Interchangeable
Virtual
/Instruments

IVI-3.1: Driver Architecture Specification

August 12, 2019 Edition
Revision 3.8

Important Information

IVI-3.1: Driver Architecture Specification is authored by the VI Foundation member companies. For a
vendor membership roster list, please visit the IVI Foundation web sitevaivifoundation.org

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation
through the web site atww.ivifoundation.org
Warranty

The IVI Foundation and its ember companies make no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fithess for a particular purpose.
The IVI Foundation and its member companies shall not be liablerfmsarontained herein or for incidental
or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigaibn has been made of commlaw trademark rights in any work.

IVI Foundation 2 IVI-3.1: Driver Architecture Specification

http://www.ivifoundation.org/
http://www.ivifoundation.org/

Table

of

Contents

Warranty 2
Trademarks 2

IVI-3.1 Driver Architecture Specificationccccoeeviiiiiiiii i 11
1. Overview of the IVI Driver Architecture Specification...................... 15
I [o1 o o 11 o3 (o o SRR 15
1.2 Audience Of SPeCIfICAtIQN............ccuiiiiiiiiiiiiiee e 15
1.3 Organization Of SPECITICALIAN.cuiiiiiiiiiiiiee e 15
1.4 IVI Drive ArChItECtUrE OVEIVIEW.eeiee e e e e ee e et ree e e e e e e e e e e e aaaaaeaens 15
1.5 Conformance REQUITEMENLS.........ccooe it e e e e e e e e e e e e e e e e 16
G = (=T €= g o PSPPSR 16
1.7 SUDSHIULIONS. ...ceeeieeeiiee e r e e e e e e e e e e e e e aaaeaeeeeas 16
2. Features and Intended Use of IVIDrivers.......cccoooovviie i, 18
2.1 INTFOAUCHION......cco o e e e e e e e e e e e e e e aaeeaaaaaeaeeeaeeaeeassaaaaaanns 18
2.2 TYPES OFf IVI DIVELS. ...ttt e s e e e e e e s s e e annes 18
2.2.1 SPECITIC DIVEN WIAPPEIS. ...cciieeeeeeiiiee et eeeetee e s s e e e e e e e e e et mnr e e et s e s e e e e e aaanannas 20
2.2.2 CUSEOM ClASS DIIVEES.....uutttitiiiiieiieiiieaeeetitbee ettt ettt e e e e e e e e e e aase et ettt e e e e e e e e e e e e e s s e s sammneaaaaeaas 20
2.2.3 Special Considerations for IVI Custom Specific DriVers............cccovvvvvvieemreeeeeviiiinnnnnn, 20
2.3 FUNCLIONS aNd AtLHDULES.vvieii ettt e e e e e e e bbb s e e e e e e eeeeens 20
2.4 Availability and INStallation.............oooeei i 20
2.5 Source Code AVAIlADIIILY...........uuiiiiiiiiiii e 21
2.6 CaPADIlity GIOUPS. ... eeiieeiiiiieeiee e ettt e e e e e e e e e s et b e e e e e e s ennben e e e e e e eane 21
2.7 Repeated Capabilities.............uuuuiiieiiiiiiiei e 23

1VI-3.1: Driver Architecture Specification 3 IVI Foundation

2.8 Declaring Conformance, Capabilities, and RequIrements.........cccccvveeveeeveeeieieeeeeeeeenn. 24

2.9 USING IVI INSTIUMENT DIIVEIS.eiiiiiiiiiiiii ettt e e e e 24
2.9.1 Using IVI Drivers from the Instrument Specific Perspective........cccccvvvvevveceecvnvnnnnnen. 24

2.9.2 Using IVI Drivers to Achieve Interchangeability..............cccoocuiiieeciiieeiiniee e 24
2.9.2.1Accessing Class and Specific ARIS...........ccoooiiiiiieeeiiiee e 25

2.9.2.2 How Interchangeability Works in COM and .NET.............c.ocvviiiceneeennns 25

2.9.2.3 How Interchangeability WOrks in.C............oocuiiiiiiiiceiiiieeee e 26

2.9.2.4 Interchanging IVC, IVI-COM, and IVI.NET Specific Drivers..................... 27

2.10 The IVI ConfiguratioMOBE.uuuururiiiiiriiiiierieeieeererrerreereeeaeeaeeeaaaeeaaeeseeaseaassaaseasnnnnn 27
2.11 Other Considerations for Interchangeability.............cccccoiiiiiiiee s 28
2.11.1 Virtual Names for Channels and Other Repeated Capalbilities.............ccccoeceeennee 28

2.11.2 Configurable Initial SEtNGS........ccvvriiieiiiiieee e 28

2.11.3 Interchangeability CheCKing............uviiiiiiiiiiieei e 29

2.11.4 Coercion and Coercion RECOIAING........cccciiuuiiiiiieaneee ittt eee e e e 29

2.11.5 Limitations to Instrument Interchangeability Using IVI Drivers..........cccoveveiiiceenns 29

2.12 Leveraging Syntactic SIMIlariti@S........ccovviiiiiiiiiieee e 30
2.13 Instrument Driver Operational Modes: Simulation, Delang, RuAtime......................... 30
2.13.1 RANQGE CRECKING .. .cceiiiitiiiiiee it eet ittt et e e st e e e e st beeebbbeeeeeeaanes 30

2.13.2 Instrument Status ChECKING.........coiiuuiiiiiiiiiee e 30

2.13.3 SIMUIALION. ...eeeeee sttt ettt e e st e e s s s e e e bbb e e e e e s annnnneeeas 30

2.13.4 StAtE CACRING. ... teeeiee ettt enr e e e e 30

2.14 MUIIthread Safely.......uuuiiiiiiiiieeiieeeeee e 31
2.15 RESOUICE LOCKING. ...ttt e e 31
2.16 OPEratiNng SYSTEIMIS........uuviiiiiiee ittt et e e e e e e e r e e e e s s s e e e e e e e e e nbb e eeaeeeeannreees 31
2.17 Target Application Development ENVIrONMENLS............cccoeeeeiieeeieecec, 32
2.18 BitNeSS CONSIAEIALIONS.vviieiiiieee ittt e e e 32
3. Required and Optional Behavior of IVI Drivers.......cccccccoeveiviieiinnennnn. 33
0 I [a1 0T [T 1o PP OO P PP PPPPP R TPOPPPPPPP 33
3.2 API TENNOIOGY. ... ettt e et e e e e e e e e e e e r e e e e e e anne 35
3.3 INterCchangEability.......ceeeeeeiieiiiii e e e e e as 35
3.3.1 Compliance with a Class SpecCifiCatiOn..............ocvviiiiiieemri e eee e e 35

3.3.2 Accessing Class and SPecCific APIS........ooo it eee e 35

3.3.3 Use of Virtual Identifiers for Repeated Capabilities...............c.euveieieeeiiiiiiiiiiiiiieeeee, 36

3.3.4 Disabling UNused EXIENSIANS..........uuutuiiiiiiiiiieaaiiiiiiiiiiieeeeeeee e e e s seeeresreeeeeeeeeeaaaaaaaaaaeas 37

3.3.5 Applying Configurable Initial Settings from the IVI Configuration Store.................... 37

3.3.6 Interchangeability CheCKiNg...........ooiiiiiii e 37

3.3.7 CoerCion RECOMING.uuiiiieiiiiiiii ettt 39

3.4 RANGE CRECKINGeeeeeieiiiiiiiei e eaeaaeeeas 39
3.5 Instrument Batus ChecCKiNg..........cuuuuiiiiiii e e 40

IVI Foundation 4 IVI-3.1: Driver Architecture Specification

R TS0 1T = 10 o PR | |

3.7 STALE CACNING. ...ttt e e e e e e e e e e 40
3.8 Configuration of INNerent FEAtUIES...........coii i 41
3.9 Comparing Real NUMDBETIS........ccee e 41
3.10 MUltithread Safelyl........uuuuiriieiieiiieii e 42
3.11 RESOUICE LOCKING. ... it e e 42
T 2 Y | £ J TSRO UPTTTRR 42
3.13 Use of I/O Libraries for Sthard Interface BUSES..........ccccceeviiiiiiieieec i 42
G e T01 1 =X 0 1 PP PRPRt 43

3.14 Shared COMPONENLS.cciiiiiiiitee ettt e ettt e e s s e e e e e e s s anb e e e e e e s s e nnrrsreeeeeaans 43
3.15 Burce Code AVAIIADIILY.cc.veiiiiee e 43
3.16 Extent of Instrument Functionality Covered by IVI DIVEIS..........ccuvvvveeiiiiiiiiiieee e 43
4. IVIDriver ArChit@CIUIEcoouiii e 45
4.1 IVICOM DriVEr ArCRITECIUIE......uuniiiieie e e et e et e e e e e e s e b e e s s e e e eaaens 45
4.1.1 Target Operating SYSIEMLS........cvuuuiiiiiieie s ceeeiieis i e e e e e e e et mnmr e e et eeeeeaaeeeees 46

4.1.2 Target Languages and Application Development Environments...........c..cccvveeeeeenns 46

4.1.3 IVI-COM DIiVEI OVEIVIEW.ceeieiieiiei it eeee e e e e e e e aib bbb e e e aeiebbbbasbeeeeeeeeenan a7

o Y O @ 1Y I 1] =] = Lo == PR SORRPRRRY £ o

4.1.5 Interface Reference ProPertiEs....... .o iiiiiiieeeiee ettt 48

4.1.6 Interface HIEIarChYccoiiiiiiiiiie ettt 49

4.1.7 Custom vs. AUtOMALION INEEITACES. .. .ueiiiiiiiiiieee e 49

4.1.7.1 SIMPlEr t0 DEVEIOP.ceiiiiiiiiiiie ettt 49

4.1.7.2 Capable of High Performance.............ccccceeiiiiiceciiiiiiie e 49

4.1.7.3 EASIEr TO VEISION...cciiiiiiiii ettt 50

4.1.7.4 Accommodating AULOMALION.uvuruiieiiee e e e ieeee e e 50

G R = L= T 1Y == PPN 50

4.1.8.1 ENUMEIALIONS.ceitiiiiiiieee ettt emee e e e e s 50

4.1.8.2 SAFE AITAYS . .uuui it i e ettt e e e e e e e e e e e e ———— 50

4.1.9 Repeated Capabilities..........ueii it 51

T I 0 017 T o P 51

4.1.11 Interface REQUITEMEIILS......ccciiiiiiiiee e iieeer ittt e ettt e e e s se e et e e e e e s sbbe e e e e e s s sneeeanes 51
4.1.11.1 Standard COM INtEIfaCESuuuuiiiiiiiiiiiiieeeiiiiieeee e eeeeee e 51

4.1.11.2 INNEreNt FEALUIES. eeieiieiiiiieeeieeeiteee e e e e e seette e e eeeeeaaaaeeeeaeas 52

4.1.11.3 Clasompliant INterfaces........cuuviveiiiiiiiiiees e 52

4.1.11.4 Instrument SPeCific INtEIfACES.cuviiiiiiiiii e 52

4.1.11.5 Default INterfaCes. 52

4.1.11.6 Instrument Specific Direct I/O ARL.........cccouiiiiiiiieeeeiiieeeeee e 52

4.1.12 Driver TYPe LIDIariEs. ee e 53

4.1.13 Versioning COM INTEITACES.uuuiiiiiiiiiiie e 53

A.0.04 DIVEE ClASSES. ... i e iieieii e eeee ettt e e s bbb bbbttt e e e et e eaaasssbebbeebeeeeeees 53

4.1.15 IVECOM Error HaNAIING.oovveiiie ettt 54

I R I a1 1= To [T PP 54

A T g1V gl o Tod 1 To [T Vo U PSP 54

1VI-3.1: Driver Architecture Specification 5 IVI Foundation

o Y2 T O B G\ =T AN (o 11 (=T | (T 54

4.2.1 Target Operating SYSIEMLS.uuuuriiiiriiereeriereienrirrirrrerrrrerreetesseessrerrrrrrrereaaaeeeessesinnnes 54
4.2.2 Target Languages and Application Development Environments..........ccccvevveeeeennnns 54
4.2.3 IVI-C DIIVEI OVEIVIEW....cceiueieeeiiiee et e s smematre e e st e st e s s s enmnesnneessnnneeasnneee s s nenenneenns 55
4.2.3.1 Class and SPECIfiC DIIVEIS.........uuuiuirriiiieiiieeeneiiniinereeeeeereeeseeseesrsseneeeeeeeees 55

