
IVI Foundation 1 IVI-3.3: Standard Cross Class Capabilities

Interchangeable

Instruments
VirtualIVI

IVI-3.3: Standard Cross-Class Capabilities

Specification

 February 23, 2016 Edition
Revision 3.2

IVI-3.3: Standard Cross Class Capabilities 2 IVI Foundation

Important Information

This specification (IVI-3.3: Standard Cross-Class Capabilities Specification) is authored by the IVI

Foundation member companies. For a vendor membership roster list, please visit the IVI Foundation web site

at www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation

through the web site at www.ivifoundation.org.

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The IVI Foundation and its member companies shall not be liable for errors contained herein or for incidental

or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

IVI Foundation 3 IVI-3.3: Standard Cross Class Capabilities

1. Overview of Standard Cross-Class Capabilities 7
1.1Notation ... 7
1.2When to Define a Standard Cross-Class Capability ... 7
1.3When to Refer to a Standard Cross-Class Capability ... 7

2. Software Triggering Capability ... 8
2.1Software Trigger Error Completion Codes and Exception Class Definitions .. 9

3. Standard Trigger Source Values .. 10
3.1Attributes ... 13

4. Repeated Capability Group ... 13
4.1Overview .. 13

4.1.1 Specifying Repeated Capability Attributes and Functions ... 13
4.2Attributes – Common ... 15

4.2.1 <RC> Count ... 16
4.3Attributes – Parameter / Collection Style Combination ... 17

4.3.1 <RC> Item (IVI-COM and IVI.NET Only) ... 18
4.3.2 <RC> Name (IVI-COM and IVI.NET Only) ... 19

4.4Functions – Parameter / Collection Style Combination ... 20
4.4.1 Get <RC> Name (IVI-C & IVI.NET Only) ... 21

4.5Attributes –Selector Style .. 23
4.5.1 Active <RC> .. 24
4.5.2 <RC> Name (IVI-COM Only) ... 25

4.6Functions –Selector Style... 26
4.6.1 Get <RC> Name (IVI-C and IVI.NET Only) ... 27
4.6.2 Set Active <RC> (IVI-C Only) .. 29

5. Automatic Setting Attributes ... 30
5.1Overview .. 30
5.2Attributes ... 31

5.2.1 <Name> .. 32
5.2.2 <Name> Auto (Defined as Boolean) .. 33
5.2.3 <Name> Auto (Defined as an Auto enumeration with a “Once” value) 34

5.3Functions .. 36
5.3.1 Configure <Name> ... 37

IVI-3.3: Standard Cross Class Capabilities 4 IVI Foundation

6. Absolute Time (IVI-C and IVI-COM) .. 38
6.1Overview .. 38

6.1.1 Relationship to LXI-based instruments ... 38
6.2Attributes .. 39

6.2.1 Time (IVI.NET Only) ... 40
6.3Functions .. 41

6.3.1 Set Time (IVI-C and IVI-COM Only) .. 42
6.3.2 Get Time (IVI-C and IVI-COM Only) .. 43

IVI Foundation 5 IVI-3.3: Standard Cross Class Capabilities

Standard Cross-Class Capabilities

IVI Standard Cross-Class Capabilities Revision History

This section is an overview of the revision history of the IVI-3.3 specification. Specific individual

additions/modifications to the document in draft revisions are denoted with diff-marks, “|”, in the right hand

column of a line of text for which the change/modification applies.

Table 1-1. IVI Standard Cross-Class Capability Specification Revisions

Revision Number Date of Revision Revision Notes

Revision 1.0 April, 2002 First approved version. Voting Candidate 3 Approved,

with minor edits agreed to by Working Group

Revision 1.1 June, 2006 Fix typographical errors in section 3.3.2.

Revision 1.1 March, 2008 Editorial change to update the IVI Foundation contact

information in the Important Information section to

remove obsolete address information and refer only to

the IVI Foundation web site.

Revision 2.0 November 17, 2008 Add a list of standard interfaces / trigger sources with

standard strings for each item, and standard identifier

names for each item on the list.

Revision 3.0 June 9, 2010 Incorporated .NET

Revision 3.1 October 14, 2010 Clarify the legal use of the Get<RC>Name method.

Revision 3.1 April 15, 2011 Editorial change – format Section 4.4.1 correctly.

Revision 3.1 June 30, 2011 Editorial change – add a reference to the

TriggerSource class.

Revision 3.2 March 10, 2012 Editorial Changes – Add three trigger strings to section

3.

Revision 3.2 December 19, 2014 Editorial Change – Removed a sentence in Section

4.5.1, Active<RC> Attribute.

Revision 3.2 September 24, 2015 Editorial Change – Clarified the use of one-based

index for C and COM, and zero-based index for .NET

for repeated capabilities in sections 4.3.2, 4.4.1, 4.5.2,

and 4.6.1.

Revision 3.2 February 23, 2016 Editorial Changes – Added two trigger strings to

section 3 (Video and GPIB_SRQ).

API Versions

Architecture Drivers that comply

with version 3.1 comply

IVI-3.3: Standard Cross Class Capabilities 6 IVI Foundation

with all of the versions

below

C 1.0, 2.0, 3.0

COM 1.0, 2.0, 3.0

.NET 3.0

Drivers that comply with this version of the specification also comply with earlier, compatible, versions of the

specification as shown in the table above. The driver may benefit by advertising that it supports all the API

versions listed in the table above.

