N4
Geftting Started
with
IVI Drivers

Your Guide to Using IVI with
LabVIEW™

Version 1.0

© Copyright IVl Foundation, 2009
All rights reserved

The IVI Foundation has full copyright privileges of all versions of the 1VI Getting
Started Guide. For persons wishing to reference portions of the guide in their
own written work, standard copyright protection and usage applies. This
includes providing a reference to the guide within the written work. Likewise, it
needs to be apparent what content was taken from the guide. A recommended
method in which to do this is by using a different font in italics to signify the
copyrighted material.

Chapter 1

Chapter 2

Contents

o 00
Introduction. ... e 4
PUrpOSE . . 4
Why Use an Instrument Driver?. i 4
Why V12 5
Why Use an IVIDriver? 7
Flavors of IVIDrivers e 8
Shared Components 8
Download and Install IVI Drivers 8
Familiarizing Yourself withthe Driver. 9
Examples 9
Using IVIwith LabVIEW™ 12
The Environment 12
Example Requirements 12
Download and Install the Driver 12
Using IVI-C . . .o 12
Create aVland Accessthe Driver. 13
Initialize the Instrument 14
Configurethe Instrument 15
Takethe Reading. i e 15
Displaythe Reading. i 16
Closethe Session 16
Add Error Checking 16
Runthe Application 16
Setting a Property inan IVI-CDriver 17
Using IVI-COM. o e 17
Create aVland Accessthe Driver. 17

Initialize the Instrument 19

Configure the Instrument 20
Takethe Reading. i 21
Displaythe Reading. i 21
Close the Driver and Automation Sessions 21
AddErrorChecking 21
Runthe Application 22
Further Information. 12

Chapter 1
Introduction

Purpose

Welcome to Getting Started with IVI Drivers: Your Guide to Using IVI with
LabVIEW ™ _This guide introduces key concepts about IVI drivers and shows you
how to create a short program to perform a measurement. The guide is part of the
IVl Foundation’s series of guides, Getting Started with IVI Drivers.

Getting Started with IVI Drivers is intended for individuals who write and run
programs to control test-and-measurement instruments. Each guide focuses on a
different programming environment. As you develop test programs, you face
decisions about how you communicate with the instruments. Some of your choices
include Direct I/O, VXlplug&play drivers, or IVI drivers. If you are new to using IVI
drivers or just want a quick refresher on the basics, Getting Started with IVI
Drivers can help.

Getting Started with IVI Drivers shows that IVI drivers can be straightforward,
easy-to-use tools. IVI drivers provide a number of advantages that can save time
and money during development, while improving performance as well. Whether
you are starting a new program or making improvements to an existing one, you
should consider the use of IVI drivers to develop your test programs.

So consider this the “hello, instrument” guide for IV drivers. If you recall, the “hello
world” program, which originally appeared in Programming in C: A Tutorial, simply
prints out “hello, world.” The “hello, instrument” program performs a simple
measurement on a simulated instrument and returns the result. We think you'll find
that far more useful.

Why Use an Instrument Driver?
To understand the benefits of IVI drivers, we need to start by defining instrument
drivers in general and describing why they are useful. An instrument driver is a set
of software routines that controls a programmable instrument. Each routine
corresponds to a programmatic operation, such as configuring, writing to, reading
from, and triggering the instrument. Instrument drivers simplify instrument control
and reduce test program development time by eliminating the need to learn the
programming protocol for each instrument.

Starting in the 1970s, programmers used device-dependent commands for
computer control of instruments. But lack of standardization meant even two digital
multimeters from the same manufacturer might not use the same commands. In
the early 1990s a group of instrument manufacturers developed Standard

Why IVI?

Commands for Programmable Instrumentation (SCPI). This defined set of
commands for controlling instruments uses ASCII characters, providing some
basic standardization and consistency to the commands used to control
instruments. For example, when you want to measure a DC voltage, the
standard SCPl command is “MEASURE : VOLTAGE : DC?”.

In 1993, the VXIplugé&play Systems Alliance created specifications for instrument
drivers called VXlplugé&play drivers. Unlike SCPI, VXIplug&play drivers do not
specify how to control specific instruments; instead, they specify some common
aspects of an instrument driver. By using a driver, you can access the instrument
by calling a subroutine in your programming language instead of having to format
and send an ASCII string as you do with SCPI. With ASCII, you have to create and
send the instrument the syntax “MEASURE : VOLTAGE : DC?”, then read back a
string, and build itinto a variable. With a driver you can merely call a function called
MeasureDCVoltage() and pass it a variable to return the measured voltage.