4.2.3.2 SESSIONS...cciiuteieiireie e sttt eaee st s et ee et 55
4.2.3.3INterchangEability...........ocuriiieiiiiieeei e 56

4.2.3.4 Accessing Instrument Specific Functions after Class Driver Initializatian.56

4.2.3.5 Accessing Specific Drivers DIir€CHY.........coiivvieiieiiiieeriieeee e 56

4.2.3.6 Leveraging VXIplug&play Driver Standards............ccccceeeiiiemniiiiineeennnne 56

4.2.4 Use of C SharaBOMPONENLS.ccciiiiiiiiiieeiieeeiitie e e et e e e se e et eee e e s snbneeeee e e 56
4.2.4.1 Creating and Destroying SEeSSIONS..........c.oovviiiiiiimnree e e e e e e cnnevreees e 56

4.2.4.2 Dynamic Driver LOAAING........uuuuuriiiiiiiieieceeciniieiieeeeeeeeeeee e e e e s ssmreeeeeaaaaaaaeeens 57

4.2.4.3 Function PasBrough.............cooooiiiiiiiiiiice e ceeen s 57

4.2.4.4 Multithread LOCKING.........ccoiiiuniieiiiiieees s s ee e e e s seesssnneenraneneseeeeeeees 57

o SR = 4 (o gl = T | o P 57

4.2.5 Repeated Capabilities.........couuuiiiuii e e e e e e eer e e e e 58
4.2.6 ACCESSING ALHULES.oeiiiiiiii e 58
4.2.6.1 Repead Capabilities for AtrDULES. ..o 58

o | o180 = 1 =SSP 58
4.2.8 Interactive Development INtEraCE..........oocuuiiii e 59
4.2.8.1 FUNCLION PANEI Fil@...uuieiiiiiiiiieiie e 60

4.2.8.2 FUNCLION HIETArChY.......eiiiiiiiiiiiii ettt 60

4.2.8.3 SUD Rl ...ciiiiiiii et 60

4.2.8.4 Attribute HierarChy..........ouuveiiiii e e 61

4.2.9 Instrument Specific DIreCt 1/O ARLL........eii e 61
4.3 IVI.NET DIiVer ArCIITECIUIE. .. . uuiiiiieiiieiieiee ettt s e e eeeeeenes 61
4.3.1 Target .NET Framework VEIrSIONS.couiuuiiiiiiiieeiiiiice et rmees e 62
4.3.1.1 IVL.LNET Framework Version Short Name...........ccccccouvviiimmmnnniccnnninnnnennne. 63

4.3.2 Target Operating SYSEEMLS.......ciiuuriiiiee it ieeeite et e et e e e sk be et e e e e s ibbe e e e e e s snbeeens 63
4.3.3 Taget Languages and Application Development Environments.................eeeeeeenenenns 63
4. 3.4 IVIINET DIIVEE OVEIVIEW.uueeeeritiiiiieeeeeesiaaaeeeteeteaeeeeeeeeeseesesaasssssseeeeeeeeeeaaaaeeeesessaanes 63
4.3.5 IVENET INTEITACESeeiiiiiiiiiieiie e eeei ettt e e 64
4.3.6 Navigating IVLLNET HierarChi@s.............ccooiiiiiiiiieeee e eeeeis e 64
4.3.7 Interface HIerarChy.........ooveiiiic et e e anae e e e e e e 65
G R B = L= N 1Y == PP PRSP 65
4.3.8.1 ENUMETBINS.....ccciiiririiieeiiiitee et e s st e e s s eeere e e e e s e b e e e s s e s rneeernes 65

4.3.9 Repeated Capabilities..........oeuuuiiiii i arrar e aaaes 65
e Tt 10 RS 1= 7] T o SRR 66
4.3.11 Multithread LOCKINGuutiiiieiiiiii ittt et eeeeeee e e 66
4.3.11.1 PetnStance LOCKING.......uueiieiiiiiiiiie e ieee e 66
4.3.11.2AppDomairWide LOCKINGcccuviiiieiiiiiiii et e 66
4.3.11.3MachineWide LOCKING......ccccoiiuiiiiiiaiiiiieeiieee e 67

4.3.12 Class and Interface REqUIFEMENLS...........cooiiiiiiiireeiiiee e e eresere e iineeee 67
4.3.12.1 Naming and .NET NamMESPACES.........uuuuurriiriiiiraaiiiiniieiieeetaeaaeaaaaeseeeeeeees 67
4.3.12.2 INNEIENt FEATUIES. ... ettt ie ettt eeeeeaeaaaaeeeae e 67
4.3.12.3 Clas€ompliant INterfaces.uuuuuureiiiiiiaeeiiiiiiiiiiiiee e eeeieeeeeeeees 68
4.3.12.4 Infument Specific Classes and Interfaces...........ccccuvvviiireenniiiiiiniinnnnd 68
4.3.12.5 Repeated Capability Interfaces..........oooioiiiiiieeen e 68
4.3.12.6 Instrument Specific Direct I/O ARL.......cccccouiiiiiiieeieees e eees 69

4.3.13 Standard Inherent and Class ASSEMDBIIES........c..uuiiiiiiiiirer e 69
4.3.14 Versioning .NET INtEIrfaBe..........ueiiiiiiiiiiiicee e 69
4.3.15 DIVEEN ClASSES.....ceeeeeiiiiie i ieeeeeee e e e e e e s e e et rees s s s s e et e reeeeesennnssssnnennnnnnneees 69
4.3.16 IVENET Error HandliNg..........cooooiiiiiiiiie et 69

IVI Foundation

6 IVI-3.1: Driver Architecture Specification

4.3.17 DIVEE PACKAGING ... tttteeeeeeiieiiaei ettt et e e e e e e e e neee e e e e e 70
4.3.18 Choosing a Version of the IVI.NET Shared Components for Building the Driver....70

4.4 Repeated Capability Selectars..............ooooiiiiiiiiiiicccccirrirvrrereeeeeeeeeseeseeeeeeeeeeea O
4.4.1 Simple Repeated Capability SEIECLOLS...........uuririiiiiiierercciieerr s 70
4.4.2 Representing a Set of INSTANCES..........ooo i ee e s e 71
4.4.3 Representing Nested Repeated Capabiliies...........cccccviieemrisiiescccciiiiiieeee e eeeens 72

4.4.3.1 Representing Nested Repeated Capabilities in the Parameter/Selector Affhroach
4.4.3.2Representing Nested Repeated Capabilities in the Collection Approach...72

4.4.4 Mixing Hierarchy With SEIS...........coiiuiiiiiiiiiee et 72

4.4.5 Ambiguity of Physical Identifiers...........cccvveiiiiimeniii e 3

4.4.5.1 Uniqueness Rules for Physical Identifiers...........ccevveiiiiceniiiii e, 73

4.4.5.2 Sharing a Repeated Capability across @asspliant Interfaces.................... 73

4.4.5.3 Disambiguating Physical Identifiers...........ccccccoo i, 74

4.4.6 Expanding Virtual IdentifierS..........ooooiiiiiiiiiceee e e 74

4.4.7 Formal Syntax for Repeated Capability SeleCtors............ccoovviiiicccieeeee el 75

5. Conformance ReqUIr€MENTScoveiiiiiieiiiii e 76
oI A [(0T [Tox 1o TP PEPPRPOPPPPRPP 76
5.2 Conformance Verification Process And IVI Conformance Logo.Usage.............c........ 76
5.2.1 Purpose of Conformance VerificatiQn..............ccoeiiiiiimmiiiiieee e 76

5.2.2 VerifiCation PrOCESS.......uuuiiiiiiiiiiiiie ettt e e e e e s e rmme e e e e e e e e e s e s s e s snennsnsieeneesesseeena] O

5.2.2.1 Requirements for Testing IVI DIVELS.........ooocuuiiiieiiiieeeniiiee e 77

5.2.2.1.1 Unit TESt ProCeAUIE.......uueiiiiiiiiiiieeiieeeiiieeieeeee e 77

5.2.2.2 Driver Installation TeSHNG.........ccuvviiieiiiiiieeeiee e 78

5.2.2.3 DriverBuildability TEStING........cctiiiiiiiiiiiieiieeeriie e eees e 78

5.2.2.4 Documentation Of TESHNG........uuuiiiiiiiie e 78

5.2.3 Driver ReQISIIatiON.c.ccoiiiiieeeiiiiemme et e e e e e e veees e e e e e e e e eeeerannnn s ennrnnnnn e e e e e e d O

5.2.4 Permissible Uses of The VI Conformant LOgO..........ccooevveieiiiieeeie e 78

5.3 AP TYPES ettt e e e naenaeeeeeee e d O
5.3. 1 IVI Class DIIVEE API TYPES....uuuuuiieiiiiiiiieiieeeeeeeieeeeeeeeettaaaaeaeaeesssaasreeeeaaaaaaeeeseesaasanannnes 79

5.4 Compliance with Other Specifications...........cccccciiiiii e, 79
5.5 Compliancavith Class SPeCIfiCatiONS..........uuuuiiiiiiiiiiiiiieiiecieee e, 80
5.5.1 Minimum Class COMPIIBNCE........cceoiiiiiiii e ee bbb 80

5.5.2 Requirements for IMC, IVI-COM, and IVILNET APIS.......cccooiiriiiiiie il 80

5.5.3 Capability Group CoOmMPlanCE..........uuiiiiii e eiiieeee e s e e e e e e e eeaaed 80

LRSI I @ 1= o] (o] PP PPPRPPERRRR 80

5.6 Attribute and Function Compliance RUIES............eevveeiiiiiiiiiiieee e, 81
5.6.1 Attribute CompliaNCe RUIES........couviiiiiiie e 81

5.6.1.1 Complementary Attributes and Configuration Functions...............ccc..cce.. 82

5.6.2 Function ComplianCe RUIES...........uuuiiiiiiiiiiieaeiii ettt ettt e e e e e e e e e e e e e e e eaan 82

5.7 Use of Shared COMPONEIILS.........uuiiiiiiiiiiiiiieee e ettt e e e et e e e s e e e e s eeeeas 83
5.7.1 Use of the IVI Configuration SErVEL...........coui i 83

5.8 Use of I/O Libraries for Standard Interface BUSES.............ccooeeeiciviniiiiiiiiiiieeeeeeeeeee, 83
5.9 Repeated Capability Identifiers and SeleCtOrS.............uuuuiiiiiiiiiiiiiiieee e 84
5.9.1 Defining Physical Repeated Capability Identifiers..............iiiieeciiiiiiiid 84

1VI-3.1: Driver Architecture Specification 7 IVI Foundation

5.9.2 Applying Virtual ldentifier Mappings...........uuuuuuieeeieiiiiaaaiiiiiiiieiieee e e e e e s eeeeeeeeeeeeeeeees 84

5.9.3 Validating Repeated Capability SEIeCtQrS...........ccooiiiiiiieeeiiiiee e 84

5.9.4 Accepting Empty Strings for Repeated Capability Identifiers................cccovceeeeeeee. 85

5.9.5 Indexing Repeated Capabilities..........ccccuviiiiiiimeeis e seeeee e 85

5.10 IVI FEAIUIES.ttt ettt e et e e e e e e e e e e e e e e e e s s s e s s s e e s enseeeees 85
5.10.1 Interchangeability............ccooiiiiiiiieeer e e ee e e e e e enerrr s 85
5.10.1.1 Consistency of Instrument Specific APIs with Class.APl........................ 85