IVI Foundation 7 IVI-3.3: Standard Cross Class Capabilities

1. Overview of Standard Cross-Class Capabilities

The IVI-3.3 Standard Cross-Class Capabilities specification describes various capabilities which are common

in at least two instrument classes.

An IVI class specification describes the attributes and functions required for a particular instrument class.

Some attributes and functions should be defined identically in every instrument class. Those functions and

attributes are described here to avoid gratuitous differences.. This document contains those functions and

attributes that apply across multiple instrument classes.

1.1 Notation

<Class> Designates the appropriate class prefix in mixed case form. For example, the function

<Class>_SendSoftwareTrigger has the name IviDMM_SendSWTrigger in the

IviDMM instrument class.

<CLASS> Designates the appropriate class prefix in all upper case. For example, the attribute
<CLASS>_ATTR_SAMPLE_COUNT has the name IVIDMM_ATTR_SAMPLE_COUNT

in the IviDMM instrument class.

1.2 When to Define a Standard Cross-Class Capability

When in the course of developing a new class specification the working group identifies an instrument

capability that it believes is common across multiple instrument classes, the working group chairperson should

contact the chairperson of the Standard Cross-Class Capability working group and have the common

capability entered into Standard Cross-Class Capabilities. This document then proceeds through the normal

process of revising IVI documents.

1.3 When to Refer to a Standard Cross-Class Capability

Class specifications under development reference capabilities described in this document. The text in this

document is not copied into the instrument class specification. If an existing instrument class specification

undergoes a revision, the working group may choose to update the instrument class specification to refer to

this document.

In some cases, class specific information may need to be added to an instrument class specification to further

refine the behavior of a standard cross-class capability for that particular instrument class.

IVI-3.3: Standard Cross Class Capabilities 8 IVI Foundation

2. Software Triggering Capability

Description

This function always appears in a <Class>SoftwareTrigger Extension Group.

This function sends a software-generated trigger to the instrument. It is only applicable for instruments using

interfaces or protocols which support an explicit trigger function. For example, with GPIB this function could

send a group execute trigger to the instrument. Other implementations might send a *TRG command.

Since instruments interpret a software-generated trigger in a wide variety of ways, the precise response of the

instrument to this trigger is not defined. Note that SCPI details a possible implementation.

This function should not use resources which are potentially shared by other devices (for example, the VXI

trigger lines). Use of such shared resources may have undesirable effects on other devices.

This function should not check the instrument status. Typically, the end-user calls this function only in a

sequence of calls to other low-level driver functions. The sequence performs one operation. The end-user uses

the low-level functions to optimize one or more aspects of interaction with the instrument. To check the

instrument status, call the appropriate error query function at the conclusion of the sequence.

The trigger source attribute must accept Software Trigger as a valid setting for this function to work. If the

trigger source is not set to Software Trigger, this function does nothing and returns the error Trigger Not

Software.

.NET Method Prototype

void SendSoftwareTrigger ();

COM Method Prototype

HRESULT SendSoftwareTrigger ();

C Function Prototype

ViStatus <Class>_SendSoftwareTrigger (ViSession Vi);

Parameters

Inputs Description

Vi Instrument handle

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

The table below specifies additional class-defined exceptions for this method.

Exception Class Description

Trigger Not Software The trigger source is not set to software trigger.

IVI Foundation 9 IVI-3.3: Standard Cross Class Capabilities

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this method.

The table below specifies additional class-defined exceptions for this method.

Exception Class Description

TriggerNotSoftwareException The trigger source is not set to software trigger.

2.1 Software Trigger Error Completion Codes and Exception Class Definitions

Table 2-1 lists the error name as it is used throughout the instrument class specification and this document, a

more complete description of the error, and the identifiers used in languages of interest to IVI with an

associated value.

Table 2-1. Software Triggering Error and Completion Codes

Error Name Description

 Language Identifier Value(hex)

Trigger Not

Software

The trigger source is not set to software trigger.

 .NET Ivi.Driver.TriggerNotSoftwareException N/A

 C <CLASS>_ERROR_TRIGGER_NOT_SOFTWARE 0xBFFA1001

 COM E_<CLASS>_TRIGGER_NOT_SOFTWARE 0x80041001

Table 2-2 defines the format of the message string associated with the error. In C, this string is returned by the

Error Message function. In COM, this string is the description contained in the ErrorInfo object. In .NET this

string is the Message property of the exception class thrown by the method or property.

Note: In the description string table entries listed below, %s is always used to represent the component name.

Table 2-2. Software Triggering Error Message Strings

Name Message String

Trigger Not Software “%s: Trigger source is not set to software trigger.”

IVI-3.3: Standard Cross Class Capabilities 10 IVI Foundation

3. Standard Trigger Source Values

There are a variety of properties in the IVI APIs related to LXI arming and trigger sources (including Trigger

Source, Advanced Destination, and Sample Trigger), where LXI LAN and trigger bus triggers apply. These

values take four forms.

 In the IVI-C API, the value may take the form of a defined constant. For example, the DMM class

specification defines a Trigger Source property. One of the allowed values of that property is

IVIDMM_VAL_TTL0, defined to be 111.

 In the IVI-COM API, the value may take the form of an enumeration value. For example, the DMM

class specification defines a Trigger Source enumeration, IviDmmTriggerSourceEnum. One of

the allowed values of that enumeration is IviDmmTriggerSourceTTL0, defined to be 111.

 In the IVI.NET API, the value shall take the form of a string. In IVI-C and IVI-COM APIs, the

value may take the form of a string. In all cases in IVI.NET class-compliant and instrument specific

interfaces, such properties shall be typed as string.