Although you still need to be syntactically correct in your calls to the instrument
driver, making calls to a subroutine in your programming language is less error
prone. If you have been programming to instruments without a driver, then you are
probably all too familiar with hunting around the programming guide to find the right
SCPI command and exact syntax. You also have to deal with an I/O library to
format and send the strings, and then build the response string into a variable.

The VXIplug&play drivers do not provide a common programming interface. That
means programming a Keithley DMM using VXlplug&play still differs from
programming an Agilent DMM. For example, the instrument driver interface for one
may be ke2000_read while another may be hp34401_get or something even
farther afield. Without consistency across instruments manufactured by different
vendors, many programmers still spent a lot of time learning each individual driver.

To carry VXIplug&play drivers a step (or two) further, in 1998 a group of end users,
instrument vendors, software vendors, system suppliers, and system integrators
joined together to form a consortium called the Interchangeable Virtual Instruments
(IVI) Foundation. If you look at the membership, it's clear that many of the
foundation members are competitors. But all agreed on the need to promote
specifications for programming test instruments that provide better performance,
reduce the cost of program development and maintenance, and simplify
interchangeability.

For example, for any IVI driver developed for a DMM, the measurement command
is viDmmMeasurement.Read, regardless of the vendor. Once you learn how to

program the commands specified by IVI for the instrument class, you can use any
vendor’s instrument and not need to relearn the commands. Also commands that
are common to all drivers, such as Initialize and Close, are identical regardless of

the type of instrument. This commonality lets you spend less time hunting around
the help files and programming an instrument, leaving more time to get your job
done.

That was the motivation behind the development of IVI drivers.The VI
specifications enable drivers with a consistent and high standard of quality,
usability, and completeness. The specifications define an open driver architecture,
a set of instrument classes, and shared software components. Together these
provide consistency and ease of use, as well as the crucial elements needed for
the advanced features IVI drivers support: instrument simulation, automatic range
checking, state caching, and interchangeability.

The IVI Foundation has created IVI class specifications that define the capabilities
for drivers for the following eight instrument classes:

Class IVI Driver
Digital multimeter (DMM) IviDmm
Oscilloscope IviScope

Arbitrary waveform/function generator IviFgen

DC power supply IviDCPwr
Switch IviSwtch
Power meter IviPwrMeter
Spectrum analyzer IviSpecAn
RF signal generator IViRFSigGen

IVI Class Compliant drivers usually also include capability that is not part of the VI
Class. It is common for instruments that are part of a class to have numerous
functions that are beyond the scope of the class definition. This may be because
the capability is not common to all instruments of the class or because the
instrument offers some control that is more refined than what the class defines.

IVI also defines custom drivers. Custom drivers are used for instruments that are
not members of a class. For example, there is not a class definition for network
analyzers, so a network analyzer driver must be a custom driver. Custom drivers
provide the same consistency and benefits described below for an IVI driver,
except interchangeability.

IVI drivers conform to and are documented according to the IVI specifications and
usually display the standard IVI logo.

Why Use an IVI Driver?
Why choose VI drivers over other possibilities? Because VI drivers can increase
performance and flexibility for more intricate test applications. Here are a few of the
benefits:

Consistency — VI drivers all follow a common model of how to control the
instrument. That saves you time when you need to use a new instrument.

Ease of use — |VI drivers feature enhanced ease of use in popular Application
Development Environments (ADEs). The APls provide fast, intuitive access to
functions. IVI drivers use technology that naturally integrates in many different
software environments.

Quality — IVI drivers focus on common commands, desirable options, and
rigorous testing to ensure driver quality.

Simulation — VI drivers allow code development and testing even when an
instrument is unavailable. That reduces the need for scarce hardware resources
and simplifies test of measurement applications. The example programs in this
document use this feature.

Range checking — VI drivers ensure the parameters you use are within
appropriate ranges for an instrument.

State caching — VI drivers keep track of an instrument’s status so that I/O is only
performed when necessary, preventing redundant configuration commands from
being sent. This can significantly improve test system performance.