5.10.1.2 Accessing Specific APIs without Reinitializing...........cccccooiviiieeeieeninnns 85

5.10.1.3 Use of Virtual Identifiers for Repeated Capabilities..............ccccooveeennnnne. 85

5.10.1.4 Disabling UNused EXtENSIONS..........cicurrrieeeiiiceeniiiieee e e e e e reeee e 85

5.10.1.5 Applying Configurable Initial Settings from the 1VI Configuration Stare..86

5.10.1.6 Interchangeability ChecCKing..............coooiiciieeee e e e e e 86

Lo O I A @Co 1= o T = 1= Yo o] o 1 oo 86

5.10.2 Interchangeability Features in CUSTOM DIiVEES........uuuvrieiiiiiisicceiiiiieeeeeeereeeeeeeeeeeiaa 86

LT O B = =g o F= T @ 1= Tod (] o S 87

5.10.4 Instrument Status CheCKiNg..........oovvuiiiiiiice e eeee e e e 87

5.10.5 SIMUIBIDN ..otttk er et e e st e e e s b e e s sme et e e e snbn e e e annneeeas 88

5.10.6 State CAChING.......ueeeiiieiiiiiii et e s ene et e e e 38

5.10.7 MUltIthread Safety..........eeiiiiiiiii e 88

5.10.8 RESOUICE LOCKING....ceeiiitiiiiieeiiittieeetie ettt e ettt e e st e e e e st eestbeeeeeeean 89

5.10.9 Extensible Access to INStrument FEALIES.uuvviiiiieeeriie e 89

5.11 Configuration of INnherent FEAUIES............cco oo 89
5.12 IVI BB HANAING. ...ttt e e e e e e e e e e e 89
5.12.1 IVFC and IVECOM Error HaNAIING........cvvvveiiiiiii e 89
5.12.1.1 EXaMPIE VAIUES......cccooiiiiiiiie ittt 91

5.121.2 BASE VAIUBSccce i it iieeieeee ettt e ee st eeeeeeesenernne 92

5.12.2 IVILNET Error HANGING.eeeeeiiiiiiiieee et e sttt nieeen 93
5.12.2.1 Remapping .NET EXCEPLANSccciiiiiiiiiieeiiieeniiiiiee e rmeee i 93

5.12.2.1.1 .NET Runtime and Framework Exceptions............cccccccevveeenne 93

5.12.2.1.2 /O Timeout EXCEPLIONS.........cviiiiiiiiiiiieeeee et 93

5.12.2.1.3 Configuration Server EXCEePtioNS........ccevvieiieeieiiieeeie e 93

5.12.2.2 INET WaliNQS....ceeeeeiuitiiieie e e et eeeeieie s e e e e e e e eeeeeastaanssmmmsssesaanasssaeeaeaaeeasanns 94

5.13 Comparing REaAl VAIUES.........c.uuiiieiiiiiiiieeee et reeneeneee 94
5.14 AlIOWEA Dat@ TYPES...iiiiiiiiieeeeeeeee e et et ee e ettt e e e e e e e e et e e eeaaaaaaaaaaaaaaeeaeenns 94
N I T 4= = LT o PP 96

5.15 IVICOM REQUITEMENTS.....uuviiiiiiiiiieeieeeeeee e e et e e e e e e e e e et e e e e e e e e s e s e s e e s e e e nreabeebeesrenseenees] 96
5.15.1 IVECOM DIiVEIN ClASSES........ccurveiiieiiitiei ettt 96

5.15.2 Standard COM INEEIACES.euiiiiiiiiiiie et 97

5.15.3 IVFCOM INherent INTEIACES........cccoiiiriiiiieiieeenieeee et e e 97

5.15.4 IVFCOM ClassCompliant INterfaces...........ccoeeiviiiiiiiiieemee i teeee e e e e e 97

5.15.5 IVFCOM Instrument Specific INterfaces........cccoviiiiiiiiicce e 98
5.15.5.1 Instrument Specific DIreCt 1/O ARL........uuieieeiiiiiiiii et 98

B5.15.6 HEIP SHNGS. .. .eiiiiieeiiiiiiiee ettt ettt et e e e s rme et e e e e nerees 98

N T A I 1=T= o L1 T P PRP T PPPPPPPRt a8

5.15.8 INterface VErSIONING........coiiiiiiiiiiie ittt rmee et e e e et e e e s smmee e e 99

5.15.9 Backwards CompatibDility............cooiiiuiiiiiiiiae e 99

T T Ol - Ter 2= To |1 o IR UPPPPPRP 99
5.15.10.1 C Wrappers Packaged With-lMDM DriVers........cccccceviiiiiiiiiiicen e, 101

5.16 IVAC REQUITEIMEINTS.uiiiiiieiiiiiieiie e e ettt e e s st e e e e s st e e e e e s s annbeeeeeas 102

IVI Foundation 8 IVI-3.1: Driver Architecture Specification

5.161 Separate Sessions for ¥l Class and IVAC Specific Drivers............oooooeiicciiiiiennnenn. 102

5.16.2 FUNCHON PrOtOLYPESciiitiiieiee ittt eeeet ettt eeer e e e e e e enensenee s 103

5.16.3 ACCESSING AIDULES......uuiiiiiiiiiiiii e rnee e 103

D164 PrEfiXES . iiii ettt e 103

5.16.5 IVEC AHDULE IDS......eiiiiiiieiiiie ettt e ree e 104

5.16.6 IVEC STAtUS COUEBS.....cueiiiiiiieiiieeeseeerie ettt sme e 105

5.16.7 INCIUAE FlE...cceeiii et ee e 105

5.16.8 FUNCHON Pan@l File........cooiiiiiiiie et 105

5.16.9 FUNCEION Tree OrganiZatiOn..........c.oiuurriieeiieeesiiiieee e e sttt e e s smmee s sseeree e e e s aennneeee s 106
5.16.9.1Extending the Function Tree for Instrument Specific Functians............. 106

5.16.00 SUD FlB. ..ttt ettt ettt e e et e e e anree e 106
5.16.11 AribUte HIerarChy..........cooiiiiiiiiii e 106
5.16.11.1 Extending the Attribute Hierarchy for Instrument Specific Attributes...106

5.16.12 Instrment Specific DIreCt 1/O APL.......c.ooiiiiiiiiiiiieeee e 107
5.16.13 Backwards Compatibility..........ceeeiiiriiiiiiiiceeiiec e 107
LN G 0 = Tor 2=V |1 o PP 107

5.17 IVILNET REQUIFEMEIALS.cciiiiiiiiiiieeee ittt e e e e sttt e e e s e e e e s e e e e e s e annnnneeeeas 109
5.17. 1 IVILNET DIIVEE ClaSSES. ... uuuuuuririiiiiiiiieiiaaaiuietiinteeeeeeereeseeeessessseseeeeesasaaaaeseesessssnnns 110

5.17.2 IVILNET NAMESPACES.......cceiiiiiiiiiiriieeee e i et eseesse bbb s e eeeeeeesenenrnnes 111

5.17.3 Standard .NET Error REPOITINGoocuuvriiieiieemniiiiie et ee e e 111

5.17.4 IVILNET .NET INTEIACES.......ciiei i i eeetiieeen sttt ee st eeeeeeeeeeeeaes 111

5.17.5 IVILNET INherent INterfaCes......cc.uuuuiiiiiiiiiieeieeeiiiiieie ettt e e e e e e e e e e e e e 111

5.17.6 IVI.NET ClassCompliant INterfaces........c.uuviieiiiiiiiiiieeree e 112

5.17.7 IVI.NET Instrument Specific Classes and Interfaces...........ccccvvvvvieemreveeeiviinninennn. 112
5.17.7.1 Instrument Specific Direct I/O ARL........ccceiiiiiiiieiceee s 112

5.17.8 Repeated CaApility INtErfaCesS.........ceviiiii it erres e e e e e 112

5.17.9 Assembly Level AtHDULES.........ooovviiiiie e eeer e e 112
5.17.10 INterface VerSiONING........cuuuuuiuiiiiiii s e ceeeieiis e e e e e e e e e e eee et mmme e s s e e e e aaeeeaeeeaaens 113
5.17.11 Backward€ompatibility............coourriiinii e 113
5.17.12 PACKAGING.citteeeeee ettt ettt e e st e e e e s bbbt ennr e e e e s e e e e e e 113

I 0 RS S T [1 o Vo T PP P PR 114

5.18 Wrapper PaCKAGING...........ooviiiiieii e e e e e e e e e e e e e e 114
LT R I] STV = o] 11 o To RSP 115
5.20 Installation REQUBIMENTS.......ccciiiiiiiiiieee ettt e e e e e e e e nnnnees 116
5.21 Driver Introduction DOCUMENTALION.cceieiiiiiiiiiiieeeeeeiiieiee e e sieeee e e s e esireeeeee e 116
5.21.1 Example Driver Introduction Documentation Files...........ccccooviiimeeiiiniiiieeeens 118

5.22 Help DOCUMENTALIOL.......uuiiiiiiiiiiieeiiee e e et e e e e e e e e e e e e e s e e e s e s eeeeeeeeees 124
5.221 CoPYrght NOUCE.....ccciiiiiieeeiet et ee et e e e e e e anaeeeaeaaaeas 125

5.23 Compliance DOCUMENTALION..........uuiiiiiiiiiiiiiiee e ettt s e e e e e 125
5.23.1 Example Compliance TexXt FIES.........cooiiiiiiiiiieeeiiee e 131

5.24 Compliance for CUSTODTIVEIS.uuuiiiiiiiiiiiieiieiiee et e e e e e e e e e e e e e e e e e e e aaa e nnnnes 136

1VI-3.1: Driver Architecture Specification 9 IVI Foundation

Appendix AT Example: Applying Virtual Identifier Mappings........... 137
Appendix BT Example: IVI Conformance TestS........ccccoeevvviviierennnnnn. 139

AppendiGorCt ents of | vi.Mi.s.aTyp.e..h1lRi |l e

IVI Foundation 10 IVI-3.1: Driver Architecture Specification

IVI-3.1 Driver Architecture Specification

IVl Driver Architecture Revision History

This section is an overview of thevision history of the IVI Driver Architecture specification.

Table 1-1. IVI Driver Architecture Specification Revisions

Revision Number

Date of Revision

Revision Notes

Revision 1.0

April 15, 2002

First approved versionAccepted changes; removed d

Revision 1.1

September 25, 2002

Added changes approved by the IVl Foundation vote
the IVI-3.1 change document. Changes included ren
of (1) custom directory copy installations and (2) reed
use of VISA for serial bus communication.

Revision 1.2

August 22, 2003

Updated spec with changes approved by IVl Founda
vote of IVI-3.1 change document. Changes include (1
modifications to text for multithread safety (both 4l
andIVI-COM), (2) modified requirements for readme
files (both IVI-C and IVEFCOM), and (3) renamed secti
title for pass through functions.

Revision 1.2

October 1, 2004

Editorial revision: IVFCOM drivers do not support
multithread locks on sessions.

Revision 13

July 15, 2005

Incorporate IVI Conformance working group content
regarding use of IVI logoChange behavior of IVI Shal
Component Installer to register with the Windows Ad
Remove Programs facility.

Revision 1.4

May 30, 2006

Add documentation to the installer requirements to cl
the permissible locations for start menu shortcuts
Incorporate reference to N3.15 LxiSync Specification

Revision 1.5

October 2, 2006

Remove the following obsolete operating systieam
target Gs: Win98, WinME, and WIinNT4.

Revision 1.5

January 9, 2007

Editorial change: refer users to web site for required
service packs. Sections 4.1.1. and 4.2.1.

Revision 1.6

January 11, 2007

Added support for Vista 32 and Vistd (32bit apps) as
well as added 64it integers to supported data types.

Revision 1.7

April 10, 2007

Add additional requirements for COM drivers packag
with C wrappers. Clarify legal values for the Modulel
attribute in the SoftwareModule entirks VI Drivers.
Editorial change note to section 4.2.1 about porting t
other Gs.

Revision 1.7.1

October 222007

1 The default IVI standard root directory was chan
from <ProgramFilesDir> \ IVl to
<ProgramFilesDir> \ IVl Foundation \ IVL.
Defined an IVidatadirectory. Previously, the Maste
Configuration Store was assumed to be in the

1VI-3.1: Driver Architecture Specification

11

IVI Foundation

Table 1-1. IVI Driver Architecture Specification Revisions

<IVIStandardRootDir> \ Data directory. For new
installations, the IVdatadirectoryis defined to be
<ProgramDataDir> \ IVI Foundation \IVI .