 In the IVI.NET API, a static string value property from the TriggerSource class may be used.

This is equivalent to using a standard string, since the properties of this class return only the standard

strings listed in the table below. For a description of the TriggerSource class, refer to IVI-3.18,

.NET Utility Classes and Interfaces Specification, Section 14, Standard Trigger Source Values

Class.

All new IVI specifications approved after January 1, 2009, shall use strings for trigger sources and LXI

arming sources. The strings shall be treated as case-insensitive. In cases where the value is not pre-defined

by the driver, the driver shall preserve the case of the string that the user passed to the driver. In cases where

the value is pre-defined by the driver, the driver shall return the driver-defined value.

The following table defines the string values that shall be used to represent LXI arming and trigger sources in

instrument class APIs. Additional values may be defined if needed. Instrument class specifications need only

reference values that are germane to properties or parameters in the class API.

IVI Foundation 11 IVI-3.3: Standard Cross Class Capabilities

Trigger Source Description String Value

None No Interface (normally applies only to triggers) “None”, “”, or

String.Empty

Immediate Trigger Immediately (normally applies only to triggers) “Immediate”

External External source, not an interface (normally applies only to

triggers)

“External”

Internal Internal source, not an interface (normally applies only to

triggers)

“Internal”

Software Software source, not an interface (normally applies only

to triggers)

“Software”

GET Group Execute Trigger “GET”

ACLine AC Line Interface “ACLine”

Interval Trigger at set intervals “Interval”

Video Video Trigger “Video”

GPIB SRQ GPIB SRQ Advanced Output Trigger “GPIB_SRQ”

LAN0 LAN0 (LXI defined “LAN0” LAN message) “LAN0”

LAN1 LAN1 (LXI defined “LAN1” LAN message) “LAN1”

LAN2 LAN2 (LXI defined “LAN2” LAN message) “LAN2”

LAN3 LAN3 (LXI defined “LAN3” LAN message) “LAN3”

LAN4 LAN4 (LXI defined “LAN4” LAN message) “LAN4”

LAN5 LAN5 (LXI defined “LAN5” LAN message) “LAN5”

LAN6 LAN6 (LXI defined “LAN6” LAN message) “LAN6”

LAN7 LAN7 (LXI defined “LAN7” LAN message) “LAN7”

LXI0 LXI Trigger Bus Line 0 “LXI0”

LXI1 LXI Trigger Bus Line 1 “LXI1”

LXI2 LXI Trigger Bus Line 2 “LXI2”

LXI3 LXI Trigger Bus Line 3 “LXI3”

LXI4 LXI Trigger Bus Line 4 “LXI4”

LXI5 LXI Trigger Bus Line 5 “LXI5”

LXI6 LXI Trigger Bus Line 6 “LXI6”

LXI7 LXI Trigger Bus Line 7 “LXI7”

TTL0 TTL Interface 0 “TTL0”

TTL1 TTL Interface 1 “TTL1”

TTL2 TTL Interface 2 “TTL2”

TTL3 TTL Interface 3 “TTL3”

TTL4 TTL Interface 4 “TTL4”

TTL5 TTL Interface 5 “TTL5”

TTL6 TTL Interface 6 “TTL6”

IVI-3.3: Standard Cross Class Capabilities 12 IVI Foundation

TTL7 TTL Interface 7 “TTL7”

ECL0 ECL Line 0 “ECL0”

ECL1 ECL Line 1 “ECL1”

PXI_CLK10 PXI 10MHz Clock Line “PXI_CLK10”

PXI_STAR PXI Star Interface “PXI_STAR”

PXI_TRIG0 PXI Trigger Bus Line 0 “PXI_TRIG0”

PXI_TRIG1 PXI Trigger Bus Line 1 “PXI_TRIG1”

PXI_TRIG2 PXI Trigger Bus Line 2 “PXI_TRIG2”

PXI_TRIG3 PXI Trigger Bus Line 3 “PXI_TRIG3”

PXI_TRIG4 PXI Trigger Bus Line 4 “PXI_TRIG4”

PXI_TRIG5 PXI Trigger Bus Line 5 “PXI_TRIG5”

PXI_TRIG6 PXI Trigger Bus Line 6 “PXI_TRIG6”

PXI_TRIG7 PXI Trigger Bus Line 7 “PXI_TRIG7”

PXIe_CLK100 PXI Express 100MHz Clock Line “PXIe_CLK100”

PXIe_DSTARA PXI Express DStar Line A “PXIe_DSTARA”

PXIe_DSTARB PXI Express DStar Line B “PXIe_DSTARB”

PXIe_DSTARC PXI Express DStar Line C “PXIe_DSTARC”

RTSI0 RTSI Bus Line 0 “RTSI0”

RTSI1 RTSI Bus Line 1 “RTSI1”

RTSI2 RTSI Bus Line 2 “RTSI2”

RTSI3 RTSI Bus Line 3 “RTSI3”

RTSI4 RTSI Bus Line 4 “RTSI4”

RTSI5 RTSI Bus Line 5 “RTSI5”

RTSI6 RTSI Bus Line 6 “RTSI6”

RTSI7 RTSI Bus Line 7 “RTSI7”

Note that several instrument class specifications were completed before this section was added, and some of

them use values that differ from the above table. These specifications shall continue to use the IVI-C and IVI-

COM values as originally defined, and existing class APIs will not be expected to conform to the above table.