Interchangeability — |VI drivers enable exchange of instruments with minimal
code changes, reducing the time and effort needed to integrate measurement
devices into new or existing systems. The VI class specifications provide syntactic
interchangeability but may not provide behavioral interchangeability. In other
words, the program may run on two different instruments but the results may
not be the same due to differences in the way the instrument itself functions.

Flavors of IVI Drivers
To support all popular programming languages and development environments, VI
drivers provide either an IVI-C or an IVI-COM (Component Object Model) API.
Driver developers may provide either or both interfaces, as well as wrapper
interfaces optimized for specific development environments.

Although the functionality is the same, IVI-C drivers are optimized for use in ANSI
C development environments; IVI-COM drivers are optimized for environments
that support the Component Object Model (COM). IVI-C drivers extend the
VXlplugé&play driver specification and their usage is similar. IVI-COM drivers
provide easy access to instrument functionality through methods and properties.

All VI drivers communicate to the instrument through an 1/O Library. Our examples
use the Virtual Instrument Software Architecture (VISA), a widely used standard
library for communicating with instruments from a personal computer.

Shared Components
To make it easier for you to combine drivers and other software from various
vendors, the IVl Foundation members have cooperated to provide common
software components, called IVl Shared Components. These components provide
services to drivers and driver clients that need to be common to all drivers. For
instance, the IVI Configuration Server enables administration of system-wide
configuration.

Important! You must install the IVI Shared Components before an IVI driver
can be installed.

The IVI Shared Components can be downloaded from vendors’ web sites as well
as from the IVI Foundation Web site.

To download and install shared components from the IVl Foundation Web site:
1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.

2 Locate Shared Components.

3 Choose the IVI Shared Components msi file for the Microsoft Windows Installer
package or the IVI Shared Components exe for the executable installer.

Download and Install IVI Drivers
After you've installed Shared Components, you're ready to download and install an
IVI driver. For most ADEs, the steps to download and install an VI driver are
identical. For the few that require a different process, the relevant Getting Started
with IVI Drivers guide provides the information you need.

IVI Drivers are available from your hardware or software vendor’s web site or by
linking to them from the IVl Foundation web site.

To see the list of drivers registered with the IVl Foundation, go to
http://www.ivifoundation.org.

http://www.ivifoundation.org

Familiarizing Yourself with the Driver

Examples

Although the examples in Getting Started with IVI Drivers use a DMM driver, you
will likely employ a variety of VI drivers to develop test programs. To jumpstart
that task, you’ll want to familiarize yourself quickly with drivers you haven’t used
before. Most ADEs provide a way to explore IVI drivers to learn their functionality.
In each VI guide, where applicable, we add a note explaining how to view the
available functions. In addition, browsing an IVI driver’s help file often proves an
excellent way to learn its functionality.

As we noted above, each guide in the Getting Started with IVI Drivers series
shows you how to use an IVI driver to write and run a program that performs a
simple measurement on a simulated instrument and returns the result. The
examples demonstrate common steps using VI drivers. Where practical, every
example includes the steps listed below:

* Download and Install the IVI driver— covered in the Download and Install IVI
Drivers section above.

® Determine the VISA address string — Examples in Getting Started with IVI
Drivers use the simulate mode, so we chose the address string
GPIB0::23::INSTR, often shown as GPIB::23. If you need to determine the
VISA address string for your instrument and the ADE does not provide it
automatically, use an 10 application, such as National Instruments
Measurement and Automation Explorer (MAX) or Agilent Connection Expert.

* Reference the driver or load driver files — For the examples in the IVI guides, the
driver is the Agilent 34401A IVI-COM Specific Driver, Version 1.1.0.11,
March 2006 (from Agilent Technologies) or the Agilent 34401A IVI-C
Specific driver, Version 4.1, October 2006 (from National Instruments).

® Create an instance of the driver in ADEs that use COM — For the examples in
the IVI guides, the driver is the Agilent 34401A (IVI-COM) or HP 34401 (IVI-C).

* Write the program:

* |nitialize the instrument — Initialize is required when using any IVI driver.
Initialize establishes a communication link with the instrument and must
be called before the program can do anything with the instrument. We set
reset to true, ID query to false, and simulate to true.

Setting reset to true tells the driver to initially reset the instrument.
Setting the ID query to false prevents the driver from verifying that the
connected instrument is the one the driver was written for. Finally,
setting simulate to true tells the driver that it should not attempt to
connect to a physical instrument, but use a simulation of the
instrument.