1 Editorial change to eliminate a potential backwar
compatibility problem regarding C wrappers on top
IVI-COM drivers(Section 5.15.10.1)

1 Deprecate Event Server.

Revision2.0 November 152008 1 Add support for 64it drivers
1 Editorial change to update the VI Foundation co

information in the Important Information section to
remove obsolete address information and refer only
the IVI Foundation web site.

Revision 2.1 February 16, 2009 1 Editorial changeo clarify issues regarding
disambiguating physical identifieesxdrepeated
capability names in the IVI Configuration Store.

Revision 2.2 March 30, 2009 1 Editorial change to separdtestallation content fror
IVI-3.1 and place it in a separate specification;3\AI7

Revision 2.3 February2010 Editorial changes to add support for Windows 7

Revision 3.0 June 9, 2010 Incorporated IVI.NET

Revision 3.1 October 22, 2010 Editorial change to remove the DLL bitness (Sectio
5.17.12)

Revision 3.2 November 9, 2010 Added section about copyright notice

Revision 32 April 15, 2011 Editorial changé add clarification about throwing
derived exceptions from IVI.NET drivers.

Revision 3.2 May 26, 2011 Editorial change to add support for Windows 7 in
Section 4.3.2and to clarify the bitness in sections
4.1.1,4.2.1, and 5.22.

Revision 3.2 August 25, 2011 Editorial IVI.NET change.

Change references to procesisle locking to
AppDomainwide locking.

Revision 3.3 January 182012 Minor changes in Sections 5.%8d 5.21to avoid
conflict between physical and virtual names.

Revision 3.3 June 28, 2012 Editorial change in Section 5.16.5, Tablé®
Reverted the ranges back to their original values.

Revision 3.3 May 7, 2012 Editorial change to remo\asterisks from Tables 4.1,
4.2, and 4.3 (Sections 4.1.2,4.2.2, and 4.3.3)

Revision 3.3 August § 2012 Editorial change in Section 5.17.4 to specify implici
rather than explicit implementation for certain
interfaces, for consistency with Section 5.17.1.

Revision 3.3 February 7, 2013 Editorial change in Section 5.16.5, Tabla®to
correctthevalueof IVl LXISYNC ATTR BASE

Revision 3.4 March 6, 2013 Minor change:

1 Updated Sections 2.5 and 3.15 for source co
availability

1 Added Section8.13.1, 4.1.11.6, 4.2.9,
4.3.12.6,5.15.5.1, 5.16.12, 5.17.7.1 for Direg
I/O

IVI Foundation

12

IVI-3.1: Driver Architecture Specification

Table 1-1. IVI Driver Architecture Specification Revisions

1 Added Section 3.16 for functionality covered
by IVI drivers

1 Added new Sections 5.2121, 5.2.2.2,5.2.2.3,
and 5.2.2.4and updated Section 5.23 for
testing requirements

1 Added wsigned &bit integer data type in the
Table 56

 Added section 5.21, Driver Introduction
Documentation

9 Added support fowindows 8

Revision 3.5

October 22, 2013 Minor changes:

1 Updated Sections.17.1, 5.17.4, and 5.17 %
allow explicit implementation ofiViDriver

1 Updated Section®.7 and 4.4.5.3 to clarify the
term Aqguwypleiaftieadd c apalkl

f Addeda new fdAl VI Gener a
Compliance Documentation section (Section
5.23 and 5.23.1)

9 Updated se@n 5.14 to allow signed-8it
integer and array of-Bit integer values for
IVI-C, IVI-COM and IVI.NET

f UpdatedSectioB . 12. 1 to exp
specific errors and

Revision 3.5

November 12, 2013 Editorial change to add sectidr3.18, Choosing a
Version of the IVI.NET Shared Components for
Building the Driver

Revision 3.5

March B, 2014 Editorial change in Section 4.4.4 to clarify thit a
repeated capability identifiers within a list of repeatg
capability identifiers must havthe same level of
nesting after expansion.

Revision 3.5

January 8, 2015 Editorial changes:

I Updates in &ction 4.2.7 to remove references
non-existing ivic.h file

1 Section 4.3.1, added the following sentence,
fithe .NET Framework Client Profile ot
sufficient to meet this conditiono

1 Section 5.17.9, updated AssemblyDescription

1 Section 5.23, misc updates in the compliance
documentation section

Revision 3.5

March 9 2015 Editorial change in sections 5.15.10, 5.16.14, and
5.17.12 tomakethe requirement for the help filame
formatless strict

Revision 35

August 6 2015 Editorial changes teemove Windows 2000 aratid
Windows 10 as supported operating system

Revision 3.5

September 242015 Editorial changes in sectiods2.5 and 5.9.%o clarify
the use of ondased index for C and COM, and zerdg
based index for .NET for repeated capabilities.

Revision 3.5

October23, 2015 Editorial change in Section 5.1%able 56 to correct
the .NET API type name for an NC or VISA
resource descriptor type.

IVI-3.1: Driver Architecture Specification 13 IVI Foundation

Table 1-1. IVI Driver Architecture Specification Revisions

Revision 3.6

June 72016

Minor change to removsupport forwindows XP and
Windows Vista

Revision 3.6

Octoter 13, 2016

Editorial changes to add a new section 5.6.1.1:
Complementary Attributes and Configure Functions

Revision 3.7

February 72017

Minor change in Section 5.12.2 to clarify what is
expected when underlying I/O software reports an
error.

Revision 3.7

May 8, 2017

Editorial changein Sections.14 and 5.16.8
change all visatype.h references to IviVisaTypard
to add IviVisaType.h as an appendixthis
specification.

Revision 3.8

October 192018

Added #A. NET Target Fr an
compliance document.

IVI Foundation

14

IVI-3.1: Driver Architecture Specification

1.0verview of the | VI Driver Architectur

1.1 Introduction

This section summarizes tBeiver Architecture Specificatioitself and contains general information that the
reader may need to understand, interpret, and implement aspects of this specification. These aspects include
the following:

1 Audience of Specifidéon
9 VI Driver Architecture Overview

1 References

Terms and acronyms used in this specification are definBd-5.0: Glossary
1.2 Audience of Specification

The intended readers of this document are end users, system integrators, and instrument venoors who a
interested in understanding the IVI driver architecture. This document is the starting point to developing and
using VI drivers from both the developer and user standpoint. Therefore, this specification has two primary
audiences. The first audiencedristrument driver developers who want to implement instrument driver
software that is compliant with the IVI Foundation standards. The second audience is instrumentation end
users and application programmers who want to implement applications thatingifimenent drivers

compliant with this specification. By understanding the IVI driver architecture, end users know how to use an
IVI driver and what they can expect when they install one. Similarly, end users can select VI driver software
components thdiest meet their application needs, based on required and optional behaviors.

1.3 Organization of Specification

Sectionl.7, Features and Intended Use of IVI Drivedgscribes the features of VI drivers from the user
perspective. SectioBy Required and Optional Behavior of VI Drige provides an instrument driver
developer witha highlevel understanding of the requirements for creating an IVI driver that implements
those features. Secti@mulso discusses both the optional and requieatlfes and indicates which are
required and which are optional. SectigniVI Driver Architecture provides an instrument driver developer
with the detailed architecture requirements for developing IVI drivers using, @®K, and .NETAPIs, as
well as requirements for handling repeated capabilities. Segtidanformance Requirementontains the
precise requirements for IVI drivers. These requirements pertain to the behavior of the drivers as well as the
terminology that the drivers use to describe their compliandetintbehavioral requirement$vi-3.17:
Installation Requirements Specificatiggrovides instrument driver suppliers with installation requirements
for IVI drivers.

1.4 IVI Driver Architecture Overview

The IVI Foundation is a group of enser companies, stem integrators, and instrument vendors working
together to define standard instrument programming APIs. By defining standard instrument APlIs, the IVI
Foundation members believe that many of the difficult programming tasks faced by test system developers
today, such as instrument interchangeability, execution performance, and simulation, can be solved more
easily. This document outlines the basic architecture of VI drivers and the framework in which they can be
used to deliver these benefits. It is impottto realize that the 1Vl Foundation is an organization defining
specifications, not products. Many companies will be building products and systems around these
specifications. This document specifies the requirements for instrument drivers and thiestraa@sopen for
interpretation and implementation strategies.

The IVI Foundation members believe that standard instrument APIs alone gloanahteebetter
performance or instrument interchangeability, but rather form a critical necessary buildikghialoc

IVI-3.1: Driver Architecture Specification 15 IVI Foundation

facilitatesthese improvements. This document also specifies the behaviors of IVI instrument drivers and
references the required software components that VI drivers must use.

1.5 Conformance Requirements

This specification provides an VI driver devply with enough information to write an VI specific driver

by documenting the features that IVI drivers have and their conformance requirements. When appropriate,
other specifications are referenced for further detail. IVI drivers can be developedGoi,a2ANSI-C, or

.NET API. This specification includes general requirements that are applicable to both APIs. When necessary
to differentiate between the COM and C APIs, separate requirements are defined.

1.6 References
Several other documents asgecifications are related to this specification. These other related documents
are the following:

IVI-1: Charter Document

IVI-3.2: Inherent Capabilities Specification

IVI-3.3: Standard Cross Class Capabilities Specification

IVI-3.4: API Style Guide

IVI-3.5: Configuration Server Specification

IVI-3.6: COM Session Factory Specification

IVI-3.8: Locking Component Specification

IVI-3.9: C Shared Components Specification

IVI-3.12: Floating Point Services Specification

IVI-3.15: IviLxiSync Specification

IVI-3.17 Installation Requirements Specification

IVI-3.18: IVI.NET Utility Classes and Interfaces Specification

IVI-5.0: Glossary

IVI Class Specifications

VPP-3.3: Instrument Driver Interactive Developer Interface Specification

VPP-4.3.2: VISA Implementation Sp#ication for Textual Language

VPP-4.3.4: VISA Implementation Specification for COM

VPP-9: Instrument Vendor Abbreviations

=A =4 =4 =4 A4 -4 -4 A -4 -4 -4 -4 -4 -4 4 -4 -4 -4

1.7 Substitutions

This specification uses paired angle brackets to indicate that the text between the brackets is not the actual
text touse, but instead indicates the kind of text that can be used in place of the bracketed text. Sometimes
themeaning is selévident, and no further explanation is given. The following list includes those that may
need additional explanation for some reade

1 <ClassName> The name of an VI instrument class as defined by an VI Instrument Class specification.
For example, #@AlviDmmo.

1 <ClassType>: The name of an IVI instrument class as defined by an IVI Instrument Class specification,
without twieol ealomgexiadmpl e, ADMMO.

1 <Componentldentifier>: For IVMCOM and IVI.NET, the string returned byspecificd r i ver 6 s

IVI Foundation 16 IVI-3.1: Driver Architecture Specification

1

Component Il dentity attribute. This string uniquel

<Prefix>; ForIVICclasdr i ver s, the string returned by the dri
class driver prefix will commonly be an | VI <cl ass
ForlVI-C specific drivers, the sbDriverPrafixattrdbbites Fored by t he
exampl e, ANI 34560

<ConpanyName>: The name of the driver vendor (not the instrument manufacturer). For example,
AfAgilent Technol ogies, Inco.

<ProgramFilesDir>: The Windows program files directory. This varies adiffissent versions of
Windows. In some contexts, it is not intended to differentiate between hi¢ &4d 32bit program

files directories found on 6Mit versions of Windows that include Windows On Windows (WOW), but
to be understood as a generic refae to the program files directory.

<ProgramDataDir>: The Windows data directory. This varies across different versions of Windows. It
is generally understood to apply to all users.

<lviStandardRootDir>: The root install directory for the IVI Sharednfonents, whickonsists of
executables and other files neédo create and run IVI drivers. By default, this directory is
Ai<Pr ogr a ¥ iFdumdatibl vV 0 .