If these APIs are extended with new methods or properties, the new methods or properties shall use strings

and shall conform to the above table. These specifications are:

 IVI 4-1: IviScope Class Specification

 IVI 4-2: IviDmm Class Specification

 IVI 4-3: IviFgen Class Specification

 IVI 4-4: IviDCPwr Class Specification

 IVI 4-6: IviSwtch Class Specification

 IVI 4-7: IviPwrMeter Class Specification

 IVI 4-8: IviSpecAn Class Specification

 IVI 4-10: IviRFSigGen Class Specification

The IVI.NET APIs for these classes use strings consistently.

IVI Foundation 13 IVI-3.3: Standard Cross Class Capabilities

3.1 Attributes

Attributes that use the strings listed above shall include the following text in their description, where <source>

stands for the attribute name:

If an IVI driver supports a <source> and the <source> is listed in IVI-3.3 Cross Class Capabilities

Specification, Section 3 then the IVI driver shall accept the standard string for that <source>. This attribute is

case insensitive, but case preserving. That is the setting is case insensitive but when reading it back the

programmed case is returned. IVI specific drivers may define new <source> strings for <source>s that are not

defined by IVI-3.3 Cross Class Capabilities Specification if needed.

4. Repeated Capability Group

4.1 Overview

Instrument classes often describe capabilities which can be repeated in a particular instrument. Some

examples are channels, and traces. This section describes attributes and functions which an instrument class

should use to provide.

Section 12, Repeated Capabilities, in IVI 3.4: API Style Guide, describes three styles for representing

repeated capabilities. The following table (duplicated in IVI-3.4) shows the attributes and functions that are

used to implement each of the styles in each of the supported IVI APIs.

Technique API Type IVI.NET IVI-C IVI-COM

Parameter Style Attributes <RC> Count <RC> Count <RC> Count

<RC> Name (Index)

Functions Get <RC> Name Get <RC> Name

Collection Style Attributes <RC> Item

<RC> Count

<RC> Name

 <RC> Item

<RC> Count

<RC> Name(Index)

Selector Style

Attributes <RC> Count

Active <RC>

<RC> Count

Active <RC>

<RC> Count

Active <RC>

<RC> Name

Functions Get <RC> Name Get <RC> Name

Set Active <RC>

These attributes and functions should be placed in the same capability group as the repeated capability with

which they are associated.

This section uses the notation <RC> to indicate a repeated capability name. . The instrument class

specification specifies the actual name of the repeated capability. For example, if the repeated capability is

named Channel then <RC> Count would appear as Channel Count in the instrument class. The plural form is

shown as <RC>s. While the plural for most English words is formed by adding an s, many exceptions exist.

For example, the plural of Leaf is Leaves, the plural of Child is Children, and the plural of Capability is

Capabilities. The instrument class specification uses the proper English plural; it does not blindly add an s. In

cases where the repeated capability name should be lower case, <rc> is used.

4.1.1 Specifying Repeated Capability Attributes and Functions

Most repeated capabilities use the parameter style for IVI-C, and the collection style for IVI-COM and

IVI.NET. This is the most common way to implement repeated capabilities in IVI class specifications.

Repeated capabilities should be implemented this way unless there is a compelling reason not to.

IVI-3.3: Standard Cross Class Capabilities 14 IVI Foundation

A smaller number of repeated capabilities use the selector style for IVI-C, IVI-COM, and IVI.NET.1

One repeated capability, the IviFgen Channel, uses the parameter style for IVI-C, IVI-COM, and IVI.NET.

1 Two repeated capabilities, the IviRFSigGenAnalog Modulation Source and the IviUpconverter Analog Modulation

Source, use a limited variation that replaces the Active <RC> attribute and Set Active <RC> function with AM Source,

FM Source, and PM Source attributes, which allow the client to select one or more sources as the modulating signal.

IVI Foundation 15 IVI-3.3: Standard Cross Class Capabilities

4.2 Attributes – Common

The following attribute is documented in the same way regardless of how repeated capabilities are specified:

 <RC> Count

This section describes the behavior and requirements of each attribute. The actual value for each attribute ID

is defined in the instrument class.

IVI-3.3: Standard Cross Class Capabilities 16 IVI Foundation

4.2.1 <RC> Count

Data Type Access Applies to Coercion High Level Functions

ViInt32 RO <RC>s None

.NET Property Name

<RC>s.Count

This property is inherited from IIviRepeatedCapabilityCollection.

COM Property Name

<RC>s.Count

C Constant Name

PREFIX_ATTR_<RC>_COUNT

Description

Specifies the number of <RC>s available.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this property.

IVI Foundation 17 IVI-3.3: Standard Cross Class Capabilities

4.3 Attributes – Parameter / Collection Style Combination

The following attribute sections document how the <RC> Item and <RC> Name attributes should appear

when a repeated capability is implemented using parameter style in IVI-C and collection style in IVI-COM

and IVI.NET:

 <RC> Item (IVI-COM and IVI.NET Only)

 <RC> Name (COM only)

This section describes the behavior and requirements of each attribute. The actual value for each attribute ID

is defined in the instrument class.

IVI-3.3: Standard Cross Class Capabilities 18 IVI Foundation

4.3.1 <RC> Item (IVI-COM and IVI.NET Only)

Data Type Access Applies to Coercion High Level Functions

IIvi<class><RC> RO <RC>s None

.NET Property Name

I<ClassName><RC>2 <RC>s[String name];

This indexer is inherited from IIviRepeatedCapabilityCollection. The name parameter uniquely

identifies a particular <rc> in the <rc> collection.