* Configure the instrument — We set a range of 1.5 volts and a resolution of
0.001 volts (1 millivolt).

® Access an instrument property — We set the trigger delay to 0.01
seconds.

10

® Set the reading timeout — We set the reading timeout to 1000
milliseconds (1 second).

* Take a reading

® Close the instrument — This step is required when using any VI driver,
unless the ADE explicitly does not require it. We close the session to free
resources.

Important! Close may be the most commonly missed step when using an
IVI driver. Failing to do this could mean that system resources are not
freed up and your program may behave unexpectedly on subsequent
executions.

® Check the driver for any errors.

* Display the reading.

Note: Examples that use a console application do not show the display.

Now that you understand the logic behind IVI drivers, let's see how to get started.

1

Chapter 2
Using IVI with LabVIEW™

The Environment
National Instruments LabVIEW is a graphical development environment for signal
acquisition, measurement analysis, and data presentation. LabVIEW provides the
flexibility of a programming language with less complexity than traditional
development tools.

Example Requirements
* LabVIEW 8.20

* |VI-C: Agilent 34401A IVI-C specific driver, Version 4.1, October 2006 (from
National Instruments)

* [VI-COM: Agilent 34401A IVI-COM driver, Version 1.1.0.11, March 2006 (from
Agilent Technologies)

Note: These drivers may require an I/O library to be installed. Check the driver

vendor’s Web site for details.

Download and Install the Driver

If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it.

Since LabVIEW supports both IVI-C and IVI-COM drivers, this example is written
two ways, first to show how to use an IVI-C driver in LabVIEW, and second how to
use an IVI-COM driver in LabVIEW.

Using IVI-C
All IVI-C drivers provide a Dynamic Link Library (DLL) interface. While LabVIEW
provides the Call Library Function node to call DLLs, many IVI-C drivers also come
with a LabVIEW wrapper that provides the familiar VI interface to the driver’s
functions, making it easier to use in LabVIEW. If your IVI-C driver does not have a
LabVIEW wrapper, you can create one using a free tool by clicking on LabVIEW
Instrument Driver Import Wizard at:

http://www.ni.com/devzone/idnet/development.htm.

Note: The functionality shown in this section is available in a LabVIEW example
supplied with the VI driver from National Instruments.

12

Create a VI and Access the Driver

1
2

Launch LabVIEW.

From the File menu, select New VI. The Front Panel and Block Diagram
appear.

Right-click in the Block Diagram. The Functions palette appears.

Select the Instrument I/O subpalette and then the Instrument Drivers
subpallete. You can access all instrument driver VIs from this palette.

Click Instrument Drivers. Select hp34401a from the palette.
Select the hp34401a IVI driver from the palette.

Note: If the driver you want to use is not listed, download and install the driver, and
close and restart LabVIEW. The driver should now appear in the palette. The driver
palette allows you to browse the various VIs and functionality supported by the
driver.

B! 11 Demo (IVJ-C).vi Block Diagram
Fie Edt Wiew Project

Tools Window Help

o[m] [bal @] # [130t pplcation Fort |~ | [|[m~
41 Functions Q search| =
Programming »

C
onE| ==
2

1l

Cluser & Yari,.,

D
i

H =1"| Y
B]
Mumeric File I/ Bodlean

gt
7
e

3
3
o
g
E}
T
El
Pl
2
3

L
4

Dislog & User.., Waveform Application ...
¥ 0 =
fo -
“m> J g,

Synchronization Graphics & 5o0... Report Gener.

Measurement 1/0

>
Instrument 1O »
Wision and Motion | 2 tnstrument 110
Mathematics) Instrument Drivers
Signal Processing | sy | ==l
Data Commurication) REE {1 Instrument Drivers
Connectivity) Instr Drivers hp34401a
Contral Design & Simulat) A, | e
onitral Desian & Simulation T —
SignalExpress) !- e e 41 hpas401a
Express) vsA Agient 34401 hpadola hp34401a
addons » @
Favorites L3 Haarialize
User Libraries » hp34401a Ini hp34401a Ini.. hp34401a V..
» ¥ G
< Selectavl.. o= . ﬁ
e ==
TestStand , a dreh
Corfiguration Measurement Uity hp344n1acla...

13

Initialize the Instrument
1 Select Initialize With Options VI from the hp34401a palette and place it on the
Block Diagram.