<RcName>: The name of a repeated capability. Repeated capabilities may be defined speles or
by specific driver developers.

<FwkVerShortName>: The IVI.NET short name for a version of the .NET Framework.

Where it is important to indicate the case of substituted text, casing is indicated by the case of the text
between the brackets

<ClassName* ndi cates Pascal <casing. For example, Al viD
<className> indicates camel casing. For exampl e,
<classname> indicates all | ower case. For exampl e
<CLASSNAME> indicates all upper case. For exampl e

<CLASS_NAME> indcates all upper case with underscores between words. For example,
il VI _DMMOS .

IVI-3.1: Driver Architecture Specification 17 IVI Foundation

22.Features and I ntended Use of | VI Dr i

2.1 Introduction

This section introduces the features and intended use of VI drivers to test program developers. By providing
an overview othe types of IVI drivers available, their architecture, and their features, a user can better
understand the benefits and how they can be incorporated into test applications.

2.2 Types of VI Drivers

As a convenience for readers, this section describes thatthis specification uses to refer to different
types of IVI drivers. It is anticipated that these terms will be sufficient to allowusars to make an
informed choice about which type of driver most closely matches their application needs. Foimtairoef
for these and other terms used in the 1VI specifications are includet+0: GlossaryFigure2-1is a
Venn diagram depicting threlationship between driver types.

IVI Driver

\Y]|
Specific Driver

\Y]|
Class-Compliant
Specific Driver IVI Class Driver

VI
Custom
Specific Driver

Note: When necessary to distinguish between API types, IVI specific drivers
are further categorized by replacing "IVI" with "IVI-C", "IVI-COM", or fil VI . NETO

Figure 2-1.Types of IVI Drivers
IVI Driver

An VI driver is an instrument driver that implements the inherent capabilities detailgtt&12: Inherent
Capabilities Specificatiorregardless of whether the driver complies with a class specification. IVI drivers

can @mmunicate directly to the instrument hardware or act as a pass through layer to another IVI driver. An
IVI driver is either an 1VI specific driver or an VI class driver.

IVI Foundation 18 IVI-3.1: Driver Architecture Specification

vV e

IVI Specific Driver

An VI specific driveris an IVI driverthat contains informatiofor controlling a particular instrument or
family of instruments and communicates directly with the instrument hardware. For example, 1VI specific
drivers control messagmased instrument hardware by sending command strings and parsing responses.

IVI Class-compliant Specific Driver

An VI classcompliant specific driveis an VI specific driver that complies with one of the defined IVI class
specifications. For example, an VI classmpliant specific driver for an oscilloscope exports the API

defined bythe IviScope class specification. When a driver complies with a particular class specification, the
driver is referred to by that class specification name, subli%sope Specific Drivesr IviScopecompliant
Specific Driver In addition to complying wh a standard API for a given instrument class, 1VI

classcompliant specific drivers also incorporate other features to provide the user with instrument
interchangeability. A user should use an VI clasmpliant specific driver when hardware indepeneédac
desired.

IVI Custom Specific Driver

An IVI custom specific driveis an 1VI specific driver that is not compliant with one of the defined IVI class
specifications. VI custom specific drivers cannot be used for hardware interchangeability because they
export a custom API. IVI custom specific drivers are typically cobfieuse with specialized instruments,
such as an optical attenuator.

IVI Class Driver

An VI class driveris an IVI driver that allows users to interchange instruments when using 1VI

classcompliant specific drivers. IVI class drivers export an API ttwahplies with one of the defined VI

class specifications. 1VI class drivers communicate to instruments through an I\Vtatapiant specific

driver. For example, an lviScope class driver exposes the functions, attributes, and attribute values defined in
the IviScope class specification. An application program makes calls to an IviScope class driver. The
IviScope class driver, in turn, makes calls to an lviSempapliant specific driver that communicates with an
oscilloscope. IVI class drivers are ne@gdor interchangeability when using M classcompliant specific

drivers. IVI class drivers may also communicate to instruments throug8OM classcompliant specific

drivers.

IVI-C

This document uses the tetki-C in place oflVI when referring tdVI drivers that that have a C API. For
example, an IVAC classcompliant specific driver is an 1VI specific driver that exports a C APl and complies
with one of the defined IVI class specifications. 4®Idrivers are distributed on Windows to users in the

form of a Win32DLL. Many commonly used application development environments, such as Agilent VEE,
LabVIEW, LabWindows/CVI, and Visual C++ support calling into a C DLL. To achieve interchangeability
withanIVI-C speci fic dr i ver gogramn mest make eallshican B/clads drivea.t i on pr

IVI-COM

This document uses the tetii-COMin place ofiVI when referring to VI drivers that have a COM API.

For example, an IMCOM classcompliant specific driver is an IVI specific driver that exports avCAPI

that complies with one of the defined IVI class specifications.G@M drivers are distributed on Windows

to users in the form of a Win22LL. Many commonly used application development environments, such as

Agilent VEE, LabVIEW, LabWindows/CVI, anilisual C++ support calling a COM object. To achieve
interchangeability with an IMCOM classc o mp | i ant speci fic driver, the use.]
make a call to the IMCOM Session Factory, a software component defined by the IVI Foundatioa. Mor

details on the use of the MDOM Session Factory are included in Secdh2.2 How Interchangeability

Works in COMand .NET

IVILNET

This document uses the tetkl.NET in place oflVI when referring to VI drivers that have a .NET API. For
example, an IVI.NET classompliant specific driver is an I\dpecific driver that exports a .NET API and

IVI-3.1: Driver Architecture Specification 19 IVI Foundation

complies with one of the defined VI class specifications. IVI.NET drivers are distributed on Windows to

users in the form of a .NET assembly. Many commonly used application development environments, such as
C#,VB.NET, LabVIEW, Agilent VEE,and managed Visual C++ support calling into a .NET assembly. To
achieve interchangeability with an | VI.NET specific
to one of thdVI.NET sessionfactorymethods Thesedfactories aralefinedand implementedy the VI

Foundation. More details on the use of the IVI.NSsionfactorymethodsare included in Section.9.2.2

How Interchangeability Works in COlhd .NET

2.2.1 Specific Driver Wrappers

Some vendors, system integrators, or users may want to developcspidodrs that expord combination of

IVI APIs. Such drivers may be implemented using a specific driveromiginterface typeand one omore
wrappers that implement other interface tygas example, if the native interface type of a specific diver
COM, the specific driver developer can create a wrapper that gives the specific driver a C interface, or vice
versa. Drivers that export both interfaces comply with@OM requirements and IMC requirements, as

well as additional requirements for varzers defined ihVI-3.2: Inherent Capabilities Specification

2.2.2 Custom Class Drivers

Some vendors, system integrators, or users may want to develop custom class drivers, which are class drivers
that comply with a class specification developed outside the VI Foundation and not approved by the VI
Foundation. An IVI custom class driver meell the requirements of an IVI class driver except it does not

comply with a class specification approved by the 1Vl Foundation.

2.2.3 Special Considerations for IVl Custom Specific Drivers

To address a special market niche, a driver vendor might want ttoderelVI custom specific driver for an
instrument that otherwise fits within an instrument class. Vendors are allowed to create IVI custom specific
drivers in such cases, but the vendor should also supply an IVicdagdiant specific driver. For exanep

it would be confusing to users if a general purpose DMM has an VI custom specific driver but not an
available lviDmmcompliant specific driver.

2.3 Functions and Attributes

This document uses the terfosictions attributes andattribute valuego referto the elements of the API
exported by an IVI driver. Unless specified otherwise, functions refer generically to C funCi@is
methodsand .NET methodsSimilarly, attributes refer to C attributg8OM propertiesand .NET properties

Attributes can bgrouped into two categoriéshardware configuration attributeandsoftware control
attributes Generally, each instrument setting is associated with a hardware configuration attribute. Hardware
configuration attributes allow the user to set and retn@bees of the associated instrument settings.

Software control attributes control how the instrument driver works rather than representing particular
instrument settings. Software control attributes that are common to all IVI drivers are defvie@ Rt
Inherent Capabilities Specificatiofror examplelVI-3.2: Inherent Capabilities Specificatiatefines
software control attributes that allow users to enable and disable features such as range checking and
simulation.

2.4 Availability and Installation

Although it is possible for end users to develop their own IVI drivers, it is the intention of the VI Foundation
that users obtain most of their IVI drivers from driver suppliers such as instrument vendors, system
integrators, or other software suppliers. Thdsvers can be downloadable from web sites, shipped with
instruments, or distributed with other software applications on a physical storage medium, such as a
CD-ROM. Users can expect to have the instrument drivers packaged into an installer and donilable

IVI Foundation 20 IVI-3.1: Driver Architecture Specification

deployment on Microsoft Windows. In general, the driver supplier should also distribute or provide links to
all the software components that the VI driver requires, including configuration utilities, 1VI
Foundatiordefined software components, andhdler specific software components.

Users can expect that IVI drivers use the VISA I/O library when communicating over the GPIB and VXlbus
interfaces. Driver suppliers are not required to distribute the VISA I/O library. Users might need to install the
VISA 1/O library separately.

Drivers that communicate over other buses, such as 1394 and PCI, do not have to use the VISA I/O library. If
such drivers require 1/O libraries that do not come with the operating system, the driver supplier should
distribute sucliibraries with the driver.

The IVI Foundation defines terms to use when requesting drivers. These terms describe levels of compliance

and features in the driver. Sectibr23 Compliance Documentatipdefines the compliance category naming

format. It is strongly recommended that all users express their reguéisis terminology and avoid using

the simple term Al VI drivero. For example, iif a user
uses the COM APl to DMMs, COMel vs®mmsbpelcd fiequdestvear

2.5 Source Code Availability

Instrument driver suppliemrmustmake source code availalifehe source code is a simple translation of the
driver calls to a separate publicly documented and officially supported interface and does not include
proprietary or confidential conterthe compliance document for an 1VI specific driver states whditieer
source code is available and under what conditions.

It is not always practical for instrument driver suppliers to make source code available. Instrument driver
suppliers often choose not to distribute source code that contains proprietary algorithaiss complex to

debug. If possible, the driver developer should encapsulate the proprietary or complex software in a support
library for which the source code is not available and distribute source code for the remainder of the driver. If
the remaindr of the driver has little content, then distributing source code has little benefit for the user.

Instrument Driver suppliers who include source code must also provide instructions on rebuilding the driver
executables in at least one publicly availal@gedlopment environment

2.6 Capability Groups

The fundamental goal of IVI drivers is to allow test developers to change the instrumentation hardware on
their test systems without changing test program source code, recompilindingm@ To achieve this

goal, instrument drivers must have a standard programming interface. Other VI Foundation specifications
define standard functions and attributes for common instrument types such as oscilloscopes, digital
multimeters, and function generators. For exampkptitilloscope class contains common attributes for
configuring an oscilloscope, such as vertical range and trigger type. The class specification also defines
functions for highlevel configuration and data retrieval, such as Configure Channel and Reatbvitav
Because instruments do not have identical functionality or capability, it is impossible to create a single
programming interface that covers all features of all instruments in a class. For this reason, the VI
Foundation recognizes different typdsapabilitiesi Inherent Capabilities, Base Class Capabilities, Class
Extension CapabilitieandInstrument Specific Capabilities

Inherent IVI Capabilities

Inherent IVI capabilities are the functions, attributes, and attribute values that all 1Vhestru
drivers must implement. Several of the inherent functions are similar to the functions that the
VXI plug&play Systems Alliance requires. For example, VI drivers must have Initialize, Reset,

IVI-3.1: Driver Architecture Specification 21 IVI Foundation

Self-Test, and Close functiohsSome inherent attributes afuthctions allow the user to enable and
disable performance features, such as state caching, simulation, range checking, and instrument
status checking. Other inherent attributes provide information about the driver and the instrument.
For instance, usersman programmatically retrieve information about specification compliance, driver
vendor, and the instrument models that the driver supports<C BAd IVI.NET drivers must also

have functions to apply multithread locks to sess{@)sor driver instances (.NET}or a detailed
explanation of inherent IVI capabilities, referl¥d-3.2: Inherent Capabilities Specification

Base Class Capabilities

Base class capabilities are the functions, attributes, and attribute values oftanénstlass that

are common across most of the instruments available in the class. The goal of the IVI Foundation is
to support 95% of the instruments in a particular class. Decisions regarding base class capabilities
are made through consensus, basedemtost popular instruments and the most commonly used
functions of those instruments in automated test systems. Ré¥dr1oCharter Documenfor

more details. For an VI clasompliant specific driver to be compliant with a class, it must

implement d the base capabilities.

