Getting Started with IVI Drivers

Your Guide to Using IVI with Visual Basic 6.0

Version 1.2

© Copyright IVI Foundation, 2015
All rights reserved
The IVI Foundation has full copyright privileges of all versions of the IVI Getting Started Guide. For persons wishing to reference portions of the guide in their own written work, standard copyright protection and usage applies. This includes providing a reference to the guide within the written work. Likewise, it needs to be apparent what content was taken from the guide. A recommended method in which to do this is by using a different font in italics to signify the copyrighted material.
Chapter 1
Introduction

Purpose

Welcome to Getting Started with IVI Drivers: Your Guide to Using IVI with Visual Basic 6.0. This guide introduces key concepts about IVI drivers and shows you how to create a short program to perform a measurement. The guide is part of the IVI Foundation’s series of guides, Getting Started with IVI Drivers.

Getting Started with IVI Drivers is intended for individuals who write and run programs to control test-and-measurement instruments. Each guide focuses on a different programming environment. As you develop test programs, you face decisions about how you communicate with the instruments. Some of your choices include Direct I/O, VXI plug&play drivers, or IVI drivers. If you are new to using IVI drivers or just want a quick refresher on the basics, Getting Started with IVI Drivers can help.

Getting Started with IVI Drivers shows that IVI drivers can be straightforward, easy-to-use tools. IVI drivers provide a number of advantages that can save time and money during development, while improving performance as well. Whether you are starting a new program or making improvements to an existing one, you should consider the use of IVI drivers to develop your test programs.

So consider this the “hello, instrument” guide for IVI drivers. If you recall, the “hello world” program, which originally appeared in Programming in C: A Tutorial, simply prints out “hello, world.” The “hello, instrument” program performs a simple measurement on a simulated instrument and returns the result. We think you’ll find that far more useful.

Why Use an Instrument Driver?

To understand the benefits of IVI drivers, we need to start by defining instrument drivers in general and describing why they are useful. An instrument driver is a set of software routines that controls a programmable instrument. Each routine corresponds to a programmatic operation, such as configuring, writing to, reading from, and triggering the instrument. Instrument drivers simplify instrument control and reduce test program development time by eliminating the need to learn the programming protocol for each instrument.
Commands for Programmable Instrumentation (SCPI). This defined set of commands for controlling instruments uses ASCII characters, providing some basic standardization and consistency to the commands used to control instruments. For example, when you want to measure a DC voltage, the standard SCPI command is "MEASURE:VOLTAGE:DC?".

In 1993, the VXIplug&play Systems Alliance created specifications for instrument drivers called VXIplug&play drivers. Unlike SCPI, VXIplug&play drivers do not specify how to control specific instruments; instead, they specify some common aspects of an instrument driver. By using a driver, you can access the instrument by calling a subroutine in your programming language instead of having to format and send an ASCII string as you do with SCPI. With ASCII, you have to create and send the instrument the syntax "MEASURE:VOLTAGE:DC?", then read back a string, and build it into a variable. With a driver you can merely call a function called MeasureDCVoltage() and pass it a variable to return the measured voltage.

Although you still need to be syntactically correct in your calls to the instrument driver, making calls to a subroutine in your programming language is less error prone. If you have been programming to instruments without a driver, then you are probably all too familiar with hunting around the programming guide to find the right SCPI command and exact syntax. You also have to deal with an I/O library to format and send the strings, and then build the response string into a variable.

Why IVI?

The VXIplug&play drivers do not provide a common programming interface. That means programming a Keithley DMM using VXIplug&play still differs from programming a Keysight DMM. For example, the instrument driver interface for one may be ke2000_read while another may be ag34401_get or something even farther afield. Without consistency across instruments manufactured by different vendors, many programmers still spent a lot of time learning each individual driver.

To carry VXIplug&play drivers a step (or two) further, in 1998 a group of end users, instrument vendors, software vendors, system suppliers, and system integrators joined together to form a consortium called the Interchangeable Virtual Instruments (IVI) Foundation. If you look at the membership, it’s clear that many of the foundation members are competitors. But all agreed on the need to promote specifications for programming test instruments that provide better performance, reduce the cost of program development and maintenance, and simplify interchangeability.

For example, for any IVI driver developed for a DMM, the measurement command is IviDmmMeasurement.Read, regardless of the vendor. Once you learn how to program the commands specified by IVI for the instrument class, you can use any vendor’s instrument and not need to relearn the commands. Also commands that are common to all drivers, such as Initialize and Close, are identical regardless of
the type of instrument. This commonality lets you spend less time browsing through the help files in order to program an instrument, leaving more time to get your job done.

