiiiiiiiiiiiicce e 10
P28 R 1 T (Ut (o] o TSP PP PT T 10
2.1.1 ALriDULE SECLION LAYOUL......ciiiiiiiieiiieieie e 10
2.1.2 FUNCLION SECHION LAYOULeeviiieiiiieiiieiste sttt 10
3. General ReqUITEMENTS ..o e 12
3.1 Inherent Capabilities COMPIIANCE RUIEScoiiiiiiiice e 12
3.1.1 Attribute COMPHANCE RUIES ..o bbb 12
3.1.2 Function ComPplianCe RUIESo.ciriiiieirieire et 12
3.1.2.1 Additional Compliance Rules for C Functions with ViChar Array Output
PAIAMELEIS ...t ettt b e 13
3.1.2.2 Additional Compliance Rules for Revision String Attributes..........ccccccovvveeienne. 13
3.1.3 Boolean Attribute and Parameter ValUES ..o 14
3.2 INET NAIMESPACE citetteiteete ettt bbbt b bbb e bt st e bt e b e e bt e bt e b e et e s ae e ebeeseenb e e sbesbeenbenbe e b e enbe e 14
4. Inherent CapabilitieS OVErVIEWcccuviiiiiiiiiiieeieeee e 15
4.1 NET Inherent CapabilitieSs.........ooiiiiirieeeee et ene s 15
4.1.1 Inherent Capabilities INtErTACESccciveiieici e 16
4. 111 HIVIDIIVET oottt 16
4.1.1.2 HIVIDIIVEIOPEIAtIONcveveiieieiieeet et e ettt re e st sa et a s na e nsareans 16
4.1.1.3 HVICOMPONENTIAENTILY ...c.voveieiieiceces e 17
4.1.1.4 TIVIDIIVEITAENTILY ..o.vevcieieece et e e ereens 17
4. 115 HVIDFVEIULITITY .o 17
4.1.1.6 HIVIDIIVEILOCK ... cveeeiiieiesieeeeee ettt s ena e eneeranns 17
4.1.2 Interface RETErENCE PrOPEITIESoovciiiiiieeiiieree ettt 17
4. 1.3 IVLNET IVIDIiver SESSION FACIOIYcceiiiiiiiiiiiiiteiiete ettt 17
4.2 COM INherent Capabilitiescoiiiiiiie bbbt 18
4.2.1 Inherent CapabilitieS INTEITACESccoeiiiiiiiiieir e 20
A.2. 1.0 TIVIDIIVEL .ttt ettt et e et e et neeneenas 20

IVl Foundation 3 IVI-3.2: Inherent Capabilities Specification

4.2.1.2 1IVIDIIVEIOPEIAtIONc.veieieeiciieier e e se et st re e sre st sa et sa e ensena e ensereans 20

4.2.1.3 HVICOMPONENTIAENTILY ...c.voveicicice e 20

4.2.1.4 TIVIDIIVEITAENLILY ..o.veviieieec et e e erenns 20

4.2. 1.5 HVIDFVEIULITITY ..o 20

4.2.2 Interface RETErENCE PrOPEITIEScoviiiieiieieiere e ettt 20

4.2.3 IVIDIIVEF COM CAEYOIYeiviriitiieterieteseeie sttt ettt se ettt sb bbb ebe e ebe e ebeneebe e 21

4.3 C INherent Capabilitiesccooviiieiee e 22
4.4 Relationship of Inherent Attributes and Different Types of IVI DIVEr ..o 25
5. Inherent Property/Attribute Descriptionsc.ccoovviiiiiiiineii e, 26
L0 7 o RSSO 26
5.2 Class Driver Class Spec Major Version (IVI1-C ONlY).......ccocuiiiiriiniiiiesesesesse e 27
5.3 Class Driver Class Spec Minor Version (IV1-C ONlY)........cooiiiiiiiiiieie e 28
5.4 Class Driver Description (IV1-C ONIY)ouoiiiiee et 29
5.5 Class Driver PrefixX (IV1-C ONIY) ..ot 30
5.6 Class Driver ReviSion (IVI-C ONIY) ...ttt sttt 31
5.7 Class Driver Vendor (IV1-C ONIY)....coooiiiiiciceiees sttt sttt a e sneneeneas 32
5.8 Class Group Capabilities (IVI-C & IVI-COM ONIY) ..ot e e eneas 33
5.9 Component Class Spec Major Version (IVI-COM & IVLNET ONlY) ... 34
5.10 Component Class Spec Minor Version (IVI-COM & IVENET ONlY) ...cccoovevivineieceeeeieesnenen 35
5.11 Component Description (IVI-COM & IVENET ONIY)..oviiiiiiieiecece e 36
5.12 Component Identifier (IVI-COM & IVENET ONlY) ..o 37
5.13 Component Revision (IVI-COM & IVENET ONIY) ..o 38
5.14 Component Vendor (IVI-COM & IVLNET ONIY) ...ooiiiiiiiiiiieseee e 39
515 DIFIVEER SELUD ©.vvetereteeeteseetene ettt bbbkt bbb bbb b et b etk bbb bbbttt nb e 40
5.16 1/0 RESOUICE DESCIIPLON ...ttt ettt bbbt b et bbb bbbt bbbt nn e 41
5.17 INitialized (IV1-COM ONIY) ..ottt st e e sa et seeee et e s e e e et eneeneeneeneas 42
5.18 InStrument FirMWare REVISTONcccoiiiiiiiiiicsie et 43
5.19 INSErUMENt IMANUTACTUIETevieciiite e 44
5.20 INSEIUMENT IMOET ..ot nn e 45
5.21 INEIChANGE CRECK ..ottt bbb bbb bbb e e e e be e b b 46
5.22 LOGICAI INAME ..ottt ettt et e e b e e be s te e be s b e st e besbe et et e ste st et e sae st entesbeseenseneesaeneareas 48
5.23 QUETY INSEIUMENT STALUSveeiieiiieitie ettt sttt st b e st e et sbe et esbae e beesbaeebee e 49
5.24 RANGE CNECKoiiiiciiciiie ettt bt e st e st e st et e s te st e besae e en b e st e e eneeneeneeneaneas 50
5.25 RECOd ValUB COBITIONS.vcreiiiirireitisisr sttt 51
5,26 SIMUIALEveeveeteeeee et e s e e e s e s e e e ae st e teabestesbeseenb e beneenaen e ae e enseneeneeneeneeneeneanens 52
5.27 Specific Driver Class Spec Major Version (IVI-C ONlY) ... 53
5.28 Specific Driver Class Spec Minor Version (IV1-C ONlY) ... 54
5.29 Specific Driver Description (IVI-C ONIY)......cooiiiiiiiiiie e 55
5.30 Specific Driver LOCAtOr (IVI-C ONIY) ...coiuiiiiiiiiciiieiiee e 56
5.31 Specific Driver PrefiX (IV1-C ONY) ..o 57
5.32 Specific Driver ReviSion (IV1-C ONIY) ... 58
5.33 Specific Driver Vendor (IV1-C ONIY) ..o 59
5.34 Supported Instrument Models (IVI-C & IVI-COM ONIY)ccoiiiiiiiiiiiie e 60
6. Inherent Method/Function DescCriptionS........ccoooveviiiiiiiiciicceceee, 61
6.1 Clear Error (IV1-C ONIY) ..ottt bbb bbbt e et eneeb e s 61
6.2 Clear Interchange Warnings (IVI-C & IVI-COM ONlY).......cccciiiiiiiiiiiei e 62
8.3 ClOSE ...ttt E e R R R R R R R R R R R AR e R bRt b s 63
8.4 DISADIE ...ttt 65
6.5 Error Message (IVI-C ONIY) ..ottt sttt et e et n s neene e 66
RO I = 0] G U T o PSS 67
6.7 Get Attribute <type> (IV1-C ONIY) coovvieieee et n e raene e 69
6.8 Get Attribute ViString (IVI-C ONlY) ..ot 71

IVl Foundation 4 IVI-3.2: Inherent Capabilities Specification

6.9 GELEITON (IV1-C ONIY) ..ttt ettt sttt st st sttt e e et e s e seeneensetenne e 72

6.10 Get Group CapabilitiesS (IVIINET ONIY) ..ottt 74

6.11 Get Next Coercion Record (IVI-C & IVI-COM ONIY) ...cvoviiiiiiircece e e 75

6.12 Get Next Interchange Warning (IVI-C & IVI-COM ONIY) ..o 77

6.13 Get Specific Driver C Handle (IVI-C ONIY) ..o 79

6.14 Get Specific Driver lUnknown Pointer (IVI1-C ONlY) ..o 80

6.15 Get Supported Instrument Models (IVENET ONIY) ..ot 81

6.16 Initialize (IVI-C & IVI-COM ONIY) ..ottt 82

6.17 INVAlidate Al ALIIIDULESc.iiiieiecece ettt sttt e e neereene e 87

B.18 LLOCK SESSION.ueiteieetietiete sttt sttt ettt sttt et e s et e st e b e b e bt eb e e b e b e eb e eb e ek e ehenb e s b eb e b et e ne e s e s b e seeneenseneene e 88

B.19 RESEL ...ttt ettt £ b £ b bR £ R R E £ £ h b £ £ bR E R bbb bbbt et b et 91

6.20 Reset INErchange ChECKoii i bbbttt 93

6.21 RESEE WIth DETAUITS.......ccviiieiiitic s 95

6.22 ReVviSion QUENY (IV1-C ONIY) ..ottt ettt re et e e esaeereeneennas 96

.23 SBIT TST ...ttt b ettt 98

6.24 Set Attribute <type> (IVI-C ONIY) .cuviiiiiie et sttt e e ens 101

.25 UNIOCK SESSION ...ttt n et 103

7. Specific Driver Wrapper FUNCLIONS........coooviiiiiiiiiiie e 104
7.1 C Wrappers for IVI-COM SPECITIC DIIVEISc.ucivieieieieieieiece ettt sa e neens 105

7.1.1 Get Native IUNKnown Pointer (IVI-C ONIY) ..c.ocvciiicicese e 105

7.1.2 Attach To Existing COM SesSion (IVI-C ONlY)......ccoiiiiiiiiiinieneeseee e 106

7.2 IVI-COM and IVI.NET Wrappers for IVI-C SpecifiC DIVEISccoccoiriiiiiiniiienee e 107

7.2.1 Native C Handle (IVI-COM ONIY) ...c.oouiiiiiiiiieeee e 107

7.2.2 Attach To Existing C Session (IVI-COM ONlY).......ccooeiriiiiiiiinienees e 108

8. IVILNET Specific Driver CONSTIUCTOrvivieiiiiiiieeiii e 109
9. IVILNET Event DesCriptiONSccvuei i e e e e 114
(ST AV 8\ I o SR PRTRN 114

9.1.1 Coercion Record Event (IVEENET ONIY) .c.cociiiiiiiiiieeeeee e 115

9.1.2 Interchange Check Warning Event (IVLNET ONlY) ..o 116

9.1.3 Driver Warning Event (IMLNET ONIY) ..o 117

10. IVI Inherent Attribute ID DefinitionNScccoiiviiiiiiiiie e, 118
10.1 Inherent AtrIDULE ID ValUESc.ooiiiieiieieeie ettt sttt bttt enea 118

10.2 Reserved Vendor Specific Inherent Extension Attribute ID Values and Constantsc.cccceeeeeneae 119

10.3 Reserved Module Private Attribute 1D ValUES...........cccoviiiiiiiieiienseses e 120

10.4 Reserved Standard Cross Class Capabilities Attribute 1D ValUesccocvveiiniiininineneeeeees 120

11. Common IVI-C and IVI-COM Error and Completion Codes 121
11.1 IVI-C and IVI-COM Error and COompletion COUES.........c.coveeriiiriiriieiisie e 121

11.2 IVI-C Error and COmMPIEtion COUESceiiriirieiieieieie ettt e e 123

11.3 IVI-COM Error and COmMPIEtion COUEScceieiiiiiiiieiieiieieieeieee e iese st ste e sre et sre e saesresesaesaeneenens 126

11.4 Reserved Vendor Specific Error and Completion Code Values and Constants...........ccccocevververeenennns 128

11.5 Standard COM Error Codes for Use during Driver Development..........ccccvevvievierievenesesienesieseseenens 130

11.6 Unused Standard COM EFTOr COUEScuevrirrireiirinrereesisreee s snenese e snsnens 130

IVl Foundation 5 IVI-3.2: Inherent Capabilities Specification

12. Common IVI.NET Exceptions and Warnings............ccceevvvvnnerennnnn. 131

12.1 General Information ADOUt EXCEPLIONSccveuiriiiirieiieeseere e 131
12.2 Mapping IVI-C and IVI-COM Error Codes to IVENET ..o 132
12.3 Mapping IVI-COM Session Factory Error Codes t0 IVENET ..o 133
12.4 COMIMON EXCEPLIONS ... vttt bbb bbbttt eb et bbb 135
12.4.1 System.ArgumentNullException (NET Framework)c.ccccoevriirniniiniinesenens 136

12.4.2 System.InsufficientMemOryEXCEPLIONc..ccviiiiiiiiiiieieeee e e 137

12.4.3 System.1O.FileNOtFOUNAEXCEPLIONoiviiiiiiiicieie e e e 138

12.4.4 ConfigurationSErVErEXCEPLIONociiiiiiiiiiiiieieee ettt e 139

12.4.5 FIleFOrMatEXCEPIION.iiiie ettt ettt st st b e st et e e sn et sae e ne e 140

12.4.6 1dQUErYFailedEXCEPLIONcviiviieitiieie et bbb 141

12.4.7 InStrumentStatUSEXCEPLIONc.oiviiiiiiiie ettt st st ne e 142

12.4.8 InvalidOptionValUEBEXCEPLIONocveiiiiieiiiee e 143

e B (@] (=T o1 o] o SRS 144

12.4.10 IOTIMEOULEXCEPLION.ctiieitisteitestesietesteste et e e e et e st re st sre st st e te e sne e eneenneneens 145

12.4.11 IVICDIIVEIEXCEPTION ...ttt ettt 146

12.4.12 IVICOMDIIVEIEXCEPLIONottt 147

12.4.13 MaxTimeEXCEEUEUEXCEPIIONovcviieiirieiiiecierieeet ettt 148

12.4.14 OperationNOtSUPPOITEdEXCEPLIONcviveiiriciirieieric s 149

12.4.15 OperationPendiNngEXCEPLIONccciiiirieirieirieisi et 150

12.4.16 OptioNMISSINGEXCEPLIONoiviitiitiiiiie ettt st 151

12.4.17 OptionStringFOrMAatEXCEPTIONc.eiviiiiiiiiiie e e e 152

12.4.18 OUtOTRANGEEXCEPLIONc.viviitiiteiteieite ettt bbb e 153

12.4.19 ReSetFail@dEXCEPLIONoouiiiiitiiteieeieie bbb e e 154

12.4.20 ReSetNOtSUPPOITEAEXCEPLIONoiviiiieieiieie et 155

12.4.21 SelectorFOrmatEXCEPLION.ccoiiiiie et 156

12.4.22 SelectorHierarChyEXCEPLIONccvieieiiirieie et sttt ens 157

12.4.23 SeleCtorNaMEEXCEPLIONciiiiieriirereseeriee ettt st st sa et e e sn et eneeneeneens 158

12.4.24 SelectorNameReqUIrEdEXCEPLIONcveiverieieicicieeee e 159

12.4.25 SeleCtorRANGEEXCEPLIONc.viveiiiiiiitiietiett ettt 160

12.4.26 SimulationStAtEEXCEPTIONevviiiiieiict it 161

12.4.27 TriggerNotSOftWArEEXCEPLIONovcviieeiieiicre s 162

12.4.28 UnexpectedRESPONSEEXCEPLIONviveeirieiiriciirieiest ettt 163

12.4.29 UNKNOWNOPLIONEXCEPLIONcvvviriitiiitiieeiiseciesieese ettt 164

12.4.30 UnknownPhysicalNameEXCEPLIONcociriiiriiiriiisicise s 165

12.4.31 ValueNOtSUPPOIEAEXCEPTIONoviviiieieiieie ettt st e 166

12.5 IVI.NET Session Factory Method EXCEPLIONScceiiiiiieiiiiieinese st 167
12.5.1 ClassNameNOtFOUNAEXCEPLIONoiviriiieiriiieieieiie ettt e e 168

12.5.2 ConfigurationStoreLOadEXCEPLIONcoveiiiiiiiieiiciiceice e 170

12.5.3 DriverClassCreatioNEXCEPLIONcceiierierierieiieiieieieeieeesese e sre st sre et sae e saesne s esaeseeneens 171

12.5.4 InvalidClassSNaAMEEXCEPLIONcoiiiiieriesieie ettt sttt et ne e 172

12.5.5 SesSIONNOtFOUNAEXCEPLIONecviiiiiiieieeieie ettt ettt st ne e 173

12.5.6 SoftwareModuleNOtFOUNAEXCEPLIONoveveieicicecece s 174

12,6 WAITINGS ©.veveieiieiesieee et e e et s et te st e st e et e e e e e e eseeseeseeRe et e e teaReabenbesaeaeesbeseeseenseseeseenseseesenneanens 175
13. Inherent Attribute Value Definitionsccccoviviiiiiicvii e, 176

IVl Foundation 6 IVI-3.2: Inherent Capabilities Specification

Inherent Capabilities Specification

Revision History

This section is an overview of the revision history of the Inherent Capabilities specification. Specific individual
additions/modifications to the document in draft revisions are denoted with diff-marks, “|”, in the right hand column
of each line of text to which the change/modification applies.

Table 1. Inherent Capabilities Specification Revisions

Revision Number

Date of Revision

Revision Notes

Revision 1.0

April 15, 2002

First approved version. Accepted all changes. Removed
change tracking. Removed draft comment and changed
version to 1.0.

Revision 1.0

October 1, 2004

IVI-COM drivers do not support multithread locks on
sessions.

Revision 1.1

January 12, 2007

Added attribute accessor functions for 64-bit integers.

Revision 1.2

November 17, 2008

Added a requirement that 64-bit drivers include a specific
string (identifying the driver as 64-bit) in the values for
the following property/attributes:

liviComponentldentity “Description” property for IVI-
COM, CLASS_DRIVER_DESCRIPTION attribute for
IVI-C, SPECIFIC_DRIVER_DESCRIPTION attribute
for IVI-C.

Editorial change to update the IVI Foundation contact
information in the Important Information section to
remove obsolete address information and refer only to the
IVI Foundation web site.

Revision 1.3

March 23, 2009

Added a note in Sections 6.7 and 6.22 that an IVI-C
specific driver may omit the Vilnt64 function if the driver
has no 64-bit attributes.

Revision 2.0

June 9, 2010

Incorporated IVI.NET

Revision 2.1

October 14, 2010

Editorial IVI.NET change.
Correct the names of two exceptions.

Revision 2.1

April 15, 2011

Editorial IVI.NET changes.

Change the IVI.NET Warning event args to include a text
field and add the GUID code parameter name, and add
IVI.NET warning messages.

Clarify the content of the IVI.NET Coercion Reporting
event messages.

Clarify the ability to throw derived exceptions from
IVI.NET drivers.

Remove instrument model information from various
exceptions.

For IVI.NET exceptions dealing with nested repeated
capabilities, clarify the repeated capability to be reported

IVI-3.2: Inherent Capabilities Specification

7 IVI Foundation

Table 1. Inherent Capabilities Specification Revisions

in the exception.
Revision 2.1 August 25, 2011 Editorial IVI.NET change.

Change references to process-wide locking to
AppDomain-wide locking.

Add documentation of the LockType enumeration.

Revision 2.1 August 6, 2012 Editorial change. Change references to Event Not
Supported exception to Operation Not Supported
exception.

Revision 2.1 July 26, 2013 Editorial change in Section 3.1.2.1. Added a note to

clarify that C functions that have a ViChar array output
parameter cannot return warnings.

Revision 2.1 January 8, 2015 Editorial change in Section 5.11 to remove the
requirement for IVI.NET drivers to include a statement in
the component description identifying it as 64-bit.

Revision 2.1 March 9, 2015 Editorial change in Section 3.1.2.1 to clarify the behavior
of the GetAttributeViString function when the buffer size
is set to zero.

Revision 2.1 February 7, 2017 Editorial change in Section 4.2.9 to clarify that
IOException is not required when the underlying 1/0
software reports an error.

API Versions

Architecture | Drivers that comply
with version 2.1
comply with all of the
versions below

Cc 10,11,12,20
COM 1.0,11,12,20
NET 2.0

Drivers that comply with this version of the specification also comply with earlier, compatible, versions of
the specification as shown in the table above. The driver may benefit by advertising that it supports all the
API versions listed in the table above.

IVI-3.2: Inherent Capabilities Specification 8 IVl Foundation

1. Overview of the Inherent Capabilities Specification

1.1 Introduction

This section summarizes Inherent Capabilities Specification itself and contains general information that
might help the reader understand, interpret, and implement aspects of this specification. The contents of
this section include the following:

e Inherent Capabilities Overview
e The definitions of terms and acronyms

e References

1.2 Inherent Capabilities Overview

This specification defines the capabilities that all 1\l instrument drivers are required to implement. This
includes IVL.NET, IVI-COM and IVI-C drivers, as well as .NET, COM and C wrappers for native
IVI.NET, IVI-C and IVI-COM drivers.

For a complete description of the various types of I\VI drivers, refer to IVI-3.1: Driver Architecture
Specification.

1.3 References

Several other documents and specifications are related to this specification. These other related documents
are as follows:

e IVI-1: Charter Document

e IVI-3.1: Driver Architecture Specification

e |VI-3.5: Configuration Server Specification

e IVI-3.17: Installation Specification

e IVI-3.18: .NET Utility Classes and Interfaces

e VVPP-3.3: Instrument Driver Interactive Developer Interface Specification
e VPP-4.3.2: VISA Implementation Specification for Textual Language

o VPP-4.3.4: VISA Implementation Specification for COM

1.4 Definitions of Terms and Acronyms

Refer to IVI-5: Glossary for a description of the terms and acronyms used in this specification. This
specification does not define any additional terms.

IVI-3.2: Inherent Capabilities Specification 9 IVl Foundation

2. Specification Section Layout

2.1 Introduction

This section gives an overview of the information presented for each property/attribute and
method/function that this specification defines.

2.1.1 Attribute Section Layout
Each Attribute section is composed of the following subsections. Optional subsections are noted:

Capabilities Table—A table that defines the following for the attribute:

DataType—Specifies the VXIplug&play data type of the attribute. Valid types are specified in
Section 5.14, Allowed Data Types, of 1VI-3.1 Driver Architecture Specification. In some cases where
IVI.NET defines a specific type, the .NET type will be used (e.g. lvi.Driver.PrecisionTimeSpan).

Access—Specifies the kind of access the user has to the attribute. Possible values are Read-Only,
Write-Only, and Read/Write.

RO (Read-Only)—indicates that the user can only get the value of the attribute.
WO (Write-Only)—indicates that the user can only set the value of the attribute.
R/W (Read/Write)—indicates that the user can get and set the value of the attribute.

.NET Property Name—Defines the property name, including the object hierarchy, that an IVI.NET
specific driver uses for the property. C# syntax is used.

COM Property Name—Defines the property name, including the object hierarchy, that an IVI-COM
specific driver uses for the property.

C Constant Name—Defines the attribute name that an 1\VVI-C driver uses for the attribute. To determine
the actual C constant name for a particular 1VI-C driver, replace the literal string PREFIx with the macro
prefix for the IVI-C driver.

Description—Describes the attribute and its intended use.
Defined Values (Optional)—Defines all the valid values for the attribute.
Compliance Notes (Optional)—Section 3, General Requirements, defines the general rules an V1 driver

shall follow to be compliant with an attribute specification. This section specifies additional compliance
requirements and exceptions that apply to a particular attribute.

2.1.2 Function Section Layout
Each Function section is composed of the following subsections. Optional subsections are noted:

Description—Describes the behavior and intended use of the function.

.NET Method Prototype—Defines the method prototype, including the object hierarchy, that an IVI.NET
specific driver uses for the method. C# syntax is used.

COM Method Prototype—Defines the COM method prototype, including the object hierarchy, that an
IVI-COM specific driver uses for the method.

C Function Prototype—Defines the prototype that an 1VI-C driver uses for the function. To determine the
actual C function name for a particular 1\VV1-C driver, replace the literal string pre £ix with the function
prefix for the IVI-C driver.

Parameters—Describes each function parameter.

IVI-3.2: Inherent Capabilities Specification 10 IVl Foundation

Return Values—Defines the possible completion codes for the function.

Compliance Notes (Optional)—Section 3, General Requirements, defines the general rules an VI driver
shall follow to be compliant with a function specification. This section specifies additional compliance

requirements and exceptions that apply to a particular function.

IVI-3.2: Inherent Capabilities Specification 11 IVl Foundation

3. General Requirements

This section describes the general requirements an IVI driver shall meet to be compliant with this
specification.

3.1 Inherent Capabilities Compliance Rules
To comply with this specification, an IVI driver shall comply with the following rules:
o Implement all attributes that this specification defines, except when noted otherwise.

o Implement all functions that this specification defines, except when noted otherwise.

3.1.1 Attribute Compliance Rules

To comply with a particular attribute that this specification defines, an I\VVI driver shall adhere to the
compliance rules defined in Section 5.6.1, Attribute Compliance Rules, of the 1VI-3.1: Driver Architecture
Specification.

In addition, the VI driver shall adhere to all of the following requirements for the attribute:
e Implement the attribute as non-channel based.

e Implement the attribute with no value coercions. Value coercions are not allowed for inherent
attributes. VI drivers shall report an error if the I\l driver or the instrument cannot accept the value
that the user specifies for an inherent attribute.

Note: If a particular attribute has compliance rules or exceptions in addition to the rules that this section
defines, the Compliance Notes section for the attribute contains the additional rules or exceptions.

3.1.2 Function Compliance Rules

To comply with a particular function that this specification defines, an I\VVI driver shall adhere to the
compliance rules defined in Section 5.6.2, Function Compliance Rules, of the IVI-3.1: Driver Architecture
Specification.

Note: If a particular function has compliance rules or exceptions in addition to the rules that this section
defines, the Compliance Notes section for the function contains the additional rules or exceptions.

IVI-3.2: Inherent Capabilities Specification 12 IVl Foundation

3.1.2.1 Additional Compliance Rules for C Functions with ViChar Array Output
Parameters

This section specifies additional compliance rules for C functions that have a vichar array output
parameter and an input parameter that specifies the size of the vichar array. The functions in this
specification that have such parameters are the Get Attribute ViString, Get Error, Get Next Coercion
Record, and Get Next Interchange Warning functions.

e The user is responsible for allocating a vichar array and passing the address of the array in the
ViChar array output parameter. The array serves as a buffer into which the I\VVI-C driver copies a
string.

e The name of the input parameter that specifies the size of the array is the name of the array followed
by Buffersize and is the parameter that immediately precedes the vichar array output parameter.
For example if the name of the vichar array output parameter is errorDescription, the name of
the buffer size parameter is errorDescriptionBuffersSize. The user passes the number of bytes
in the buffer as the buffer size parameter.

o If the string that the function attempts to copy contains more bytes (including the terminating NUL
byte) than the user indicates in the buffer size parameter, the function does the following:

e Copies (buffer size-1) bytes into the buffer
e Places an ASCII NUL byte at the end of the buffer

e Returns in the return value a buffer size that is greater than or equal to the size of the buffer the
user must pass to be ensured of getting the entire string.

For example, if the value is 123456 and the buffer size is 4, the function places 123 followed by a
NUL byte into the buffer and returns 7. If the function encounters an error, the function returns the
corresponding error code instead of the required buffer size.

o Ifthe user passes a negative number for the buffer size parameter, the function copies the value into
the buffer regardless of the number of bytes in the value.

e Ifthe user passes O for the Buf fersize parameter, the function allows the user to pass vi_NuLL for
the output buffer parameter and returns a buffer size that is greater than or equal to the size of the
buffer the user must pass to be ensured of getting the entire string including the NUL byte.

Note: In the case of a string that might change between a call to GetAttributevistring with a buffer
size of zero and the second call to GetattributevisString with the buffer size returned by the first call,
the first call should return the maximum buffer size that might be needed in the second call. If the
maximum buffer size cannot be determined, then the string should not be accessible via
GetAttributeViString; instead, the driver should provide a separate function to return the string, rather
than using an attribute.

Note: The preceding compliance rules imply that functions that have a vichar array output parameter and
an input parameter that specifies the size of the vichar array cannot return warnings. This is because a
positive return value indicates the buffer size needed to get the entire parameter value.

Note: The preceding compliance rules regarding vichar array output parameters and corresponding buffer

size parameters do not apply to the Self Test, Revision Query, Error Query, and Error Message functions.
These functions do not have buffer size parameters.