COM Property Name

HRESULT <RC>s.Item([in]BSTR Name,

 [out, retval] I<ClassName><RC> **pVal);

C Constant Name

N/A

Description

<RC> Item uniquely identifies an <rc> in the <rc>s collection. It returns an interface pointer which can be

used to control the attributes and other functionality of that <rc>.

The Item property takes a <rc> name. If the user passes an invalid value for the Name parameter, the property

returns an error.

Valid names include physical repeated capability identifiers and virtual repeated capability identifiers.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this property.

2 The name of the interface is controlled by the instrument class writers, but it should follow the form shown.

IVI Foundation 19 IVI-3.3: Standard Cross Class Capabilities

4.3.2 <RC> Name (IVI-COM and IVI.NET Only)

Data Type Access Applies to Coercion High Level Functions

ViString R <RC> None

.NET Property Name

<RC>s[].Name

This property is inherited from IIviRepeatedCapabilityIdentification.

COM Property Name

HRESULT <RC>s.Name ([in] LONG Index,

 [out, retval] BSTR* Name);

C Constant Name

N/A

(Use the Get <RC> Name function.)

Description

Returns the physical repeated capability identifier defined by the specific driver for the <rc> that corresponds

to the index that the user specifies. If the driver defines a qualified <rc> name, this property returns the

qualified name.

In COM, the index is one-based. In .NET, the index is zero-based.

For C and COM, valid values for the Index parameter are between one and the value of the <RC> Count

attribute, inclusive. If the user passes an invalid value for the Index parameter, the value of this attribute is an

empty string.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this property.

Compliance Notes

For an instrument with only one <RC>, i.e. the <RC> Count attribute is one, the driver may return an empty

string.

IVI-3.3: Standard Cross Class Capabilities 20 IVI Foundation

4.4 Functions – Parameter / Collection Style Combination

The following function section documents how the Get <RC> Name function should appear when a repeated

capability is implemented using parameter style in IVI-C and collection style in IVI-COM and IVI.NET:

 Get <RC> Name (IVI-C & IVI.NET Only)

This section describes the behavior and requirements of each attribute. The actual value for each attribute ID

is defined in the instrument class.

IVI Foundation 21 IVI-3.3: Standard Cross Class Capabilities

4.4.1 Get <RC> Name (IVI-C and IVI.NET Only)

Description

This function returns the specific driver defined <rc> name that corresponds to the index that the user

specifies. If the driver defines a qualified <rc> name, this function returns the qualified name. If the value

that the user passes for the Index parameter is less than one or greater than the value of the <RC> Count

attribute, the function returns an empty string in the Name parameter and returns an Invalid Value error.

In C, the index is one-based. In .NET, the index is zero-based.

Note that this method is defined for .NET for parameter style repeated capabilities. However, the Fgen class

is the only class that uses parameter style repeated capabilities, and this approach is not recommended for

future classes.

.NET Method Prototype

String <RC>.GetName (Int32 index);(For collection style repeated capabilities, use the <RC> Name

property. This method is only defined for .NET for parameter style repeated capabilities. However, the Fgen

class is the only class that uses parameter style repeated capabilities, and this approach is not recommended

for future classes.)

COM Method Prototype

N/A

(Use the <RC> Name property.)

C Function Prototype

ViStatus _Prefix_Get<RC>Name (ViSession Vi,

 ViInt32 Index,

 ViInt32 NameBufferSize,

 ViChar Name[]);

Parameters

Inputs Description Base Type

Vi Unique identifier for an IVI session ViSession

Index An index (one-based for IVI-C, zero-based for IVI.NET) that

defines which name to return.

ViInt32

NameBufferSize The number of bytes in the ViChar array that the user specifies

for the <RC>Name parameter.

ViInt32

Outputs Description Base Type

Name The buffer into which the function returns the name that

corresponds to the index the user specifies.

The caller may pass VI_NULL for this parameter if the

NameBufferSize parameter is 0.

ViChar[]

IVI-3.3: Standard Cross Class Capabilities 22 IVI Foundation

Return Values (C)

The IVI-3.2 Inherent Capabilities Specification defines general status codes that this function can return.

Compliance Notes

1. For an instrument with only one <RC>, that is the <RC> Count attribute is one, the driver may return an

empty string.

2. Refer to Section 3.1.2.1, Additional Compliance Rules for C Functions with ViChar Array Output

Parameters, in IVI-3.2 Inherent Capabilities Specification for rules regarding the NameBufferSize

and Name parameters.

IVI Foundation 23 IVI-3.3: Standard Cross Class Capabilities

4.5 Attributes –Selector Style

The following attribute sections document how the Active <RC> and <RC> Name attributes should appear

when a repeated capability is implemented using the selector style in IVI-C, IVI-COM, and IVI.NET:

 Active <RC>

 <RC> Name (IVI-COM Only)

This section describes the behavior and requirements of each attribute. The actual value for each attribute ID

is defined in the instrument class.

IVI-3.3: Standard Cross Class Capabilities 24 IVI Foundation

4.5.1 Active <RC>

Data Type Access Applies to Coercion High Level Functions

ViString RW <RC> None

COM Property Name

<RC>.Active<RC>

COM Property Name

<RC>.Active<RC>

C Constant Name

PREFIX_ATTR_ACTIVE_<RC>

Description

Specifies the <rc> which is currently active.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this property.