That was the motivation behind the development of IVI drivers. The IVI specifications enable drivers with a consistent and high standard of quality, usability, and completeness. The specifications define an open driver architecture, a set of instrument classes, and shared software components. Together these provide consistency and ease of use, as well as the crucial elements needed for the advanced features IVI drivers support: instrument simulation, automatic range checking, state caching, and interchangeability.

The IVI Foundation has created IVI class specifications that define the capabilities for drivers for the following thirteen instrument classes:

<table>
<thead>
<tr>
<th>Class</th>
<th>IVI Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital multimeter (DMM)</td>
<td>lviDmm</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>lviScope</td>
</tr>
<tr>
<td>Arbitrary waveform/function generator</td>
<td>lviFgen</td>
</tr>
<tr>
<td>DC power supply</td>
<td>lviDCPwr</td>
</tr>
<tr>
<td>AC power supply</td>
<td>lviACPwr</td>
</tr>
<tr>
<td>Switch</td>
<td>lviSwtch</td>
</tr>
<tr>
<td>Power meter</td>
<td>lviPwrMeter</td>
</tr>
<tr>
<td>Spectrum analyzer</td>
<td>lviSpecAn</td>
</tr>
<tr>
<td>RF signal generator</td>
<td>lviRFSigGen</td>
</tr>
<tr>
<td>Upconverter</td>
<td>lviUpconverter</td>
</tr>
<tr>
<td>Downconverter</td>
<td>lviDownconverter</td>
</tr>
<tr>
<td>Digitizer</td>
<td>lviDigitizer</td>
</tr>
<tr>
<td>Counter/timer</td>
<td>lviCounter</td>
</tr>
</tbody>
</table>

IVI Class Compliant drivers usually also include numerous functions that are beyond the scope of the class definition. This may be because the capability is not common to all instruments of the class or because the instrument offers some control that is more refined than what the class defines.
IVI also defines custom drivers. Custom drivers are used for instruments that are not members of a class. For example, there is not a class definition for network analyzers, so a network analyzer driver must be a custom driver. Custom drivers provide the same consistency and benefits described below for an IVI driver, except interchangeability.

IVI drivers that conform to the IVI specifications are permitted to display the IVI-Conformant logo.

Example

Why Use an IVI Driver?

Why choose IVI drivers over other possibilities? Because IVI drivers can increase performance and flexibility for more intricate test applications. Here are a few of the benefits:

Consistency – IVI drivers all follow a common model of how to control the instrument. That saves you time when you need to use a new instrument.

Ease of use – IVI drivers feature enhanced ease of use in popular Application Development Environments (ADEs). The APIs provide fast, intuitive access to functions. IVI drivers use technology that naturally integrates in many different software environments.

Quality – IVI drivers focus on common commands, desirable options, and rigorous testing to ensure driver quality.

Simulation – IVI drivers allow code development and testing even when an instrument is unavailable. That reduces the need for scarce hardware resources and simplifies test of measurement applications. The example programs in this document use this feature.

Range checking – IVI drivers ensure the parameters you use are within appropriate ranges for an instrument.

State caching – IVI drivers keep track of an instrument’s status so that I/O is only performed when necessary, preventing redundant configuration commands from being sent. This can significantly improve test system performance.

Interchangeability – IVI class compliant drivers also enable exchange of instruments with minimal code changes, reducing the time and effort needed to integrate measurement devices into new or existing systems. The IVI class specifications provide syntactic interchangeability but may not provide behavioral interchangeability. In other words, the program may run on two different
instruments but the results may not be the same due to differences in the way the instrument itself functions.

Flavors of IVI Drivers

To support all popular programming languages and development environments, IVI drivers provide either an IVI-C or IVI-COM (Component Object Model) API. Driver developers may provide either or both interfaces, as well as wrapper interfaces optimized for specific development environments.

Although the functionality is the same, IVI-C drivers are optimized for use in ANSI C development environments; IVI-COM drivers are optimized for environments that support the Component Object Model (COM) such as the .NET programming environment. IVI-C drivers extend the VXIplug&play driver specification and their usage is similar. IVI-COM drivers provide easy access to instrument functionality through methods and properties.

The getting started examples communicate with the instruments using the Virtual Instrument Software Architecture (VISA) I/O library, a widely used standard library for communicating with instruments from a personal computer. The VISA standard is also provided by the IVI Foundation.

Shared Components

To make it easier to combine drivers and other software from various vendors, the IVI Foundation members have cooperated to provide common software components, called IVI Shared Components. These components provide services to drivers and driver clients that need to be common to all drivers. For instance, the IVI Configuration Server enables administration of system-wide configuration.