3.1.2.2 Additional Compliance Rules for Revision String Attributes

This section specifies additional compliance rules for attributes that return revision strings. The attributes
in this specification that return revision strings are Component Revision, Class Driver Revision, and
Specific Driver Revision.

IVI-3.2: Inherent Capabilities Specification 13 IVl Foundation

The revision string that these attributes return is in the following format:

revision[string]

The format of the revision shall follow the rules for FileVersion defined in Section 5.19, File Versioning,
in IVI-3.1: Driver Architecture Specification. The string is optional. If the string is present, a space
shall separate the revision fromthe string. The string contains additional driver specific revision
information. Multi-byte characters are not allowed in the string that this attribute returns. String characters
shall be in the range of (\x20-\x7E).

Examples of allowed revision strings are shown below:

4.00.1
02.0001.12345.1 This revision adds XYZ capability to the component

3.1.3 Boolean Attribute and Parameter Values

This specification uses True and False as the values for Boolean attributes and parameters. The following
table defines the identifiers that are used for True and False in the IVI.NET, IVI-COM, and IVI-C
architectures.

Boolean Value IVI.NET Identifier 1VI-COM ldentifier 1VI-C ldentifier
True true VAR ANT_TRUE VI _TRUE
False fdse VAR ANT_FALSE VI _FALSE

3.2 .NET Namespace

The .NET namespace for the IVI inherent capabilities is Tvi.Dpriver. Note that IVI-3.18, .NET Utility
Classes and Interfaces, defines additional elements in the Tvi.Driver namespace.

IVI-3.2: Inherent Capabilities Specification 14 IVl Foundation

4. Inherent Capabilities Overview

This section gives an overview of the inherent capabilities of IVI.NET, IVI-COM, and IVI-C drivers. The
inherent capabilities for IVI.NET and IVI-COM driver consist of a set of properties and methods. The
inherent capabilities for an IVI-C driver consist of a set of attributes and functions. In most cases, COM or
.NET properties and methods have corresponding C attributes and functions, and vice versa. This section
defines a generic name for each property/attribute combination and method/function combination. The
remainder of this specification uses the generic name to refer to properties/attributes and
methods/functions.

4.1 .NET Inherent Capabilities

The following table shows the inherent capabilities of an IVI.NET driver. The .NET Interface Hierarchy
specifies the relationship of the inherent properties, methods, and events for IVI.NET drivers. The Generic
Name column lists the generic name for each property or method. The Type column uses a P, M, or E to
specify whether the item is a property, method, or event. IVI.NET is the only IVI API type that defines
events.

There is no Initialize() method in the IVI.NET inherent capabilities API, as there is in the IVI-COM and
IVI-C APIs. Instead, the IVI.NET specific driver constructor takes the same parameters as Initialize() in
IVI-COM, and initializes the driver. The IVI.NET specific driver constructor is described in Section 8,
IVI.NET Specific Driver Constructor.

The IVL.NET inherent capabilities API includes three events, Driver Warning Event, Coercion Record
Event, and Interchange Check Warning Event. The IVI.NET events are described in Section 9, IVI.NET
Event Descriptions.

The IVL.NET inherent capabilities do not define Lock and Unlock methods. See Section 6.18, Lock
Session, for details related to the reason that COM does not implement these methods.

Table 4-1. Inherent Capabilities of an IVI.NET Driver

.NET Interface Hierarchy Generic Name Type
Driver Constructor Initialize M
Close Close M

DriverOperation
Cache Cache P
CoercionRecordEvent Coercion Record Event E
DriverSetup Driver Setup P
InterchangeCheck Interchange Check P
InterchangeCheckWarningEvent Interchange Check Warning Event E
InvalidateAllAttributes Invalidate All Attributes M
LogicalName Logical Name P
QueryInstrumentStatus Query Instrument Status P
RangeCheck Range Check P
ResetInterchangeCheck Reset Interchange Check M
IoResourceDescriptor I/0 Resource Descriptor P
Simulate Simulate P
WarningEvent Driver Warning Event E

IVI-3.2: Inherent Capabilities Specification

15

IVI Foundation

Table 4-1. Inherent Capabilities of an IVI.NET Driver

.NET Interface Hierarchy Generic Name Type
Identity
Description Component Description P
Identifier Component Identifier P
Revision Component Revision P
Vendor Component Vendor P
InstrumentManufacturer Instrument Manufacturer P
InstrumentModel Instrument Model P
InstrumentFirmwareRevision Instrument Firmware Revision P
SpecificationMajorVersion Component Class Spec Major Version P
SpecificationMinorVersion Component Class Spec Minor Version P
SupportedInstrumentModels Supported Instrument Models P
GroupCapabilities Class Group Capabilities P
Utility

Disable Disable M
ErrorQuery Error Query M
Lock LockSession M
Reset Reset M
ResetWithDefaults Reset With Defaults M
SelfTest Self Test M

Unlock Unlock Session M

Note that Unlock is not part of the IVI.NET

hierarchy, but is implemented by lock objects

associated with the driver.

4.1.1 Inherent Capabilities Interfaces

IVI.NET inherent capabilities are organized into five interfaces.

IlviDriver
IlviDriverOperation
IlviComponentldentity
llviDriverldentity
IlviDriverUtility

4.1.1.1 llviDriver

IlviDriver is the root interface for all IVI.NET drivers. It contains a method that closes the instrument
connection. It also contains three interface reference properties. Refer to Section 4.1.2, Interface Reference
Properties, for more information. llviDriver derives from IServiceProvider and IDisposable.

4.1.1.2 liviDriverOperation

IlviDriverOperation contains methods and properties that manage the operation of the driver.

IVI-3.2: Inherent Capabilities Specification 16 IVl Foundation

4.1.1.3 liviComponentidentity

IlviComponentldentity contains properties that return general information related to the identity of an VI

component.

4.1.1.4 llviDriverldentity

IlviDriverldentity derives from llviComponentldentity. It adds properties that return information related to

the identity of the driver and of the instrument.

4.1.1.5 llviDriverUtility

IlviDriverUtility contains methods that provide a basic set of utility operations.

4.1.1.6 liviDriverLock

The llviDriverLock interface is returned by calls to the two overloads of the IlviDriverUtility.Lock method.
The Lock method is used by a client to obtain a multithread lock for the duration of several method calls.
The class implementing IlviDriverLock obtains the lock in its constructor. This blocks the caller of the
IviDriverUtility.Lock method until the lock can be obtained (or the specified timeout period expires).

Once an llviDriverLock reference is obtained from the Lock method, the client holds the driver lock until
the llviDriverLock.Unlock method is called. IlviDriverLock derives from IDisposable so that classes
implementing IlviDriverLock can automatically call Unlock in the Dispose method. This is specifically

designed to facilitate the usage of the C# "using" and VB.NET "Using" statements.

4.1.2 Interface Reference Properties

Interface reference properties are used to navigate the .NET Inherent Capabilities hierarchy. Refer to
Section 5.17.5, IVI-COM Inherent Interfaces in IVI-3.1: Driver Architecture Specification, for more
information on interface reference properties. This section describes the interface reference properties that

the llviDriver interface defines.

Data Type Access
IIviDriverOperation DriverOperation
IIviDriverIdentity Identity
IIviDriverUtility Utility

4.1.3 IVL.NET IviDriver Session Factory

The IviDriver .NET assembly contains a factory method called Create for creating instances of generic
specific IVI.NET drivers from driver sessions and logical names. Create is a static method accessible from

the static IviDriver class.

Refer to 1VI-3.5: Configuration Server Specification for a description of how logical names and session

names are defined in the configuration store.

Refer to Section 8, IVI.NET Specific Driver Constructor for more details on how the idQuery, reset, and
options parameters affect the instantiation of the driver.

IVI-3.2: Inherent Capabilities Specification

17

IVI Foundation

.NET Method Prototype

IIviDriver IviDriver.Create (String name,
Boolean idQuery,
Boolean reset);

IIviDriver IviDriver.Create (String name,
Boolean idQuery,
Boolean reset,
String options);

Parameters

Inputs Description Base Type

name A session name or a logical name that points to a session String
that uses a generic specific IVI.NET driver.

idQuery Specifies whether to verify the ID of the instrument. The |Boolean
default is False.

reset Specifies whether to reset the instrument. The default is Boolean
False.

options A string that allows the user to specify the initial values of | String
certain inherent attributes. The default is an empty string.

Outputs Description Base Type

Return Value Interface pointer to the llviDriver interface of the driver IIviDriver
referenced by session.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

Usage

To create a generic specific IVLNET driver from the logical name “My LogicalName”, use the following
code:

IIviDriver driver = IviDriver.Create (“MyLogicalName”);

In this case, the ID of the instrument will not be verified, the instrument will not be reset, and options will
be supplied from the configuration store and/or driver defaults.

4.2 COM Inherent Capabilities

The following table shows the inherent capabilities of an IVI-COM driver. The COM Interface Hierarchy
specifies the relationship of the inherent properties and methods for IVI-COM drivers. The Generic Name
column lists the generic name for each property or method. The Type column uses a P or an M to specify
whether the item is a property or method.

Table 4-1. Inherent Capabilities of an IVI-COM Driver

COM Interface Hierarchy Generic Name Type

Close Close M

DriverOperation

IVI-3.2: Inherent Capabilities Specification 18 IVl Foundation

Table 4-1. Inherent Capabilities of an IVI-COM Driver

COM Interface Hierarchy Generic Name Type
Cache Cache P
ClearInterchangeWarnings Clear Interchange Warnings M
DriverSetup Driver Setup P
GetNextCoercionRecord Get Next Coercion Record M
GetNextInterchangeWarning | Get Next Interchange Warning M
InterchangeCheck Interchange Check P
InvalidateAllAttributes Invalidate All Attributes M
LogicalName Logical Name P
QueryInstrumentStatus Query Instrument Status P
RangeCheck Range Check P
RecordCoercions Record Value Coercions P
ResetInterchangeCheck Reset Interchange Check M
IoResourceDescriptor I/0 Resource Descriptor P
Simulate Simulate P

Identity
Description Component Description P
Identifier Component Identifier P
Revision Component Revision P
Vendor Component Vendor P
InstrumentManufacturer Instrument Manufacturer P
InstrumentModel Instrument Model P
InstrumentFirmwareRevision [Instrument Firmware Revision P
SpecificationMajorVersion | Component Class Spec Major Version P
SpecificationMinorVersion | Component Class Spec Minor Version P
SupportedInstrumentModels | Supported Instrument Models P
GroupCapabilities Class Group Capabilities P
Initialize Initialize M
Initialized Initialized P
Utility
Disable Disable M
ErrorQuery Error Query M
LockObject Lock Session M
Reset Reset M
ResetWithDefaults Reset With Defaults M
SelfTest Self Test M
UnlockObject Unlock Session M

IVI-3.2: Inherent Capabilities Specification

19

IVI Foundation

4.2.1 Inherent Capabilities Interfaces

The llviDriver interface contains interface reference properties for accessing the following inherent
capability interfaces:

e llviDriverOperation
IlviComponentldentity
IlviDriverldentity

e IllviDriverUtility

Table 4-2 lists the IVI-COM interfaces and their GUIDs.

Table 4-2. Inherent Capabilities COM Interface GUIDs

Interface GUID
llviDriver {47ed5184-a398-11d4-ba58-000064657374}
IIviDriverOperation {47ed5188-a398-11d4-ba58-000064657374}
IlviComponentldentity {47ed5185-a398-11d4-ba58-000064657374}
llviDriverldentity {47ed5186-a398-11d4-ba58-000064657374}
[IviDriverUtility {47ed5189-a398-11d4-ba58-000064657374}

4.2.1.1 llviDriver

IlviDriver is the root interface for all IVI-COM drivers. It contains methods and properties that initialize,
close, and query the state of the I\VVI driver session. It also contains three interface reference properties.
Refer to Section 4.1.2, Interface Reference Properties, for more information.

4.2.1.2 llviDriverOperation
IlviDriverOperation contains methods and properties that manage the operation of the driver.
4.2.1.3 liviComponentldentity

IlviComponentldentity contains properties that return general information related to the identity of an IVI
component.

4.2.1.4 llviDriverldentity

IlviDriverldentity inherits from llviComponentldentity. It adds properties that return information related to
the identity of the driver and of the instrument.

4.2.1.5 liviDriverUtility
IlviDriverUtility contains methods that provide a basic set of utility operations.
4.2.2 Interface Reference Properties

Interface reference properties are used to navigate the COM Inherent Capabilities hierarchy. Refer to
Section 5.15.3, IVI-COM Inherent Interfaces in IVI-3.1: Driver Architecture Specification, for more
information on interface reference properties. This section describes the interface reference properties that
the llviDriver interface defines.

IVI-3.2: Inherent Capabilities Specification 20 IVl Foundation

Data Type

Access

IIviDriverOperation

DriverOperation

IIviDriverIdentity

Identity

IIviDriverUtility

Utility

4.2.3 IviDriver COM Category

The COM Category for inherent capabilities shall be “IviDriver”, and the Category ID (CATID) shall be
{47ed5152-a398-11d4-ba58-000064657374 }.

IVI-3.2: Inherent Capabilities Specification

21

IVI Foundation

4.3 C Inherent Capabilities

Unlike COM inherent capabilities, the C inherent capabilities consist of separate hierarchies of attributes
and functions. The hierarchy of C inherent attributes is shown in the following table.

The Category or Generic Attribute Name column shows how the various inherent attributes are divided into
categories and specifies the generic name for each attribute. The C Defined Constant column gives the C
constant name for each attribute. The COM Interface column lists the COM interface location of the
corresponding COM property. N/A in the COM Interface column specifies that the attribute does not have

a corresponding COM property.

For IVI-C drivers, the pre fix. sub file must implement the attribute hierarchy as shown in this table.

Table 4-2. Hierarchy of C Inherent Attributes

Category or Generic Attribute Name

C Defined Constant

COM
Interface

Inherent IVI Attributes

User Options

Range Check

PREFIX ATTR RANGE CHECK

DriverOperation

Query Instrument Status

PREFIX ATTR QUERY INSTRUMENT STATUS

DriverOperation

Cache

PREFIX ATTR CACHE

DriverOperation

Simulate

PREFIX ATTR SIMULATE

DriverOperation

Record Value Coercions

PREFIX ATTR RECORD COERCIONS

DriverOperation

Interchange Check

PREFIX ATTR INTERCHANGE CHECK

DriverOperation

Class Driver ldentification

Minor Version

INOR_VERSION

Class Driver Description PREFIX ATTR CLASS DRIVER DESCRIPTION N/A
Class Driver Prefix PREFIX ATTR CLASS DRIVER PREFIX N/A
Class Driver Vendor PREFIX ATTR CLASS DRIVER VENDOR N/A
Class Driver Revision PREFIX ATTR CLASS DRIVER REVISION N/A
Class Driver Class Spec Major | PREFIX ATTR CLASS_DRIVER_CLASS_SPEC_MAJ N/A
Version OR_VERSION

Class Driver Class Spec Minor | PREFIX ATTR_CLASS_DRIVER CLASS_SPEC_MIN N/A
Version OR_VERSION

Driver Identification

Specific Driver Description PREFIX ATTR SPECIFIC DRIVER DESCRIPTION N/A
Specific Driver Prefix PREFIX ATTR SPECIFIC DRIVER PREFIX N/A
Specific Driver Locator PREFIX ATTR SPECIFIC_DRIVER LOCATOR N/A
Specific Driver Vendor PREFIX ATTR SPECIFIC DRIVER VENDOR N/A
Specific Driver Revision PREFIX ATTR SPECIFIC DRIVER REVISION N/A
Specific Driver Class Spec PREFIX ATTR SPECIFIC DRIVER CLASS SPEC M N/A
Major Version AJOR VERSTION

Specific Driver Class Spec PREFIX ATTR SPECIFIC DRIVER CLASS SPEC M N/A

Driver Capabilities

IVI-3.2: Inherent Capabilities Specification

22

IVI Foundation

Table 4-2. Hierarchy of C Inherent Attributes

COM
Category or Generic Attribute Name C Defined Constant Interface
Supported Instrument Models PREFIX ATTR SUPPORTED INSTRUMENT MODELS Identity
Class Group Capabilities PREFIX ATTR_GROUP_CAPABILITIES Identity
Instrument Identification
Instrument Manufacturer PREFIX ATTR INSTRUMENT MANUFACTURER Identity
Instrument Model PREFIX ATTR INSTRUMENT MODEL Identity
Instrument Firmware Revision PREFIX ATTR INSTRUMENT FIRMWARE REVISION Identity

Advanced Session Information

Logical Name

PREFIX ATTR LOGICAL NAME

DriverOperation

I/0 Resource Descriptor

PREFIX ATTR IO RESOURCE_DESCRIPTOR

DriverOperation

Driver Setup

PREFIX ATTR DRIVER SETUP

DriverOperation

Note: IVI-C specific drivers do not implement or export the Class Driver Description, Class Driver Prefix,
Class Driver Vendor, Class Driver Revision, Class Driver Class Spec Major Version, and Class Driver
Class Spec Minor Version attributes.

IVI-3.2: Inherent Capabilities Specification

23

IVI Foundation

The hierarchy of C inherent functions is shown in the following table. The Category or Generic Function
Name column lists the generic name for each function and divides the functions into categories. The C
Function Name lists the C function names. The COM Interface column lists the COM interface location of
the corresponding COM method. N/A in the COM Interface column specifies that the function does not

have a corresponding COM method.

Note: Ifan IVI driver contains a Configure category in its function hierarchy, then the Attribute Access

Function category must be a sub-cat

egory of the Configure category.

Table 4-3. Hierarchy of C Inherent Functions

COM

Category or Generic Function Name C Function Name Interface
Initialize Prefix init N/A
Initialize With Options Prefix InitWithOptions Main

Attribute Access Functions

Set Attribute Functions Prefix SetAttribute<type> N/A
Get Attribute Functions Prefix GetAttribute<type> N/A

Invalidate All Attributes

Prefix InvalidateAllAttributes

DriverOperation

Utility Functions

Self Test Prefix self test Utility
Reset Prefix reset Utility
ResetWithDefaults Prefix ResetWithDefaults Utility
Disable Prefix Disable Utility
Revision Query Prefix revision query N/A
Error Query Prefix_error query Utility
Error Message Prefix error message N/A
Get Specific Driver C Handle Prefix GetSpecificDriverCHandle N/A
Get Specific Driver IlUnknown Prefix GetSpecificDriverIUnknownPtr N/A
Pointer

Get Error Prefix GetError N/A
Clear Error Prefix ClearError N/A
Lock Session Prefix LockSession Utility
Unlock Session Prefix_UnlockSession Utility

Get Next Coercion Record

Prefix GetNextCoercionRecord

DriverOperation

Get Next Interchange Warning

Prefix GetNextInterchangeWarning

DriverOperation

Reset Interchange Check

Prefix ResetInterchangeCheck

DriverOperation

Clear Interchange Warnings

Prefix ClearInterchangeWarnings

DriverOperation

Close

Prefix close

Main

Note: Initialize With Options is a variation of the Initialize function and is discussed in Section 6.14,

Initialize.

Note: IVI-C specific drivers do not implement or export the Get Specific Driver C Handle and Get Specific

Driver IlUnknown Pointer functions.

IVI-3.2: Inherent Capabilities Specification

24

IVI Foundation

4.4 Relationship of Inherent Attributes and Different Types of IVI Driver

Some inherent attributes are exported by all types of IVI drivers— IVI.NET specific drivers, IVI-COM
specific drivers, I\VI-C specific drivers, and VI class drivers. Other inherent attributes are exported by
only one or two types of drivers. Generally, inherent attributes fall into the following two categories:

e Attributes that are exported by IVI.NET specific drivers, IVI-COM specific drivers, I\VI-C specific
drivers, and VI class drivers. When the user accesses this type of attribute through an 1V1 class driver,
the IVI class driver sets or returns the value of the attribute in the IVI specific driver. Examples are
Cache, Supported Instrument Models, Instrument Manufacturer, and Logical Name.

e Attributes whose Generic names start with Component, Specific Driver, or Class Driver. These
attributes generally come in threes, for example, Component Description, Specific Driver Description,
and Class Driver Description. For this categories of attributes, the following general rules apply:

e IVLNET specific drivers and I\VI-COM specific drivers export only the attributes whose names
start with Component.

e IVI-C specific drivers export only the attributes whose names start with Specific Driver.

e |VI-C class drivers export both the attributes whose names start with Specific Driver and those
that start with Class Driver. The attributes whose names start with Class Driver return information
about the IVI-C class driver. The attributes whose names start with Specific Driver return
information about the IVI specific driver. Thus, the user of the IVI-C class driver can get
information about both the 1VVI-C class driver and the 1\ specific driver.

In general, IVI-C specific drivers and IVI-C class drivers export the attributes whose names start with

Specific Driver. An exception is the Specific Driver Locator attribute. Only IVI-C class drivers export
this attribute, not IVI-C specific drivers because they cannot reliably determine their own location.

IVI-3.2: Inherent Capabilities Specification 25 IVl Foundation

5. Inherent Property/Attribute Descriptions
This section gives a complete description of each inherent property/attribute.

5.1 Cache

Data Type Access

ViBoolean R/W

.NET Property Name

DriverOperation.Cache

COM Property Name

DriverOperation.Cache

C Constant Name

PREFIX ATTR CACHE

Description

If True, the specific driver caches the value of attributes, and the I\VI specific driver keeps track of the
current instrument settings so that it can avoid sending redundant commands to the instrument. If False, the
specific driver does not cache the value of attributes.

The default value is True. When the user opens an instrument session through an 1V class driver or uses a
logical name to initialize a specific driver, the user can override this value by specifying a value in the VI
configuration store. The Initialize function allows the user to override both the default value and the value
that the user specifies in the 1VI configuration store.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

Compliance Notes

1. The IVI specific driver shall accept both the True and False values for this attribute.

2. For each attribute, the IV1 specific driver developer can choose whether caching is always enabled,
caching is always disabled, or whether caching is configurable by the user. If the specific driver has
attributes for which caching is configurable by the user, the specific driver caches the values of these
attributes when the Cache attribute is set to True and does not cache values when the Cache attribute is
set to False.

IVI-3.2: Inherent Capabilities Specification 26 IVl Foundation

5.2 Class Driver Class Spec Major Version (IVI-C Only)

Data Type

Access

ViInt32

RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name

PREFIX ATTR CLASS DRIVER CLASS SPEC_MAJOR VERSION

Description

Returns the major version number of the IVI class specification in accordance with which the IVI-C class

driver was developed. The value is a positive integer value.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.
2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification

27

IVI Foundation

5.3 Class Driver Class Spec Minor Version (IVI-C Only)

Data Type

Access

ViInt32

RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name

PREFIX ATTR CLASS DRIVER CLASS SPEC_MINOR VERSION

Description

Returns the minor version number of the 1V class specification in accordance with which the 1VI-C class

driver was developed. The value is a non-negative integer value.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.
2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification

28

IVI Foundation

5.4 Class Driver Description (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name
PREFIX ATTR CLASS DRIVER DESCRIPTION

Description

Returns a brief description of the IVI-C class driver.

If the driver is compiled for use in 64-bit applications, the description shall include the following statement
at the end identifying it as 64-bit.
[Compiled for 64-bit.]

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.
2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification 29 IVl Foundation

5.5 Class Driver Prefix (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name
PREFIX ATTR CLASS DRIVER PREFIX
Description
Returns the case sensitive prefix of the user-callable functions that the IVI-C class driver exports.

The name of each user-callable function in the class driver begins with this prefix. For example, if a class
driver has a user-callable function named Ivibmm init, then Ivibmm is the prefix for that driver.

The string that this attribute returns contains a maximum of 32 characters including the NULL character.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.
2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification 30 IVl Foundation

5.6 Class Driver Revision (IVI-C Only)

Data Type

Access

ViString

RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name

PREFIX ATTR CLASS DRIVER REVISION

Description

Returns version information about the IVI-C class driver. Refer to Section 3.1.2.2, Additional Compliance

Rules for Revision String Attributes, for additional rules regarding this attribute.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.
2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification

31

IVI Foundation

5.7 Class Driver Vendor (IVI-C Only)

Data Type

Access

ViString

RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name

PREFIX ATTR CLASS DRIVER VENDOR

Description

Returns the name of the vendor that supplies the IVI-C class driver.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.
2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification

32

IVI Foundation

5.8 Class Group Capabilities (IVI-C & IVI-COM Only)

Data Type Access

ViString RO

.NET Property Name

N/A
(See the Get Group Capabilities method.)

COM Property Name

Identity.GroupCapabilities

C Constant Name
PREFIX ATTR GROUP CAPABILITIES

Description

Returns a comma-separated list that identifies the class capability groups that the 1\V1 specific driver
implements. The items in the list are capability group names that the 1\VVI class specifications define. The
string has no white space except for white space that might be embedded in a capability group name.

If the 1V specific driver does not comply with an VI class specification, the specific driver returns an
empty string as the value of this attribute.

The string that this attribute returns does not have a predefined maximum length.

IVI-3.2: Inherent Capabilities Specification 33 IVl Foundation

5.9 Component Class Spec Major Version (IVI-COM & IVI.NET Only)

Data Type

Access

ViInt32

RO

.NET Property Name

Identity.SpecificationMajorVersion

COM Property Name

Identity.SpecificationMajorVersion

C Constant Name
N/A

Description

Returns the major version number of the class specification in accordance with which the IVI-COM or

IVI.NET software component was developed. The value is a positive integer value.

If the software component is not compliant with a class specification, the software component returns zero

as the value of this attribute.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification

34

IVI Foundation

5.10 Component Class Spec Minor Version (IVI-COM & IVI.NET Only)

Data Type

Access

ViInt32

RO

.NET Property Name

Identity.SpecificationMinorVersion

COM Property Name

Identity.SpecificationMinorVersion

C Constant Name
N/A

Description

Returns the minor version number of the class specification in accordance with which the IVI-COM or

IVI.NET software component was developed. The value is a non-negative integer value.

If the software component is not compliant with a class specification, the software component returns zero

as the value of this attribute.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification

35

IVI Foundation

5.11 Component Description (IVI-COM & IVLLNET Only)

Data Type

Access

ViString

RO

.NET Property Name

Identity.Description

COM Property Name

Identity.Description

C Constant Name
N/A

Description

Returns a brief description of the IVI-COM or IVI.NET software component.

For IVI-COM, if the driver is compiled for use in 64-bit applications, the description shall include the
following statement at the end identifying it as 64-bit.

[Compiled for 64-bit.]

This is not required for IVI.NET.

For IVI-COM, the string that this attribute returns contains a maximum of 256 characters including the

NULL character. For IVI.NET, the string that this attribute returns has no maximum size.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification

36

IVI Foundation

5.12 Component Identifier (IVI-COM & IVI.NET Only)

Data Type

Access

ViString

RO

.NET Property Name

Identity.Identifier

COM Property Name

Identity.Identifier

C Constant Name
N/A

Description

Returns the case-sensitive unique identifier of the IVI-COM or IVI.NET software component.

The string that this attribute returns contains a maximum of 32 characters including the NULL character.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification

37

IVI Foundation

5.13 Component Revision (IVI-COM & IVI.NET Only)

Data Type

Access

ViString

RO

.NET Property Name

Identity.Revision

COM Property Name

Identity.Revision

C Constant Name
N/A

Description

Returns version information about the IVI-COM or IVI.NET software component. Refer to Section
3.1.2.2, Additional Compliance Rules for Revision String Attributes, for additional rules regarding this

attribute.

For IVI-COM, the string that this attribute returns contains a maximum of 256 characters including the

NULL character. For IVI.NET, the string that this attribute returns has no maximum size.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification

38

IVI Foundation

5.14 Component Vendor (IVI-COM & IVI.NET Only)

Data Type

Access

ViString

RO

.NET Property Name

Identity.Vendor

COM Property Name

Identity.Vendor

C Constant Name
N/A

Description

Returns the name of the vendor that supplies the IVI-COM or IVI.NET software component.

For IVI-COM, the string that this attribute returns contains a maximum of 256 characters including the

NULL character. For IVI.NET, the string that this attribute returns has no maximum size.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification

39

IVI Foundation

5.15 Driver Setup

Data Type

Access

ViString

RO

.NET Property Name

DriverOperation.DriverSetup

COM Property Name

DriverOperation.DriverSetup

C Constant Name

PREFIX ATTR DRIVER SETUP

Description

Returns the driver setup string that the user specified in the IVVI configuration store when the instrument
driver session was initialized or passes in the optionstring parameter of the Initialize function. Refer to

Section 6.14, Initialize, for the restrictions on the format of the driver setup string.