IVI Foundation 25 IVI-3.3: Standard Cross Class Capabilities

4.5.2 <RC> Name (IVI-COM Only)

Data Type Access Applies to Coercion High Level Functions

ViString R <RC> None

.NET Property Name

N/A

(Use the Get <RC> Name function.)

COM Property Name

HRESULT <RC>.Name ([in] LONG Index,

 [out, retval] BSTR* Name);

C Constant Name

N/A

(Use the Get <RC> Name function.)

Description

Returns the physical repeated capability identifier defined by the specific driver for the <rc> that corresponds

to the one-based index that the user specifies. If the driver defines a qualified <rc> name, this property

returns the qualified name.

Valid values for the Index parameter are between one and the value of the <RC> Count attribute, inclusive.

If the user passes an invalid value for the Index parameter, the value of this attribute is an empty string.

Compliance Notes

For an instrument with only one <RC>, i.e. the <RC> Count attribute is one, the driver may return an empty

string.

IVI-3.3: Standard Cross Class Capabilities 26 IVI Foundation

4.6 Functions –Selector Style

The following function sections documents how the Get <RC> Name and Set Active <RC> functions should

appear when a repeated capability is implemented using selector style in IVI-C, IVI-COM, and IVI.NET:

 Get <RC> Name (IVI-C and IVI.NET Only)

 Set Active <RC> (IVI-Cand IVI-COM Only)

This section describes the behavior and requirements of each attribute. The actual value for each attribute ID

is defined in the instrument class.

IVI Foundation 27 IVI-3.3: Standard Cross Class Capabilities

4.6.1 Get <RC> Name (IVI-C and IVI.NET Only)

Description

This function returns the specific driver defined <rc> name that corresponds to the index that the user

specifies. If the driver defines a qualified <rc> name, this function returns the qualified name. If the value

that the user passes for the Index parameter is less than one or greater than the value of the <RC> Count

attribute, the function returns an empty string in the Name parameter and returns an Invalid Value error.

In C, the index is one-based. In .NET, the index is zero-based.

.NET Method Prototype

String <RC>.GetName (Int32 index);

COM Method Prototype

N/A

(Use the <RC> Name property.)

C Function Prototype

ViStatus _Prefix_Get<RC>Name (ViSession Vi,

 ViInt32 Index,

 ViInt32 NameBufferSize,

 ViChar Name[]);

Parameters

Inputs Description Base Type

Vi Unique identifier for an IVI session ViSession

Index An index (one-based for IVI-C, zero-based for IVI.NET) that

defines which name to return.

ViInt32

NameBufferSize The number of bytes in the ViChar array that the user specifies

for the <RC>Name parameter.

ViInt32

Outputs Description Base Type

Name (C) The buffer into which the function returns the name that

corresponds to the index the user specifies.

The caller may pass VI_NULL for this parameter if the

NameBufferSize parameter is 0.

ViChar[]

Return value

(.NET)

The name that corresponds to the index the user specified. ViChar[]

Return Values (C)

The IVI-3.2 Inherent Capabilities Specification defines general status codes that this function can return.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this method.

IVI-3.3: Standard Cross Class Capabilities 28 IVI Foundation

Compliance Notes

1. For an instrument with only one <RC>, that is the <RC> Count attribute is one, the driver may return an

empty string.

2. Refer to Section 3.1.2.1, Additional Compliance Rules for C Functions with ViChar Array Output

Parameters, in IVI-3.2 Inherent Capabilities Specification for rules regarding the NameBufferSize

and Name parameters.

IVI Foundation 29 IVI-3.3: Standard Cross Class Capabilities

4.6.2 Set Active <RC> (IVI-C Only)

Description

This function selects one of the available <rc>s, and makes it the active <rc>.

.NET Method Prototype

N/A

(Use the Active Marker property.)

COM Method Prototype

N/A

(Use the Active Marker property.)

C Function Prototype

ViStatus Prefix_SetActive<RC> (ViSession Vi,

 ViConstString Name);

Parameters

Inputs Description Base Type

Vi Unique identifier for an IVI session ViSession

Name A string specifying a particular capability. ViString

Return Values (C)

The IVI-3.2 Inherent Capabilities Specification defines general status codes that this function can return.

IVI-3.3: Standard Cross Class Capabilities 30 IVI Foundation

5. Automatic Setting Attributes

5.1 Overview

Instruments and drivers contain algorithms which automatically adjust settings based on other settings or

characteristics of input signals. This specification does not specify when the automatic algorithm is run. For

example, it may be run immediately, or later at a trigger event or measurement. Typically, these algorithms

can be enabled and disabled.

Section 7, Controlling Automatic Setting Attributes, in IVI 3.4: API Style Guide, describes the attributes and

methods that are needed to control automatic settings, and define some of the terms used in this section.

In the following sections, <Name> represents the name primary attribute. In most cases, the name of the

automatic setting attribute will be “<Name> Auto”3, though in some cases “Auto <Name>” is allowed.

“<Name> Auto” will be used in the following sections. Note that <Intf> is that name of the interface

reference property or properties used to access the attributes and <Type> is the data type of the primary

attribute.

Many automatic setting attributes are defined as Booleans, and allow only for turning the automatic setting

“On” or “Off”. In some cases the automatic setting attribute also supports a “Once” setting, which requires a

specialized Auto enumeration to be defined in the instrument class, which allows for values of “Off” (=0),

“On” (=1), and “Once” (=2).

3 If Auto <Name> is a recognized domain convention (for example, Auto Range or Auto Zero), then Auto may be

placed before the name.