Important! You must install the IVI Shared Components before an IVI driver can be installed.

The IVI Shared Components can be downloaded from vendors’ web sites as well as from the IVI Foundation Web site.

To download and install shared components from the IVI Foundation Web site:

2. Locate Shared Components.
3. Choose the IVI Shared Components msi file for the Microsoft Windows Installer package or the IVI Shared Components exe for the executable installer.

Download and Install IVI Drivers

After you’ve installed Shared Components, you’re ready to download and install an IVI driver. For most ADEs, the steps to download and install an IVI driver are identical. For the few that require a different process, the relevant Getting Started
with IVI Drivers guide provides the information you need. IVI Drivers are available from the hardware or software vendors’ web site or by linking to them from the IVI Foundation web site.

The IVI Foundation requires that compliant drivers be registered before the display the IVI conformant logo. To see the list of drivers registered with the IVI Foundation, go to the registration section of the IVI web site at http://www.ivifoundation.org.

Familiarizing Yourself with the Driver

Although the examples in *Getting Started with IVI Drivers* use a DMM driver, you will likely employ a variety of IVI drivers to develop test programs. To jumpstart that task, you’ll want to familiarize yourself quickly with drivers you haven’t used before. Most ADEs provide a way to explore IVI drivers to learn their functionality. In each IVI guide, where applicable, we add a note explaining how to view the available functions. In addition, browsing an IVI driver’s help file often proves an excellent way to learn its functionality.
Examples

As we noted above, each guide in the **Getting Started with VI Drivers** series shows you how to use an VI driver to write and run a program that performs a simple measurement on a simulated instrument and returns the result. The examples demonstrate common measurement using VI drivers. Where practical, every example includes the steps listed below:

- Download and Install the VI driver—covered in the Download and Install VI Drivers section above.
- Determine the VISA address string—Examples in **Getting Started with VI Drivers** use the simulate mode, so we chose the address string GPIB0::23::INSTR, often shown as GPIB::23. If you need to determine the VISA address string for your instrument and the ADE does not provide it automatically, use an IO application, such as National Instruments Measurement and Automation Explorer (MAX) or Keysight Connection Expert.
- Reference the driver or load driver files—For the examples in this guide, the driver is the **IVI-COM/VI-C Version 1.2.2.0 for 34401A, October 2008 (from Keysight Technologies) ...** or the Keysight 34401A VI-C driver, **Version 4.5, January 2015 (from National Instruments).**
- Create an instance of the driver in ADEs that use COM—For the examples in the VI guides, the driver is the Agilent 34401A (VI-COM) or HP 34401 (VI-C).
- Write the program. The programs in this series all perform the following steps:
 - Initialize the instrument—Initialize is required when using any VI driver. Initialize establishes a communication link with the instrument and must be called before the program can do anything with the instrument. The examples set reset to true, ID query to false, and simulate to true.
 - Setting reset to true tells the driver to initially reset the instrument. Setting the ID query to false prevents the driver from verifying that the connected instrument is the one the driver was written for. Finally, setting simulate to true tells the driver that it should not attempt to connect to a physical instrument, but use a simulation of the instrument.
 - Configure the instrument—The examples set a range of 1.5 volts and a resolution of 0.001 volts (1 millivolt).
 - Access an instrument property—The examples set the trigger delay to 0.01 seconds.
 - Set the reading timeout—The examples set the reading timeout to 1000 milliseconds (1 second).
 - Take a reading
 - Close the instrument—This step is required when using any VI driver, unless the ADE explicitly does not require it. We close the session to free resources.
Important! Close may be the most commonly missed step when using an IVI driver. Failing to do this could mean that system resources are not freed up and your program may behave unexpectedly on subsequent executions.

- Check the driver for any errors.
- Display the reading.

Note: Examples that use a console application do not show the display.

Now that you understand the logic behind IVI drivers, let’s see how to get started.
Chapter 2
Using IVI with Visual Basic 6.0

The Environment

Visual Basic 6.0 is a programming environment derived from Basic and developed by Microsoft for the Windows operating system. Software vendors and developers use VB to create applications quickly by writing code to accompany on-screen objects such as buttons, windows, and dialog boxes.

This chapter focuses on VB 6.0, which is not the most current version. If you are new to VB, we recommend another guide in this series, Getting Started with IVI Drivers: Your Guide to Using IVI with C# and Visual Basic .NET.

Example Requirements

- Visual Basic 6.0
- Microsoft Visual Studio 2010
- IVI-COM: Agilent 34401A IVI-COM, Version 1.2.2.0, October 2008 (from Keysight Technologies); or
- Agilent IO Libraries Suite 16.1 or later
- National Instruments IVI Compliance Package version 4.0 or later

Download and Install the Driver

If you have not already installed the driver, go to the vendor Web site and follow the instructions to download and install it. You can also refer to Chapter 1, Download and Install IVI Drivers, for instructions.