For example, the base class capabilities of the oscilloscope class have functions and attributes that
configure an edgé&riggered acquisition, initiate an acquisition, and return the acquired waveform.

For a complete descriptiaf the base capabilities for a particular class, refer to the individual class
specifications, such d¥1-4.2: lvibmm Class Specification

Class Extension Capabilities

Class extension capabilities are groups of functions, attributes, and attributethatuepresent

more specialized features of an instrument class. In general, IVI interchangeable specific instrument
drivers are not required to implement extension groups. For example, although all oscilloscopes have
very similar base class capabilities ¥ertical and horizontal settings, there is a wide variety of

trigger modes among oscilloscopes. The IviScope class specification has extensions for different
trigger modes, such as TV trigger, runt trigger, width trigger, and so on. The driver for an
ocilloscope that can perform TV triggering implements the TV trigger extension group. The driver
for an oscilloscope that cannot perform TV triggering does not implement the TV trigger extension
group but is compliant with the IviScope class because iteimghts the IviScope base capabilities
group. If an application depends on a function from one of the extension capability groups, the
application must restrict itself to drivers that implement the capability group.

Generally, an IVI classompliant specifi driver implements all class extensions the instrument
hardware supports. It would be confusing to users if an instrument had certain hardware capabilities
that fit into a class extension but the 1VI classnpliant specific driver did not implement tledaiss
extension.

For a complete description of the class extension capabilities for a particular class, refer to the
individual class specifications, suchl&-4.2: lviDmm Class Specification

Instrument Specific Capabilities

Most instruments that fit o a class also have features that are not defined by the class. Instrument
specific capabilities are the functions, attributes, and attribute values that represent those features.
For example, some oscilloscopes have special features such jitter ardairalgsis that are not

defined in the IviScope class specification. The functions, attributes, and attribute values necessary
to access the jitter and timing analysis capabilities of the oscilloscope are considered instrument
specific capabilities. The IM~oundation allows for instrument specific features in IVI drivers. In

fact, driver developers are encouraged to implement instrument specific features in their drivers.
However, the user of an application that accesses instrument specific featureisef gadnot

swap in a different instrument without modifying the instrument specific portions of the test

LIn IVL.NET, the Initialize function is replaced by the driver constructor(s)

IVI Foundation 22 IVI-3.1: Driver Architecture Specification

program.

Figure2-2 illustrates how an IVtlasscompliant specific driver is divided into various capability groups.

IVl Foundation Defined Capabilities

Instrument

ClassDefined Capabilities

Specific

VI
Inherent
Base
it
Capabilities Class
Capabilities

Class Extensio€apabilities

Capabilities

Ext.

#1

Ext.
#2

Ext.

#n

Figure 2-2. IVI Class-Compliant Specific Driver

IVI custom specific drivers contain only IVI inherent capabilities and instrument specific capalfiigese
2-3 shows the capability groups of awil custom specific driver.

IVI Foundation Defined Capabilities

Inherent IVI Capabilities

Instrument
Specific
Capabilities

2.7 Repeated Capabilities

Figure 2-3. IVl Custom Specific Driver

Many instruments contain multiple instances of the same type of functionality. For example, many
instruments have multiple channels with independent settings. The general term for functionality that is

duplicated in an instrument iispeated capability

Repeated capabilities can be complex. An instrument may have multiple sets of repeated capabilities, such as
channels and traces, or analog channels and digital channels. Also, repeated capabilities may be nested
within other repeated capabilitiesy fexample traces within displays. Furthermore, when working with

repeated capabilities that have a large number of instances, such as digital channels, the user may find it
convenient to specify a set of instances when calling an VI driver API.

The VI Foundation specifies how IVI driver APIs allow the user to access repeated capabilities, including
nested repeated capabilities and sets of repeated capability instances. Each VI class specification specifies
the repeated capabilities, if any, that thessdefined APIs export and any nesting of the repeated

capabilities. Each specification also defines the functions and attributes to which the repeated capabilities
apply and which functions and attributes accept sets of repeated capability instances.

A repeated capability is designated brepeated capability nameThe VI class specifications define

repeated capability names for claksfined repeated capabilities. For example, the lviScope class defines

s a r e p espetife drivarsadgfinelrapeaied capalility maenes for iNstrument
specific repeated capabilitied repeated capability defined in an VI class specification is also designated

by aqualified repeated capability namehich is constructed by appending tepeated capability name to

the class name specified in the IVI class specification with which the driver complies. In the example above,
c a Pinailarly, la gqualified repeated capabilitfinrame Sc o p e C

AfiChannel 0 a

the qualifi

ed repeated
can alsde constructed for a repeated capability defined by a custom class.

An instance of a repeated capability is designatedrep@ated capability identifierAn VI specific driver
defines ghysical repeated capability identifiéor each repeated capatylinstance it implements$-or
d e f i rcleanniél sabpeanhateadiaPodherarsvert h e i

example, a
mi ght defin

driver might
e ACHOO and

ACH10.

Users can defineirtual repeated capability identifie@nd map them to physiciaentifiers. For example, the
define fAAcquisitionlo

user might

1VI-3.1: Driver Architecture Specification

23

and AAcquisition2bo

IVI Foundation

C

identifiers defined by the particular specific driver in use. When calling VI driver APIs, users can specify
repeated gaability instances using physical identifiers or virtual identifiers.

2.8 Declaring Conformance, Capabilities, and Requirements

Users learn about the conformance and capabilities of an IVI driver by inspecting the compliance
specification section of the instnent driver help documentation. The compliance documentation includes
such information as the driver type, bus interface type, instrument models supported, drivey cigvsion
bithessand supported operating systerarthermore, if the IVI driver isanpliant with a class

specification, the compliance document also includes such information as class specification prefix, class
specification version, and extension capabilities supported. The compliance document also specifies the
minimum version of supgrt software with which the driver is compatible. For example, if an VI specific
driver uses VISA as the I/O interface, the compliance documentation states the minimum version of VISA
that the driver requires.

For a complete description of the compliadeceumentation that is supplied with a driver, refer to Section
5.23 Compliance Documentation

2.9 Using IVI Instrument Drivers

As with traditional instrument drivers, VI specific drivers contain the information for controlling a particular
instrument model, including the command strings, parsing code, and paraatiet&tion for the particular
instrument. However, to develop an application program that is not dependent on the specific driver API, a
generic APl is necessary. Depending on the type of programming interface used in a program, abstraction is
obtained dferently.

2.9.1 Using VI Drivers from the Instrument Specific Perspective

An application program can directly access an VI specific driver. This is similar to the way in which
traditional instrument drivers are used. As with traditional drivers, the IVifgpddver encapsulates the
information necessary to control a particular instrument mddigh this approach, a user gains such VI
benefits as simulation, configurable status checking, and multithread safety, ierabtangeability.

The user of an application that accesses instrument specific features of a driver cannot swap in a different
instrument without modifying the instrument specific portions of the test program.

Even if the developer of application restricts the use of the driver to the functions and attributes that are
defined in a class specification, the user still cannot swap in a different instrument without modifying the test
program source code. The reasons for this are diffeoetv/f-COM, IVI-C, and IVI.NETdrivers.

An application that directly opens a session to the @asgpliant APl of an IVICOM classcompliant
specific driver must explicitly identify the specific driver in the program. It does so by specifying a Class ID
or Prog ID that the COM libraries use to activate the appropriate object.

Each IVIC specific driver exports functions and attributes that begin with a prefix that uniquely identifies the
IVI-C specific driver. An application program that directly referasrfoactions of an INAC specific driver
contains these unique prefixes.

An application that directly opens a session to the -@astpliant API of an IVI.NET classompliant
specific driver must directly instantiate the specific driver. Thishmadonesither by adding a reference to
the assembly referenceshorusing reflection and late binding.

2.9.2 Using VI Drivers to Achieve Interchangeability

To achieve interchangeability without recompiling oflinking, the user must use other components in
additionto the classompliant specific driver. The user must program to a class API rather than to a specific

IVI Foundation 24 IVI-3.1: Driver Architecture Specification

driver. The user must also identify which specific driver and hardware resource to use without directly
referencing them in the program. This requiregxernal configuration store and the ability to dynamically
load the specific driver based on information in the configuration store.

2.9.2.1 Accessing Class and Specific APIs

An application program can access both ctammpliant and instrument specific featuneshe same VI
driver without reinitializing. This allows the user to develop an application in which most of calls to
instrument drivers are interchangeable but that accesses instrument specific features when necessary.
Swapping an instrument in thisseamight require recompiling andlieking the application. Nevertheless,
the user benefits from this approach by minimizing the instrument specific code in the program.

2.9.2.2 How Interchangeability Works in COM and .NET

IVI-COM and IVI.NET classcompliant speific drivers contain class compliant APIs. For every-MDM or
IVI.NET specific instrument driver within a particular class, the etasapliant APIs are identical.
Application developers program to these classpliant APls.

The presence of a clasemgiant APIlin an IVI-COM or IVI.NET specific driver is not enough to achieve
interchangeability without rénking because instantiating a driver through the class compliant API directly
requires specifying a Class ID or Prog(IVl -COM) or a driver refemgce (IVI.NET)for the driver. To
overcome this limitation, the IVl Foundation recommends using th€€l®M Session Factorfor IVI-COM

or one of the IVI.NET session factory methods for IVI.NHTese arespecial componegathat can

dynamically load an IVEpecific driver without requiring the application program to identify the IVI specific
driver directly. An application program identifies a logical name that must match a logical name in the VI
configuration store. In the VI configuration store, the t@diname refers to an VI specific driver and a
specific physical instrumenEigure2-4 shows how a user achieves interchangeability when usinG@OM
classcompliant specific driverThe scenario for .NET is similar.

User f-------—--- GUI oo ,

l

Application [0

Program l
l l IVI-COMO

Session Factory

ClassO Specific
CompliantO DriverQ
Interface Interface

VIO

IVI-COMD > ConfigurationO
Class-Compliant Store
Specific Driver
Function Calls --------- GUI Access

Figure 2-4. Using an IVI-COM Class Compliant Specific Driver

The IVI-COM classcompliant API is the same for all IMCOM classcompliant specific drivers for a
particular classand the IVI.NET classompliant API is the same for all IVI.NET classmpliant specific

IVI-3.1: Driver Architecture Specification 25 IVI Foundation

drivers for a particular class. Because of this, the driver exjptis#assdefined methods and properties,
even thosehat it does not implement. The methods and properties that the elkpesedut does not
implement return an error.

In addition to classompliant APIs, IVICOM and IVI.NET classcompliant specific drivers can contain
instrument specific APISn COM, anapplication program that uses the clasmpliant interface can call

into the instrument specific API by calling Query Interface either directly or implicitly as in Visual Basic.
.NET, an application program that uses the etasapliant interface can call into the instrument specific API
by using IServiceProvider.GetService() to obtain a reference to the instrument specific API.

2.9.2.3 How Interchangeability Works in C

IVI-C classconmpliant specific drivers export the functions, attributes, and attribute values of the class
specification for the class capabilities that they implement.

The presence of class defined functions in anQ\dlasscompliant specific driver is not enough tchéeve
interchangeability without rénking because the driver prefixes differ from one-Wiclasscompliant

specific driver to another. To overcome this limitation, application developers program to an VI class driver
API.

The VI class driver exportthe inherent capabilities, the base class capabilities, and all class extension
capabilities. The IVI class driver does not actuatiplementny of the capabilities except for a few inherent
capabilities specific to class drivers. Instead, the VI dias®r is a passhrough layer to the VI
classcompliant specific driver. The IVI class driver dynamically loads the specific driver and connects the
inherent and clasgefined functions and attributes in the {€Iclasscompliant specific driver to the
corresponding functions and attributes in the VI class driver.