IVI Foundation 31 IVI-3.3: Standard Cross Class Capabilities

5.2 Attributes

The following attribute sections document how the <Name> and <Name> Auto attributes should appear when

an automatic setting attribute is implemented in IVI-C, IVI-COM, and IVI.NET: The first example of the

automatic setting attribute (<Name> Auto) is a 2-state Boolean, and the second example is a 3-state

enumeration. Note that values for Data Type, Applies To, Coercion, High Level Functions, and Description

are example values only, and may vary between attributes.

 <Name>

 <Name> Auto

This section describes the behavior and requirements of each attribute. The actual value for each attribute ID

is defined in the instrument class.

IVI-3.3: Standard Cross Class Capabilities 32 IVI Foundation

5.2.1 <Name>

Data Type Access Applies to Coercion High Level Functions

<Type> R/W N/A N/A Configure Level

.NET Property Name

<Intf>.<Name>

COM Property Name

<Intf>.<Name>

C Constant Name

IVISPECAN_ATTR_<Name>

Description

[Put property description here.]

The act of setting the <Name> property shall have the side effect of setting the <Name> Auto attribute to

False.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this property.

IVI Foundation 33 IVI-3.3: Standard Cross Class Capabilities

5.2.2 <Name> Auto (Defined as Boolean)

Data Type Access Applies to Coercion High Level Functions

ViBoolean R/W N/A N/A Configure

.NET Property Name

<Intf>.<Name>Auto

COM Property Name

<Intf>.<Name>Auto

C Constant Name

<CLASSNAME>_ATTR_<NAME>AUTO

Description

[Adapt the following text for the actual property.]

If set to True, <Name> is automatically determined. If set to False, <Name> shall go to the manual setting

mode and retain the current value for <Name>.

When <Name> Auto is True, the actual value for <name> as automatically determined by the instrument is

returned by the <Name> attribute.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this property.

IVI-3.3: Standard Cross Class Capabilities 34 IVI Foundation

5.2.3 <Name> Auto (Defined as an Auto enumeration with a “Once” value)

Data Type Access Applies to Coercion High Level Functions

ViInt32 R/W N/A Up Configure Level

.NET Property Name

<Intf>.<Name>Auto

.NET Enumeration Name

Auto

COM Property Name

<Intf>.<Name>Auto

COM Enumeration Name

<ClassName><Name>AutoEnum

C Constant Name

<CLASSNAME>_ATTR_<NAME>AUTO

Description

[Adapt the following text for the actual property.]

Specifies if the instrument sets <Name> automatically, as described in the following table.

Setting the <Name> attribute also sets the <Name> Auto attribute to Auto Off.

Name Description

 Language Identifier

Auto On Sets the instrument to determine <Name> automatically.

When On, the actual value for <name> as automatically determined by the

instrument is returned by the <Name> attribute

 .NET Auto.On

 C <CLASSNAME>_VAL_<NAME>AUTO_ON

 COM <ClassName><Name>AutoOn

Auto Off Disables auto-<Name>. The instrument sets the <Name> attribute to the value it

most recently determined.

 .NET Auto.Off

 C <CLASSNAME>_VAL_<NAME>AUTO_OFF

IVI Foundation 35 IVI-3.3: Standard Cross Class Capabilities

 COM <ClassName><Name>AutoOff

Auto Once Sets the instrument to calculate <Name> exactly once, before its next use. After its

next use, the driver uses the instrument-determined value of <Name> for

subsequent uses.

 .NET Auto.Once

 C <CLASSNAME>_VAL_<NAME>AUTO_ONCE

 COM <ClassName><Name>AutoOnce

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this property.

IVI-3.3: Standard Cross Class Capabilities 36 IVI Foundation

5.3 Functions

The following function section documents how the <Name> and <Name> Auto attributes should appear when

used as parameters in a function or method. Note that this section is provided as an example – the function

name and other parameters, as well as description and parameter descriptions and compliance notes will all

vary according to the actual function. Also, only the Boolean (2-state) case for <Name> Auto is shown. The

auto enumeration case (3-state) is similar.

 Configure <Name>

This section describes the behavior and requirements of each function.

IVI Foundation 37 IVI-3.3: Standard Cross Class Capabilities

5.3.1 Configure <Name>

Description

[Adapt the description to the actual method.]

.NET Method Prototype

void <Intf>.Configure (<Type> <name>);

void <Intf>.Configure (Boolean <name>Auto);

COM Method Prototype

HRESULT <Intf>.Configure ([in] VARIANT_BOOL <Name>Auto,

 [in] <Type> <Name>);

C Function Prototype

ViStatus <ClassName>_Configure (ViSession Vi,

 ViBoolean <Name>Auto,

 <Type> <Name>);

Parameters

Inputs Description Base Type

Vi Unique identifier for an IVI session ViSession

<Name>Auto If set to True, <Name> is automatically determined. If set to

False, <Name> shall revert to the manual setting mode and use

the value of the <Name> parameter. See the <Name> Auto

attribute description for more details.

The default value is “Off”

ViInt32

<Name> [Adapt the description to the actual method.]

If <Name> is set to a valid value, the <Name>Auto parameter is

ignored and the <Name> Auto attribute is set to False.

ViInt32

Return Values (C/COM)

The IVI-3.2 Inherent Capabilities Specification defines general status codes that this function can return.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this method.