& 11 Demo, {I¥1-C).vi Block Diagram * =13
Fle Edt Yew Project Operate Tools Window Help H
@ @[n Lo i o [13pt Applcation Font v||;m'||q]:v1)
~
[HF 3 ddi1]
e
[Tt liog]
v
< B

2 Create constants and enter values for instrument resource name, 1D Query,
Reset, and IVI option string:
® GPIBO0::23::INSTR in the instrument resource name field
* False in the ID Query field
* True in the Reset field
* Simulate=1 in the Options field

Note: To create a constant, control, or indicator, right-click on the desired input
terminal and select Create.

14

Configure the Instrument

Bl Y] Demo: {I¥1-C).vi Block Diagram *

File Edit “iew Project Operate Tools Window Help

©|EI I?|Dj} | 13pt Application Font - ” [||:|E|:' |

Sirulate=1
- GPIED: 25 INSTR. [+]

IdQuery i
Reset .-

1 From the Configuration subpalette, select Configure Measurement VI and
place it on the Block Diagram.

2 Create constants and enter values to set the resolution to 1 millivolt, the
function to DC Voltage, and the range to 1.5 volts:
® 0.001 in the Resolution field
* DC volts in the Measurement Function field
* 1.5in the Range field

3 Connect the instrument handle and error terminals from Initialize With Options
VI to Configure Measurement VI.

4 From the Trigger subpalette, select Configure Trigger VI and place it on the
Block Diagram.

5 Connectresource name and error information from Configure Measurement VI
to Configure Trigger VI.

6 Create a constant and enter a value of 0.01 in the Trigger Delay field.

Note: You can also set the Trigger Delay using a Property Node by replacing steps
4 & 5 with a property access as shown in the section “Setting a Property in an IVI-
C Driver” below.

Take the Reading

1 Return to the main hp34401a palette. From the Measurement subpalette,
select Read VI and place it on the Block Diagram.

2 Set the value for Timeout to 1 second (1000 ms). Enter 1000 in the Timeout
field.

15

3 Connect resource name and error information from Configure Trigger to Read
VI.

Display the Reading
Create an indicator for Reading from the terminal on the Read VI.

Close the Session
1 Return to the main hp 34401a palette. Select Close VI and place it on the Block

Diagram.
2 Connect resource name and error information from Read VI to Close VI.

Note: LabVIEW compiles while developing, which lets you check the program
execution at any time.

Add Error Checking
1 Return to the main functions palette. From the Dialog & User Interface
subpalette select Simple Error Handler VI and place it on the Block Diagram.

2 Connect the error information from Close VI to Simple Error Handler VI.

Run the Application
Your final VI Block Diagram should contain the elements shown below. To run your
VI

1 Switch to the VI's Front Panel and click on the Run arrow to run the application.
2 The Reading indicator should display a simulated reading from the instrument.

Bl 1¥11Dema {IV1-C).vi Block Diagram =3
File Edit “iew Project Operate Tools Window Help

OEDB | 13pt Application Fonk - 1|=mvl‘:ﬁ:v|

Resolution |0.001

Measurement Function

Read
Tirneaut

[10m0] biizs

SO,

Simulate=1
s GPIED: 1231 INSTR |7

Tdquery (2] s
Reset [lF] E

Range |1.5

TriggerDelay [0.01

16

Setting a Property in an IVI-C Driver
Properties such as Trigger Delay can also be set (and read) with a property node.
This is important in cases where a configuration function is not provided by the
driver.

For example we can replace steps 4 and 5 of the “Configure the Instrument” section
with:

1 From the Functions palette select Application Control and drop a Property
Node on the Block Diagram.

2 Connect the resource name and error information from Configure
Measurement VI to the Property Node.

3 Right-click on the Property Node and select Change All to Write.
4 Click on the Property field and select Trigger >> Trigger Delay.

B} VI Demo (IVI-C) wProperty.vi Block Diagram E”E|E|

File Edit VYiew Project Operate Tools Window Help ,'JH
> [@] @[m][2][25] [wa]@ o [130t Appication Fort [+ [#o][40~ | [5+] =
~
Resolution
Measurement Function JDC Yolks |
ﬂ Read
Tirmeaut -
1000 [=11.2:3]
[; GPiea: 23 maTR. 7] ’7 = |
IdGQuery "‘- Fad0] HFEad0 Fadi]
I 20X el L o R
cosr) B | B g oot e e
b Trigger Delay
Fange
TriggerDelay (0,01
w
< | Y

Using IVI-COM
To use IVI-COM drivers in LabVIEW you will use the ActiveX functions and the
Class Browser that are built-in to LabVIEW.