This example uses an IVI-COM driver. IVI-COM is the preferred driver for Visual Basic 6.0, but IVI-C is also supported via the inclusion of .bas files.

Create a New Project and Reference the Driver

To use an IVI Driver in a Visual Basic program, you must first create a project and add a reference to the driver.

1. Launch Visual Basic and create a new project using Standard EXE project.

 Note: This creates a Windows Application program.

2. From the Start Menu, select Project, and click References. The References dialog appears.
Select the IVI Agilent34401 1.1 Type Library from the drop-down list. Place a check in the box next to this driver.

Note: If you have not installed the IVI driver, it will not appear in this list. You must close the References dialog, install the driver, and select References again for the driver to appear.

4. Click OK. The References dialog closes.

![References dialog](image)

Note: You must click OK for Visual Basic to accept the References; however, the software provides no confirmation. You can verify the driver is available for use by opening the Add References dialog and viewing the checked references. All checked references appear near the top of the list.

Add a Button

1. Click the Command Button in the Toolbox to create a button.
2. Drag the button to the form and drop it.
3. Change the (Name) property to btnTest and the Caption property on the Command1 button to Test in the Properties list at right.
Create an Instance of the Driver

1. Double-click Test. The Project1 – Form1(Code) screen appears. Note that some code has already been added, including `Private Sub btnTest_Click()` and `End Sub`.

2. To enable strong type checking, at the top of the screen before the `Private Sub` line type `Option Explicit`.

3. Create a variable for the driver and initialize it with the New statement. On the next line type `Dim dmm As New Agilent33401`.

Initialize the Instrument

Now you will enter the code that will execute when you click Test.

On the line after `Private Sub btnTest_Click()`, type `dmm. Then type dmm.Initialize "GPIB::23", False, True, "Simulate=True"

Note: As soon as you type the period, Intellisense displays the possible methods and properties and helps ensure you use correct syntax and values.

Note: From the Start Menu, select View, and click Object Browser to view the functions and parameters available in the instrument driver. Limit the Object Browser to a specific library by selecting it in the top left list box.
Configure the Instrument

Set the function to DC Voltage, range to 1.5 volts, and resolution to 1 millivolt.

1. Type `dmm.Function = Agilent34401FunctionDCVolts`
2. Type `dmm.DCVoltage.Configure 1.5, 0.001`
3. Select Configure from the drop-down list and press the space bar.

Note: The Object Browser shows the parameters and syntax for Configure in the box at bottom, along with a short description.

4. Type `1.5, 0.001`
Set the Trigger Delay

Set the trigger delay to 0.01 seconds.

Type: `dmm.Trigger.Delay = 0.01`

Display the Reading

Set the reading timeout to 1 second and display the reading.

1. Return to the form view and click the Label Button in the Toolbox to create a label.
2. Drag it to the form and drop it.
3. Change the Name to `lblResult` in the Properties list at right.
4. Remove the text under Caption.
5. In the code after the trigger delay command, type
   ```
   lblResult.Caption = dmm.Measurement.Read(1000)
   ```

Close the Session

Type `dmm.Close`

Your final program should contain the code below.

```vbc
Option Explicit

Dim dmm As New Agilent34401

Private Sub btnTest_Click()
    dmm.Initialize "GPIB::23", False, True, "Simulate=True"
    dmm.Function = Agilent34401FunctionDCVolts
    dmm.DCVoltage.Configure 1.5, 0.001
    dmm.Trigger.Delay = 0.01
    lblResult.Caption = dmm.Measurement.Read(1000)
    dmm.Close
End Sub
```
The Agilent 34401 driver conforms to the IviDmm class, so you can easily write your program to use the class-compliant interfaces instead of the instrument-specific interfaces. You will need to add a Reference to the IviDmm Class Type library for your project to compile. Here is the code:

```vbnet
Option Explicit

Dim dmm As New Agilent34401
Dim ividmm As IIviDmm

Private Sub btnTest_Click()
    Set ividmm = dmm
    ividmm.Initialize "GPIB::23", False, True, "Simulate=True"
    ividmm.Function = Agilent34401FunctionDCVolts
    ividmm.DCVoltage.Configure 1.5, 0.001
    ividmm.Trigger.Delay = 0.01
    lblResult.Caption = ividmm.Measurement.Read(1000)
    ividmm.Close
End Sub
```
Further Information

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation in the United States and/or other countries.