The string that this attribute returns does not have a predefined maximum length.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification

40

IVI Foundation

5.16 I/O Resource Descriptor

Data Type Access

ViString RO

.NET Property Name

DriverOperation.IoResourceDescriptor

COM Property Name

DriverOperation.IoResourceDescriptor

C Constant Name
PREFIX ATTR IO RESOURCE DESCRIPTOR

Description

Returns the resource descriptor that the user specified for the physical device. The user specifies the
resource descriptor by editing the V1 configuration store or by passing a resource descriptor to the
Initialize function of the specific driver. Refer to Section 6.14, Initialize, for the restrictions on the contents

of the resource descriptor string.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.
.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

Compliance Notes

1. Ifthe resource descriptor is not available while simulating, the V1 specific driver returns an empty
string.
2. Ifthe resource descriptor is available while simulating, the IV specific driver returns it.

IVI-3.2: Inherent Capabilities Specification 41 IVl Foundation

5.17 Initialized (IVI-COM Only)

Data Type

Access

ViBoolean

RO

.NET Property Name

N/A

(An IVI.NET specific driver is always initialized. See section 4.1, .NET Inherent Capabilities, and section
8, IVL.NET Specific Driver Constructor for details.)

COM Property Name

Initialized

C Constant Name

N/A

Description

Returns a value that indicates whether the IVI-COM specific driver is in the initialized state. After the
specific driver is instantiated and before the Initialize function successfully executes, this attribute returns
False. After the Initialize function successfully executes and prior to the execution of the Close function,

this attribute returns True. After the Close function executes, this attribute returns False.

The Initialized attribute is one of the few I\VVI-COM specific driver attributes that can be accessed while the
specific driver is not in the initialized state. All the attributes of an 1VI-COM specific driver that can be

accessed while the specific driver is not in the initialized state are listed below.

Component Class Spec Major Version
Component Class Spec Minor Version
Component Description

Component Prefix

Component Identifier

Component Revision

Component Vendor

Initialized

Supported Instrument Models

IVI-3.2: Inherent Capabilities Specification 42

IVI Foundation

5.18 Instrument Firmware Revision

Data Type Access

ViString RO

.NET Property Name

Identity.InstrumentFirmwareRevision

COM Property Name

Identity.InstrumentFirmwareRevision

C Constant Name
PREFIX ATTR INSTRURMENT FIRMWARE REVISION

Description

Returns an instrument specific string that contains the firmware revision information of the physical
instrument. The V1 specific driver returns the value it queries from the instrument as the value of this
attribute or a string indicating that it cannot query the instrument identity.

In some cases, it is not possible for the specific driver to query the firmware revision of the instrument.
This can occur when the Simulate attribute is set to True or if the instrument is not capable of returning the
firmware revision. For these cases, the specific driver returns defined strings for this attribute. If the
Simulate attribute is set to True, the specific driver returns “Not available while simulating”as
the value of this attribute. If the instrument is not capable of returning the firmware version and the
Simulate attribute is set to False, the specific driver returns “cannot query from instrument” asthe
value of this attribute.

The string that this attribute returns does not have a predefined maximum length.

.NET Exceptions

Section 12, Common IVI.LNET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 43 IVl Foundation

5.19 Instrument Manufacturer

Data Type Access

ViString RO

.NET Property Name

Identity.InstrumentManufacturer

COM Property Name

Identity.InstrumentManufacturer

C Constant Name
PREFIX ATTR INSTRUMENT MANUFACTURER

Description

Returns the name of the manufacturer of the instrument. The IV specific driver returns the value it queries
from the instrument as the value of this attribute or a string indicating that it cannot query the instrument
identity.

In some cases, it is not possible for the VI specific driver to query the manufacturer of the instrument.

This can occur when the Simulate attribute is set to True or if the instrument is not capable of returning the
manufacturer’s name. For these cases, the specific driver returns defined strings for this attribute. 1f the
Simulate attribute is set to True, the specific driver returns “Not available while simulating”as
the value of this attribute. If the instrument is not capable of returning the manufacturer name and the
Simulate attribute is set to False, the specific driver returns “cannot query from instrument” asthe
value of this attribute.

For IVI-C and IVI-COM, the string that this attribute returns contains a maximum of 256 characters
including the NULL character. For IVI.NET, the string that this attribute returns has no maximum size.

.NET Exceptions

Section 12, Common IVI.LNET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 44 IVl Foundation

5.20 Instrument Model

Data Type

Access

ViString

RO

.NET Property Name

Identity.InstrumentModel

COM Property Name

Identity.InstrumentModel

C Constant Name

PREFIX ATTR INSTRUMENT MODEL

Description

Returns the model number or name of the physical instrument. The IV specific driver returns the value it

queries from the instrument or a string indicating that it cannot query the instrument identity.

In some cases, it is not possible for the IVI specific driver to query the model number of the instrument.
This can occur when the Simulate attribute is set to True or if the instrument is not capable of returning the
model number. For these cases, the specific driver returns defined strings for this attribute. If the Simulate
attribute is set to True, the specific driver returns “Not available while simulating” as the value of
this attribute. If the instrument is not capable of returning the model number and the Simulate attribute is
set to False, the specific driver returns “Cannot query from instrument” as the value of this attribute.

For IVI-C and IVI-COM, the string that this attribute returns contains a maximum of 256 characters
including the NULL character. For IVI.NET, the string that this attribute returns has no maximum size.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification

45

IVI Foundation

5.21 Interchange Check

Data Type Access

ViBoolean R/W

.NET Property Name
NA
See the IVI.NET Interchange Check Warning Event.

COM Property Name

DriverOperation.InterchangeCheck

C Constant Name

PREFIX ATTR INTERCHANGE CHECK

Description

If True, the specific driver performs interchangeability checking. For C and COM, if the Interchange
Check attribute is enabled, the specific driver maintains a record of each interchangeability warning that it
encounters. The user calls the Get Next Interchange Warning function to extract and delete the oldest
interchangeability warning from the list. Refer to Section 6.11, Get Next Interchange Warning, Section
6.2, Clear Interchange Warnings, and Section 6.18, Reset Interchange Check, for more information. For
.NET, if the Interchange Check attribute is enabled, the specific driver raises an Interchange Check
Warning Event if any user has registered for the event. Refer to Section 9.1.2, Interchange Check Warning
Event (IVI.NET Only), for more information. If False, the specific driver does not perform
interchangeability checking.

If the user opens an instrument session through an 1V1 class driver and the Interchange Check attribute is
enabled, the VI class driver may perform additional interchangeability checking. The VI class driver
maintains a list of the interchangeability warnings that it encounters. The user can retrieve both class driver
interchangeability warnings and specific driver interchangeability warnings by calling the Get Next
Interchange Warning function on the class driver session.

If the VI specific driver does not implement interchangeability checking, the specific driver returns the
Value Not Supported error when the user attempts to set the Interchange Check attribute to True. If the
specific driver does implement interchangeability checking and the user opens an instrument session

through an 1V1 class driver, the 1V class driver accepts True as a valid value for the Interchange Check
attribute even if the class driver does not implement interchangeability checking capabilities of its own.

The default value is False. If the user opens an instrument session through an 1V1 class driver or initializes
an V1 specific driver with a logical name, the user can override this value in the IVI configuration store.
The Initialize function allows the user to override both the default value and the value that the user
specifies in the IVI configuration store.

IVI-3.2: Inherent Capabilities Specification 46 IVl Foundation

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

Compliance Notes

1. An VI specific driver shall accept False as a valid value for this attribute.

2. Ifan IVI specific driver implements True as a valid value for this attribute, then the specific driver
shall implement the interchangeability checking rules that the corresponding class specification
defines.

3. Ifan IVI specific driver implements True as a valid value for this attribute, then the specific driver
shall implement the Get Next Interchange Warning, Reset Interchange Check, and Clear Interchange
Warnings functions.

4. An VI driver can impose a restriction on the number of interchangeability warnings that the driver
records in the list. If the driver imposes a restriction, the driver shall throw away the oldest
interchangeability warning in the list when the driver attempts to record a new interchangeability
warning and the list is full.

IVI-3.2: Inherent Capabilities Specification 47 IVl Foundation

5.22 Logical Name

Data Type

Access

ViString

RO

.NET Property Name

DriverOperation.LogicalName

COM Property Name

DriverOperation.LogicalName

C Constant Name

PREFIX ATTR LOGICAL NAME

Description

Returns the IVI logical name that the user passed to the Initialize function. If the user initialized the IV1
specific driver directly and did not pass a logical name, then this attribute returns an empty string. Refer to

IVI-3.5: Configuration Server Specification for restrictions on the format of 1\VI logical names.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification

48

IVI Foundation

5.23 Query Instrument Status

Data Type Access

ViBoolean R/W

.NET Property Name

DriverOperation.QueryInstrumentStatus

COM Property Name

DriverOperation.QueryInstrumentStatus

C Constant Name

PREFIX ATTR QUERY INSTRUMENT STATUS

Description

If True, the IV specific driver queries the instrument status at the end of each user operation. If False, the
IVI specific driver does not query the instrument status at the end of each user operation.

Querying the instrument status is very useful for debugging. After validating the program, the user can set
this attribute to False to disable status checking and maximize performance. The user specifies this value
for the entire IV driver session.

The default value is False. When the user opens an instrument session through an 1V class driver or uses a
logical name to initialize an V1 specific driver, the user can override this value by specifying a value in the
IVI configuration store. The Initialize function allows the user to override both the default value and the
value that the user specifies in the 1\VVI configuration store.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

Compliance Notes

1. The IVI specific driver shall implement both the True and False values for this attribute.

2. Ifthe instrument status can be queried for its status and this attribute is set to True, then the VI
specific driver checks the instrument status at the end of every call by the user to a function that
accesses the instrument.

3. Ifthe instrument status cannot be queried independently of user operations, then this attribute has no
effect on the behavior of the 1V specific driver.

IVI-3.2: Inherent Capabilities Specification 49 IVl Foundation

5.24 Range Check

Data Type Access

ViBoolean R/W

.NET Property Name

DriverOperation.RangeCheck

COM Property Name

DriverOperation.RangeCheck

C Constant Name

PREFIX ATTR RANGE CHECK

Description

If True, the I\VI specific driver validates attribute values and function parameters. If False, the IV specific
driver does not validate attribute values and function parameters.

If range check is enabled, the specific driver validates the parameter values that users pass to driver
functions. Validating attribute values and function parameters is useful for debugging. After validating the
program, the user can set this attribute to False to disable range checking and maximize performance.

The default value is True. When the user opens an instrument session through an VI class driver or uses a
logical name to initialize an V1 specific driver, the user can override this value by specifying a value in the
IVI configuration store. The Initialize function allows the user to override both the default value and the
value that the user specifies in the 1\VVI configuration store.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

Compliance Notes

1. The IVI specific driver shall implement both the True and False values for this attribute.

2. Regardless of the value to which the user sets this attribute, the I\VI specific driver is not required to
duplicate all range checking operations that the instrument firmware performs.

3. Ifthis attribute is set to False, the IVI specific driver does not perform range-checking operations that
the specific driver developer considers non-essential and time consuming.

IVI-3.2: Inherent Capabilities Specification 50 IVl Foundation

5.25 Record Value Coercions

Data Type Access

ViBoolean R/W

.NET Property Name
N/A
See the IVI.NET Coercion Record Event.

COM Property Name

DriverOperation.RecordCoercions

C Constant Name

PREFIX ATTR RECORD COERCIONS

Description

If True, the IV specific driver keeps a list of the value coercions it makes for viInt32 and ViReal 64
attributes. If False, the IV1 specific driver does not keep a list of the value coercions it makes for viTnt32
and viRealé64 attributes.

If the Record Value Coercions attribute is enabled, the specific driver maintains a record of each coercion.
The user calls the Get Next Coercion Record function to extract and delete the oldest coercion record from
the list. Refer to Section 6.10, Get Next Coercion Record, for more information.

If the 1V specific driver does not implement coercion recording, the specific driver returns the VValue Not
Supported error when the user attempts to set the Record Value Coercions attribute to True.

The default value is False. When the user opens an instrument session through an 1V1 class driver or uses a
logical name to initialize a I\VVI specific driver, the user can override this value by specifying a value in the
IVI configuration store. The Initialize function allows the user to override both the default value and the
value that the user specifies in the IV configuration store.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

Compliance Notes

1. The IVI specific driver shall accept False as a valid value for this attribute.

2. Ifan IVI specific driver implements True as a valid value for this attribute, then the specific driver
shall implement the Get Next Coercion Record function.

3. The IVI specific driver can impose a restriction on the number of coercion records that the specific
driver records in the list. If the specific driver imposes a restriction, the specific driver shall throw
away the oldest coercion record in the list when the specific driver attempts to record a new coercion
record and the list is full.

IVI-3.2: Inherent Capabilities Specification 51 IVl Foundation

5.26 Simulate

Data Type Access

ViBoolean R/W

.NET Property Name

DriverOperation.Simulate

COM Property Name

DriverOperation.Simulate

C Constant Name
PREFIX ATTR SIMULATE

Description

If True, the I\VI specific driver simulates instrument driver 1/O operations. If False, the V1 specific driver
communicates directly with the instrument.

If simulation is enabled, the specific driver functions do not perform instrument 1/0. For output parameters
that represent instrument data, the specific driver functions return simulated values.

The default value is False. When the user opens an instrument session through an IV1 class driver or uses a
logical name to initialize an V1 specific driver, the user can override this value by specifying a value in the
IVI configuration store. The Initialize function allows the user to override both the default value and the
value that the user specifies in the IV configuration store.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

Compliance Notes

1. The IVI specific driver shall implement both the True and False values for this attribute.

2. When Simulate is set to True, the 1VVI specific driver may perform less rigorous range checking
operations than when Simulate is set to False.

3. Ifthe IVI specific driver is initialized with Simulate set to True, the specific driver shall return the
Cannot Change Simulation State error if the user attempts to set Simulate to False prior to calling the
Close function.

IVI-3.2: Inherent Capabilities Specification 52 IVl Foundation

5.27 Specific Driver Class Spec Major Version (IVI-C Only)

Data Type Access
ViInt32 RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name
PREFIX ATTR SPECIFIC DRIVER CLASS SPEC MAJOR VERSION
Description

Returns the major version number of the class specification in accordance with which the V1 specific
driver was developed. The value is a positive integer value.

If the VI specific driver is not compliant with a class specification, the specific driver returns zero as the
value of this attribute.

IVI-3.2: Inherent Capabilities Specification 53 IVl Foundation

5.28 Specific Driver Class Spec Minor Version (IVI-C Only)

Data Type Access
ViInt32 RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name
PREFIX ATTR SPECIFIC DRIVER CLASS SPEC MINOR VERSION
Description

Returns the minor version number of the class specification in accordance with which the V1 specific
driver was developed. The value is a non-negative integer value.

If the V1 specific driver is not compliant with a class specification, the specific driver returns zero as the
value of this attribute.

IVI-3.2: Inherent Capabilities Specification 54 IVl Foundation

5.29 Specific Driver Description (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name
PREFIX ATTR SPECIFIC DRIVER DESCRIPTION

Description

Returns a brief description of the V1 specific driver.

If the driver is compiled for use in 64-bit applications, the description shall include the following statement
at the end identifying it as 64-bit.
[Compiled for 64-bit.]

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

IVI-3.2: Inherent Capabilities Specification 55 IVl Foundation

5.30 Specific Driver Locator (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name

PREFIX ATTR SPECIFIC DRIVER LOCATOR

Description

Returns the location of the IVI specific driver software module. The user identifies the specific driver by
passing a logical name to the Initialize function of the class driver. The user configures the location of the
specific driver in the IVI configuration store.

If the class driver instantiates an underlying 1VV1-COM class-compliant specific driver, the value of this
property is the COM class ID (CLSID) of the underlying IVI-COM specific driver object that implements
the root class-compliant interface. The string returned always has exactly 36 characters, with a format of
XXX KXXKK-XXKK-XX KK -XKXKX-XXXXXXXXXXXX!, where X is a valid hexadecimal digit.

If the class driver instantiates an underlying 1V1-C class-compliant specific driver, the value of this
property is the full DLL pathname of underlying 1VI-C specific driver that implements the root class-
compliant interface. The string returned in this case may be of arbitrary length.

If the underlying IVI-COM class-compliant specific driver does not implement a class-compliant interface
that is recognized by the 1VI-C class driver, the IVI-C class driver returns an empty string for this attribute.

Refer to IVI-3.5: Configuration Server Specification for more information regarding the possible values of
this attribute.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.
2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification 56 IVl Foundation

5.31 Specific Driver Prefix (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name
PREFIX ATTR SPECIFIC DRIVER PREFIX

Description

Returns the case-sensitive prefix of the user-callable functions that the IVI1-C specific driver exports. For an
IVI-C specific driver, the name of each user-callable function in the specific driver begins with this prefix.
For example, if the Fluke 45 driver has a user-callable function named £145 init, then £145 is the prefix

for that driver.

The string that this attribute returns contains a maximum of 32 characters including the NULL character.

IVI-3.2: Inherent Capabilities Specification 57

IVI Foundation

5.32 Specific Driver Revision (IVI-C Only)

Data Type

Access

ViString

RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name

PREFIX ATTR SPECIFIC DRIVER REVISION

Description

Returns version information about the VI specific driver. Refer to Section 3.1.2.2, Additional Compliance

Rules for Revision String Attributes, for additional rules regarding this attribute.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

IVI-3.2: Inherent Capabilities Specification

58

IVI Foundation

5.33 Specific Driver Vendor (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name
N/A

COM Property Name
N/A

C Constant Name

PREFIX ATTR SPECIFIC DRIVER VENDOR

Description
Returns the name of the vendor that supplies the 1V1 specific driver.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

IVI-3.2: Inherent Capabilities Specification 59

IVI Foundation

5.34 Supported Instrument Models (IVI-C & IVI-COM Only)

Data Type Access

ViString RO

.NET Property Name
N/A
(See the Get Supported Instrument Models method.)

COM Property Name
Identity.SupportedInstrumentModels

C Constant Name

PREFIX ATTR SUPPORTED INSTRUMENT MODELS

Description

Returns a comma-separated list of names of instrument models with which the IVI specific driver is
compatible. The string has no white space except possibly embedded in the instrument model names. An
example of a string that this attribute might return is TKTDS3012, TKTDS3014, TKTDS3016.

It is not necessary for the string to include the abbreviation for the manufacturer if it is the same for all
models. In the example above, it is valid for the attribute to return the string
TDS3012,TDS3014,TDS3016.

The string that this attribute returns does not have a predefined maximum length.

IVI-3.2: Inherent Capabilities Specification 60 IVl Foundation

6. Inherent Method/Function Descriptions
This section gives a complete description of each inherent method/function.

6.1 Clear Error (IVI-C Only)

Description

This function clears the error code and error description for the current execution thread and for the VI
session. If the user specifies a valid 1\V1 session for the vi parameter, this function clears the error
information for the session. If the user passes vi_NuULL for the vi parameter, this function clears the error
information for the current execution thread. If the vi parameter is an invalid session, the function does

nothing and returns an error.

The function clears the error code by setting it to Tvi_success. If the error description string is non-
NULL, the function de-allocates the error description string and sets the address to vI_ NULL.

Maintaining the error information separately for each thread is useful if the user does not have a session
handle to pass to the Prefix GetError, Prefix ClearError, Of Prefix error message
function, which occurs when a call to Initialize fails.

.NET Method Prototype
N/A

COM Method Prototype
N/A

C Function Prototype

ViStatus VI FUNC Prefix ClearError

Parameters

(ViSession Vi) ;

Inputs

Description

Data Type

VI_NULL.

Vi Unique identifier for an 1\VV1 session. The user can pass

ViSession

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

IVI-3.2: Inherent Capabilities Specification

61

IVI Foundation

6.2 Clear Interchange Warnings (IVI-C & IVI-COM Only)
Description
This function clears the list of interchangeability warnings that the IVI specific driver maintains.

When this function is called on an VI class driver session, the function clears the list of interchangeability
warnings that the class driver and the specific driver maintain.

Refer to the Interchange Check attribute for more information on interchangeability checking.

.NET Method Prototype
N/A.
(See the Interchange Check Warning Event.)

COM Method Prototype

HRESULT DriverOperation.ClearInterchangeWarnings();

C Function Prototype

ViStatus VI FUNC Prefix ClearInterchangeWarnings (ViSession Vi);

Parameters

Inputs Description Datatype

Vi Unique identifier for an 1\VI session. ViSession

Return Values (C/COM)
Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

Compliance Notes

1. Ifan IVI-COM specific driver does not accept True as a valid value for the Interchange Check
attribute, then the IVI-COM specific driver shall return the Function Not Supported error when the
user calls this function.

2. Ifan IVI-C specific driver does not accept True as a valid value for the Interchange Check attribute,
then the 1\VVI-C specific driver shall not export this function.

IVI-3.2: Inherent Capabilities Specification 62 IVl Foundation

6.3 Close

Description

When the user finishes using an V1 driver session in 1VI-C and 1VVI-COM, the user must call the Close
function. This function closes the 1/0 session to the instrument. This function may put the instrument into
an idle state before closing the 1/O session.

When the user finishes using an IVI.NET driver, the user should call either the Close method or
IDisposable.Dispose. The IVI.NET Close method shall call IDisposable.Dispose and take no other action.
Note that this implies that the 1/O connection is closed in IDisposable.Dispose rather than Close. In
addition, all IVL.NET drivers shall implement Object.Finalize, which shall call Dispose. Refer to Microsoft
documentation for IDisposable.Dispose for additional responsibilities and suggested implementation
patterns of IDisposable.Dispose.

For IVI-COM specific drivers, this function also does the following:

e Prevents the user from calling other functions in the driver that access the instrument until the user
calls the Initialize function again.

e May deallocate internal resources used by the VI session.

For 1VI1-C specific drivers, this function also does the following:
e Destroys the IVI session and all its attributes.

o Deallocates any memory resources used by the IVI session.

.NET Method Prototype

void Close();

COM Method Prototype

HRESULT Close() ;

C Function Prototype

ViStatus VI FUNC Prefix close (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an I\VI session. ViSession

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

.NET Exceptions

Section 12, Common IVL.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

Compliance Notes
1. Itis possible for a user to perform the following sequence of operations on an V1 specific driver:

e Call the Initialize function with Simulate set to False

IVI-3.2: Inherent Capabilities Specification 63 IVl Foundation

e Programmatically set Simulate to True
e Call the Close function with Simulate still set to True

If this sequence occurs, the V1 specific driver shall execute the Close function as if Simulate was set
to False.

IVI-3.2: Inherent Capabilities Specification 64 IVl Foundation

6.4 Disable

Description

The Disable operation places the instrument in a quiescent state as quickly as possible. In a quiescent state,
an instrument has no or minimal effect on the external system to which it is connected.

The Disable operation might be similar to the Reset operation in that it places the instrument in a known
state. However, the Disable operation does not perform the other operations that the Reset operation
performs such as configuring the instrument options on which the I1\VI specific driver depends. For some

instruments, the disable function may do nothing.

The IVI class specifications define the exact behavior of this function for each instrument class. Refer to

the VI class specifications for more information on the behavior of this function.

.NET Method Prototype

void Utility.Disable();

COM Method Prototype

HRESULT Utility.Disable();

C Function Prototype

ViStatus VI FUNC Prefix Disable (ViSession Vi);

Parameters

Inputs Description

Data Type

Vi Unique identifier for an VI session.

ViSession

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

.NET Exceptions

Section 12, Common IVL.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI-3.2: Inherent Capabilities Specification 65

IVI Foundation

6.5 Error Message (IVI-C Only)

Description

Translates the error return value from an 1VI driver function to a user-readable string. This function returns
the string that corresponds to the error code that the user passes in the ErrorCode parameter. The user can
call this function at any time, without relation to a particular error occurrence.

The Error Message function shall accept a value of vi_NuLL for the vi input parameter. This allows the
user to call the function even when Initialize fails.

When calling the Error Message function through a C interface, the user should pass a buffer with at least
256 bytes for the ErrorMessage parameter.

.NET Method Prototype
N/A

COM Method Prototype
N/A

C Function Prototype

ViStatus VI FUNC Prefix error message (ViSession Vi,
ViStatus ErrorCode,
ViChar ErrorMessagel[]);

Parameters
Inputs Description Data Type
Vi Unique identifier for an IVI session. ViSession
ErrorCode Instrument driver status code ViStatus
Outputs Description Data Type
ErrorMessage Instrument driver error message ViChar([]

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

Compliance Notes

1. IVI-C specific drivers shall not write more than 256 characters, including the NULL character, into the
ErrorMessage output parameter.

IVI-3.2: Inherent Capabilities Specification 66 IVl Foundation

6.6 Error Query

Description

Queries the instrument and returns instrument specific error information.

Generally, the user calls this function after another function in the VI driver returns the Instrument Status
error. The VI specific driver returns the Instrument Status error when the instrument indicates that it
encountered an error and its error queue is not empty. Error Query extracts an error out of the instrument’s
error queue.

For instruments that have status registers but no error queue, the V1 specific driver emulates an error queue
in software.

For IVI.NET, the method returns an object of type ErrorQueryResult, which is a struct that includes an
Int32 Code property and a String Message property that correspond to the IVI-COM and IVI-C ErrorCode
and ErrorMessage parameters, respectively.

When calling the Error Query function through a C interface, the user should pass a buffer with at least 256
bytes for the ErrorMessage parameter.

.NET Method Prototype

struct ErrorQueryResult

{
Int32 Code {get}
String Message {get}

ErrorQueryResult Utility.ErrorQuery () ;

COM Method Prototype

HRESULT Utility.ErrorQuery([in,out] long* ErrorCode,
[in, out] BSTR* ErrorMessage) ;

C Function Prototype

ViStatus VI FUNC Prefix error query (ViSession Vi,
ViInt32 * ErrorCode,

Parameters

ViChar ErrorMessagel[]);
Inputs Description Data Type

Vi Unique identifier for an I\VVI session. ViSession

Outputs Description Data Type
ErrorCode (C/COM) Instrument error code ViInt32
ErrorMessage (C/COM) Instrument error message ViChar([]
Return Value (.NET) A struct that includes the instrument error ErrorQueryResult

code and error message.

IVI-3.2: Inherent Capabilities Specification 67 IVl Foundation

Return Values (C/COM)

The table below defines specific status codes that this function returns. Section 11, Common IVI-C and IVI-
COM Error and Completion Codes, defines general status codes that this function can return.

Name COM Identifier C Identifier
Error Query Not S _IVI NSUP_ERROR QUERY IVI_WARN NSUP ERROR QUERY
Supported
Unexpected Response | E_IVI UNEXPECTED RESPONSE | IVI_ERROR UNEXPECTED RESPONSE

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

The table below defines specific exceptions for this method.

Exception

Description

Unexpected Response

Unexpected response from instrument.

The table below defines specific warning events for this method.

Warning

Description

Error Query Not Supported

The instrument does not support an error query operation.

Compliance Notes

1.

ErrorMessage Output parameter.
2. The setting of the Query Instrument Status attribute shall have no effect on the operation of the Error

Query function.

IVI-3.2: Inherent Capabilities Specification

68

IVI-C specific drivers shall not write more than 256 characters, including the NULL character, into the

IVI Foundation

6.7 Get Attribute <type> (IVI-C Only)

Get Attribute Vilnt32
Get Attribute Vilnt64

Get Attribute ViReal64
Get Attribute ViBoolean

Get Attribute ViSess

Description

ion

Obtains the current value of an attribute. A separate typesafe function exists for each possible attribute data

type.

Notes:

1. A separate function description exists for Get Attribute ViString.
2. A specific driver may omit the Vilnt64 function if the driver has no 64-bit attributes.

.NET Method Prototype
N/A

COM Method Prototype
N/A

C Function Prototype

ViStatus VI _FUNC

ViStatus VI _FUNC

ViStatus VI FUNC

ViStatus VI FUNC

ViStatus VI FUNC

Prefix GetAttributeviInt32 (ViSession vi,

ViConstString RepCapldentifier,
ViAttr AttributelD,
ViInt32 *AttributeValue) ;

Prefix GetAttributeviInté64 (ViSession vi,

ViConstString RepCapldentifier,
ViAttr AttributelD,
ViInt64 *AttributeValue) ;

Prefix GetAttributeViReal64 (ViSession Vi,

ViConstString RepCapldentifier,
ViAttr AttributelD,
ViReal64 *AttributeValue) ;

Prefix GetAttributeViBoolean (ViSession Vi,

ViConstString RepCapldentifier,
ViAttr AttributelID,
ViBoolean *AttributeValue);

Prefix GetAttributeViSession (ViSession Vi,

ViConstString RepCapldentifier,
ViAttr AttributelD,
ViSession *AttributeValue);

Parameters
Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

RepCapIdentifier [Ifthe attribute is applies to a repeated capability, the ViConstString
user passes a physical or virtual repeated capability
identifier. Otherwise, the user passes vI_NULL or an
empty string.