Create a VI and Access the Driver
1 Launch LabVIEW

17

2 From the File menu, select New VI. The Front Panel and Block Diagram
appear.

3 Right-click in the Block Diagram. The Functions palette appears.

4 Select the Connectivity subpalette and then the ActiveX subpallete. From this
palette, you can access ActiveX and COM objects including all IVI-COM
drivers.

5 Select Automation Open from the palette and place it on the block diagram.

B I¥I Demo (I¥I-COM). ¥ Block Diagram
Elle Edit v Project Operate Tools ‘Window Help

OEHluﬂ [3pt Application Fant '”!D'”E‘i- 2

<1 Functions Qsaarch‘ 2
Programming 3
» =0 "
&
Structures Array Cluster & Yari...
73] M =h"] EaF] *
=)
humeric File 1j0 Boolean
¥ I> H
=
String Comparison

&

Diak

o
A
@
=
i
a@
=
o
2
o
2
El

5%
&

Synchronization Graphics 8 So... Repart Gener...
Measurement IjQ
Instrument 1/Q
Wision and Motion
Mathematics

Signal Processing
Data Communication

Cor

Control Design & Simulation

SignalExpress

Express i éﬂl M Mool Activex

Addons E @

Favorites Libraries & Ex... Source Contral Port Ijo E

User Libraries -
< | Select avl... T Automation 0., Close Refere. . ToVariant Variant To Data
—

Mu\tiTrlé':o\s E @ @

Property Mode Invoke Mode Register Eve... Unregister Fo...

MNET Input Device ... Activel

Static V1 Refe...

6 Right-click on the Automation Refnum terminal, select Select ActiveX Class...
and then Browse...

18

7 From the Type Library drop-down, select the IVI Agilent 34401A (Agilent
Technologies) 1.1 Type Library Version 1.1, and then select the I1Agilent34401
object. Click OK.

Note: If the IVI-COM driver you want to use is not listed, download and install the

driver and close and restart LabVIEW. The driver should now appear in the type
library browser.

B Select Object From Type Library

Tvpe Library
I¥I Agilent34401 (Agilent Technologies) 1.1 Type o,
Librat Wersion 1.1 -
Cbjects

Show Creatable Objects Only

o Aadilent34401 (Agilent34401, Agilent34401.1)
IAgilent34401

[

+ Tagilent34401 AC

+ IAgilent34401 0 Current
+ IAgilent34401 AN olkage
+ IAgilent34401Advanced
+ IAgilent34401 Calibration

T 1 [T Rt N Tl 1

W

| oK | | Cancel | | Help |

Initialize the Instrument
1 From the View menu, select Class Browser. The Class Browser allows you to
invoke methods and set or get properties of the ActiveX/COM object.
2 From the Object library drop-down, select ActiveX and then Select Type
Libraries.
3 Scroll down and select the IVI Agilent 34401A (Agilent Technologies) 1.1 Type
Library Version 1.1, Click OK.

19

4

Back in the Class Browser, under Properties and Methods, scroll down and
select Initialize. Click Create and drag the Invoke Node to the Block Diagram.

5 Create constants and enter values for ResourceName, IDQuery, Reset, and
OptionString:
* GPIB0::23::INSTR in the instrument ResourceName field
* False in the IDQuery field
® True in the Reset field
* Simulate=1 in the OptionString field

6 Connect the automation refnum and error terminals from Automation Open to
Initialize Invoke Node.
Note: Instead of using the Class Browser, you can select an Invoke Node from the
ActiveX subpalette and select the Initialize method. To access driver properties,
you can select a Property Node from the ActiveX subpalette and select the
appropriate property or you can use the Class Browser for both IVI-C and IVI-COM
drivers.