When the application program calls the Initialize function of the IVI class driver, it specifies a logical name
that must match a logical name in the IVI configuration store. An applicatagrgmn that uses the IVI class
driver can also call the IVC classcompliant specific driver by calling the Get Specific Driver C Handle
function to obtain the handle to the specific driver ses$igure2-5 shows how a user achieves
interchangeability when using IMC classcompliant specific drivers.

User |---7"" "] Gur |-

'

Application
Program

IVI Class L

Driver
\Y/|
Configuration
Store
\ 4 h 4

IVI Class-Compliant >
Specific Driver

~_

FunctionCalls ---------- GUI Access
Figure 2-5. Using and IVI-C Class Compliant Specific Driver
IVI Foundation 26 IVI-3.1: Driver Architecture Specification

2.9.2.4 Interchanging IVI-C, IVI-COM, and IVI.NET Specific Drivers
Table 21 shows that two basic mechanisms can be used to interchange drivers.
First, a wrapper that uses one API can be provided for a driver that is implemented with another API. For
exanple, if an IVI-COM specific driver has an IMC wrapper, a program that uses an-{¥tlass driver can

direct the class driver to load the N wrapper, and use the NGOM driver via the wrapper.

Second, IVIC class drivers can be written so thiay can call any type of IVI APIl. For example, an-¥I|
class driver can be written that knows how to callGOM drivers.

Table 2-1. Mechanisms for Interchangeability

_ Test program uses this class compliatgriface:
Driver Type: | |VI-C IVI-COM IVI.NET
IVI-C class NA IVI-COM wrapper on the IMC | IVI.NET wrapper on the IIC
driver driver driver
IVI-COM (1) IVI-C wrapper on the NA IVI.NET wrapper on the I\4
IVI-COM driver COM driver
(2) IVI-C class driver calls
IVI-COM
IVI.NET (1) IVI-C wrapper on the IVI-COM wrapper on the NA
IVI.NET driver IVI.NET driver
(2) IVI-C class driver calls
IVI.NET

2.10 The IVI Configuration Store

To allow users to swap out instruments without code modifications, application programs lejesatio
namesrather than to specific instruments and drivers. A logical name referd\o @driver session
configuration An IVI driver session configurath, in turn, identifies an IVI specific driver and an instrument
to use when opening an IVI session. The IVI driver session configuration also specifies settings for
configurable features such as simulation, range checking, and state caching. The tliratbofi store

contains logical names and VI driver session configurations. When a user swaps an instrument, the user
redirects the logical name in the IVI configuration store to refer to a different IVI driver session
configuration. IVI class drivers arttie IVI-COM SessiorFactoryand IVI.NET session factory methordsad

the logical name and IVI driver session configuration information froncoinemonlVI configuration store.

For ease of use, instrument driver suppliers can provide an IVI configuratipnta assist users in
modifying the IVI configuration store. The IVI Foundation does not define the VI configuration utility.
Therefore, it is likely that multiple IVI configuration utilities will be available.

For IVI-COM, the IVI Foundation provides component, the IVCOM Session Factory, that should be used
regardless of the type of IMLOM specific driver that is being instantiated. This component is described in
more detail inVI-3.6: COM Session Factory Specificati@nd is installed with #IVI Shared Components.

For IVL.NET, the IVI Foundation provides a session factogthodfor each instrument class, designed for

use with IVI.NET class compliant specific drivers that support the class. These are documented in the class
capabilities seton of each instrument class specification. The IVl Foundation also provides a session
factorymethodthat may be used with any driver, including IVI.NET generic specific drivers. This generic
session factory is described in sectioh.4.IVI.NET IviDriver Session Factonof IVI-3.2: Inherent

Capabilities SpecificationNote that for IVFCOM, the Session Factory returns an object reference which the
user must cast to the desired class compliant type. For IVI.NET, session factory methods perform the

IVI-3.1: Driver Architecture Specification 27 IVI Foundation

additional step of verifying that the driver supports the specified instrument class, and IVI.NET session
factory methods return either the instrument class base interface type (for example, llvibDmm) or the inherent
capabilities base interface (liviDriver).

2.11 Other Considerations for Interchangeability

The previous section discussed the general framework for interchangeability. This section discusses the
features that are necessary to assist the user in achieving interchangeability. This section also discusses
circumstances in which interchangeability cannot be achieved.

2.11.1 Virtual Names for Channels and Other Repeated Capabilities

Just as users should not reference specific driver APIs directly in their applications, users striving for
interchangeability shouldso refrain from using the physical repeated capability identifiers that specific
drivers define. To refer to instrument channels or other repeated capability instances, the user should define
virtual repeated capability identifiers in the VI driver sesstonfiguration in the IVI configuration store,

map the virtual identifiers to physical identifiers, and use only the virtual identifiers in the application source
code.

2.11.2 Configurable Initial Settings

Most instruments have unique features that are natetbfy VI class specifications. Sometimes, an
instrument specific feature has an effect on the elafised capabilities of the instrument, depending on the
value of the settings associated with the feature. An initial value for an instrument spéaificragght

cause the instrument to behave in a-imdarchangeable manner. Therefore, to achieve interchangeability, it
might be necessary to specify a value for an instrument specific attribute.

On the other hand, a completely interchangeable prograrmreftan from accessing instrument specific
attributes. To resolve this dilemma, an IVI specific driver can provide the user with the ability to specify
values for instrument specific attributes in the IVI driver session configuration in the 1VI comifigustore.

The VI specific driver applies the values during initialization. The set of values that the user specifies for the
session is called theonfigurable initial settings

The following are examples of situations where applying the configunaikild settings aids the user in
achieving interchangeability:

Achieving Interchangeability in the Presence of Additional Capabilities

Applying configurable initial settings might be necessary when swapping-ahaymel scope for a

four-channel scope imeapplication program that uses only two channels. If the initial state of the

four-channel scope enables all channels and the maximum number of points that the scope acquires depends
on the number of channels enabled, then it is possible that the uset aequire the same number of points

as when using the twchannel scope. If the user disables the additional channels, the driver is more likely to
provide the requested record length. Disabling the additional two channels in the program source cbde woul
limit interchangeability. Instead, the driver should allow the user to disable the additional two channels in the
IVI configuration store.

Achieving Interchangeability With Different Kinds of Switch Channels

A configuration channel is a switch chanr&ttthe application does not intend to use as end points of a path

in the Connect and Set Path functions. If the user declares a channel as a configuration channel, the driver can
use the channel to create more routes through the switch module. Thisésdteanumber of possible paths.

Since the overall topology and numbers of channels differs among switch modules, the driver should allow

the user to declare configuration channels IVI configuration store instead of in the program source code.

IVI Foundation 28 IVI-3.1: Driver Architecture Specification

2.11.3 Interchangeability Checking

To aid users in developing interchangeable applications, VI drivers may implement a feature called
interchangeability checking. When enabled, this feature identifies cases where an application program is in
danger of producing a differergsult when used with a different instrument. The feature generates warnings
when an application program does not fully configure the state of the instrument before initiating a
measurement operation. Interchangeability checking is most useful duringgétedauOnce application
development is complete, this feature can be disabled.

Interchangeability checking can also aid in detecting potential interchangeability issues between test modules.
When developing a complex test system that consists of mukigtieniodules, it is generally a good idea to
design the test modules so that they can run in any order. To do so requires ensuring that each test module
completely configures the state of each instrument it uses. If a particular test module does notlgomplet
configure the state of an instrument, the state of the instrument depends on the configuration from a
previously executed test module. If the test modules execute in a different order, the behavior of the
instrument and therefore the entire test modkilé&ely to change. This change in behavior is generally
instrument specific and represents an interchangeability problem. To avoid this problem, users can reset
interchangeabilitghecking at the beginning of a test module. An interchangeability wattmmg@ccurs after

the user resefsterchangeabilitghecking indicates that the test module did not completely configure the
instrument.

2.11.4 Coercion and Coercion Recording

IVI class specifications often allow a continuous range of values fovadadd paameters and attributes.

This is true even if some instruments in the class implement only a discrete set of values for the setting. Some
instruments that implement only a discrete set of values accept a continuous range of values and coerce
userspecifiedvalues to the discrete set. Others accept only the discrete set, in which case the specific driver
accepts a continuous range and coerces thespseified value to a discrete value that the instrument

accepts.

For each attribute, the VI class specifioas specify how specific drivers coerce the value the user requests.

The specifications can provide a recommendation for how-claspliant specific drivers should coerce

values. If an instrument performs coercion in a manner different than what thia$¥Ispecifies, the specific

driver must ensure that the final val ue of the attri
request. For example, if a user specifies a range of 10.01 volts for a measurement, the instrument might

coerce thivalue to 10.0 even though that is less than the user requestedivaleeause the instrument can

measure up to 11.0 volts when in the 10.0 volt range.

To aid users in developing interchangeable applications, IVI drivers may implement a featurecsatied
recording This feature helps the user discover when the specific driver coerces values that the user requests.
Coercion recording applies to numeric scalar attribute values. If the user enables coercion recording, the VI
specific driver maintains a&cord of each user value that it coerces. The VI specific driver exports functions
for retrieving the coercion records.

2.11.5 Limitations to Instrument Interchangeability Using IVI Drivers

IVI classcompliant drivers do not guarantee interchangeable behaViadrivers make it possible in
software to interchange instruments that have interchangeable behavior in the underlying hardware.

While instruments can have the same settings, the range of values they accept can differ. For example, if an
application progam configures a DMM to use a 100V range, a user cannot swap the DMM with another
instrument that only accepts up to a 10V range.

Furthermore, instruments can have the same settings and ranges but still not produce the same result because
they have differst measurement techniques or algorithms. For example, oscilloscopes use different
algorithms to calculate the reference levels for-tise measurements.

IVI-3.1: Driver Architecture Specification 29 IVI Foundation

2.12 Leveraging Syntactic Similarities

Users who do not take advantage of IVI class drivers oclddscompliant APIs still benefit from a standard
programming interface. All IVI classompliant specific drivers share a subset of functions and attributes.
Furthermore, the values passed to the configuration functions are also standardized. For gxamyfajt
amplitude for all lviFgercompliant drivers is set in Volts peak to peak, not Volts RMS or Volts peak. This
commonality between instrument drivers results in reduced learning time and faster development time when
working with new hardware andstrument drivers.

2.13 Instrument Driver Operational Modes: Simulation, Debug, and Run-time

IVI specific drivers have several features that enable users to run their applications in different modes. The
user can choose modes that are optimal for productiodevelopment. For example, during development a

user might enable instrument status checking and range checking to assist in analyzing and debugging. Also,
instrument hardware is often unavailable during application development. A user can enable sitoulatio
proceed with application development without the hardware.

2.13.1 Range Checking

If range checking is enabled, an IVI specific driver checks that input parameters are within the valid range for
the instrument. Range checking is most useful during debughjiteg.users validate their programs, they
can disable range checking to maximize performance.

2.13.2 Instrument Status Checking

If instrument status checking is enabled, an IVI specific driver automatically checks the status of the
instrument after most operati®nf the instrument indicates that it has an error, the driver returns a special

error code. The user then calls the Error Query function to retrieve the instrument specific error code from the
instrument.

Instrument status checking is most useful dudafugging. Once application development is complete, this
feature can be disabled to maximize performance.

2.13.3 Simulation

If simulation is enabled, an VI specific driver does not perform instrument I/O, and the driver creates
simulated data for output parataes. This allows the user to execute instrument driver calls in the application
program even though the instrument is not available.

IVI specific drivers perform range checking in simulation mode although not necessarily to the same extent
that they do Wwen simulation is disabled. The output values that VI drivers generate in simulation mode are
typically very simple.

IVI drivers may also implement more sophisticated simulation with-caefigurable output values and
status codes. For example, allowthg user to inject simulated errors for status values in an application
program helps the user verify that the program properly handles errors.