IVI-3.3: Standard Cross Class Capabilities 38 IVI Foundation

6. Absolute Time (IVI-C and IVI-COM)

6.1 Overview

Instruments sometimes provide time stamps for measured data. In these cases it is necessary for drivers to

include a means of setting and retrieving the absolute time. This section describes functions which shall be

used in instrument classes for this purpose.

Note that for IVI.NET, absolute time is expressed using the PrecisionDateTime class.

6.1.1 Relationship to LXI-based instruments

IVI 3.15: IviLxiSync Specification includes techniques that allow instrument operation to be triggered at given

times and for timestamps to be associated with measured data. For this, LXI instruments use the IEEE 1588

standard for high-precision time synchronization across all instruments in a test system. IVI 3.15: IviLxiSync

Specification also specifies a particular data format (a pair of ViReal64 values) that is used to contain a high-

resolution time stamp value. For compatibility, this data format is utilized here as well. However, the use of a

compatible data format does not imply that the underlying time base is required to be compatible with the

IEEE 1588 standard. Instruments are allowed to maintain their internal time base in any manner they wish.

Note that for .NET, these details are managed internally by the PrecisionDateTime and PrecisionTimeSpan

classes.

The behavior of the Set Time function described here is not necessarily the same as that defined for LXI

devices. To set the system time on instruments that implement IEEE 1588 synchronization, the time must be

set on the system master clock. This specification does not address IEEE 1588 specifically, and the IVI 3.15:

IviLxiSync Specification does not include a method that allows users to set the system time. At the discretion

of the vendor, some implementations of the Set Time function may always affect the IEEE 1588 system time;

some implementations may affect the system time if the driver is controlling the instrument that contains IEEE

1588 master clock; and other implementations may not affect the system time at all.

Conversely, the Get Time function defined here is identical to the Get System Time function in the IVI 3.15:

IviLxiSync Specification. On LXI devices, the behavior of these two functions shall be identical.

IVI Foundation 39 IVI-3.3: Standard Cross Class Capabilities

6.2 Attributes

Time-based capabilities use the following attributes:

 Time (IVI.NET Only)

This section describes the behavior and requirements of this attribute.

IVI-3.3: Standard Cross Class Capabilities 40 IVI Foundation

6.2.1 Time (IVI.NET Only)

Data Type Access Applies to Coercion High Level Functions

Ivi.Driver.PrecisionDateTime R/W4 N/A N/A N/A

.NET Property Name

Time

COM Property Name

N/A

Use the Set Time and Get Time methods.

C Constant Name

N/A

Use the Set Time and Get Time methods.

Description

The current time on the instrument. Units are implicit in the definition of PrecisionDateTime.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and warning

events that may be raised, by this property.

4 Access may be RO for classes or drivers where setting the property does not make sense. For example, RO access

may be sufficient for instruments that determine time internal to the instrument.

IVI Foundation 41 IVI-3.3: Standard Cross Class Capabilities

6.3 Functions

Time-based capabilities use the following functions:

 Set Time (IVI-C and IVI-COM Only)

 Get Time (IVI-C and IVI-COM Only)

This section describes the behavior and requirements of these functions.

IVI-3.3: Standard Cross Class Capabilities 42 IVI Foundation

6.3.1 Set Time (IVI-C and IVI-COM Only)

Description

This function is used to set the current time on the instrument. Time is expressed in seconds since January 1,

1970 (the IEEE 1588 epoch 0). The time is determined by adding TimeSeconds and TimeFractional together.

Usage Note: The purpose of the TimeFractional parameter is to provide more resolution than TimeSeconds

can provide. If more resolution is not needed, TimeFractional should be 0.0. If both parameters are needed,

TimeSeconds should hold the integer portion of the time and TimeFractional the fractional portion.

.NET Method Prototype

N/A

Use the Time attribute.

COM Method Prototype

HRESULT SetTime([in] double TimeSeconds,

 [in] double TimeFractional);

C Prototype

ViStatus SetTime (ViSession Vi,

 ViReal64 TimeSeconds,

 ViReal64 TimeFractional);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Outputs Description Data Type

TimeSeconds The current time in seconds. If TimeSeconds is less

than 0, the driver shall return

E_IVI_INVALID_VALUE.

ViReal64

TimeFractional Additional resolution for the current time in seconds.

If TimeFractional is less than 0, the driver shall return

E_IVI_INVALID_VALUE.

ViReal64

See IVI-3.15: IviLxiSync Specification for a more complete description of the two 64-bit real parameters.

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI Foundation 43 IVI-3.3: Standard Cross Class Capabilities

6.3.2 Get Time (IVI-C and IVI-COM Only)

Description

This function is used to retrieve the current time from the instrument. Time is expressed in seconds since

January 1, 1970 (the IEEE 1588 epoch 0). The time is determined by adding TimeSeconds and

TimeFractional together.

The purpose of the TimeFractional parameter is to provide more resolution than TimeSeconds can provide. If

more resolution is not needed, TimeFractional may be 0.0. If both parameters are needed, TimeSeconds shall

hold the integer portion of the time and TimeFractional the fractional portion.

.NET Method Prototype

N/A

Use the Time attribute.

COM Method Prototype

HRESULT Time.GetTime([in, out] double* TimeSeconds,

 [in, out] double* TimeFractional);

C Prototype

ViStatus GetTime (ViSession Vi,

 ViReal64* TimeSeconds,

 ViReal64* TimeFractional);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Outputs Description Data Type

TimeSeconds The current time in seconds. ViReal64

TimeFractional Additional resolution for the current time in seconds. ViReal64

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