AttributelID The ID of the attribute. ViAttr

IVI-3.2: Inherent Capabilities Specification 69

IVI Foundation

AttributeValue

Returns the current value of the attribute. The user must
specify the address of a variable that has the same data
type as the attribute.

depends on the
data type of the
attribute

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

IVI-3.2: Inherent Capabilities Specification 70

IVI Foundation

Description

6.8 Get Attribute ViString (IVI-C Only)

Obtains the current value of a vistring attribute.

Refer to Section 3.1.2.1, Additional Compliance Rules for C Functions with ViChar Array Output
Parameters, for additional rules regarding this function.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus VI FUNC Prefix GetAttributeVisString (ViSession Vi,

Parameters

ViConstString RepCapldentifier,
ViAttr AttributelD,

ViInt32 AttributevValueBufferSize,
ViChar AttributeValuel[]);

Inputs Description Data Type
Vi Unique identifier for an IVI session. ViSession
RepCapIdentifier | If the attribute applies to a repeated capability, the user | viConstString
passes a physical or virtual repeated capability
identifier. Otherwise, the user passes vI_NULL Or an
empty string.
AttributeID The ID of the attribute. ViAttr
AttributevalueBu | The number of bytes in the vichar array that the user | viInt32
fferSize specifies for the Attributevalue parameter.
Outputs Description Data Type
Attributevalue The buffer in which the function returns the current ViChar(]
value of the attribute. Can be vi_nuLL if
AttributevValueBufferSize isO0.

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

IVI-3.2: Inherent Capabilities Specification 71

IVI Foundation

6.9 Get Error (IVI-C Only)

Description

This function retrieves and then clears the 1V1 error information for the session or the current execution
thread.

If the user specifies a valid 1VI session for the vi parameter, Get Error retrieves and then clears the error
information for the session. If the user passes vi_NULL for the vi parameter, Get Error retrieves and then
clears the error information for the current execution thread. If the vi parameter is an invalid session, the
function does nothing and returns an error. Normally, the error information describes the first error that
occurred since the user last called the Get Error or Clear Error function.

One exception exists: Ifthe ErrorDescriptionBuffersize parameter is zero, the function does not
clear the error information. By passing 0 for the buffer size, the caller can ascertain the buffer size required
to get the entire error description string and then call the function again with a sufficiently large buffer.

The precedence of errors and warnings is as follows:

e Ifthere are no errors and no warnings, the IVI specific driver returns IvI_SUCCESS in the ErrorCode
parameter and empty string in the ExrrorDescription parameter.

o Ifthere are warnings and no errors, the IVI specific driver returns the information regarding the first
warning that it encountered.

e Ifthere are errors, the IVI specific driver returns the information regarding the first error that it
encountered.

The function complies with the rules in Section 3.1.2.1, Additional Compliance Rules for C Functions with
ViChar Array Output Parameters.

Note: IVI-COM specific drivers do not have a Get Error function because the information that the Get
Error function returns is part of the COM error object.

.NET Method Prototype
N/A

COM Method Prototype
N/A

C Function Prototype

ViStatus VI FUNC Prefix GetError (ViSession Vi,
ViStatus *ErrorCode,
ViInt32 ErrorDescriptionBufferSize,
ViChar ErrorDescription([]);

IVI-3.2: Inherent Capabilities Specification 72 IVl Foundation

Parameters

Inputs

Description

Data Type

Unique identifier for an IVI session. The user can pass
VI NULL.

ViSession

ErrorDescription
BufferSize

The number of bytes in the vichar array that the user
specifies for the ErrorDescription parameter.

ViInt32

Outputs

Description

Data Type

ErrorCode

Returns the error code. Zero indicates that no error
occurred. A positive value indicates a warning. A
negative value indicates an error. The user can pass

vI_NULL if the user does not want to retrieve this value.

ViStatus

ErrorDescription

Buffer into which the function copies the full formatted
error string. The string describes the error code and any
extra information regarding the error or warning
condition. The buffer shall contain at least as many
bytes as the user specifies in the
ErrorDescriptionBufferSize parameter. The user
can pass vI_NULL if the
ErrorDescriptionBufferSize parameter is zero.

ViChar[]

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

IVI-3.2: Inherent Capabilities Specification 73

IVI Foundation

6.10 Get Group Capabilities (IV.LNET Only)

Description

Returns a list of names of class capability groups that the IV specific driver implements. The items in the
list are capability group names that the V1 class specifications define. The list is returned as an array of

strings.

If the IVI specific driver does not comply with an 1V1 class specification, the specific driver returns an

array with zero elements.

.NET Method Prototype

String[] Identity.GetGroupCapabilities();

COM Method Prototype

N/A

(See the Class Group Capabilities attribute.)

C Function Prototype

N/A

(See the Class Group Capabilities attribute.)

Parameters

Outputs

Description

Data Type

Return Value

The list of class capability groups that the IVI specific

driver implements.

Stringl[]

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI-3.2: Inherent Capabilities Specification

74

IVI Foundation

6.11 Get Next Coercion Record (IVI-C & IVI-COM Only)

Description

If the Record Value Coercions attribute is set to True, the I\VI specific driver keeps a list of all value
coercions it makes on viInt32 Or viReal64 attributes. This function obtains the coercion information
associated with the V1 session. It retrieves and clears the oldest instance in which the specific driver
coerced a value the user specified to another value.

The function returns an empty string in the CoercionRecord parameter if no coercion records remain for
the session.

The following rules apply to the C interface of the Get Next Coercion Record function:

e The function complies with the rules in Section 3.1.2.1, Additional Compliance Rules for C Functions
with ViChar Array Output Parameters.

e Ifthe user passes O for the CoercionRecordBuffersSize parameter, the function does not clear a
coercion record from the list.

The coercion record string shall contain the following information:

e The name of the attribute that was coerced. This can be the generic name, the COM property hame, or
the C defined constant.

o Ifthe attribute applies to a repeated capability, the name of the virtual or physical repeated capability
identifier.

e The value that the user specified for the attribute.
e The value to which the attribute was coerced.

A recommended format for the coercion record string is as follows:

"Attribute " + <attribute name> + [" on <repeated capability> "+ <repeated capability
identifier>] + " was coerced from "+ <desiredVal>+" to " + <coercedVal>.

And example coercion record string is as follows:

Attribute TKTDS500 ATTR VERTICAL RANGE on channel chl was coerced from 9.0
to 10.0.

IVI-3.2: Inherent Capabilities Specification 75 IVl Foundation

.NET Method Prototype

N/A.
(See the Coercion Record Event.)

COM Method Prototype
HRESULT DriverOperation.GetNextCoercionRecord ([out, retval] BSTR*
CoercionRecord) ;

C Function Prototype

ViStatus VI FUNC Prefix GetNextCoercionRecord (ViSession Vi,

ViInt32 CoercionRecordBufferSize,
ViChar CoercionRecord[]);

Parameters
Inputs Description Data Type
Vi Unique identifier for an IVI session. ViSession
CoercionRecordBu [The number of bytes in the vichar array that the user ViInt32
fferSize specifies for the coercionRecord parameter.
Outputs Description Data Type
CoercionRecord | The buffer in which the function returns the oldest ViChar[]

coercion record. Can be vi_nuLL if
CoercionRecordBufferSize is 0.

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

Compliance Notes

1. Ifan IVI-COM specific driver does not accept True as a valid value for the Record Value Coercions
attribute, then the IVI-COM specific driver shall return the Function Not Supported error when the
user calls this function.

2. Ifan IVI-C specific driver does not accept True as a valid value for the Record Value Coercions
attribute, then the IVI-C specific driver shall not export this function.

IVI-3.2: Inherent Capabilities Specification 76 IVl Foundation

6.12 Get Next Interchange Warning (IVI-C & IVI-COM Only)

Description

If the Interchange Check attribute is set to True, the 1\V/1 specific driver keeps a list of all interchangeability
warnings that it encounters. This function returns the interchangeability warnings associated with the VI
session. It retrieves and clears the oldest interchangeability warning from the list. Interchangeability
warnings indicate that using the application with a different instrument might cause different behavior.

When this function is called on an IVI class driver session, it may return interchangeability warnings
generated by the VI class driver as well as interchangeability warnings generated by the V1 specific
driver. The IVI class driver determines the relative order in which the IVI class driver warnings are
returned in relation to the VI specific driver warnings.

The function returns an empty string in the InterchangeWarning parameter if no interchangeability
warnings remain for the session.
The following rules apply to the C interface of the Get Next Interchange Warning function;

e The function complies with the rules in Section 3.1.2.1, Additional Compliance Rules for C Functions
with ViChar Array Output Parameters.

e Ifthe user passes O for the InterchangeabilityWarningBufferSize parameter, the function does
not clear the oldest interchangeability warning from the list.

Refer to the Interchange Check attribute for more information on interchangeability checking.

.NET Method Prototype

N/A.
(See the Interchange Check Warning Event.)

COM Method Prototype

HRESULT DriverOperation.GetNextInterchangeWarning ([out, retval] BSTR*
InterchangeWarning) ;

C Function Prototype

ViStatus VI FUNC Prefix GetNextInterchangeWarning (ViSession Vi,
ViInt32 InterchangeWarningBufferSize,
ViChar InterchangeWarningl[]);

IVI-3.2: Inherent Capabilities Specification 77 IVl Foundation

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession
InterchangeWarni | The number of bytes in the vichar array that the user ViInt32
ngBufferSize specifies for the ITnterchangewarning parameter.

Outputs Description Data Type
InterchangeWarni | The buffer in which the function returns the oldest ViChar([]
ng interchange warning. Can be vi_~uLL if

InterchangeWarningBufferSize is0.

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

Compliance Notes

1. Ifan IVI-COM specific driver does not accept True as a valid value for the Interchange Check
attribute, then the IVI-COM specific driver shall return the Function Not Supported error when the
user calls this function.

2. Ifan IVI-C specific driver does not accept True as a valid value for the Interchange Check attribute,
then the 1VI-C specific driver shall not export this function.

IVI-3.2: Inherent Capabilities Specification 78

IVI Foundation

6.13 Get Specific Driver C Handle (IVI-C Only)

Description

Returns a C session handle for the V1 specific driver that the VI class driver is currently using. After the
user retrieves the C session handle from the from the class driver, the user can pass the handle as the IVI
session to the 1V1-C specific driver. This enables the user to access the class driver for the portions of the
program that are interchangeable and then access instrument specific functions or attributes in the 1\VVI-C
specific driver for the portions of the program that require instrument specific functionality.

If the class driver currently has a C session handle for the specific driver, the class driver returns that
handle.

If the class driver does not have a C session handle for the specific driver and the specific driver has an 1VI-
C wrapper, the class driver attempts to open a C session through the C wrapper. If successful, the class
driver returns the C session handle that it obtains from the wrapper.

If the IV specific driver cannot be accessed through a C interface, the IVI class driver returns zero as the
value of the handle.

.NET Method Prototype
N/A

COM Method Prototype
N/A

C Function Prototype

ViStatus VI FUNC Prefix GetSpecificDriverCHandle (ViSession Vi,
ViSession *SpecificDriverCHandle) ;

Parameters
Inputs Description Data Type
Vi Unique identifier for an IVI session. ViSession
Outputs Description Data Type
SpecificDriverCH | Returns the C session handle of the IVI-C specific driver | ViSession
andle that the IV class driver is currently using.

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

Compliance Notes
1. IVI specific drivers shall not implement or export this function.

IVI-3.2: Inherent Capabilities Specification 79 IVl Foundation

6.14 Get Specific Driver lUnknown Pointer (IVI-C Only)

Description

Returns an IlUnknown pointer for the IV specific driver that the V1 class driver is currently using. After
the user retrieves the IlUnknown pointer from the class driver, the user can use this value to access the IVI-
COM specific driver. This enables the user to access the class driver for the portions of the program that
are interchangeable and then access instrument specific functions or attributes in the 1\VI-COM specific
driver for the portions of the program that require instrument specific functionality.

If the class driver currently has an IlUnknown pointer for the specific driver, the class driver returns that
pointer.

If the class driver does not have an 1lUnknown pointer for the specific driver and the specific driver has an
IVI-COM wrapper, the class driver attempts to create a COM object through the IVI-COM wrapper. If
successful, the class driver returns the IlUnknown pointer that it obtains from the wrapper.

If the IV specific driver cannot be accessed through a COM interface, the VI class driver returns zero as
the value of the IlUnknown pointer.

.NET Method Prototype
N/A

COM Method Prototype
N/A

C Function Prototype

ViStatus VI FUNC Prefix GetSpecificDriverIUnknownPtr (ViSession Vi,
IUnknown **SpecificDriverIUnknownPtr) ;

Parameters
Inputs Description Data Type
Vi Unique identifier for an IVI session. ViSession
Outputs Description Data Type
SpecificDriverIU | Returns the IUnknown pointer to the IVI specific driver | TUnknown
nknownPtr that the class driver is currently using.

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

Compliance Notes

1. IVI specific drivers shall not implement or export this function.

IVI-3.2: Inherent Capabilities Specification 80 IVl Foundation

6.15 Get Supported Instrument Models (IVI.NET Only)

Description

Returns a list of names of instrument models with which the IV1 specific driver is compatible. The list is
returned as an array of strings. For example, this attribute might return the strings “TxTDS3012”,
“TKTDS3014”,and “TKTDS3016".

It is not necessary for the string to include the abbreviation for the manufacturer if it is the same for all
models. In the example above, it is valid for the attribute to return the strings *Tps3012”, “TDs3014”,

and “TDS3016"”.

.NET Method Prototype

String[] Identity.GetSupportedInstrumentModels() ;

COM Method Prototype

N/A

(See the Supported Instrument Models attribute.)

C Function Prototype

N/A

(See the Supported Instrument Models attribute.)

Parameters

Outputs

Description

Data Type

Return Value

The list of supported instrument models with which the
V1 specific driver is compatible.

Stringl[]

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI-3.2: Inherent Capabilities Specification 81

IVI Foundation

6.16 Initialize (IVI-C & IVI-COM Only)

Description

For IVI.NET, refer to section 8, IVI.NET Specific Driver Constructor, for details of driver initialization.

The user must call the Initialize function prior to calling other 1\VVI driver functions that access the
instrument. When using an IVI-C specific driver, the user must call the Initialize function prior to calling
any other instrument driver functions. A few exceptions exist. The user can call the Error Message, Get
Error, and Clear Error functions and pass vi_NuULL for the vi parameter prior to calling the Initialize
function.

If simulation is disabled when the user calls the Initialize function, the function performs the following
actions:
e Opens and configures an 1/O session to the instrument.

e Ifthe user passes True for the Idouery parameter, the function queries the instrument for its ID and
verifies that the I\VI specific driver supports the particular instrument model. If the instrument cannot
return its ID, the specific driver returns the ID Query Not Supported warning.

e Ifthe user passes True for the Reset parameter, the function places the instrument in a known state. In
an IEEE 488.2 instrument, the function sends the command string “*RST” to the instrument. If the
instrument cannot perform a reset, the 1\VVI specific driver returns the Reset Not Supported warning.

e Configures instrument options on which the V1 specific driver depends. For example, a specific
driver might enable or disable headers or enable binary mode for waveform transfers.

e Performs the following operations in the given order:
e Disables the class extension capability groups that the IV specific driver does not implement.

o Ifthe class specification with which the V1 specific driver is compliant defines initial values for
attributes, this function sets the attributes to the values that the class specification defines.

o Ifthe ResourceName parameter is a logical name, the 1V1 specific driver configures the initial
settings for the specific driver and instrument based on the configuration of the logical name in the
IVI configuration store.

e Ifthe user accesses the IVI specific driver through its C interface, then the specific driver performs the
following additional operations.

e Creates a new IVI driver session.

e Returns a visession handle that identifies the session in subsequent calls to the I'VI driver.
If simulation is enabled when the user calls the Initialize function, the function performs the following
actions:

e Ifthe user passes True for the 1dQuery parameter and the instrument cannot return its 1D, the VI
specific driver returns the ID Query Not Supported warning.

o Ifthe user passes True for the Reset parameter and the instrument cannot perform a reset, the VI
specific driver returns the Reset Not Supported warning.

e Ifthe ResourceName parameter is a logical name, the IVI specific driver configures the initial settings
for the specific driver based on the configuration of the logical name in the VI configuration store.

o Ifthe user accesses the IVI specific driver through its C interface, then the specific driver performs the
following additional operations.

e Creates a new IVI driver session.

IVI-3.2: Inherent Capabilities Specification 82 IVl Foundation

e Returns a visession handle that identifies the session in subsequent calls to the I\VI driver.

Some instrument driver operations require or take into account information from the VI configuration
store. Examples of such information are virtual repeated capability name mappings and the value of certain
inherent attributes. An IVI driver shall retrieve all the information for a session from the 1\l configuration
store during the Initialization function. The VI driver shall not read any information from the 1V1
configuration store for a session after the Initialization function completes. Refer to Section 3.2.3,
Instantiating the Right Configuration Store From Software Modules, of 1VI-3.5: Configuration Server
Specification for details on how to correctly instantiate the configuration store.

The ResourceName parameter must contain either a logical name that is defined in the VI configuration
store or an instrument specific string that identifies the 1/0 address of the instrument, such as a VISA
resource descriptor string. Refer to 1VI-3.5: Configuration Server Specification for restrictions on the
format of VI logical names. Refer to the VXIplug&play specifications for the grammar of VISA resource
descriptor strings. Valid values for the ResourceName parameter depend on how the user initializes the
session:

e After instantiating an IVI-COM specific driver through the IV Factory, the user is expected to pass to
the Initialize function the same logical name that the user passed to the IV1 Factory. If the user passes a
different logical name, the behavior of the driver is undefined.

e After instantiating an IVI-COM specific driver directly, the user can pass either a logical name or a
resource descriptor to the Initialize function.

e When using the Initialize function to open a session to an IVI-C class driver, the user must pass a
logical name.

e When using the Initialize function to open a session to an IVI-C specific driver, the user can pass either
a logical name or a resource descriptor.

The user can use the optionsString parameter to specify the initial values of certain IVI inherent
attributes for the session. Table 6-1 lists the inherent attributes that the user can set through the
OptionsString parameter. The user does not have to specify all or any of the attributes in the options
string. If the user does not specify the initial value of an inherent attribute in the optionsString
parameter, the initial value of the attribute depends on the value of the ResourceName parameter:

e Ifthe ResourceName parameter contains an IVI logical name, the IVI specific driver configures the
initial settings based on the configuration of the logical name in the VI configuration store.

o Ifthe ResourceName parameter contains a resource descriptor string that identifies the 1/0 address of
the instrument, the 1VI specific driver sets inherent attributes to their default initial values. Table 6-1
shows the default initial value for each attribute.

The following table lists the IVI inherent attributes that the user can set through the cptionsString
parameter, their default initial values, and the name that represents each attribute in the options string.

Table 6-1. IVI Inherent Attribute Initial Values and Options String Name

Attribute Default Initial Value Options String Name
Range Check True RangeCheck
Query Instrument Status False QueryInstrStatus
Cache True Cache
Simulate False Simulate
Record Value Coercions False RecordCoercions
Interchange Check False InterchangeCheck
Driver Setup """ an empty string DriverSetup

IVI-3.2: Inherent Capabilities Specification 83 IVl Foundation

The format of an assignment in the optionsstring parameter is "Name=value", where Name is one of
the option string names in the table above. Initialize interprets the Nname and value fields in a case-
insensitive manner.

For the attributes of type viBoolean, value can be any of the following:
e Toset the attribute to True, use vI_TRUE, True, Of 1.

e Toset the attribute to False, use vi_FALSE, False, Of 0.

The user can set multiple attributes by separating assignments with commas. If the Options String
parameter contains an assignment for the Driver Setup attribute, the Initialize function assumes that
everything following “DriverSetup=""1is part of the assignment. Therefore, the user is expected to place
the Driver Setup assignment at the end of the Options String parameter. The value that the user passes in
the Options String parameter for the Driver Setup attribute must contain only ASCII characters.

Each VI specific driver defines it own meaning and valid values for the Driver Setup attribute. Many
specific drivers ignore the value of the Driver Setup attribute. Other specific drivers use the Driver Setup
string to configure instrument specific features at initialization. For example, if a specific driver supports a
family of instrument models, the driver can use the Driver Setup attribute to allow the user to specify a
particular instrument model to simulate.

The VI specific driver ignores all white space in the optionsString parameter outside the Driver Setup
string.

If the user attempts to initialize the instrument a second time without first calling the Close function, the
behavior of the Initialize function depends on whether the user accesses the instrument driver through a
COM or a C interface.

e Ifthe user accesses the VI driver through a COM interface and attempts to initialize the instrument a
second time without first calling the Close function, the Initialize function returns the Already
Initialized error.

o Ifthe user accesses the IVI driver through a C interface and attempts to initialize the instrument a
second time without first calling the Close function, the Initialize function performs all operations that
this section defines and returns a new IVI session.

IVI-3.2: Inherent Capabilities Specification 84 IVl Foundation

.NET Method Prototype

N/A
(See section 8, IVI.NET Specific Driver Constructor for .NET initialization.)

COM Method Prototype

HRESULT Initialize([in] BSTR ResourceName,
[in] VARIANT BOOL IdQuery,
[in] VARIANT BOOL Reset,

[i

n,optional] BSTR OptionString);

C Function Prototype

ViStatus VI FUNC Prefix InitWithOptions (ViRsrc ResourceName,
ViBoolean IdQuery,
ViBoolean Reset,
ViConstString OptionsString,
ViSession *Vi);
VisStatus VI FUNC Prefix init (ViRsrc ResourceName,
ViBoolean IdQuery,
ViBoolean Reset,
ViSession *Vi);

Note: pPrefix init exists for compatibility with VXIplug&play. Calling Prefix init is equivalent to
calling Prefix InitWithOptions With vI_NULL or an empty string for the OptionsString parameter.

Parameters
Inputs Description Data Type
ResourceName An VI logical name or an instrument specific string that ViRsrc
identifies the address of the instrument, such as a VISA
resource descriptor string.
IdQuery Specifies whether to verify the ID of the instrument. ViBoolean
Reset Specifies whether to reset the instrument. ViBoolean
OptionsString A string that allows the user to specify the initial values of | viConstStri
certain inherent attributes. ng
Outputs Description Data Type
Vi Unique identifier for an IVI session. ViSession

IVI-3.2: Inherent Capabilities Specification 85 IVl Foundation

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

Name COM ldentifier C Identifier
ID Query Not Supported | S IVI WARN NSUP ID QUERY IVI_WARN NSUP_ID QUERY
Reset Not Supported S _IVI WARN NSUP RESET IVI_WARN NSUP RESET
ID Query Failed E_IVI ID QUERY FAILED IVI_ERROR ID QUERY FAILED
Resource Unknown E_IVI RESOURCE UNKNOWN IVI_ERROR RESOURCE_UNKNOWN
Missing Option Name E_IVI MISSING OPTION NAME | IVI ERROR MISSING OPTION NAME
Missing Option Value E_IVI MISSING OPTION VALUE| IVI _ERROR MISSING OPTION VALUE
Bad Option Name E_IVI BAD OPTION NAME IVI_ERROR BAD OPTION NAME
Bad Option Value E IVI BAD OPTION VALUE IVI_ERROR BAD OPTION VALUE

Compliance Notes
1. IVI class drivers shall accept only IVI logical names as valid values for the ResourceName parameter.

IVI-3.2: Inherent Capabilities Specification 86 IVl Foundation

6.17 Invalidate All Attributes

Description
This function invalidates the cached values of all attributes for the session.

.NET Method Prototype

void DriverOperation.InvalidateAllAttributes();

COM Method Prototype

HRESULT DriverOperation.InvalidateAllAttributes();

C Function Prototype

ViStatus VI FUNC Prefix InvalidateAllAttributes (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

Compliance Notes

1. Ifthe IVI specific driver does not implement state caching, this function shall perform no operations
and return Success.

IVI-3.2: Inherent Capabilities Specification 87 IVl Foundation

6.18 Lock Session

Description

For 1VI-COM specific drivers, this function shall return the Function Not Supported error when the user
calls this function. Because of the way thread ownership inherently works in COM, a COM object cannot
reliably establish ownership of a lock by relying on the identity of the calling thread. Thus, it is impossible
to associate the lock with any single thread. Since this function is already included in the Ivibriver.idl
and removing it from Ivibriver.idl introduces new versioning and compatibility issues, the specified
behavior of this function was changed to return Function Not Supported instead of removing the function
from the driver implementation.

For IVI-C specific drivers, this function obtains a multithread lock on the instrument session. Before it does
so, Lock Session waits until all other execution threads have released their locks on the instrument session.
This capability is useful for developing programs that share the same session among multiple threads.

For IVI.NET specific drivers, this function obtains a multithread lock for this instance of the driver. Before
it does so, Lock Session waits until all other execution threads have released their locks or for the length of
time specified by the maximum time parameter, whichever come first. The type of lock obtained depends
upon the parameters passed to the specific driver constructor. See Section 8, IVI.NET Specific Driver
Constructor for details.

The user can use Lock Session with IVI-C or IVI.NET specific drivers to protect a section of code that
requires exclusive access to the instrument. This occurs when the user takes multiple actions that affect the
instrument and the user wants to ensure that other execution threads do not disturb the instrument state until
all the actions execute. For example, if the user sets various instrument attributes and then triggers a
measurement, the user must ensure no other execution thread modifies the attribute values until the user
finishes taking the measurement. For IVI-C drivers, the protection that this lock provides only applies to
this instance of the driver. Multiple instances of the driver will not be protected from simultaneously
accessing the instrument. For IVI.NET drivers, the scope of the lock is determined by the constructor
parameters used to instantiate the driver.

It is important to note that this lock is not related to 1/O locks such as the VISA resource locking
mechanism.

With IVI-C and IVI.NET drivers, the user can safely make nested calls to Lock Session within the same
thread. To completely unlock the session, the user must balance each call to Lock Session with a call to
Unlock Session.

For IVI.NET, calls to Lock Session must always obtain the same lock that is used internally by the
IVI.NET driver to guard individual method calls.

The C function has an additional parameter, CallerHasLock. Ifthe user usesthe callerHasLock
parameter in all calls to Lock Session and Unlock Session within a function, the session is locked only once
within the function regardless of the number of calls to Lock Session. This allows the user to call Unlock
Session just once at the end of the function.

The callerHasLock parameter is useful in complex functions to keep track of whether the user has
obtained a lock and therefore needs to unlock the session. The user passes the address of a local variable for
the callerHasLock parameter. The user initializes the local variable to False in the declaration of the
local variable. The user passes the address of the local variable to all other calls to Lock Session or Unlock
Session in the same function. Lock Session and Unlock Session each inspect the current value of
CallerHasLock and take the following actions:

e Ifthe value is True, Lock Session does not lock the session again. If the value is False, Lock
Session obtains the lock and sets the value of the parameter to True.

IVI-3.2: Inherent Capabilities Specification 88 IVl Foundation

e Ifthe value is False, Unlock Session does not attempt to unlock the session. If the value is True,
Unlock Session releases the lock and sets the value of the parameter to False.

If the user passes vI_NULL as the CallerHasLock parameter from the C interface of the IVI driver, the
driver ignores the callerHasLock parameter.

.NET Method Prototype

IIviDriverLock Lock();

IIviDriverLock Lock (PrecisionTimeSpan maximumTime) ;

COM Method Prototype

HRESULT Utility.LockObject ();

C Function Prototype

ViStatus VI FUNC Prefix LockSession (ViSession Vi, ViBoolean *CallerHasLock);

IVI-3.2: Inherent Capabilities Specification 89 IVl Foundation

Parameters

Inputs Description Data Type
Vi Unique identifier for an IVI session. ViSession
maximumTime Specifies the maximum length of time for the function to | PrecisionTime
(.NET) wait to acquire the lock before failing. Span
Input/Output Description Data Type
CallerHasLock Indicates whether the calling function currently has a ViBoolean
(<) lock on the IVI session.

Defined Values for the MaximumTime Parameter (.NET)

Name Description
Language | Identifier
Zero The function returns immediately. If If the lock is not immediately available, the
function throws an exception.
| .NET | PrecisionTimeSpan.Zero
MaxValue The function waits indefinitely to acquire the lock.
| NET | PrecisionTimeSpan.MaxValue

Return Values (C/COM)
Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

.NET Exceptions
Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

Note that the .NET MaxTimeExceededException is defined in 1VI-3.2: Inherent Capabilities Specification.

IVI-3.2: Inherent Capabilities Specification 90 IVl Foundation

6.19 Reset

Description
This function performs the following actions:

e Places the instrument in a known state. In an IEEE 488.2 instrument, the Reset function sends the
command string "*rsT" to the instrument.

e Configures instrument options on which the 11 specific driver depends. A specific driver might
enable or disable headers or enable binary mode for waveform transfers.