B 11 Demo (I¥1-COM).vi Block Diagram =113

Eile Edit W¥ew Project

@@ |3|Dj} ‘ 13pt Application Fort |+ ”gmv”ﬁv|

OQperate Tools Window Help

o

flent 34401 Lib.1Aglent 34401
= T % Taglent34401 |

GPIB: :23: IMSTR [~ Pesourceklame

ISimulate=1 M+ CpkionSking

Initiglize:

=3 Tdouery
- Reset

Configure the Instrument

1

Go back to the Class Browser, and under Properties and Methods, double-click
the DC Voltage property and select the Configure method. Click Create and
drag the Invoke Node to the Block Diagram.

Create constants and enter values to set the Resolution to 1 millivolt and the
Range to 1.5 volts:

¢ 0.001 in the Resolution field
* 1.5in the Range field

20

3 Connect the automation refnum and error terminals from Initialize Invoke Node
to DCVoltage.Configure Invoke Node.

4 In the Class Browser, go back to the top-level object and double-click the
Trigger property and select the Delay property. Click Create Write and drag the
Property Node to the Block Diagram.

5 Create a constant and enter a value of 0.01 seconds for the Delay field.

6 Connect the automation refnum and error terminals from DCVoltage.Configure
Invoke Node to Trigger.Delay Property Node.

Take the Reading
1 Return to the Class Browser, and under Properties and Methods, double-click
the Measurement property and select the Read method. Click Create and drag
the Invoke Node to the Block Diagram.

2 Set the value for Timeout to 1 second (1000 ms) by entering 1000 in the
MaxTimeMilliseconds field.

3 Connect the automation refnum and error terminals from Trigger.Delay
Property Node to Measurement.Read Invoke Node.

Display the Reading
Create an indicator for Measurement.Read from the Invoke Node terminal.

Close the Driver and Automation Sessions
1 Return to the Class Browser, and under Properties and Methods, double-click
the Close method. Click Create and drag the Invoke Node to the Block
Diagram.
2 Close the Class Browser. From the ActiveX subpalette, select Close Reference
and place on the Block Diagram.

3 Connect the automation refnum and error terminals from Measurement.Read
Invoke Node to Close Invoke Node and then to Close Reference function.

Add Error Checking
1 Return to the main functions palette. From the Dialog & User Interface
subpalette select Simple Error Handler VI and place it on the Block Diagram.

2 Connect the error information from Close Reference function to Simple Error
Handler VI.

21

Run the Application

Your final VI Block Diagram should contain the elements shown below. To run your
VI

1 Switch to the VI's Front Panel and click on the Run arrow to run the application.
2 The Reading indicator should display a simulated reading from the instrument.

B4 V1 Demo (1¥1-COM).vi Block Diagram

File Edit Wiew Project Operate Tools ‘window Help
©|E| uj] ‘ 13pt Application Fonit
Y
Agilent34401Lib.1Agilent34401
B
e 11 " Tiigilent34401 § 5 b Ingilenta4ann G115 =t Iaglenta440t G154 Ingient3esnl 5%k Ingientsesnl 5l Jc O |
- Tnitialize: DCv¥altage. Configure b TriggerDelay | Measurement fead b | Close |
GPIE: 23 0INSTR [ResourceMams B Rangs pMaxTimeMiliseconds Fead]
“¢ L} TdQuery ' Resolution
[TH g Reset ﬁ Lmnm pitzs
Simulate=1§-{+ Option5tring jo.001] 0.01 DEd
v
< | >

Further Information

Learn more about using an instrument driver in LabVIEW in this tutorial:
http://zone.ni.com/devzone/cda/tut/p/id/2804.

22

http://zone.ni.com/devzone/cda/tut/p/id/2804

	Getting Started with IVI Drivers
	Contents
	Chapter 1 - Introduction
	Purpose
	Why Use an Instrument Driver?
	Why IVI?
	Why Use an IVI Driver?
	Flavors of IVI Drivers
	Shared Components
	Download and Install IVI Drivers
	Familiarizing Yourself with the Driver
	Examples

	Chapter 2 - Using IVI with LabVIEW™
	The Environment
	Example Requirements
	Download and Install the Driver
	Using IVI-C
	Create a VI and Access the Driver
	Initialize the Instrument
	Configure the Instrument
	Take the Reading
	Display the Reading
	Close the Session
	Add Error Checking
	Run the Application
	Setting a Property in an IVI-C Driver
	Using IVI-COM
	Create a VI and Access the Driver
	Initialize the Instrument
	Configure the Instrument
	Take the Reading
	Display the Reading
	Close the Driver and Automation Sessions
	Add Error Checking
	Run the Application
	Further Information