The user can either call the Reset function separately or specify that it be called from the Initialize function.
The Initialize function performs additional operations after performing the reset operation to place the
instrument in a state more suitable for interchangeable programming. To reset the device and perform
these additional operations, call the Reset With Defaults function instead of the Reset function.

.NET Method Prototype

void Utility.Reset();

COM Method Prototype

HRESULT Utility.Reset();

C Function Prototype

ViStatus VI FUNC Prefix reset (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

The table below defines specific status codes that this function returns. Section 11, Common IVI-C and IVI-
COM Error and Completion Codes, defines general status codes that this function can return.

Name COM Identifier C Identifier

Reset Not Supported S _IVI NSUP RESET IVI_WARN NSUP RESET

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

The table below defines specific exceptions for this method.

Exception Description

Reset Not Supported The instrument does not support the reset operation.

IVI-3.2: Inherent Capabilities Specification 91 IVl Foundation

Compliance Notes

1. Ifan IVI specific driver performs interchangeability checking, the specific driver shall record an
interchangeability warning when the user calls the Reset function.

IVI-3.2: Inherent Capabilities Specification 92 IVl Foundation

6.20 Reset Interchange Check

Description

This function resets the interchangeability checking algorithms of the IV specific driver so that specific
driver functions that execute prior to calling this function have no effect on whether future calls to the
specific driver generate interchangeability warnings.

When developing a complex test system that consists of multiple test modules, it is generally a good idea to
design the test modules so that they can run in any order. To do so requires ensuring that each test module
completely configures the state of each instrument it uses. If a particular test module does not completely
configure the state of an instrument, the state of the instrument depends on the configuration from a
previously executed test module. If the test modules execute in a different order, the behavior of the
instrument and therefore the entire test module is likely to change. This change in behavior is generally
instrument specific and represents an interchangeability problem.

Users can use this function to test for such cases. By calling this function at the beginning of a test module,
users can determine whether the test module has dependencies on the operation of previously executed test
modules. Any interchangeability warnings that occur after the user calls this function indicate that the
section of the test program that executes after this function and prior to the generation of the warning does
not completely configure the instrument and that the user is likely to experience different behavior if the
user changes the execution order of the test modules or if the user changes instruments.

Note: This function does not clear interchangeability warnings from the list of interchangeability warnings.
To guarantee that the Get Next Interchange Warning function returns interchangeability warnings that

occur only after the program calls function, the user must clear the list of interchangeability warnings by
calling the Clear Interchange Warnings function.

Refer to the Interchange Check attribute for more information on interchangeability checking.

.NET Method Prototype

void DriverOperation.ResetInterchangeCheck() ;

COM Method Prototype

HRESULT DriverOperation.ResetInterchangeCheck();

C Function Prototype

ViStatus VI FUNC Prefix ResetInterchangeCheck (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI-3.2: Inherent Capabilities Specification 93 IVl Foundation

Compliance Notes
1. Ifan IVI-COM specific driver does not accept True as a valid value for the Interchange Check
attribute, then the IVI-COM specific driver shall return the Function Not Supported error when the
user calls this function.
2. Ifan IVI-C specific driver does not accept True as a valid value for the Interchange Check attribute,
then the 1\VVI-C specific driver shall not export this function.

IVI-3.2: Inherent Capabilities Specification 94 IVl Foundation

6.21 Reset With Defaults

Description

The Reset With Defaults function performs the same operations that the Reset function performs and then
performs the following additional operations in the specified order:

o Disables the class extension capability groups that the IV specific driver implements.

o Ifthe class specification with which the V1 specific driver is compliant defines initial values for
attributes, this function sets those attributes to the initial values that the class specification defines.

e Configures the initial settings for the specific driver and instrument based on the information retrieved
from the IVI configuration store when the instrument driver session was initialized.

Notice that the Initialize function also performs these functions. To place the instrument and the VI
specific driver in the exact same state that they attain when the user calls the Initialize function, the user
must first call the Close function and then the Initialize function.

.NET Method Prototype

void Utility.ResetWithDefaults ();

COM Method Prototype

HRESULT Utility.ResetWithDefaults ();

C Function Prototype

ViStatus VI FUNC Prefix ResetWithDefaults (ViSession Vi) ;

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

The table below defines specific status codes that this function returns. Section 11, Common IVI-C and IVI-
COM Error and Completion Codes, defines general status codes that this function can return.

Name COM ldentifier C ldentifier

Reset Not Supported S _IVI _NSUP RESET IVI_WARN NSUP RESET

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

The table below defines specific exceptions for this method.

Exception Description

Reset Not Supported The instrument does not support the reset operation.

IVI-3.2: Inherent Capabilities Specification 95 IVl Foundation

6.22 Revision Query (IVI-C Only)

Description
Obtains the following information:

e The revision of the VI specific driver
e The firmware revision of the instrument

When calling the Revision Query function through a C interface, the user should pass a buffer with at least
256 bytes for the briverRev parameter.

When calling the Revision Query function through a C interface, the user should pass a buffer with at least
256 bytes for the Tnstrrev parameter.

.NET Method Prototype

N/A
(See the Component Revision and Instrument Firmware Revision attributes.)

COM Method Prototype

N/A
(See the Component Revision and Instrument Firmware Revision attributes.)

C Function Prototype

ViStatus VI FUNC Prefix revision query (ViSession Vi,
ViChar DriverRev][],
ViChar InstrRev][])

Parameters
Inputs Description Data Type
Vi Unique identifier for an IVI session. ViSession
Outputs Description Data Type
DriverRev Returns the revision of the IVI specific driver, which is the | ViChar[]
value held in the Specific Driver Revision attribute. Refer
to the Specific Driver Revision attribute for more
information.
InstrRev Returns the firmware revision of the instrument, whichis | ViChar[]
the value held in the Instrument Firmware Revision
attribute. Refer to the Instrument Firmware Revision
attribute for more information.

Return Values (C)

The table below defines specific status codes that this function returns. Section 11, Common IVI-C and IVI-
COM Error and Completion Codes, defines general status codes that this function can return.

Name COM ldentifier C ldentifier

Revision Query Not S_IVI_NSUP_REV_QUERY IVI_WARN NSUP REV_QUERY

IVI-3.2: Inherent Capabilities Specification 96 IVl Foundation

Supported
Unexpected Response | E_IVI UNEXPECTED RESPONSE | IVI _ERROR UNEXPECTED RESPONSE

Compliance Notes

1. IVI-C specific drivers shall not write more than 256 characters, including the NULL character, into the
DriverRev Ooutput parameter.

2. IVI-C specific drivers shall not write more than 256 characters, including the NULL character, into the
InstrRev output parameter.

IVI-3.2: Inherent Capabilities Specification 97 IVl Foundation

6.23 Self Test

Description

Causes the instrument to perform a self test. Self Test waits for the instrument to complete the test. It then
queries the instrument for the results of the self test and returns the results to the user.

If the instrument passes the self test, this function returns zero in the TestResult parameter and “Self
test passed” inthe TestMessage parameter.

For IVI.NET, the method returns an object of type SelfTestResult, which is a struct that includes an Int32
Code property and a String Message property that correspond to the IVI-COM and IVI-C TestResult and
TestMessage parameters, respectively.

When calling the Self Test function through a C interface, the user should pass a buffer with at least 256
bytes for the TestMessage parameter.

.NET Method Prototype

struct SelfTestResult

{

Int32 Code { get }

String Message

{ get }

SelfTestResult Utility.SelfTest();

COM Method Prototype

HRESULT Utility.SelfTest ([in,out] long* TestResult,

C Function Prototype

[in,out] BSTR* TestMessage);

ViStatus VI FUNC Prefix self test(ViSession Vi,

ViIntl6é * TestResult,
ViChar TestMessagel[]):

Parameters
Inputs Description Data Type

Vi Unique identifier for an I\VVI session. ViSession

Outputs Description Data Type
TestResult (C/COM) | Returns the numeric result from the self test operation (0= | viInt1l6

no error, e.g. the test passed)

TestMessage (C/COM) | Returns the self test status message. ViChar([]
Return Value (.NET) | A structthat includes the numeric result from the self test | SelfTestResult

operation (0 = no error, e.g. the test passed) and self test
status message.

IVI-3.2: Inherent Capabilities Specification

98

IVI Foundation

Return Values (C/COM)

The table below defines specific status codes that this function returns. Section 11, Common IVI-C and IVI-

COM Error and Completion Codes, defines general status codes that this function can return.

Name

COM Identifier

C ldentifier

Self Test Not Supported

S_IVI NSUP_SELF TEST

IVI WARN NSUP SELF TEST

Unexpected Response

E _IVI UNEXPECTED RESPONSE

IVI ERROR UNEXPECTED RESPO

NSE

IVI-3.2: Inherent Capabilities Specification

99

IVI Foundation

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

The table below defines specific exceptions for this method.

Exception Description

Unexpected Response Unexpected response from instrument.

The table below defines specific warning events for this method.

Warning Description

Self Test Not Supported The instrument does not support a self test operation.

Compliance Notes

1. Ifthe instrument does not return a self test status message, the V1 specific driver shall create and
return a message that corresponds to the numeric result that the specific driver returns in the
TestResult parameter.

2. IVI-C specific drivers shall not write more than 256 characters, including the NULL character, into the
TestMessage output parameter.

IVI-3.2: Inherent Capabilities Specification 100 IVl Foundation

6.24 Set Attribute <type> (IVI-C Only)

Set Attribute Vilnt32
Set Attribute Vilnt64
Set Attribute ViReal64
Set Attribute ViString
Set Attribute ViBoolean
Set Attribute ViSession

Description

Sets an attribute to a value. A separate typesafe function exists for each possible attribute data type.

Note: A specific driver may omit the Vilnt64 function if the driver has no 64-bit attributes.

.NET Method Prototype
N/A

COM Method Prototype
N/A

C Function Prototype

ViStatus VI FUNC Prefix SetAttributeViInt32 (ViSession Vi,

ViConstString RepCapldentifier,
ViAttr AttributelD,
ViInt32 AttributeValue);

ViStatus VI FUNC Prefix SetAttributevViInt64 (ViSession Vi,

ViConstString RepCapldentifier,
ViAttr AttributelD,
ViInt64 AttributeValue);

ViStatus VI FUNC Prefix SetAttributeViReal64 (ViSession Vi,

ViConstString RepCapldentifier,
ViAttr AttributelD,
ViReal64 AttributeValue);

ViStatus VI FUNC Prefix SetAttributeViBoolean (ViSession Vi,

ViConstString RepCapldentifier,
ViAttr AttributelD,
ViBoolean AttributeValue) ;

ViStatus VI FUNC Prefix SetAttributeViString (ViSession Vi,

ViConstString RepCapldentifier,
ViAttr AttributelD,
ViConstString AttributeValue);

ViStatus VI FUNC Prefix SetAttributeViSession (ViSession Vi,

IVI-3.2: Inherent Capabilities Specification

ViConstString RepCapldentifier,
ViAttr AttributelD,
ViSession AttributeValue) ;

101 IVI Foundation

Parameters

Inputs Description Data Type
Vi Unique identifier for an IVI session. ViSession
RepCapldentifier | If the attribute applies to a repeated capability, the user | viConstString
passes a virtual or physical repeated capability
identifier.
AttributelID The ID of the attribute. ViAttr
Attributevalue The value to which to set the attribute. depends on the
data type of the
attribute

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

IVI-3.2: Inherent Capabilities Specification 102

IVI Foundation

6.25 Unlock Session

Description
For 1VI-COM specific drivers, this function shall return the Function Not Supported error when the user
calls this function.

For IVI-C and IVI.NET specific drivers, this function releases a lock that the Lock Session function
acquires. Refer to Lock Session for additional information on 1VI session locks.

.NET Method Prototype
void llviDriverLock.Unlock();

COM Method Prototype
HRESULT Utlity.UnlockObject ()

C Function Prototype

ViStatus VI FUNC Prefix UnlockSession (ViSession Vi, ViBoolean
*CallerHasLock) ;

Parameters
Inputs Description Data Type
Vi Unique identifier for an IVI session. ViSession
Input/Output Description Data Type
CallerHasLock Indicates if the calling function currently has a lock on ViBoolean
(&) the IVI session. Refer to function description for Lock
Session for more information.

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI-3.2: Inherent Capabilities Specification 103 IVl Foundation

7. Specific Driver Wrapper Functions

This section defines additional IVI inherent capabilities that I\VI-COM and IVI-C specific driver wrappers
are required to implement. An I1V1 specific driver wrapper works with a particular 1V specific driver. An
IV specific driver wrapper provides an interface type that is different from the native interface type of the
specific driver. For example, if the native interface type of a specific driver is COM, the specific driver
developer can create a wrapper that gives the specific driver a C interface, or vice versa. Wrappers allow
specific driver developers to place the majority of the instrument control code in the native driver using one
interface type and then build a relatively small wrapper that presents another type of IV driver interface.
The specific driver developer can choose whether the native driver interface is COM or C and then provide
a wrapper that presents the alternate interface, C or COM.

The additional capabilities that this section defines are not intended for users and are typically used only by
IVI class drivers. Therefore, the additional functions in the C wrappers for 1\V1-COM drivers should not
appear in the function panel file or help information for the specific driver wrapper.

When used in conjunction with an IVI class driver, IVI specific drivers that have wrappers with the
additional capabilities that this section defines enable the following scenarios:

o Auser calling an IVI class driver through a C interface can call the underlying IV1 specific driver
through a C interface regardless of whether the C interface is the native interface of the specific
driver and regardless of whether the class driver calls the specific driver’s COM interface or C
interface.

e Auser calling an IVI class driver through a COM interface can call the underlying V1 specific
driver through a COM interface regardless of whether the COM interface is the native interface of
the specific driver and regardless of whether the class driver calls the specific driver’s COM
interface or C interface.

This section defines a property and a method for COM wrappers and two functions for C wrappers that
enable these two scenarios.

C wrappers for IVI-COM specific drivers export the following functions:
® Prefix GetNativeIUnknownPtr

® Prefix AttachToExistingCOMSession

COM wrappers for 1V1-C specific drivers export the following property and method:
® NativeCHandle

® AttachToExistingCSession

IVI-3.2: Inherent Capabilities Specification 104 IVl Foundation

7.1 C Wrappers for IVI-COM Specific Drivers

This section defines additional functions that C wrappers for IVI-COM specific drivers are required to
export.

7.1.1 Get Native IlUnknown Pointer (IVI-C Only)

This function returns the lUnknown interface pointer that the C wrapper is currently using to communicate
with an IVI-COM specific driver.

.NET Method Prototype
N/A

COM Method Prototype
N/A

C Function Prototype

ViStatus VI FUNC Prefix GetNativeIUnknownPtr (ViSession Vi,
IUnknown **NativeIUnknownPtr);

Parameters
Inputs Description Data Type
Vi Unique identifier for an 1\VVI session. ViSession
Outputs Description Data Type
NativeIUnknownPt | The IUnknown interface pointer that the C wrapper is IUnknown *
r currently using to communicate with an IVI-COM
specific driver.

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

Compliance Notes
1. Only C wrappers for native I\VI-COM specific drivers export this function.

IVI-3.2: Inherent Capabilities Specification 105 IVl Foundation

7.1.2 Attach To Existing COM Session (IVI-C Only)

Description

This function creates and returns a C wrapper session that can be used to communicate with an existing
IVI-COM specific driver session.

.NET Method Prototype
N/A

COM Method Prototype
N/A

C Function Prototype

ViStatus VI FUNC Prefix AttachToExistingCOMSession (IUnknown
*ExistingIUnknownPtr,
ViSession *Vi);
ViStatus VI FUNC Prefix AttachToExistingServiceProvider (
size t ExistingIUnknownPtr,
ViSession *Vi);

Parameters
Inputs Description Data Type
ExistingIUnknown | The IUnknown pointer that corresponds to an existing IUnknown *
Ptr IVI-COM specific driver session.
Outputs Description Data Type
Vi The C wrapper session that can be used to communicate | ViSession
with an existing IVI-COM specific driver session.

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

Compliance Notes
1. Only C wrappers for native I\VI-COM specific drivers export this function.

IVI-3.2: Inherent Capabilities Specification 106 IVl Foundation

7.2 IVI-COM and IVL.NET Wrappers for IVI-C Specific Drivers
This section defines an additional interface that IVI-COM and IVI.NET wrappers for IVI-C specific drivers

are required to implement. The name of the additional interface is TIviClassWrapper. The
IIviClassWrapper interface is reachable only through Querylinterface (IVI-COM) or

GetServiceProvider (.NET) and contains a property named NativeCHandle and a method named

AttachToExistingCSession.

The following table lists the COM GUID for the IlviClassWrapper interface.

Interface

GUID

IIviClassWrapper

{47ed518a-a398-11d4-ba58-000064657374}

The following table shows the property and method of the llviClassWrapper interface. The Generic Name
column lists the generic name for the property and method. The Type column uses a “P” or an “M” to
specify whether the item is a property or method.

COM Interface Hierarchy Generic Name Type
AttachToExistingCSession Attach To Existing C Session M
NativeCHandle Native C Handle P

7.2.1 Native C Handle (IVI-COM Only)

Data Type

Access

ViSession

RO

.NET Property Name
NativeCHandle

COM Property Name
NativeCHandle

C Constant Name
N/A

Description

This property returns the IVI-C session handle that the IVI-COM or IVI.NET wrapper is currently using to
communicate with an IVI-C specific driver.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be
thrown, and warning events that may be raised, by this property.

Compliance Notes

1. Only IVI-COM and IVI.NET wrappers for native I\VI-C specific drivers export this property.

IVI-3.2: Inherent Capabilities Specification

107

IVI Foundation

7.2.2 Attach To Existing C Session (IVI-COM Only)

Description
This method binds an IVI-COM or IVI.NET wrapper object to an existing IVI-C specific driver session.

.NET Method Prototype

void AttachToExistingCSession (Int32 Vi) ;

COM Method Prototype

HRESULT AttachToExistingCSession ([in] long Vi);

C Function Prototype

N/A
Parameters
Inputs Description Data Type
Vi Unique identifier for an 1V session. long

Return Values (COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

Compliance Notes
1. Only IVI-COM and IVI.NET wrappers for native IVI-C specific drivers export this method.

IVI-3.2: Inherent Capabilities Specification 108 IVl Foundation

8. IVI.NET Specific Driver Constructor

This section gives a complete description of the IVI.NET specific driver constructor.

Description

IVI.NET drivers do not have an Initialize method. Instead, IVI.NET drivers are initialized in the
constructor for the main driver class of the driver.

The driver constructor performs the following actions:

Opens and configures an 1/0 session to the instrument.

If the user passes True for the idouery parameter, the function queries the instrument for its ID and
verifies that the I\VI specific driver supports the particular instrument model. If it is not possible to
query the instrument for its identity, the driver ignores the parameter.

If the user passes True for the reset parameter, the function places the instrument in a known state. In
an IEEE 488.2 instrument, the function sends the command string “*RST” to the instrument. If the
instrument cannot perform a reset, the 1\VVI specific driver throws the Reset Not Supported exception.

Configures instrument options on which the 1V specific driver depends. For example, a specific
driver might enable or disable headers or enable binary mode for waveform transfers.

Performs the following operations in the given order:
1. Disables the class extension capability groups that the V1 specific driver does not implement.

2. Ifthe class specification(s) with which the I\VVI specific driver is compliant defines initial values
for attributes, this function sets the attributes to the values that the class specification defines.

3. Ifthe resourceName parameter is a logical name, the 1V1 specific driver configures the initial
settings for the specific driver and instrument based on the configuration of the logical name in the
IVI configuration store.

If simulation is enabled in the configuration store or by the driverSetup parameter, the constructor performs
the following actions:

If the user passes True for the idQuery parameter and the instrument cannot return its ID, the IV1
specific driver returns without taking any action.

If the user passes True for the reset parameter and the instrument cannot perform a reset, the VI
specific driver throws the Reset Not Supported exception.

If the resourceName parameter is a logical name, the IVI specific driver configures the initial settings
for the specific driver based on the configuration of the logical name in the VI configuration store.

Some instrument driver operations require or take into account information from the IVI configuration
store. Examples of such information are virtual repeated capability name mappings and the value of certain
inherent attributes. An IVI.NET driver constructor shall retrieve all the information for a session from the
IVI configuration store. The VI driver shall not read any information from the V1 configuration store for a
session after the constructor completes. Refer to Section 3.2.3, Instantiating the Right Configuration Store
From Software Modules, of 1V1-3.5: Configuration Server Specification for details on how to correctly
instantiate the configuration store.

The resourceName parameter must contain either a logical name that is defined in the VI configuration
store or an instrument specific string that identifies the 1/0 address of the instrument, such as a VISA
resource descriptor string. Refer to 1VI-3.5: Configuration Server Specification for restrictions on the
format of 1V logical names. Refer to the VXIplug&play specifications for the grammar of VISA resource
descriptor strings.

IVI-3.2: Inherent Capabilities Specification 109 IVl Foundation

The user can use the options parameter to specify the initial values of certain VI inherent attributes for
the session. Table 6-1 lists the inherent attributes that the user can set through the options parameter. The
user does not have to specify all or any of the attributes in the options string. If the user does not specify the
initial value of an inherent attribute in the options parameter, the initial value of the attribute depends on
the value of the ResourceName parameter:

e Ifthe resourceName parameter contains an IV1 logical name, the IVI specific driver configures the
initial settings based on the configuration of the logical name in the VI configuration store.

e Ifthe resourceName parameter contains a resource descriptor string that identifies the 1/0 address of
the instrument, the IV1 specific driver sets inherent attributes to their default initial values. Table 6-1
shows the default initial value for each attribute.

The following table lists the IVI inherent attributes that the user can set through the options parameter,
their default initial values, and the name that represents each attribute in the options string.

Table 8-1. IVI Inherent Attribute Initial Values and Option Name

Attribute Default Initial Value Option Name
Range Check True RangeCheck
Query Instrument Status False QueryInstrStatus
Cache True Cache
Simulate False Simulate
Record Value Coercions False RecordCoercions
Interchange Check False InterchangeCheck
Driver Setup """ an empty string DriverSetup

The format of an assignment in the options parameter is "Name=value", where Name is one of the option
names in the table above. Initialize interprets the name and value fields in a case-insensitive manner.

For the attributes of type Boolean, value can be any of the following:
e To set the attribute to True, use vI_TRUE, True, Of 1.

e Toset the attribute to False, use vi_FALSE, False, Of 0.

The user can set multiple attributes by separating assignments with commas. If the Options parameter
contains an assignment for the Driver Setup attribute, the Initialize function assumes that everything
following “DriverSetup=""1is part of the assignment. Therefore, the user is expected to place the Driver
Setup assignment at the end of the options parameter. The value that the user passes in the options
parameter for the Driver Setup attribute must contain only ASCII characters.

Each IV1 specific driver defines it own meaning and valid values for the Driver Setup attribute. Many
specific drivers ignore the value of the Driver Setup attribute. Other specific drivers use the Driver Setup
string to configure instrument specific features at initialization. For example, if a specific driver supports a
family of instrument models, the driver can use the Driver Setup attribute to allow the user to specify a
particular instrument model to simulate.

Note that the constructor shall not raise warning events, including interchange check and coercion warning
events, in the constructor.

The VI specific driver ignores all white space in the options parameter outside the Driver Setup string.

IVI-3.2: Inherent Capabilities Specification 110 IVl Foundation

.NET Constructor Prototypes

The IVL.NET specific driver shall implement two constructors with the following prototypes.

<DriverClassName>

<DriverClassName>

(String resourceName,
Boolean idQuery,
Boolean reset,
String options);

(String resourceName,
Boolean idQuery,
Boolean reset);

If the IVLLNET specific driver supports machine-wide multithread locking or AppDomain-wide locking
across multiple driver instances, the specific driver shall also implement the following prototype.

<DriverClassName>

(String resourceName,
Boolean idQuery,
Boolean reset,
LockType lockType,
String accessKey,
String options);

IVI.NET specific drivers may implement additional constructors. Any additional instrument specific
constructors must include the resourceName parameter as the first parameter to the constructor.

Parameters

Inputs

Description

Data Type

resourceName

An VI logical name or an instrument specific string that
identifies the address of the instrument, such as a VISA
resource descriptor string.

String

idQuery

Specifies whether to verify the ID of the instrument.

Boolean

reset

Specifies whether to reset the instrument.

Boolean

lockType

Specifies whether to use AppDomain-wide locking or
machine-wide locking. Table 6.2 below explains how the
value specified here is used in conjunction with the
accessKey parameter to determine the kind of
multithreaded lock to use for the driver instance. Refer to
Section 4.3.11, Multithread Safety, of IVI-3.1: Driver
Architecture Specification for a complete description of
IVL.NET driver locking.

Ivi.Driver.
LockType

accessKey

Specifies a user-selectable access key to identify the lock.
Driver instances that are created with the same accessKey
will be protected from simultaneous access by multiple
threads within an AppDomain or across AppDomains,
depending upon the value of the lockType parameter.
Table 6.2 below explains how the accessKey is used in
conjunction with the lockType parameter to determine the
kind of multithreaded lock to use for the driver instance.
Refer to Section 4.3.11, Multithread Safety, of 1VI-3.1:
Driver Architecture Specification for a complete
description of IVI.NET driver locking.

String

IVI-3.2: Inherent Capabilities Specification 111

IVI Foundation

options A string that allows the user to specify the initial values of | String
certain inherent attributes.

It is possible that different client applications or different threads within an application may attempt to
create instances of IVI.NET drivers with locking requirements that conflict with other instances of the
driver. These conflicts occur if the driver is instantiated with the same value for the accessKey parameter
but different values for the lockType parameter. Table 6-2 below explains how IVI.NET drivers are
required to resolve these conflicts. In all cases, the resulting lock type must not change over the lifetime of
the driver instance.

Table 8-2. Required Lock Type Behavior for Drivers With the Same Access Key

Requested Lock Type Existing Lock Type Resulting Lock Type
AppDomain AppDomain AppDomain
Machine Machine Machine
AppDomain Machine Machine
Machine AppDomain Error
Driver throws
InvalidOperationException.

As the table shows, there are two cases in which a conflict occurs. If a driver requests an AppDomain-wide
lock and a machine-wide lock has already been created by a different instance of the IVI.NET driver (with
the same access key), then the IVI.NET driver shall "promote" the lock requested by the client and create a
machine-wide lock instead of the requested AppDomain-wide lock. This ensures that the degree of locking
established by existing driver instances is honored.

The second conflict occurs if a machine-wide lock is requested by the client but another instance of the
same IVL.NET driver (with the same access key) has already been created with an AppDomain-wide lock.
Since the type of lock used by an IVI.NET driver cannot change over the lifetime of the driver instance,
there is no way to "promote" the lock type of the existing driver instance and, thus no way to comply with
the new instance's requested degree of locking. Consequently, the constructor of the newly created instance
must throw an InvalidOperationException.

Defined Values

Name Description
Language Identifier
AppDomain The lock is AppDomain-wide.
| .NET | LockType.AppDomain
Machine The lock is machine-wide.
| NET | LockType.Machine

.NET Exceptions

Section 12, Common IVL.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

The table below defines specific exceptions for this constructor.

IVI-3.2: Inherent Capabilities Specification 112 IVl Foundation

Exception

Description

Bad Option Name

An option name in the option string is unknown.

Bad Option Value

An value in the option string is invalid.

ID Query Failed

Instrument ID query failed.

Missing Option Name

The option string is missing an option name.

Missing Option Value

The option string is missing an option value.

Reset Failed

Instrument reset failed.

Reset Not Supported

The instrument does not support the reset operation.

Resource Unknown

Unknown resource.

IVI-3.2: Inherent Capabilities Specification

113

IVI Foundation

9. IVI.NET Event Descriptions

This section gives a complete description of each IVI.NET inherent event.

9.1 IVI.NET Events

IVL.NET defines the following events in support of the inherent capabilities

e Coercion Record Event (IVI.NET Only).
e Interchange Check Warning Event (IVI.NET Only).
e Driver Warning Event (IVI.NET Only).

IVI-3.2: Inherent Capabilities Specification 114 IVl Foundation

9.1.1 Coercion Record Event (IVI.NET Only)

Description

This event is fired whenever the driver creates a coercion record. Clients who have registered as listeners
will receive the event.

The Text property of the CoercionEventargs shall contain the following information:
e The name of the property that was coerced. This can be the generic name or the .NET property name.

o Ifthe property applies to a repeated capability, the name of the virtual or physical repeated capability
identifier.

e The value that the user specified for the property.
e The value to which the property was coerced.

A recommended format for the Text property of the CoercionEventargs is as follows:
"Property " + <property name> + [" on <repeated capability> "+ <repeated capability
identifier>] + " was coerced from "+ <desiredVal>+" to " + <coercedVal>.

And example Text property of the CoercionEventargs is as follows:

Property VerticalRange on channel chl was coerced from 9.0 to 10.0.

.NET Event Prototype

class CoercionEventArgs : EventArgs

{
String Text { get }
}

event EventHandler<CoercionEventArgs> Coercion;

C & COM Prototypes

N/A
(See the Record Value Coercions property/attribute and the Get Next Coercion Record method/function.)

Event Arguments

(The name of the event arguments type for this event is CoercionEventArgs.)

Member Description Data Type

Text The text of a coercion record.. String

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, when the event handler is registered.

If the driver does not support Coercion events, the driver throws an Operation Not Supported exception
when the client tries to register to receive Coercion events.

IVI-3.2: Inherent Capabilities Specification 115 IVl Foundation

9.1.2 Interchange Check Warning Event (IVI.NET Only)

Description
This event is fired whenever the driver creates an interchange check warning. Clients who have registered

as listeners will receive the event.

.NET Event Prototype

class InterchangeCheckWarningEventArgs : EventArgs

{
String Text { get }

}

event EventHandler<InterchangeCheckWarningEventArgs> InterchangeCheckWarning;

C & COM Prototypes

N/A
See the Interchange Check property/attribute, the Get Next Interchange Warning method/function, and the

Clear Interchange Warnings method/function.

Event Arguments

The name of the event arguments type for this event is InterchangeCheckWarningEventArgs.

Member Description Data Type

Text The text of an interchange check warning. String

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,
and warning events that may be raised, when the event handler is registered.

If the driver does not support Interchange events, the driver throws an Operation Not Supported exception
when the client tries to register to receive Interchange events.

IVI-3.2: Inherent Capabilities Specification 116 IVl Foundation

9.1.3 Driver Warning Event (IVI.NET Only)

Description
This event is fired whenever the driver creates a driver warning. Clients who have registered as listeners
will receive the event.

.NET Event Prototype

class WarningEventArgs : EventArgs

{
Guid Code { get }
String Text { get }

}

event EventHandler<WarningEventArgs> Warning;

C & COM Prototypes

N/A
In IVI-C and 1VI-COM, warnings are returned as positive return values.

Event Arguments

The name of the event arguments type for this event is WarningEventArgs.

Member Description Data Type
Code A GUID that uniquely identifies the warning. Guid
Text The text of a driver warning. String

.NET Exceptions
Section 12, Common IVL.NET Exceptions and Warnings, defines general exceptions that may be thrown
when the event handler is registered.

If the driver does not support Warning events, the driver throws an Operation Not Supported exception
when the client tries to register to receive Warning events.

IVI-3.2: Inherent Capabilities Specification 117 IVl Foundation

10. IVI Inherent Attribute ID Definitions

This section defines the ID values that I\VVI-C class drivers and 1VVI-C specific drivers use for IVI inherent

attributes.

Refer to IVI-3.1: Driver Architecture Specification for a complete list of the ranges of values that IVI-C

drivers use for attribute IDs.

Section 8.1 lists the attribute IDs for the VI inherent attributes that this specification defines. Sections 8.2,
8.3, and 8.4 list certain values within the IvI INHERENT ATTR BASE range that are reserved to retain
compatibility with drivers developed before this specification was completed.

10.1 Inherent Attribute ID Values

The following table defines the ID values for the IVI Inherent attributes.

Attribute Name ID Value
PREFIX ATTR RANGE CHECK IVI_INHERENT ATTR BASE + 2
PREFIX ATTR QUERY INSTRUMENT STATUS IVI INHERENT ATTR BASE 3
PREFIX ATTR CACHE IVI_INHERENT ATTR BASE + 4
PREFIX_ATTR_SIMULATE IVI_INHERENT_ATTR_BASE 5
PREFIX ATTR RECORD COERCIONS IVI INHERENT ATTR BASE + 6
PREFIX ATTR DRIVER SETUP IVI_INHERENT ATTR BASE + 7
PREFIX;ATTR_INTERCHANGE_CHECK IVI_INHERENT_ATTR_BASE 21
PREFIX ATTR CLASS DRIVER PREFIX IVI INHERENT ATTR BASE + 301
PREFIX ATTR SPECIFIC DRIVER PREFIX IVI_INHERENT ATTR BASE + 302
PREFIX ATTR SPECIFIC DRIVER LOCATOR IVI INHERENT ATTR BASE + 303
PREFIX ATTR IO RESOURCE DESCRIPTOR IVI INHERENT ATTR BASE + 304
PREFIX ATTR LOGICAL NAME IVI_INHERENT ATTR BASE + 305
PREFIX ATTR SUPPORTED INSTRUMENT MODELS IVI INHERENT ATTR BASE 327
PREFIX ATTR GROUP_CAPABILITIES IVI_INHERENT ATTR BASE + 401
PREFIX_ATTR_INSTRUMENT_FIRMWARE_REVISION IVI_INHERENT_ATTR_BASE 510
PREFIX ATTR INSTRUMENT MANUFACTURER IVI INHERENT ATTR BASE 511
PREFIX ATTR INSTRUMENT MODEL IVI_INHERENT ATTR BASE + 512
PREFIX;ATTR_SPECIFIC_DRIVER_VENDOR IVI_INHERENT_ATTR_BASE 513
PREFIX ATTR SPECIFIC DRIVER DESCRIPTION IVI INHERENT ATTR BASE + 514
PREFIX ATTR SPECIFIC DRIVER CLASS SPEC MAJOR VE | IVI INHERENT ATTR BASE + 515
RSION
PREFIX ATTR SPECIFIC DRIVER CLASS SPEC MINOR VE | IVI INHERENT ATTR BASE + 516
RSION
PREFIX ATTR CLASS DRIVER VENDOR IVI INHERENT ATTR BASE + 517
PREFIX ATTR CLASS DRIVER DESCRIPTION IVI INHERENT ATTR BASE + 518
PREFIX ATTR CLASS DRIVER CLASS SPEC_MAJOR VERSI | IVI_ INHERENT ATTR BASE + 519
ON
PREFIX ATTR CLASS DRIVER CLASS SPEC MINOR VERSI | IVI INHERENT ATTR BASE + 520
ON
PREFIX;ATTR_SPECIFIC_DRIVER_REVISION IVI_INHERENT_ATTR_BASE 551

IVI-3.2: Inherent Capabilities Specification 118

IVI Foundation

Attribute Name ID Value

PREFIX ATTR CLASS DRIVER REVISION IVI INHERENT ATTR BASE + 552

10.2 Reserved Vendor Specific Inherent Extension Attribute ID Values and
Constants
The following attribute ID values and C defined constants are reserved for vendor specific inherent

attribute extensions. An IVI-C class driver or IVI-C specific driver may export an attribute with one of
these ID values only if the driver uses the corresponding C defined constant for the attribute. For vendor
specific inherent attribute extensions with C defined constant names that are not listed below, the driver
shall use ID values in the range starting at IvI_ VENDOR INHERENT EXT ATTR BASE.

Attribute Name ID Value

IVI_ATTR NONE -1

IVI_ATTR ALL IVI INHERENT ATTR BASE + 1
IVI _ATTR SPY IVI_INHERENT ATTR BASE + 22
IVI_ATTR USE SPECIFIC SIMULATION IVI_INHERENT ATTR BASE + 23
IVI ATTR DEFER UPDATE IVI INHERENT ATTR BASE + 51
IVI ATTR RETURN DEFERRED VALUES IVI INHERENT ATTR BASE + 52
IVI_ATTR PRIMARY ERROR IVI_INHERENT ATTR BASE + 101
IVI_ATTR SECONDARY ERROR IVI INHERENT ATTR BASE + 102
IVI _ATTR ERROR ELABORATION IVI INHERENT ATTR BASE + 103
IVI_ATTR IO SESSION IVI_INHERENT ATTR BASE + 322
IVI ATTR IO SESSION TYPE IVI_INHERENT ATTR BASE + 324
IVI_ATTR FUNCTION CAPABILITIES IVI_INHERENT ATTR BASE + 402
IVI_ATTR ATTRIBUTE CAPABILITIES IVI_INHERENT ATTR BASE + 403
IVI_ATTR ENGINE MAJOR VERSION IVI INHERENT ATTR BASE + 501
IVI_ATTR ENGINE MINOR VERSION IVI_INHERENT ATTR BASE + 502
IVI ATTR SPECIFIC DRIVER MAJOR VERSION IVI INHERENT ATTR BASE + 503
IVI ATTR SPECIFIC DRIVER MINOR VERSION IVI INHERENT ATTR BASE + 504
IVI_ATTR CLASS DRIVER MAJOR VERSION IVI_INHERENT ATTR BASE + 505
IVI _ATTR CLASS DRIVER MINOR VERSION IVI INHERENT ATTR BASE + 506
IVI_ATTR ENGINE REVISION IVI INHERENT ATTR BASE + 553

IVI-3.2: Inherent Capabilities Specification 119

IVI Foundation

10.3 Reserved Module Private Attribute ID Values

The following attribute ID values are reserved for module private attributes. 1VI software modules can use
these attribute ID values only for private or hidden attributes. It is recommended that IVI software modules
avoid using these attribute 1D values and use the TvI MODULE PRIVATE ATTR BASE to define private

attributes instead.

ID Value

IVI INHERENT ATTR BASE + 321

IVI INHERENT ATTR BASE

+

601

IVI INHERENT ATTR BASE

+

602

IVI INHERENT ATTR BASE

+

603

IVI INHERENT ATTR BASE

704

IVI_INHERENT ATTR BASE

708

IVI_INHERENT ATTR BASE

801

10.4 Reserved Standard Cross Class Capabilities Attribute ID Values

The following attribute ID values are reserved for use by 1VI-3.3: Standard Cross Class Capabilities

Specification.

ID Value

IVI_INHERENT ATTR BASE + 203

IVI-3.2: Inherent Capabilities Specification

120

IVI Foundation

11. Common IVI-C and IVI-COM Error and Completion Codes

This section defines the list of IVl error and completion codes. For information on standard error code
formats and ranges, refer to 1VI-3.1: Driver Architecture Specification.

11.1 IVI-C and IVI-COM Error and Completion Codes

The following table lists error and completion codes returned by IVI-C and IVI-COM drivers. The last
column provides a generic description for the error.

Refer to 1VI-3.1: Driver Architecture Specification for a complete list of the base values for the error code

bases.
Table 9-1. Error and Completion Codes
Actual Value Name Description String

0x0 Success No message

Inherent Error Base + 0x00 Cannot Recover Unrecoverable failure

Inherent Error Base + 0x01 Instrument Status Instrument error detected

Inherent Error Base + 0x02 Cannot Open File File could not be opened

Inherent Error Base + 0x03 Error Reading File File is being read

Inherent Error Base + 0x04 Error Writing File File is being modified

Inherent Error Base + 0x0B Invalid Path Name The path name is invalid

Inherent Error Base + 0x0C Invalid Attribute Attribute 1D not recognized

Inherent Error Base + 0x0D Attribute Not Writeable Attribute is read-only

Inherent Error Base + 0xOF Attribute Not Readable Attribute is write-only

Inherent Error Base + 0x10 Invalid Value Invalid value for parameter or property

Inherent Error Base + 0x11 Function Not Supported Function or method not supported

Inherent Error Base + 0x12 Attribute Not Supported Attribute or property not supported

Inherent Error Base + 0x13 Value Not Supported The enumeration value for the parameter
is not supported

Inherent Error Base + 0x15 Types Do Not Match The attribute and function parameter
types do not match

Inherent Error Base + 0x1D Not Initialized A connection to the instrument has not
been initialized

Inherent Error Base + 0x20 Unknown Channel Name Channel name specified is not valid for
the instrument.

Inherent Error Base + 0x23 Too Many Open Files Too many files opened

Inherent Error Base + 0x44 Channel Name Required Channel name required

Inherent Error Base + 0x45 Channel Name Not Allowed The channel name is not allowed

Inherent Error Base + 0x49 Missing Option Name The option string contains an entry
without a name.

Inherent Error Base + Ox4A Missing Option Value The option string contains an entry
without a value.

Inherent Error Base + 0x4B Bad Option Name The option string contains an entry with
an unknown option name.

IVI-3.2: Inherent Capabilities Specification

121

IVI Foundation

Table 9-1. Error and Completion Codes

Actual Value Name Description String

Inherent Error Base + 0x4C Bad Option Value The option string contains an entry with
an unknown option value.

Inherent Error Base + 0x56 Out of Memory The necessary memory could not be
allocated

Inherent Error Base + 0x57 Operation Pending Operation in progress

Inherent Error Base + 0x58 Null Pointer Null pointer passed for parameter or
property

Inherent Error Base + 0x59 Unexpected Response Unexpected response from the
instrument

Inherent Error Base + O0x5B File Not Found File not found

Inherent Error Base + 0x5C Invalid File Format The file format is invalid

Inherent Error Base + 0x5D Status Not Available The instrument status is not available

Inherent Error Base + 0x5E ID Query Failed Instrument ID query failed

Inherent Error Base + O0x5F Reset Failed Instrument reset failed

Inherent Error Base + 0x60 Resource Unknown Insufficient location information or
resource not present in the system.

Inherent Error Base + 0x61 Already Initialized The driver is already initialized.

Inherent Error Base + 0x62 Cannot Change Simulation The simulation state cannot be changed.

State
Inherent Error Base + 0x63 Invalid Number of Levels in Invalid number of levels in selector
Selector

Inherent Error Base + 0x64 Invalid Range in Selector Invalid range in selector

Inherent Error Base + 0x65 Unknown Name in Selector Unknown name in selector

Inherent Error Base + 0x66 Badly-Formed Selector Badly-formed selector

Inherent Error Base + 0x67 Unknown Physical Identifier Unknown physical identifier

Inherent Warn Base + 0x65 ID Query Not Supported Identification query not supported

Inherent Warn Base + 0x66 Reset Not Supported Reset operation not supported

Inherent Warn Base + 0x67 Self Test Not Supported Self test operation not supported

Inherent Warn Base + 0x68 Error Query Not Supported Error query operation not supported

Inherent Warn Base + 0x69 Revision Query Not Supported | Revision query not supported

IVI-3.2: Inherent Capabilities Specification

122

IVI Foundation

11.2 IVI-C Error and Completion Codes

The following table lists the C Identifiers and the recommended format of the error description string for
the Error and Completion Codes defined in Table 9-1.

Note: In the message string column entries listed below, %s is always used to represent the component
name that returned the error. Additional format strings parameters are specified as %s1, %s?2 etc.

Table 9-2. IVI-C Error and Completion Codes

Name

C ldentifier

C Message String

Success

VI_SUCCESS
IVI SUCCESS

No message

Cannot Recover

IVI_ERROR_CANNOT RECOVER

“%os: Failure — cannot recover.”

Instrument Status

IVI ERROR INSTRUMENT STATUS

“%%s: Instrument error detected. Use
ErrorQuery() to determine the error(s).”

Cannot Open File

IVI_ERROR CANNOT OPEN FILE

“%s: Cannot open file.”

Error Reading File

IVI_ERROR READING FILE

“%s: Error reading file.”

Error Writing File

IVI _ERROR WRITING FILE

“%s: Error writing file.”

Invalid Path Name

IVI ERROR INVALID PATHNAME

“%s: The pathname is invalid.”

Invalid Attribute

IVI ERROR INVALID ATTRIBUTE

“%s: Attribute ID %s1 not recognized.”
%s1 = Attribute 1D

Attribute Not
Writeable

IVI_ERROR ATTR NOT WRITEABLE

“%s: Attribute %sl1 is read only.”

%s1 = Attribute name

Attribute Not Readable

IVI _ERROR ATTR NOT READABLE

“%s: Attribute %s1 is write only.”

%s1 = Attribute name

Invalid Value

IVI _ERROR INVALID VALUE

“%s: Invalid value (%0s1) for function %s2,
parameter %s3.”

%s1 = out-of-range value
%s2 = function name
%s3 = parameter name

Function Not

IVI_ERROR FUNCTION NOT SUPPORTED

“%s: Does not support this class-compliant

Supported feature: function %s1.”

%s1 = function name
Attribute Not IVI _ERROR ATTRIBUTE NOT SUPPORTED | “%s: Does not support this class-compliant
Supported feature: attribute %s1.”

%s1 = attribute name

IVI-3.2: Inherent Capabilities Specification 123

IVI Foundation

Table 9-2. IVI-C Error and Completion Codes

Name

C ldentifier

C Message String

Value Not Supported

IVI_ERROR VALUE NOT SUPPORTED

“%s: Does not support this class-compliant
feature: (enumeration) value %s1 passed as
the value for parameter %s2 in function
%s3.”

%s1 = enumeration value name or value
%s2 = parameter name
%s3 = function name

“%s: Does not support this class-compliant
feature: (enumeration) value %s1 passed as
the value for attribute %s2.”

%s1 = enumeration value name or value
%s2 = attribute name

Types Do Not Match

IVI_ERROR TYPES DO NOT MATCH

“%%s: SetAttribute%s]1 called for attribute of
type %s2.”

“%%s: GetAttribute%s]1 called for attribute of
type %s2.”

%s1 =data type of attribute access function
%s2 =data type of attribute

Not Initialized

IVI ERROR NOT INITIALIZED

“%%s: A connection to the instrument has not
been established.”

Unknown Channel
Name

IVI _ERROR UNKNOWN CHANNEL NAME

“%s: Unknown channel name.”

Too Many Open Files

IVI_ERROR TOO MANY OPEN FILES

“%s: Too many files are open.”

Channel Name
Required

IVI_ERROR CHANNEL NAME REQUIRED

“%s: A channel name is required.”

Channel Name Not
Allowed

IVI_ERROR CHANNEL NAME NOT ALLOWED

“%s: The channel name is not allowed.”

Missing Option Name

IVI _ERROR MISSING OPTION NAME

“%s: The option string is missing an option
name.”

Missing Option Value

IVI _ERROR MISSING OPTION VALUE

“%s: The option string is missing an option
value.”

Bad Option Name

IVI_ERROR BAD OPTION NAME

“%s: The %s1 name in the option string is
unknown.”

%s1 = bad option name

Bad Option Value

IVI_ERROR _BAD OPTION VALUE

“%s: The %s1 value in the option string is
unknown.”

%s1 = bad option value

Out of Memory

IVI_ERROR _OUT OF MEMORY

“%s: Could not allocate necessary memory.”

Operation Pending

IVI ERROR OPERATION PENDING

“%s: Operation in progress.”

IVI-3.2: Inherent Capabilities Specification 124

IVI Foundation

Table 9-2. IVI-C Error and Completion Codes

Name

C ldentifier

C Message String

Null Pointer

IVI ERROR NULL POINTER

“%s: Null pointer passed for function %sl1,
parameter %s2.”

%s1 = function name
%s2 = parameter name

Unexpected Response

IVI ERROR UNEXPECTED RESPONSE

“%s: Unexpected response from instrument.”

File Not Found

IVI_ERROR FILE NOT FOUND

“%bs: File not found.”

Invalid File Format

IVI _ERROR INVALID FILE FORMAT

“%s: Invalid file format.”

Status Not Available

IVI_ERROR_STATUS NOT AVAILABLE

“%s: The instrument status is not available.”

ID Query Failed

IVI_ERROR ID QUERY FAILED

“%s: Instrument ID query failed.”

Reset Failed

IVI _ERROR RESET FAILED

“%%s: Instrument reset failed.”

Resource Unknown

IVI ERROR RESOURCE UNKNOWN

“%s: Unknown resource.”

Cannot Change
Simulation State

IVI _ERROR CANNOT CHANGE SIMULATION

_ STATE

“%%s: The simulation state cannot be
changed.”

Invalid Number of
Levels in Selector

IVI _ERROR INVALID NUMBER OF LEVELS

_IN SELECTOR

“%s: The number of levels in the selector is
not valid for the %s1 repeated capability.”

%s1 = repeated capability name

Invalid Range in
Selector

IVI_ERROR INVALID RANGE IN SELECTO
R

“%s: The range %sl is not valid for the
repeated capability %s2.”

%0s1 = range
%s2 = repeated capability name

Unknown Name in
Selector

IVI_ERROR UNKNOWN NAME IN SELECTOR

“%%s: Unknown name in selector.”

Badly-Formed Selector

IVI _ERROR BADLY FORMED SELECTOR

“%s: The repeated capability selector is
badly-formed.”

Unknown Physical
Identifier

IVI ERROR UNKNOWN PHYSICAL IDENTIF
IER

“%s: Unknown physical repeated capability
selector”

ID Query Not IVI_WARN NSUP ID QUERY “%s: ID Query is not supported by this

Supported instrument.”

Reset Not Supported IVI_WARN_NSUP_RESET “%s: Reset is not supported by this
instrument.”

Self Test Not IVI WARN NSUP_SELF TEST “%%s: Self test is not supported by this

Supported instrument.”

Error Query Not IVI _WARN NSUP_ERROR QUERY “%s: Error query is not supported by this

Supported instrument.”

Revision Query Not
Supported

IVI WARN NSUP REV QUERY

“%s: Firmware revision query is not
supported by this instrument.”

IVI-3.2: Inherent Capabilities Specification

125

IVI Foundation

11.3 IVI-COM Error and Completion Codes

The following table specifies the COM Identifiers and the recommended format of the error description
string for the Error and Completion Codes defined in Table 9-1.

Note: In the description string table entries listed below, %bs is always used to represent the component
name. Additional format strings parameters are specified as %s1, %s?2 etc.

Table 9-3. IVI-COM Error and Completion Codes

Name

COM ldentifier

COM Message String

Success

S_OK
S_IVI_ SUCCESS

No message

Cannot Recover

E_IVI_CANNOT RECOVER

“%os: Failure — cannot recover.”

Instrument Status

E_IVI INSTRUMENT STATUS

“%s: Instrument error detected. Use
ErrorQuery() to determine the error(s).”

Cannot Open File

E_IVI_CANNOT OPEN FILE

“%s: Cannot open file.”

Error Reading File

E IVI READING FILE

“%s: Error reading file.”

Error Writing File

E IVI WRITING FILE

“%es: Error writing file.”

Invalid Path Name

E IVI INVALID PATHNAME

“%s: The pathname is invalid.”

Invalid Value

E_IVI_INVALID VALUE

“%s: Invalid value (%s1) for method %s?2,
parameter %s3.”

%s1 = out-of-range value
%s2 = method name
%s3 = parameter name

Function Not Supported

E_IVI METHOD NOT SUPPORTED

“%s: Does not support this class-
compliant feature: method %s1.”

%s1 = method name

Attribute Not Supported

E_IM_PROPERTY_NOT_SUPPORTE
D

“%s: Does not support this class-
compliant feature: property %s1.”

%s1 = property name

Value Not Supported

E_IVI VALUE NOT SUPPORTED

“%s: Does not support this class-
compliant feature: (enumeration) value
%s1 passed as the value for parameter
%52 in method %s3.”

%s1 = enumeration value name or value
%s2 = parameter name
%s3 = method name

“%s: Does not support this class-
compliant feature: (enumeration) value
%s1 passed as the value for property
%s2.”

%s1 = enumeration value name or value
%s2 = property name

Not Initialized

E IVI NOT INITIALIZED

“%%s: A connection to the instrument has
not been established.”

IVI-3.2: Inherent Capabilities Specification 126

IVI Foundation

Table 9-3. IVI-COM Error and Completion Codes

Name

COM ldentifier

COM Message String

Unknown Channel Name

E_IVI_UNKNOWN CHANNEL NAME

“%s: Unknown channel name.”

Too Many Open Files

E_IVI _TOO MANY OPEN FILES

“%s: Too many files are open.”

Channel Name Required

E IVI CHANNEL NAME REQUIRED

“%s: A channel name is required.”

Missing Option Name

E_IVI MISSING OPTION NAME

“%s: The option string is missing an
option name.”

Missing Option Value

E_IVI MISSING OPTION VALUE

“%s: The option string is missing an
option value.”

Bad Option Name

E IVI BAD OPTION NAME

“%s: The %s1 name in the option string is
unknown.”

%s1 = bad option name

Bad Option Value

E_IVI_BAD OPTION VALUE

“%s: The %s1 value in the option string is
unknown.”

%s1 = bad option value

Out of Memory

E_IVI_OUT OF MEMORY

“%s: Could not allocate necessary
memory.”

Operation Pending

E IVI OPERATION PENDING

“%s: Operation in progress.”

Null Pointer

E IVI NULL POINTER

“%s: Null pointer passed for method %s1,
parameter %s2.”

%0s1 = method name
%s2 = parameter name

Unexpected Response

E_IVI UNEXPECTED RESPONSE

“%s: Unexpected response from
instrument.”

File Not Found

E_IVI_FILE NOT FOUND

“%s: File not found.”

Invalid File Format

E_IVI INVALID FILE FORMAT

“%bs: Invalid file format.”

Status Not Available E_IVI STATUS NOT AVAILABLE “%s: The instrument status is not
available.”
ID Query Failed E IVI ID QUERY FAILED “%s: Instrument ID query failed.”

Reset Failed

E IVI RESET FAILED

“%s: Instrument reset failed.”

Resource Unknown

E_IVI RESOURCE UNKNOWN

“%s: Unknown resource.”

Already Initialized

E_IVI ALREADY INITIALIZED

“%s: The driver is already initialized.”

Cannot Change Simulation
State

E_IVI_CANNOT CHANGE SIMULATIO
N_STATE

“The simulation state cannot be changed.”

Invalid Number of Levels
in Selector

E IVI INVALID NUMBER OF LEVEL
S_IN SELECTOR

“%s: The number of levels in the selector
is not valid for the %s1 repeated
capability.”

%s1 = repeated capability name

Invalid Range in Selector

E IVI INVALID RANGE IN SELECT
OR

“%s: The range %sl is not valid for the
repeated capability %s2.”

%s1 = range
%s2 = repeated capability name

IVI-3.2: Inherent Capabilities Specification

127

IVI Foundation

Table 9-3. IVI-COM Error and Completion Codes

Name COM ldentifier

COM Message String

Unknown Name in
Selector R

E_IVI_UNKNOWN NAME IN SELECTO

“%s: Unknown name in selector.”

Badly-Formed Selector

E IVI BADLY FORMED SELECTOR

badly-formed.”

“%s: The repeated capability selector is

Unknown Physical
Identifier FIER

E IVI UNKNOWN PHYSICAL IDENTI

capability selectory”

“%s: Unknown physical repeated

ID Query Not Supported S_IVI_NSUP_ID QUERY

instrument.”

“%s: ID Query is not supported by this

Reset Not Supported S _IVI NSUP RESET

instrument.”

“%s: Reset is not supported by this

Self Test Not Supported S_IVI NSUP SELF TEST “%%s: Self test is not supported by this
instrument.”

Error Query Not S_IVI_NSUP_ERROR_QUERY “%s: Error query is not supported by this

Supported instrument.”

Revision Query Not
Supported

S_IVI NSUP_REV_QUERY

“%s: Firmware revision query is not
supported by this instrument.”

11.4 Reserved Vendor Specific Error and Completion Code Values and Constants

The following error and completion code values and C defined constants are reserved for vendor specific
error and completion code extensions. An IVI-C class driver or IVI-C specific driver may export an error
or completion code with one of these ID values only if the driver uses the corresponding C defined constant
for the error or completion code. For vendor specific error and completion code extensions with C defined
constant names that are not listed below, the driver shall use ID values in the range starting at

IVI VENDOR SPECIFIC ERROR BASE.

Error or Completion Code ID Value
IVI ERROR DRIVER MODULE NOT FOUND IVI_INHERENT ERROR BASE + 0x05
IVI_ERROR CANNOT OPEN DRIVER MODULE IVI INHERENT ERROR BASE + 0x06
IVI_ERROR INVALID DRIVER MODULE IVI_INHERENT ERROR BASE + 0x07
IVI ERROR UNDEFINED REFERENCES IVI INHERENT ERROR BASE 0x08
IVI_ERROR FUNCTION NOT FOUND IVI INHERENT ERROR BASE + 0x09
IVI_ERROR LOADING DRIVER MODULE IVI_INHERENT ERROR BASE + OxO0A
IVI ERROR INVALID PARAMETER IVI INHERENT ERROR BASE 0xOF
IVI_ERROR INVALID TYPE IVI INHERENT ERROR BASE + 0x14
IVI_ERROR MULTIPLE DEFERRED SETTING IVI_INHERENT ERROR BASE + 0x16
IVI_ERROR ITEM ALREADY EXISTS IVI INHERENT ERROR BASE + 0x17
IVI_ERROR INVALID CONFIGURATION IVI_INHERENT ERROR BASE + 0x18
IVI ERROR VALUE NOT AVAILABLE IVI_INHERENT ERROR BASE + 0x19
IVI_ERROR ATTRIBUTE VALUE NOT KNOWN IVI INHERENT ERROR BASE + Ox1A
IVI_ERROR NO RANGE TABLE IVI_INHERENT ERROR BASE + 0x1B
IVI ERROR INVALID RANGE TABLE IVI_INHERENT ERROR BASE + 0x1C

IVI-3.2: Inherent Capabilities Specification 128

IVI Foundation

Error or Completion Code ID Value
IVI_ERROR NON INTERCHANGEABLE BEHAVIOR IVI_INHERENT ERROR BASE + Ox1E
IVI ERROR NO CHANNEL TABLE IVI_ INHERENT ERROR BASE + Ox1F
IVI_ERROR SYS RSRC ALLOC IVI INHERENT ERROR BASE + 0x21
IVI_ERROR ACCESS DENIED IVI_INHERENT ERROR BASE + 0x22
IVI_ERROR UNABLE TO CREATE TEMP FILE IVI INHERENT ERROR BASE + 0x24
IVI_ERROR NO UNUSED TEMP FILENAMES IVI_INHERENT ERROR BASE + 0x25
IVI ERROR DISK FULL IVI_INHERENT ERROR BASE + 0x26
IVI_ERROR CONFIG FILE NOT FOUND IVI INHERENT ERROR BASE + 0x27
IVI_ERROR CANNOT OPEN CONFIG FILE IVI_INHERENT ERROR BASE + 0x28
IVI ERROR ERROR READING CONFIG FILE IVI_INHERENT ERROR BASE + 0x29
IVI _ERROR BAD INTEGER IN CONFIG FILE IVI INHERENT ERROR BASE + Ox2A
IVI_ERROR BAD DOUBLE IN CONFIG FILE IVI_INHERENT ERROR BASE + 0x2B
IVI ERROR BAD BOOLEAN IN CONFIG FILE IVI_ INHERENT ERROR BASE + 0x2C
IVI_ERROR CONFIG ENTRY NOT FOUND IVI INHERENT ERROR BASE + 0x2D
IVI_ERROR DRIVER DLL INIT FAILED IVI_INHERENT ERROR BASE + Ox2E
IVI _ERROR DRIVER UNRESOLVED SYMBOL IVI INHERENT ERROR BASE Ox2F
IVI_ERROR CANNOT FIND CVI RTE IVI_INHERENT ERROR BASE + 0x30
IVI ERROR CANNOT OPEN CVI RTE IVI_INHERENT ERROR BASE + 0x31
IVI_ERROR CVI RTE INVALID FORMAT IVI INHERENT ERROR BASE + 0x32
IVI_ERROR CVI RTE MISSING FUNCTION IVI_INHERENT ERROR BASE + 0x33
IVI ERROR CVI RTE INIT FAILED IVI_INHERENT ERROR BASE + 0x34
IVI_ERROR CVI RTE UNRESOLVED SYMBOL IVI INHERENT ERROR BASE + 0x35
IVI_ERROR LOADING CVI RTE IVI_INHERENT ERROR BASE + 0x36
IVI ERROR CANNOT OPEN DLL FOR EXPORTS IVI_ INHERENT ERROR BASE + 0x37
IVI_ERROR DLL CORRUPTED IVI INHERENT ERROR BASE + 0x38
IVI_ERROR NO DLL EXPORT TABLE IVI_INHERENT ERROR BASE + 0x39
IVI_ERROR UNKNOWN DEFAULT SETUP ATTR IVI INHERENT ERROR BASE + 0x3A
IVI_ERROR INVALID DEFAULT SETUP_ VAL IVI_INHERENT ERROR BASE + 0x3B
IVI ERROR UNKNOWN MEMORY PTR IVI_INHERENT ERROR BASE + 0x3C
IVI_ERROR EMPTY CHANNEL LIST IVI INHERENT ERROR BASE + 0x3D
IVI_ERROR DUPLICATE CHANNEL STRING IVI_INHERENT ERROR BASE + Ox3E
IVI ERROR DUPLICATE VIRT CHAN NAME IVI INHERENT ERROR BASE + 0Ox3F
IVI_ERROR MISSING VIRT CHAN NAME IVI INHERENT ERROR BASE + 0x40
IVI_ERROR BAD VIRT CHAN NAME IVI_INHERENT ERROR BASE + 0x41
IVI ERROR UNASSIGNED VIRT CHAN NAME IVI INHERENT ERROR BASE + 0x42
IVI_ERROR BAD VIRT CHAN ASSIGNMENT IVI_INHERENT ERROR BASE + 0x43
IVI_ERROR ATTR NOT VALID FOR CHANNEL IVI_INHERENT ERROR BASE + 0x46
IVI ERROR ATTR MUST BE CHANNEL BASED IVI_INHERENT ERROR BASE + 0x47
IVI_ERROR CHANNEL ALREADY EXCLUDED IVI_INHERENT ERROR BASE + 0x48
IVI ERROR NOT CREATED BY CLASS IVI_ INHERENT ERROR BASE + 0x4D

IVI-3.2: Inherent Capabilities Specification 129

IVI Foundation

Error or Completion Code ID Value
IVI_ERROR IVI INI IS RESERVED IVI_INHERENT ERROR BASE + Ox4E
IVI ERROR DUP RUNTIME CONFIG ENTRY IVI_ INHERENT ERROR BASE + 0Ox4F
IVI_ERROR INDEX IS ONE BASED IVI INHERENT ERROR BASE + 0x50
IVI_ERROR INDEX IS TOO HIGH IVI_INHERENT ERROR BASE + 0x51
IVI_ERROR ATTR NOT CACHEABLE IVI INHERENT ERROR BASE + 0x52
IVI_ERROR ADDR ATTRS MUST BE_ HIDDEN IVI_INHERENT ERROR BASE + 0x53
IVI ERROR BAD CHANNEL NAME IVI_INHERENT ERROR BASE + 0x54
IVI _ERROR BAD PREFIX IN CONFIG FILE IVI INHERENT ERROR BASE + 0x55

11.5 Standard COM Error Codes for Use during Driver Development

The following table lists the standard COM error codes that 1\ driver developers may use during driver
development. It also specifies the recommended format of the error description string for those error codes.

Note: In the description string table entries listed below, %s is always used to represent the component

name.

Table 9-4. Standard COM Error Codes

Standard COM Error Code

Description String

E_ABORT

“%s: Operation aborted.”

E _NOTIMPL

“%s: Not implemented.”

UseE_IVI METHOD NOT SUPPORTED OF E_IVI PROPERTY NOT SUPPORTED instead of E NOTIMPL
for methods or properties that the 1V specifications define but that you do not intend to support in the
driver. Use E_noT1MPL for methods or properties you intend to implement but have not yet done so.

11.6 Unused Standard COM Error Codes

The following table lists standard COM error codes that you should avoid using. Instead, use the
recommended IV1 error codes listed in the second column.

Table 9-5. Recommended VI Error Codes for Standard COM Errors

Standard COM Error Code

Recommended VI Error Code

E_INVALIDARG

E_IVI INVALID VALUE

E OUTOFMEMORY

E_IVI OUT OF MEMORY

E PENDING

E_IVI OPERATION PENDING

E_ POINTER

E_IVI NULL POINTER

E UNEXPECTED

E IVI CANNNOT RECOVER

IVI-3.2: Inherent Capabilities Specification

130

IVI Foundation

12. Common IVI.NET Exceptions and Warnings

This section defines the list of IVI.NET exceptions and warnings. For general information on IVI.NET
exceptions and warnings, refer to 1\VV1-3.1: Driver Architecture Specification.

12.1 General Information About Exceptions

All 1V defined exceptions derive from System.Exception. The public constructors from System.Exception
are preserved, including parameter names and semantics.

Constructors with additional, exception specific parameters are added when appropriate. All parameters
that are not inherited from System.Exception are documented with the exception. In general, constructors
that provide additional parameters are recommended for use in IVI.NET native drivers. Including
parameter information with exceptions provides users with additional useful information about exceptions
that is consistent across drivers.

IVI defined exceptions implement read-only properties for all constructor parameters that are added for the
exception.

Constructors that take a string ‘message’ parameter are recommended for use when the default message is
not sufficient, or when the code calling the excpetion can provide better information. For example, when
creating an IVL.NET driver that wraps an IVI-C driver, the .NET wrapper may not have access to additional
parameters, and use the error message created by the IVI-C driver instead.

Depending on the constructor used by to create the exception, the value of the additional parameters may or
may not have been set. Clients should not write code that assumes that additional parameters have been
set.

The exception’s Message property concatenates (1) either a default message or the value from the
constructor’s ‘message’ parameter, and (2) the name and value of each additional parameter that has been
set, one parameter per line. The default message string documented in this specification includes a line for
each parameter that could possibly be set, but if a parameter is not set, that parameter name and value are
not included in the message.

Because the exception message content may vary, clients should not assume a standard format for message
strings. For common uses of exceptions, users should be able to tell what they need to know from the
exception type, so that parsing the message string is unnecessary.

IVI.NET drivers may throw exceptions that are derived from inherent or class-compliant exceptions from
inherent, class-compliant or instrument specific interfaces.

IVI-3.2: Inherent Capabilities Specification 131 IVl Foundation

12.2 Mapping IVI-C and IVI-COM Error Codes to IVI.NET

IVI.NET exceptions are designed to reflect IVI.NET paradigms. For this reason, there is not a one-to-one
mapping from 1VI-C and IVVI-COM exceptions to IVI.NET exceptions. The following table describes the
mapping and the reasons for significant differences.

IVI-C/IVI-COM Name

IVI.NET Exception

Success

N/A — Success exceptions do not exist.

Cannot Recover

N/A — IVLNET drivers that wrap IVI-C or IVI-COM drivers should use

Ivi.Driver.IviCDriverException OrF
Ivi.Driver.IviComDriverException.

Instrument Status

Ivi.Driver.InstrumentStatusException

Cannot Open File

N/A - Let the framework exceptions thrown when opening a file filter up to the user.

Error Reading File

N/A - Let the framework exceptions thrown when reading a file filter up to the user.

Error Writing File

N/A - Let the framework exceptions thrown when writing a file filter up to the user.

Invalid Path Name

N/A - Let the framework exceptions thrown when using a file path filter up to the
user.

Invalid Value

Ivi.Driver.OutOfRangeException

Function Not Supported

Ivi.Driver.OperationNotSupportedException

Attribute Not Supported

Ivi.Driver.OperationNotSupportedException

Value Not Supported

Ivi.Driver.ValueNotSupportedException

Not Initialized

N/A — IVLNET drivers are always initialized in the constructor.

Unknown Channel Name

Ivi.Driver.SelectorNameException

Too Many Open Files

N/A - Let the framework exceptions thrown when opening a file filter up to the user.

Channel Name Required

Ivi.Driver.SelectorNameRequiredException

Missing Option Name

Ivi.Driver.OptionMissingException

Missing Option Value

Ivi.Driver.InvalidOptionValueException

Bad Option Name

Ivi.Driver.UnknownOptionException

Bad Option Value

Ivi.Driver.InvalidOptionValueException

Out of Memory

System.InsufficientMemoryException

Operation Pending

Ivi.Driver.OperationPendingException

Null Pointer

System.ArgumentNullException

Unexpected Response

Ivi.Driver.UnexpectedResponseException

File Not Found

System.IO.FileNotFoundException

Invalid File Format

Ivi.Driver.FileFormatException

Status Not Available

N/A - Use either Ivi.Driver.OperationPendingException Of
Ivi.Driver.OperationNotSupportedException

ID Query Failed

Ivi.Driver.IdQueryFailedException

Reset Failed

Ivi.Driver.ResetFailedException

Resource Unknown

N/A — If the VISA Open (or similar /O call) does not succeed, throw an

Ivi.Driver.IOException.

Already Initialized

N/A — IVI.NET drivers are always initialized in the constructor.

IVI-3.2: Inherent Capabilities Specification 132 IVl Foundation

IVI-C/IVI-COM Name IVI.NET Exception

Cannot Change Simulation | Ivi.Driver.SimulationStateException
State

Invalid Number of Levels | Ivi.Driver.SelectorHierarchyException
in Selector

Invalid Range in Selector | Ivi.Driver.SelectorRangeException

Unknown Name in Ivi.Driver.SelectorNameException

Selector

Badly-Formed Selector Ivi.Driver.SelectorFormatException
Unknown Physical Ivi.Driver.UnknownPhysicalNameException
Identifier

ID Query Not Supported N/A (warning)

Reset Not Supported Ivi.Driver.ResetNotSupportedException
Self Test Not Supported N/A (warning)

Error Query Not N/A (warning)

Supported

Revision Query Not N/A (warning)

Supported

N/A Ivi.Driver.ConfigurationServerException
N/A Ivi.Driver.IOException

N/A Ivi.Driver.IOTimeoutException

N/A Ivi.Driver.IviCDriverException

N/A Ivi.Driver.OptionStringFormatException
Max Time Exceeded (IVI- | Ivi.Driver.MaxTimeExceededException
3.3)

TriggerNotSoftware (IVI- | Ivi.Driver.TriggerNotSoftwareException
3.3)

12.3 Mapping IVI-COM Session Factory Error Codes to IVI.NET

IVI.NET exceptions are designed to reflect IVI.NET paradigms. For this reason, there is not a one-to-one
mapping from IVVI-COM Session Factory exceptions to IVI.NET exceptions. The following table describes
the mapping, bearing in mind that some mapped items (for instance, Driver Session Not Registered and the
InvalidClassNameException) really have different meanings in COM and .NET, although the roles they
play are analogous.

Refer to Section 3, Error and Completion Code Value Definitions, of 1VI-3.6: COM Session Factory
Specification, for a list of IVI-COM session factory error codes.

IVI-COM Name IVI.NET Exception
No Prog ID Ivi.Driver.ClassNameNotFoundException
No Config Store Ivi.Driver.ConfigurationStoreLoadException
Driver Session Not Ivi.Driver.InvalidClassNameException
Registered
No Driver Session Ivi.Driver.SessionNotFoundException

IVI-3.2: Inherent Capabilities Specification 133 IVl Foundation

IVI-COM Name

IVI.NET Exception

No Software Module

Ivi.Driver.SoftwareModuleNotFoundException

N/A

Ivi.Driver.DriverClassCreationException

IVI-3.2: Inherent Capabilities Specification 134

IVI Foundation

12.4 Common Exceptions

The following .NET Framework exceptions may be explicitly thrown by IVI.NET drivers where
applicable.

e System.Argument NullException

e System.FileNotFoundException

e System.InsufficientMemoryException

Other exceptions defined by the .NET Framework may be explicitly thrown by IVI.NET drivers if IVI
specifications do not specify a suitable exception. Other exceptions defined by the .NET Framework may
be thrown by IVI.NET drivers by the .NET runtime or other libraries used by the drivers.

Common IVI.NET exceptions are defined in this specification and declared in the Ivi.Driver namespace.
ConfigurationServerException
FileFormatException
IdQueryFailedException
InstrumentStatusException
InvalidOptionValueException
IOException

I0OTimeoutException
IviCDriverException
IviComDriverException (Reserved)
MaxTimeExceededException
OperationNotSupportedException
OperationPendingException
OptionMissingException
OptionStringFormatException
OutOfRangeException
ResetFailedException
ResetNotSupportedException
SelectorFormatException
SelectorHierarchyException
SelectorNameException
SelectorNameRequiredException
SelectorRangeRequiredException
SimulationStateException
TriggerNotSoftwareException
UnexpectedResponseException
UnknownOptionException
UnknownPhysicalNameEXxception
e ValueNotSupportedException

IVI-3.2: Inherent Capabilities Specification 135 IVl Foundation

12.4.1 System.ArgumentNullException (.NET Framework)

Description

See the MSDN documentation for system.ArgumentNullException.

Exception

System.ArgumentNullException

Default Message String

Value cannot be null.
Parameter name: <paramName>.

Parameters

See the MSDN documentation for System.ArgumentNullException.

IVI-3.2: Inherent Capabilities Specification 136

IVI Foundation

12.4.2 System.InsufficientMemoryException

Description

See the MSDN documentation for System.InsufficientMemoryException.

Exception

System.InsufficientMemoryException

Default Message String

Insufficient memory to continue the execution of the program.

Parameters

See the MSDN documentation for System.InsufficientMemoryException.

Usage

Note that system.oOutOfMemoryException should only be thrown by the .NET runtime — it should

never be thrown by IVL.NET drivers.

IVI-3.2: Inherent Capabilities Specification 137

IVI Foundation

12.4.3 System.lO.FileNotFoundException

Description
See the MSDN documentation for System.I0.FileNotFoundException.

Exception

System.IO.FileNotFoundException

Default Message String

Unable to find the specified file.
File name: <fileName>.

Parameters

See the MSDN documentation for System.I0.FileNotFoundException.

IVI-3.2: Inherent Capabilities Specification 138 IVl Foundation

12.4.4 ConfigurationServerException

Description

An error occurred while using the Configuration Server.

When accessing the IVI-COM Configuration Server using the primary interop assembly (PI1A), this
exception is used to relay an exception thrown by the configuration server PIA (for example, an
Unauthorized Access exception or an 10 exception). The exception thrown by the Configuration Server is
the inner exception for this one.

When accessing the IVI-COM or IVI-C Configuration Server using other forms of interop, this exception is
used to relay the error return code reported by the Configuration Server.

Exception

Ivi.Driver.

Constructors

Ivi.Driver

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

ConfigurationServerException

.ConfigurationServerException (System.Exception innerException) ;

ConfigurationServerException (Int32 errorCode) ;
ConfigurationServerException() ;
ConfigurationServerException (String message);

ConfigurationServerException (String message,
System.Exception innerException) ;

Default Message String

An error occurred while using the Configuration Server.

Error code: <errorCode>
Parameters
Inputs Description Base Type
errorCode The error code returned from the Configuration Server Int32
property or method when a .NET Configuration Server or
PIA is not used.
innerException The exception thrown by the Configuration Server (or System.Exception
Configuration Server PIA) that is the cause of the current
exception. If the innerException parameter is not null, the
current exception is raised in a catch block that handles
the inner exception.
Usage

Since the driver is required to read all relevant configuration store information in the constructor, this
exception shall only be thrown by the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 139 IVl Foundation

12.4.5 FileFormatException

Description

A file does not conform to it’s expected format.

Exception

Ivi.

Driver.

Constructors

Ivi

Ivi

Ivi

Ivi.

Ivi.

.Driver.

.Driver.

.Driver.

Driver.

Driver

FileFormatException

FileFormatException (Uri sourceUri);

FileFormatException (Uri sourceUri,
System.Exception innerException);

FileFormatException () ;
FileFormatException (String message);

.FileFormatException (String message,
System.Exception innerException);

Default Message String

The file does not conform to the expected file format.
File URI:

Parameters

Inputs

sourceUri

Usage

<sourceURI>
Description Base Type
The URI of the file which is not formatted correctly. System.Uri

If the driver catches an exception that prompted this exception (for example, a system File Not Found
exception), that exception should be made the inner exception for this one.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 140 IVl Foundation

12.4.6 IdQueryFailedException

Description

The instrument 1D query failed.

Exception

Ivi.Driver.

Constructors

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

IdQueryFailedException

IdQueryFailedException() ;
IdQueryFailedException (String message) ;

IdQueryFailedException (String message,
System.Exception innerException);

Default Message String

The instrument ID query failed.

Usage

Under normal circumstances, an ID query is done once, either up-front in the constructor, or in the first get
for a property that returns ID Query information. Class compliant properties that potentially return ID
query information are InstrumentManufacturer, InstrumentModel, and InstrumentFirmwareRevision, which
are all in the liviDriverldentity interface. Instrument specific properties, such as a property that returns
serial number, may also do an ID query.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 141 IVl Foundation

12.4.7 InstrumentStatusException

Description

The driver detected an instrument error.

Exception

Ivi.Driver.

Constructors

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

InstrumentStatusException

InstrumentStatusException() ;
InstrumentStatusException (String message) ;

InstrumentStatusException(String message,
System.Exception innerException);

Default Message String

Instrument

Usage

error detected. Use ErrorQuery() to determine the error(s).

Avoid using this exception to relay another exception. As a general rule, just let the original exception

propagate up.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 142 IVl Foundation

12.4.8 InvalidOptionValueException

Description

An invalid value is assigned to an option.

Exception

Ivi.Driver.InvalidOptionValueException

Constructors

Ivi.Driver.InvalidOptionValueException (String optionName,
String optionValue);

Ivi.Driver.InvalidOptionValueException () ;
Ivi.Driver.InvalidOptionValueException (String message) ;

Ivi.Driver.InvalidOptionValueException (String message,
System.Exception innerException);

Default Message String

The option string contains an invalid option value.
Option name: <optionName>.
Option value: <optionValue>.

Parameters
Inputs Description Base Type
optionName The name of the option. String
optionvalue The invalid value assigned to the option. String
Usage

Since the driver is required to process option strings in the constructor, this exception shall only be thrown
from the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 143 IVl Foundation

12.4.9 IOException

Description

A call to the underlying 1/0 mechanism being used by the driver to communicate with the instrument has

failed.

When accessing .NET 1/O libraries or COM I/O libraries using a primary interop assembly (PIA), this
exception may be used to relay an exception thrown by the I/0 library. The exception thrown by the 1/0

library is the inner exception for this one.

When accessing a native C or COM 1/0O library using other forms of interop, this exception may be used to

relay the error return code reported by the Configuration Server.

If the underlying 1/O library reports a timeout, use the IO TimeoutException.

Exception

Ivi.Driver.IOException

Constructors

Ivi.Driver.IOException (System.Exception innerException);
Ivi.Driver.IOException (Int32 errorCode) ;
Ivi.Driver.IOException () ;

Ivi.Driver.IOException (String message) ;

Ivi.Driver.IOException (String message,
System.Exception Innerxception);

Default Message String

Parameters
Inputs Description
errorCode The error code returned from the 1/O library property or

Usage

An instrument I/O error occurred.

method when a .NET I/O library or PIA is not used.

innerException The exception thrown by the I/O library (or I/O library

PIA) that is the cause of the current exception. If the
innerException parameter is not null, the current

exception is raised in a catch block that handles the inner

exception.

System.Exception

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 144

IVI Foundation

12.4.10 I0TimeoutException

Description

A call to the underlying 10 mechanism being used by the driver to communicate with the instrument has
timed out.

Exception

Ivi.Driver.IOTimeoutException

Constructors

Ivi.Driver.IOTimeoutException (String message,
String timeout) ;

Ivi.Driver.IOTimeoutException();
Ivi.Driver.IOTimeoutException (String message) ;

Ivi.Driver.IOTimeoutException (String message,
System.Exception innerException) ;

Default Message String

An I/0O timeout occurred.
Timeout: 2000mS.

Parameters
Inputs Description Base Type
timeout The timeout that was exceeded, including units. For String
example, '2000 ms'
Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 145 IVl Foundation

12.4.11 IviCDriverException

Description

When an underlying I1VI-C driver was called to perform an action, the 1VI-C driver action did not succeed.

Exception

Ivi.Driver.IviCInteropException

Constructors

Ivi.Driver.IviCInteropException (String message
Int32 errorCode) ;

Ivi.Driver.IviCDriverException () ;
Ivi.Driver.IviCInteropException (String message) ;

Ivi.Driver.IviCInteropException (String message,
System.Exception innerException);

Default Message String

The call to the IVI-C driver did not succeed.

Parameters
Inputs Description Base Type
errorCode The status code returned by the IVI-C driver call. String
Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 146 IVl Foundation

12.4.12 IviComDriverException

Description

Reserved for future use.

IVI-3.2: Inherent Capabilities Specification 147 IVl Foundation

12.4.13 MaxTimeExceededException

Description

The operation implemented by the method did not complete within the maximum time allowed.

Use this exception, rather than the I0TimeoutException, whenever a method includes a parameter (for
example, maximumTime) that specifies maximum time allowed for the method’s operation to complete.

Exception

Ivi.Driver.MaxTimeExceededException

Constructors

Ivi.Driver.MaxTimeExceededException (String message,
String timeout) ;

Ivi.Driver.MaxTimeExceededException () ;
Ivi.Driver.MaxTimeExceededException (String message) ;

Ivi.Driver.MaxTimeExceededException (String message,
System.Exception innerException);

Default Message String

The operation did not complete within the maximum time allowed.
Timeout: 2000mS.

Parameters
Inputs Description Base Type
timeout The timeout that was exceeded, including units. For String
example, 2000 ms'
Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 148 IVl Foundation

12.4.14 OperationNotSupportedException

Description
A driver feature (for this exception, a method, property, or event) is not supported by the driver.

Exception

Ivi.Driver.OperationNotSupportedException

Constructors

Ivi.Driver.OperationNotSupportedException (String message,
String methodOrPropertyName) ;

Ivi.Driver.OperationNotSupportedException () ;
Ivi.Driver.OperationNotSupportedException (String message) ;

Ivi.Driver.OperationNotSupportedException (String message,
System.Exception innerException);

Default Message String

The method or property is not supported.
Method or property name: <methodOrPropertyName>.

Parameters
Inputs Description Base Type
methodOrPropertyName The name of the unsupported feature. String
Usage

This exception should not be used for parameters. Use ValueNotSupportedException for enumeration
values or discrete values from a list of defined values that aren’t supported by the driver, and
OutOfRangeException for other invalid values.

This exception should not be used for the Reset method. Use ResetNotSupportedException if the
instrument does not support resets.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 149 IVl Foundation

12.4.15 OperationPendingException

Description
An operation is in progress that prevents the method or property from being executed.
Exception

Ivi.Driver.OperationPendingException

Constructors

Ivi.Driver.OperationPendingException () ;
Ivi.Driver.OperationPendingException (String message) ;

Ivi.Driver.OperationPendingException(String message,
System.Exception innerException);

Default Message String

Operation in progress.
Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 150 IVl Foundation

12.4.16 OptionMissingException

Description

A required option is missing from the option string.

Exception

Ivi.Driver.

Constructors

Ivi.Driver.

Ivi.Driver

Ivi.Driver.

Ivi.Driver.

OptionMissingException

OptionMissingException (String message,
String optionName) ;

.OptionMissingException () ;

OptionMissingException (String message) ;

OptionMissingException (String message,
System.Exception innerException);

Default Message String

The option

string is missing a required option.

Option name: <optionName>

Parameters

Inputs

optionName

Usage

Description

The name of the missing option.

Base Type

String

Since the driver is required to process option strings in the constructor, this exception shall only be thrown
from the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 151

IVI Foundation

12.4.17 OptionStringFormatException

Description
The driver cannot parse the option string.

Exception

Ivi.Driver.OptionStringFormatException

Constructors

Ivi.Driver.OptionStringFormatException () ;
Ivi.Driver.OptionStringFormatException (String message) ;

Ivi.Driver.OptionStringFormatException (String message,
System.Exception innerException);

Default Message String
The option string is not formatted correctly.
Usage

Since the driver is required to process option strings in the constructor, this exception shall only be thrown
from the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 152 IVl Foundation

12.4.18 OutOfRangeException

Description

The driver detected an argument whose value is out or range.

Exception

Ivi.Driver.

Constructors

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

OutOfRangeException

OutOfRangeException (String
String
String

OutOfRangeException () ;

OutOfRangeException (String

OutOfRangeException (String

System.

Default Message String

The specified argument was out of the

paramName,
actualValue
range) ;

message) ;

message,
Exception innerException);

range of valid values.

The name of the parameter to which the out of range value

Parameter name: <paramName>.
Actual value: <actualValue>.
Allowable range: <range>.
Parameters
Inputs Description
paramName
is assigned.
actualvalue The out of range value.
range The allowable range
Usage

For a property set, the parameter name is “value”.

Use this exception only if a more specific exception is not appropriate.

Base Type

String

String
String

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification

153

IVI Foundation

12.4.19 ResetFailedException

Description
The instrument reset failed.

Exception

Ivi.Driver.ResetFailedException

Constructors

Ivi.Driver.ResetFailedException() ;
Ivi.Driver.ResetFailedException (String message) ;

Ivi.Driver.ResetFailedException (String message,
System.Exception innerException);

Default Message String
The instrument reset failed.
Usage
Under normal circumstances, an instrument reset is done in the constructor and in the Reset() and

ResetWithDefaults() methods in the liviDriverUtility interface. For particular drivers, other properties and
methods may include a reset if needed for some instrument specific reason.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 154 IVl Foundation

12.4.20 ResetNotSupportedException

Description
The instrument does not support the reset operation.

Exception

Ivi.Driver.ResetNotSupportedException

Constructors

Ivi.Driver.ResetNotSupportedException () ;
Ivi.Driver.ResetNotSupportedException (String message) ;

Ivi.Driver.ResetNotSupportedException (String message,
System.Exception innerException);

Default Message String
The instrument does not support the reset operation.
Usage

If the instrument is capable of doing a reset, but the reset fails, use the Reset Failed exception.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 155 IVl Foundation

12.4.21 SelectorFormatException

Description

The selector is not a simple repeated capability selector, and the selector cannot be parsed.

If the selector is a complex selector that can be parsed, use one of the following exceptions
e SelectorNameException
e SelectorNameUnknownException
e SelectorRangeException
e SelectorHierarchyException

Exception

Ivi.Driver.SelectorFormatException

Constructors

Ivi.Driver.SelectorFormatException (String repeatedCapabilityName,
String selectorValue);

Ivi.Driver.SelectorFormatException();
Ivi.Driver.SelectorFormatException (String message) ;

Ivi.Driver.SelectorFormatException (String message,
System.Exception innerException);

Default Message String

Invalid format for repeated capability selector.
Repeated capability: <repeatedCapabilityName>
Repeated capability selector value: <selectorValue>

Parameters
Inputs Description Base Type
repeatedCapabilityName The name of the repeated capability (not the repeated String
capability instance) associated with the method or
property from which the exception was thrown.
selectorvValue The invalid selector value. String
Usage

Since complex repeated capability selectors may not be used as indexers in IVI.NET, this exception should
never be thrown by an indexer.

If the repeated capability selector does not support complex selectors, use SelectorNameException.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 156 IVl Foundation

12.4.22 SelectorHierarchyException

Description

A hierarchical repeated capability selector includes an invalid number of levels in the hierarchy of nested

identifiers.

If the only problem is an unknown name or names in the range, the Selector Name Exception should be

used.

Exception

Ivi.Driver.

Constructors

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

SelectorHierarchyException

SelectorHierarchyException (String repeatedCapabilityName,
String selectorValue) ;

SelectorHierarchyException () ;
SelectorHierarchyException (String message);

SelectorHierarchyException (String message,
System.Exception innerException);

Default Message String

The repeated capability selector has the wrong number of levels.
Repeated capability: <repeatedCapabilityName>.
Repeated capability selector value: <selectorValue>.

Parameters

Inputs

Description Base Type

repeatedCapabilityName The name of the repeated capability (not the repeated String

capability instance) associated with the method or
property from which the exception was thrown.

selectorValue The repeated capability selector value that contains the string

Usage

invalid hierarchy.

Since complex repeated capability selectors may not be used as indexers in IVI.NET, this exception should
never be thrown by an indexer.

If the repeated capability selector does not support complex selectors, use the Invalid Selector exception.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 157 IVl Foundation

12.4.23 SelectorNameEXxception

Description

A repeated capability selector is expected, but the driver does not recognise the provided name.

This exception should be used with any repeated capability parameter or indexer when a more specific
exception is not appropriate. More specific exceptions are:

e SelectorFormatException

e SelectorRangeException

e SelectorHierarchyException

Exception

Ivi.Driver.SelectorNameException

Constructors

Ivi.Driver.SelectorNameException (String repeatedCapabilityName,
String selectorValue) ;

Ivi.Driver.SelectorNameException () ;
Ivi.Driver.SelectorNameException (String message) ;

Ivi.Driver.SelectorNameException (String message,
System.Exception innerException);

Default Message String

Invalid repeated capability name in selector.
Repeated capability: <repeatedCapabilityName>.
Repeated capability selector value: <selectorValue>.

Parameters
Inputs Description Base Type

repeatedCapabilityName The name of the repeated capability (not the repeated String
capability instance).

selectorvValue The repeated capability selector value that contains the String
invalid name.

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 158 IVl Foundation

12.4.24 SelectorNameRequiredException

Description

The selector has more than one instance of a repeated capability, but an instance is not specified. An empty
string is only valid for a repeated capability selector if there is only one instance of the repeated capability.

Exception

Ivi.Driver.SelectorNameRequiredException

Constructors

Ivi.Driver.SelectorNameRequiredException (String message,
String repeatedCapabilityName) ;

Ivi.Driver.SelectorNameRequiredException () ;
Ivi.Driver.SelectorNameRequiredException (String message) ;

Ivi.Driver.SelectorNameRequiredException (String message,
System.Exception innerException);

Default Message String

The repeated capability selector name is required.
Repeated capability: <repeatedCapabilityName>.

Parameters
Inputs Description Base Type

repeatedCapabilityName The name of the repeated capability (not the repeated String
capability instance).

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 159 IVl Foundation

12.4.25 SelectorRangeException

Description

A complex repeated capability selector includes an invalid range or list of repeated capability identifiers.
This includes descending, repeated, overlapped ranges and lists.

If there is an invalid range or list of repeated capability identifiers in a hierarchical selector that also has an
invalid number of levels, throw the SelectorHierarchyException.

If the only problem is an unknown name or names in the range, the SelectorNameException should be
used.

Exception

Ivi.Driver.SelectorRangeException

Constructors

Ivi.Driver.SelectorRangeException (String repeatedCapabilityName,
String selectorValue);

Ivi.Driver.SelectorRangeException () ;
Ivi.Driver.SelectorRangeException (String message) ;

Ivi.Driver.SelectorRangeException (String message,
System.Exception innerException);

Default Message String

The repeated capability selector includes an invalid range or list.
Repeated capability: <repeatedCapabilityName>.
Repeated capability selector value: <selectorValue>.

Parameters

Inputs Description Base Type

repeatedCapabilityName The name of the repeated capability (not the repeated String
capability instance).

selectorvValue The repeated capability selector value that contains the String
invalid range.

Usage

Since complex repeated capability selectors may not be used as indexers in IVI.NET, this exception should
never be thrown by an indexer.

If the repeated capability selector does not support complex selectors, use the Invalid Selector exception.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 160 IVl Foundation

12.4.26 SimulationStateException

Description

After construction, the simulation property cannot be set to false, only to true. Some drivers may not allow
simulation to be changed at all.

Exception

Ivi.Driver.SimulationStateException

Constructors

Ivi.Driver.SimulationStateException () ;
Ivi.Driver.SimulationStateException (String message) ;

Ivi.Driver.SimulationStateException (String message,
System.Exception innerException);

Default Message String

The simulation state cannot be changed.

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 161 IVl Foundation

12.4.27 TriggerNotSoftwareException

Description

A Send Software Trigger method could not send a software trigger.

Exception

Ivi.Driver.TriggerNotSoftwareException (String message,
String triggerSource)

Constructors
Ivi.Driver.TriggerNotSoftwareException () ;
Ivi.Driver.TriggerNotSoftwareException (String message) ;

Ivi.Driver.TriggerNotSoftwareException (String message,
System.Exception innerException);

Default Message String

The trigger source is not set to software trigger.
Actual trigger source: <triggerSource>

Parameters
Inputs Description Base Type
triggerSource The actual trigger source. String
Usage

This exception should only be thrown by SendSoftwareTrigger() methods as defined in Section 2, Software
Triggering Capability, of IV1-3.3, Cross Class Capability Specification.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 162 IVl Foundation

12.4.28 UnexpectedResponseException

Description
The driver received an unexpected response from the instrument.

Exception

Ivi.Driver.UnexpectedResponseException

Constructors

Ivi.Driver.UnexpectedResponseException () ;
Ivi.Driver.UnexpectedResponseException (String message) ;

Ivi.Driver.UnexpectedResponseException (String message,
System.Exception innerException);

Default Message String

The response from the instrument was unexpected.

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 163 IVl Foundation

12.4.29 UnknownOptionException

Description

The option string contains an option name that it does not recognize.

Exception

Ivi.Driver.

Constructors

Ivi.Driver.

Ivi.Driver

Ivi.Driver.

Ivi.Driver.

UnknownOptionException

UnknownOptionException (String message,
String optionName) ;

.UnknownOptionException () ;

UnknownOptionException (String message) ;

UnknownOptionException (String message,
System.Exception innerException);

Default Message String

The option

string contains an unknown option name.

Option name: <optionName>.

Parameters

Inputs

optionName

Usage

Description Base Type

The unknown option name. String

Since the driver is required to process option strings in the constructor, this exception shall only be thrown
from the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 164

IVI Foundation

12.4.30 UnknownPhysicalNameException

Description

When establishing the map from virtual repeated capability names to physical repeated capability names, a
physical name did not exist.

This exception also applies in cases where any member of a virtual range mapped to a physical name that

did not exist.

Exception

Ivi.Driver.

Constructors

Ivi.Driver

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

UnknownPhysicalNameException

.UnknownPhysicalNameException (String driverSession,

String repeatedCapabilityName,

String virtualName,
String physicalName) ;

UnknownPhysicalNameException () ;
UnknownPhysicalNameException (String message) ;

UnknownPhysicalNameException (String message,

System.Exception innerException) ;

Default Message String

The configuration store driver session references a physical name that is not
defined by the driver.

Driver session: <driverSession>

Repeated capability: <repeatedCapabilityName>
Virtual name: <virtualName>

Physical name: <physicalName>

Parameters
Inputs Description
driverSession The name of the driver session in which the unknown

physical name is referenced.

repeatedCapabilityName The name of the repeated capability (not the repeated

capability instance).

virtualName The virtual name (defined for the repeated capability)

which references the unknown physical name.

physicalName The unknown physical name.

Usage

Base Type

String

String

String

String

Since the driver is required to read all relevant configuration store information in the constructor, this
exception shall only be thrown by the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 165

IVI Foundation

12.4.31 ValueNotSupportedException

Description

An enumerated value or a discrete value from a list of defined values is not supported by the specific
driver.

Drivers should use lvi.Driver.OutOfRangeException when they encounter other types of invalid values.

Exception

Ivi.Driver.ValueNotSupportedException

Constructors

Ivi.Driver.ValueNotSupportedException (String paramName,
String value) ;

Ivi.Driver.ValueNotSupportedException () ;
Ivi.Driver.ValueNotSupportedException (String message);

Ivi.Driver.ValueNotSupportedException (String message,
System.Exception innerException);

Default Message String

When instrument model is specified:

Value not supported.
Parameter name: <paramName>.
Value: <value>.

Parameters
Inputs Description Base Type
paramName The name of the parameter to which the unsupported value String
is assigned.
value The value that is not supported. String
Usage

For a property set, the parameter name is “value”.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 166 IVl Foundation

12.5 IVL.LNET Session Factory Method Exceptions

This section defines the list of IVI.NET session factory methods exceptions.

Refer to Section 2.9.2.2, How Interchangeability Works in COM and .NET, and Section 2.10, The IVI
Configuration Store, of IVI-3.1: Architecture Specifciation for more information about IVI.NET session
factory methods. Refer to IVI-3.5: Configuration Server Specification, for details regarding the
information that is stored in the I\VI configuration store.

The following exceptions defined by IVI.NET for use with session factory methods.
e ClassNameNotFoundException

ConfigurationStoreLoadException

DriverClassCreationException

InvalidClassNameException

SessionNotFoundException

SoftwareModuleNotFoundException

Other exceptions may be thrown by session factory methods, but only if none of the exceptions listed above
are applicable.

IVI-3.2: Inherent Capabilities Specification 167 IVl Foundation

12.5.1 ClassNameNotFoundException

Description

The IVL.NET session factory method could not find the assembly qualified class hame in the configuration
store. Assembly qualified class name is a property of the IVI.NET specific driver's software module entry.
It is needed to create an instance of the specific driver's main class.

This error is thrown after the driver session has been found, and the software module referenced by the
driver session has been found. The cause of the error is either that the assembly qualified class name is
blank, or that the program could not access the ISoftwareModule2 interface which contains the assembly
qualified class name.

If the assembly qualified class name is blank, the driver referenced by the software module is not an
IVI.NET driver, or the driver's software module entry is corrupt. If the driver is an IVI.NET driver, the
problem may be fixed by repairing or reinstalling the driver.

If the assembly qualified class name is not blank, the program could not access the 1SoftwareModule2
interface. This interface was added in version 1.5.0 of the IVI Shared Components. If a version of the VI
Shared Components older than version 1.5.0 is installed, the problem may be fixed by upgrading to a newer
version.

Exception

Ivi.Driver.ClassNameNotFoundException

Constructors

Ivi.Driver.ClassNameNotFoundException (String driverSession,
String softwareModule) ;

Ivi.Driver.ClassNameNotFoundException () ;
Ivi.Driver.ClassNameNotFoundException (String message) ;

Ivi.Driver.ClassNameNotFoundException (String message,
System.Exception innerException);

Default Message String

IviSessionFactory: The specific driver’s main class (assembly qualified class
name) is not specified in the configuration store.
Driver session: <driverSession>

Specific driver (software module): <softwareModule>
Parameters
Inputs Description Base Type
driverSession The name of the driver session to be instantiated by the String
IVI.NET session factory method.
softwareModule The name of the specific driver's software module String

referenced by the driver session.

IVI-3.2: Inherent Capabilities Specification 168 IVl Foundation

Usage

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVl Foundation
as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 169 IVl Foundation

12.5.2 ConfigurationStoreLoadException

Description

This exception is thrown when the session factory cannot load the configuration store file.

The IVL.NET session factory method could not load the configuration store specified.

This error is thrown if the driver cannot load the configuration store. The cause of the error is either that no
file name can be found, the file specified does not exist, or the file could not be deserialized.

The session factory method gets the configuration store file name from configuration server's process
default location, if it is specified, or from the master location, which should always reference an extant
configuration store file.

If the file cannot be deserialized, then it does not conform to the version of the configuration store XML

schema currently installed by the VI Shared Components installer.

Exception

Ivi.Driver.

Constructors

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

ConfigurationStoreLoadException

ConfigurationStoreLoadException (System.

ConfigurationStoreLoadException () ;
ConfigurationStorelLoadException (String

ConfigurationStorelLoadException (String

System.

Default Message String

IviSessionFactory: There was an error loading the

Usage

Exception innerException);

message) ;

message,
Exception innerException);

Configuration Server.

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVl Foundation
as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 170

IVI Foundation

12.5.3 DriverClassCreationException

Description

An instance of the specific driver referenced by the driver session name could not be created, or did not
support the specified type.

This error is thrown after the driver session has been found, and the software module referenced by the
driver session has been found. The cause of the error is that the specific driver could not be instantiated, or
the driver did not support the sepcified type.

For example, the the session factory specifies that the type to be returned is IviDmm, but the driver doesn’t
support the IviDmm instrument class, this exception will be thrown.

Exception

Ivi.Driver.DriverClassCreationException

Constructors

Ivi.Driver.DriverClassCreationException(String softwareModule,
String type,
System.Exception exception);

Ivi.Driver.DriverClassCreationException(String softwareModule,
String type);

Ivi.Driver.DriverClassCreationException();
Ivi.Driver.DriverClassCreationException (String message) ;

Ivi.Driver.DriverClassCreationEkException (String message,
System.Exception innerException) ;

Default Message String

IviSessionFactory: An instance of the specific driver referenced by the logical
name or driver session name could not be created, or did not support the
specified type.

Specific driver (software module): <softwareModuleName>

Type: <type>

Parameters
Inputs Description Base Type
softwareModule The name of the specific driver's software module. String
type The type, supported by the specific driver, that the String
session factory method is trying to return.
Usage

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVI Foundation
as part of the IVI.LNET Shared Components.

IVI-3.2: Inherent Capabilities Specification 171 IVl Foundation

12.5.4 InvalidClassNameException

Description

This exception thrown when the session facotry determines that the specific driver’s main class (assembly
qualified class name) is not formatted properly in the configuration store.

The IVLNET session factory method has determined that the specific driver’s main class name (assembly
qualified class name) is not formatted properly in the configuration store. The format is
"FullAssemblyName;NamespaceQualified TypeName".

This error is thrown after the driver session has been found, and the software module referenced by the
driver session has been found. The cause of the error is that the assembly qualified class name is not
correctly formatted.

Example of a correctly formatted assembly qualified class name:
"Ivi.Driver.dll, Version=1.0.0.0, Culture=neutral, PublicKeyToken=a128¢98f1d7717c1,
processorArchitecture=MSIL"

Exception

Ivi.Driver.InvalidClassNameException

Constructors

Ivi.Driver.InvalidClassNameException (String softwareModule,
String assemblyQualifiedClassName) ;

Ivi.Driver.InvalidClassNameException () ;
Ivi.Driver.InvalidClassNameException (String message) ;

Ivi.Driver.InvalidClassNameException (String message,
System.Exception innerException);

Default Message String

IviSessionFactory: The IVI.NET driver’s assembly qualified class name is not

formatted correctly in the configuration store. The correct format is
"FullAssemblyName;NamespaceQualifiedTypeName".
Specific driver (software module): <softwareModule>

Assembly qualified class name: <assemblyQualifiedClassName>

Parameters
Inputs Description Base Type
softwareModule The name of the specific driver's software module. String
assemblyQualifiedClass The driver's Assembly Qualified Class Name. String
Name

Usage

This exception shall only be thrown by IVI.NET session factory methods distributed by the 1\VVI Foundation
as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 172 IVl Foundation

12.5.5 SessionNotFoundException

Description

The IVI.NET session factory method could not find a driver session that could be used to instantiate an
IVI.NET instrument driver.

Name may refer to either a logical name or a physical name in the configuration store. This error is thrown
if the session factory method cannot find either a logical name or a driver session name that matches the
specified name, or the logical name references a driver session that cannot be found.

Exception

Ivi.Driver.

Constructors

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

Ivi.Driver.

SessionNotFoundException

SessionNotFoundException (String
String

SessionNotFoundException () ;
SessionNotFoundException (String

SessionNotFoundException (String

System.

Default Message String

IviSessionFactory:

message,
name) ;

message) ;

message,
Exception innerException);

The driver session referenced by the specified Logical Name

or Driver Session Name does not exist in the configuration store.
Name: <name>

Parameters

Inputs

name

Usage

Description

Base Type

Name may refer to either a logical name or a physical String
name in the configuration store.

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVI Foundation
as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 173

IVI Foundation

12.5.6 SoftwareModuleNotFoundException

Description

The IVI.NET session factory method could not find the software module referenced by the driver session in
the configuration store.

This error is thrown after the driver session has been found. The cause of the error is that the software
module referenced by the driver session could not be found.

In some cases, a driver session is connected to a specific driver's software module, and then that driver is
uninstalled, removing the software module entry from the configuration store. In this case, the software
module reference is maintained in the driver session, but the software module itself is missing. This can be
addressed by reinstalling the driver.

Exception

Ivi.Driver.SoftwareModuleNotFoundException

Constructors

Ivi.Driver.SoftwareModuleNotFoundException (String driverSession,
String softwareModule) ;

Ivi.Driver.SoftwareModuleNotFoundException () ;
Ivi.Driver.SoftwareModuleNotFoundException (String message) ;

Ivi.Driver.SoftwareModuleNotFoundException (String message,
System.Exception innerException) ;

Default Message String

IviSessionFactory: The IVI.NET specific driver software module referenced by
the driver session does not exist in the configuration store.
Driver session: <driverSession>

Specific driver (software module): <softwareModuleName>
Parameters
Inputs Description Base Type
driverSession The name of the driver session to be instantiated by the String
IVI.NET session factory method.
softwareModule The name of the specific driver's software module String

Usage

referenced by the driver session.

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVI Foundation
as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 174 IVl Foundation

12.6 Warnings

Table 12-3 lists the standard IVI.NET warnings that 1\V/1 driver developers may use during driver
development. It also specifies the recommended format of the error description string for those error codes.

In the messages listed below, {0} must include the name of the method or property responsible for the

warning.
Table 12-3. IVI.NET Warnings
Name Warning GUID

ID Query Not Supported "37FC4913-27D4-4dee-90FC-87CEDO677D72"
“{0}: ID Query is not supported by this instrument.”

Self Test Not Supported "32B87F50-501E-4c95-A782-FBEECF7FB324"
“{0}: Self test is not supported by this instrument.”

Error Query Not Supported "BE37BF5D-FAE5-44d0-8AA4-4B521D1D17DE"
“{0}: Error query is not supported by this instrument.”

Revision Query Not Supported "278665CA-DCCC-49ad-A76C-3B963143DD20"
“{0}: Firmware revision query is not supported by this instrument.”

IVI-3.2: Inherent Capabilities Specification 175 IVl Foundation

13. Inherent Attribute Value Definitions

This section specifies the actual value for each defined attribute value.

LockType
Value Name Language Identifier Actual
Value
AppDomain .NET LockType.AppDomain 0
Machine .NET LockType.Machine 1

IVI-3.2: Inherent Capabilities Specification

176

IVI Foundation

	Warranty
	Trademarks
	Inherent Capabilities Specification
	Revision History
	1. Overview of the Inherent Capabilities Specification
	1.1 Introduction
	1.2 Inherent Capabilities Overview
	1.3 References
	1.4 Definitions of Terms and Acronyms

	2. Specification Section Layout
	2.1 Introduction
	2.1.1 Attribute Section Layout
	2.1.2 Function Section Layout

	3. General Requirements
	3.1 Inherent Capabilities Compliance Rules
	3.1.1 Attribute Compliance Rules
	3.1.2 Function Compliance Rules
	3.1.2.1 Additional Compliance Rules for C Functions with ViChar Array Output Parameters
	3.1.2.2 Additional Compliance Rules for Revision String Attributes

	3.1.3 Boolean Attribute and Parameter Values

	3.2 .NET Namespace

	4. Inherent Capabilities Overview
	4.1 .NET Inherent Capabilities
	4.1.1 Inherent Capabilities Interfaces
	4.1.1.1 IIviDriver
	4.1.1.2 IIviDriverOperation
	4.1.1.3 IIviComponentIdentity
	4.1.1.4 IIviDriverIdentity
	4.1.1.5 IIviDriverUtility
	4.1.1.6 IIviDriverLock

	4.1.2 Interface Reference Properties
	4.1.3 IVI.NET IviDriver Session Factory

	4.2 COM Inherent Capabilities
	4.2.1 Inherent Capabilities Interfaces
	4.2.1.1 IIviDriver
	4.2.1.2 IIviDriverOperation
	4.2.1.3 IIviComponentIdentity
	4.2.1.4 IIviDriverIdentity
	4.2.1.5 IIviDriverUtility

	4.2.2 Interface Reference Properties
	4.2.3 IviDriver COM Category

	4.3 C Inherent Capabilities
	4.4 Relationship of Inherent Attributes and Different Types of IVI Driver

	5. Inherent Property/Attribute Descriptions
	5.1 Cache

	5.2 Class Driver Class Spec Major Version (IVI-C Only)
	5.3 Class Driver Class Spec Minor Version (IVI-C Only)
	5.4 Class Driver Description (IVI-C Only)
	5.5 Class Driver Prefix (IVI-C Only)
	5.6 Class Driver Revision (IVI-C Only)
	5.7 Class Driver Vendor (IVI-C Only)
	5.8 Class Group Capabilities (IVI-C & IVI-COM Only)
	5.9 Component Class Spec Major Version (IVI-COM & IVI.NET Only)
	5.10 Component Class Spec Minor Version (IVI-COM & IVI.NET Only)
	5.11 Component Description (IVI-COM & IVI.NET Only)
	5.12 Component Identifier (IVI-COM & IVI.NET Only)
	5.13 Component Revision (IVI-COM & IVI.NET Only)
	5.14 Component Vendor (IVI-COM & IVI.NET Only)
	5.15 Driver Setup
	5.16 I/O Resource Descriptor
	5.17 Initialized (IVI-COM Only)
	5.18 Instrument Firmware Revision
	5.19 Instrument Manufacturer
	5.20 Instrument Model
	5.21 Interchange Check
	5.22 Logical Name
	5.23 Query Instrument Status
	5.24 Range Check
	5.25 Record Value Coercions
	5.26 Simulate
	5.27 Specific Driver Class Spec Major Version (IVI-C Only)
	5.28 Specific Driver Class Spec Minor Version (IVI-C Only)
	5.29 Specific Driver Description (IVI-C Only)
	5.30 Specific Driver Locator (IVI-C Only)
	5.31 Specific Driver Prefix (IVI-C Only)
	5.32 Specific Driver Revision (IVI-C Only)
	5.33 Specific Driver Vendor (IVI-C Only)
	5.34 Supported Instrument Models (IVI-C & IVI-COM Only)
	6. Inherent Method/Function Descriptions
	6.1 Clear Error (IVI-C Only)

	6.2 Clear Interchange Warnings (IVI-C & IVI-COM Only)
	6.3 Close
	6.4 Disable
	6.5 Error Message (IVI-C Only)
	6.6 Error Query
	6.7 Get Attribute <type> (IVI-C Only)
	6.8 Get Attribute ViString (IVI-C Only)
	6.9 Get Error (IVI-C Only)
	6.10 Get Group Capabilities (IVI.NET Only)
	6.11 Get Next Coercion Record (IVI-C & IVI-COM Only)
	6.12 Get Next Interchange Warning (IVI-C & IVI-COM Only)
	6.13 Get Specific Driver C Handle (IVI-C Only)
	6.14 Get Specific Driver IUnknown Pointer (IVI-C Only)
	6.15 Get Supported Instrument Models (IVI.NET Only)
	6.16 Initialize (IVI-C & IVI-COM Only)
	6.17 Invalidate All Attributes
	6.18 Lock Session
	6.19 Reset
	6.20 Reset Interchange Check
	6.21 Reset With Defaults
	6.22 Revision Query (IVI-C Only)
	6.23 Self Test
	6.24 Set Attribute <type> (IVI-C Only)
	6.25 Unlock Session

	7. Specific Driver Wrapper Functions
	7.1 C Wrappers for IVI-COM Specific Drivers
	7.1.1 Get Native IUnknown Pointer (IVI-C Only)
	7.1.2 Attach To Existing COM Session (IVI-C Only)

	7.2 IVI-COM and IVI.NET Wrappers for IVI-C Specific Drivers
	7.2.1 Native C Handle (IVI-COM Only)

	7.2.2 Attach To Existing C Session (IVI-COM Only)
	8. IVI.NET Specific Driver Constructor
	9. IVI.NET Event Descriptions
	9.1 IVI.NET Events
	9.1.1 Coercion Record Event (IVI.NET Only)

	9.1.2 Interchange Check Warning Event (IVI.NET Only)
	9.1.3 Driver Warning Event (IVI.NET Only)
	10. IVI Inherent Attribute ID Definitions
	10.1 Inherent Attribute ID Values
	10.2 Reserved Vendor Specific Inherent Extension Attribute ID Values and Constants
	10.3 Reserved Module Private Attribute ID Values
	10.4 Reserved Standard Cross Class Capabilities Attribute ID Values

	11. Common IVI-C and IVI-COM Error and Completion Codes
	11.1 IVI-C and IVI-COM Error and Completion Codes
	11.2 IVI-C Error and Completion Codes

	11.3 IVI-COM Error and Completion Codes
	11.4 Reserved Vendor Specific Error and Completion Code Values and Constants
	11.5 Standard COM Error Codes for Use during Driver Development
	11.6 Unused Standard COM Error Codes

	12. Common IVI.NET Exceptions and Warnings
	12.1 General Information About Exceptions
	12.2 Mapping IVI-C and IVI-COM Error Codes to IVI.NET
	12.3 Mapping IVI-COM Session Factory Error Codes to IVI.NET
	12.4 Common Exceptions
	12.4.1 System.ArgumentNullException (.NET Framework)
	12.4.2 System.InsufficientMemoryException
	12.4.3 System.IO.FileNotFoundException
	12.4.4 ConfigurationServerException
	12.4.5 FileFormatException
	12.4.6 IdQueryFailedException
	12.4.7 InstrumentStatusException
	12.4.8 InvalidOptionValueException
	12.4.9 IOException
	12.4.10 IOTimeoutException
	12.4.11 IviCDriverException
	12.4.12 IviComDriverException
	12.4.13 MaxTimeExceededException
	12.4.14 OperationNotSupportedException
	12.4.15 OperationPendingException
	12.4.16 OptionMissingException
	12.4.17 OptionStringFormatException
	12.4.18 OutOfRangeException
	12.4.19 ResetFailedException
	12.4.20 ResetNotSupportedException
	12.4.21 SelectorFormatException
	12.4.22 SelectorHierarchyException
	12.4.23 SelectorNameException
	12.4.24 SelectorNameRequiredException
	12.4.25 SelectorRangeException
	12.4.26 SimulationStateException
	12.4.27 TriggerNotSoftwareException
	12.4.28 UnexpectedResponseException
	12.4.29 UnknownOptionException
	12.4.30 UnknownPhysicalNameException
	12.4.31 ValueNotSupportedException

	12.5 IVI.NET Session Factory Method Exceptions
	12.5.1 ClassNameNotFoundException
	12.5.2 ConfigurationStoreLoadException
	12.5.3 DriverClassCreationException
	12.5.4 InvalidClassNameException
	12.5.5 SessionNotFoundException
	12.5.6 SoftwareModuleNotFoundException

	12.6 Warnings

	13. Inherent Attribute Value Definitions