2.13.4 State Caching

To minimize the number of 1/O calls needed to configure an instrument to a new state, VI sreifc

may implement state caching. IVI specific drivers can choose to implement state caching for all, some, or
none of the instrument settings. If the user enables state caching and the 1VI specific driver implements
caching for hardware configuratiattributes, driver functions perform instrument I/O when the current state

of the instrument settings is different from what the user requests. This can result in improved performance as
compared to test programs written with instrument drivers that dionptgment state caching. For example,

IVI Foundation 30 IVI-3.1: Driver Architecture Specification

if an application program performs a simple frequency sweep of an excitation signal, it is inefficient to resend
amplitude, waveform shape, phase, and other types of signal information over and over again. With state
caching enabled, only the changed frequency settings are sent to the instrument. State caching allows users to
write test programs that completely configure an instrument while minimizing performance degradation

caused by redundant /0.

In general, usershsuld use the same setting for the state caching option in debug and runtime mode.

2.14 Multithread Safety

IVI drivers are multithread safe. Multithread safety means that multiple threads in the same process can use
the same VI driver session and that différemssions of the same IVI driver can run simultaneously on
different threads.

To access a driver session from multiple threads, the application initializes the driver in one thread and then
shares the session handle or object with other threads. If hoatipp wants to treat several calls to an 1VI

driver as a single operation that other threads must not interfere with, the application must block other threads
during the sequence of calls. The application can do this by using synchronization funchidgchsdoby the

operating system or programming environméot IVI -C and IVI.NET, the application can use the locking
function that IVIC and IVI.NET drivers provide.

Some of the scenarios in which users can take advantage of multithreaded acceseverb/ara the
following.

1 Two threads each run tests on separate test heads, where the test heads share one or more instruments.

1 Atransmit test and a receive test on the same phone run in parallel in different threads of the same
process.

Multiple threadause the same switch card in a test station.

Two threads use different channels of a-sh@annel power meter. The first thread monitors a test level
and adjusts it to maintain a very constant level. The second monitors the UUT's output power. The first
thread runs as fast as it can while the second thread takes measurements every 30 seconds.

IVI-C and IVFCOM drivers do not provide a degree of multithread safety that allows multiple processes to
share the same session.4@0OM and IVFC drivers also do ngirovide any mechanism to synchronize
between multiple threads or processes that open multiple sessions on the same physical instrument. To
synchronize access to the same physical instrument from multiple processes, applications that wse VI
IVI-COM diivers must useesource locking

IVI.NET drivers, on the other hand, can synchronize access between threads in the same process or between
threads in different processes on the same computer. IVI.NET drivers can also synchronize access between

drivers that open multiple sessions to astimment. These extended locking capabilities available with
IVI.NET drivers are discussed further in SectibB.11, Multithread Locking

2.15 Resource Locking

The IVI Foundation has not defined the requirements for Resource Lockifar managingsimultaneous
access from other users

2.16 Operating Systems
IVI drivers work onone or more ofhe following Microsoft operating systemalindows 7 (32bit and 64

bit), Windows 8 (32bit and 64bit), and Windows 10 (3bit and 64bit). An IVI driver supplierlists the
supported operating systems in the compliance document.

IVI-3.1: Driver Architecture Specification 31 IVI Foundation

I n the context of all olrVIfd Vipnededersso tbtadetsioosnosWinddwd/i nd o ws 8
operating system that run on x86 and-@bcompatible CPUs and support the full Wirds2l.

IVI class specifications are operating system independent. Installation and deployment are operating system
dependent. The IVI Foundation recognizes that Microsoft Windows is the most commonly used operating
systemand that both 3bit and 64bit versions of Windowsexist Therefore, the specifications define how to
create and deploy drivers ¢ime 32-bit and 64bit editionsof the Microsoft Windows operating systeristed

above Nevertheless, specifications do not preclude driver suppliers froloyitggpon other operating

systems. It should be noted the IVI Foundation might, in the future, define deployment requirements for other
operating systems. If so, the specifications might conflict with implementations that predate the standards.

For the mitmum service pack leveequired to use the IVI shared components on each operating system,
refer tothe download page ahelVI Foundation web siteyww.ivifoundation.org

2.17 Target Application Development Environments

The IVI Foundation has identified application development environments (ADES) that it wants to ensure that
IVI drivers run well on. Those ADEs are Agilent VEE, National Instruments LabVIEW, National Instruments
LabWindows/CVI, MathVorks MATLAB, Microsoft Visual Basic 6.0Microsoft Visual BasicNET,

Microsoft Visual C#and Microsoft Visual C++.

2.18 Bitness Considerations

The 32-bit versions of Window$Windows 7 (32bit), Windows 8 (32bit), and Windows 10 (3Bit)) can run
only 32-bit applicationsWindows 7 (64bit), Windows 8 (64bit), and Windows 10 (64it) canrun both32-
bit and64-bit applications.

Whereas 3dit applications and drivers can be installed on bothi8and 64bit versions of Windows4-
bit applications andrivers can be installeahly on 64-bit versions of Windows

With regard to IVI drivers, @ndors, system integrators, or users may develop and distribute onhjta 32
driver, only a 64bit driver, or both a 3bit and 64bit driver. Users need to indtadrivers with the correct
bitness for their application needSince sers can run 3Bit and 64bit applications on the same machine
underWindows 7 (64bit), Windows 8 (64bit), and Windows 10 (64it) users might need 3ait and 64bit
drivers on thesame machine.

The IVI Foundation allows th&2-bit and 64bit versions of the same driver be installed on the same

machine, but only if they are from the same veradwtarethe same revisionWhen the 3zbit and 64bit

versions of the same driver are installed, they share the entry that describes the driver inahfigifiation

store. This is so that users can use the same configuration store entries regardless of whether the application
they run are 3dit or 64bit.

Some compilers, such as Microsoft Visual C++, allow users to build beltit 2&d 64bit versions of an
application on the same machimeder 32bit and 64bit versions of WindowsThe VI Foundation wants to
enable user take advantage of this capability in applications that use IVI drivers. Therefore, vemdors
distribute botB2-bit and 64bit versions of driver are requiredwhen users install the 38t driver on a32-
bit version of Windowsto installthe conponents of the 64it driver that are necessary to compiletgg
applications.

The compliance document for an 1VI driver states whether the dsigemilable in 82-bit version a 64-bit
version or both

IVI Foundation 32 IVI-3.1: Driver Architecture Specification

http://www.ivifoundation.org/

33.Required and Optionalr8ehavior of 1 VI

3.1 Introduction

Sectionl.7, Substitutions

This specification uses paired angle bracketmdicate that the text between the brackets is not the actual

text touse, but instead indicates the kind of text that can be used in place of the bracketed text. Sometimes
themeaning is selévident, and no further explanation is given. The following list includes those that may
need additional explanation for some reade

1 <ClassName> The name of an VI instrument class as defined by an IVI Instrument Class specification.

For example, fAlvi Dmmo.

1 <ClassType>: The name of an IVI instrument class as defined by an IVI Instrument Class specification,
without twiedol ealomgexXiampl e, ADmmo .

1 <Componentldentifier>: For IVMCOM and IVI.NET, the string returned byspecificd r i ver 0s
Component I dentity attribute. This string uniqguel

1 <Prefix>: ForIViCclasddr i vers, the string returned by the dri
class driver prefix will commonly be an | VI cl ass
ForlVI-C specific drivers, the sbDriverPrafixattrdbites Fored by t he

exampl e, ANI 34560

1 <ConpanyName>: The name of the driver vendor (not the instrument manufacturer). For example,
iAgi |l ent Technol ogi es, Il nco.

1 <ProgramFilesDir>: The Windows program files directory. This varies adiffissent versions of
Windows. In some contexts, it is not intended to differentiate between bi¢ &4d 32bit program
files directories found on 6Mit versions of Windows that include Windows On Windows (WOW), but
to be understood as a generic refere to the program files directory.

1 <ProgramDataDir>: The Windows data directory. This varies across different versions of Windows. It
is generally understood to apply to all users.

1 <lviStandardRootDir>: The root install directory for the IVI Sharednfonents, whiclkonsists of
executables and other files neddo create and run 1VI drivers. By default, this directory is
A<Pr ogr a ¥ iFdumdationl vV 0 .

1 <RcName: The name of a repeated capability. Repeated capabilities may be defined speles or
by specific driver developers.

1 <FwkVerShortName>: The IVI.NET short name for a version of the .NET Framework.

Where it is important to indicate the case of substituted text, casing is indicated by the case of the text
between the brackets

1 <ClassName* ndi cates Pascal casing. For exampl e, il vi
T <cl assName> indicates camel casing. For exampl e,
1T <classname> indicates all | ower case. For exampl
1 <CLASSNAME> indicates al/l upper <case. For exampl
1 <CLASS_NAME> indcates all upper case with underscores between words. For example,

Al VI _DMMO .

Features and Intended Use of IVI Drivedgscribes the features of VI drivers from the user perspective.

This section provides an instrument driver developer with aleigél understanding of the requirements for
creating an IVI driver that implements those features. This section assumée ttegtder is familiar with the
contents of Sectioh.7.

IVI-3.1: Driver Architecture Specification 33 IVI Foundation

D

e

e

IVI instrument drivers are not required to support all features described in Sea@iGubstitutions

This specification uses paired angle bracketmdicate that the text between the brackets is not the actual

text touse, but instead indicates the kind of text that can be used in place of the bracketed text. Sometimes
themeaning is selévident, and no further explanation is given. The following list includes those that may
need additional explanation for some reade

1 <ClassName> The name of an IVI instrument class as defined by an IVI Instrument Class specification.

For example, fAlvi Dmmo.

1 <ClassType>: The name of an IVI instrument class as defined by an IVI Instrument Class specification,
without twiedol ealomgexXiampl e, ADmmo .

1 <Componentldentifier>: For IVMCOM and IVI.NET, the string returned byspecificd r i ver 0s
Component Il dentity attribute. This string uniquel

1 <Prefix>: ForIVICclasdr i vers, the string returned by the dri
class driver prefix will commonly be an | VI ¢l ass
ForlVI-C specific drivers, the sbDriverPrefixattrdotitad Fared by t he

exampl e, ANI 34560

1 <ConpanyName>: The name of the driver vendor (not the instrument manufacturer). For example,
iAgi |l ent Technol ogi es, Il nco.

1 <ProgramFilesDir>: The Windows program files directory. This varies adiffiesent versions of
Windows. In some contexts, it is not intended to differentiate between ¢ &4d 32bit program
files directories found on 6Mit versions of Windows that include Windows On Windows (WOW), but
to be understood as a generic refere to the program files directory.

1 <ProgramDataDir>: The Windows data directory. This varies across different versions of Windows. It
is generally understood to apply to all users.

1 <lviStandardRootDir>: The root install directory for the IVI Sharednfonents, whiclkonsists of
executables and other files neédo create and run 1VI drivers. By default, this directory is
A<Pr ogr a ¥ iFdumdationl vV 0 .

I <RcName: The name of a repeated capability. Repeated capabilities may be defined speles or
by specific driver developers.

1 <FwkVerShortName>: The IVI.NET short name for a version of the .NET Framework.

Where it is important to indicate the case of substituted text, casing is indicated by the case of the text
between the brackets

f <ClassName* ndi cates Pascal casing. For exampl e, filviD
T <className> indicates camel casing. For exampl e,
T <classname> indicates all | ower case. For exampl e
T <CLASSNAME> indicates al/l upper case. For exampl e
I <CLASS_NAME> indcates all upper case with underscores between words. For example,

Al VI _DMMO .

Features and Intended Use of IVI DriveB®me behaviors of VI drivers are optional and some behaviors are
required. This section discusses both the optional and required features and indicates which are required and
which are optinal.

Section5, Conformance Requirementontains the precise requirements for VI drivers. These requirements

pertain to the behavior of the drivers as well as the terminology that the drivers use to describe their
compliance withlthe behavioral requirements.

IVI Foundation 34 IVI-3.1: Driver Architecture Specification

IVI-3.17: Installation Requirements Specificaticontains the required and optional features for the
installation programs that install IVI drivers and IVl shared components on user systems.

IVI-3.2: Inherent Capabilities Sgificationcontains the specific requirements for the inherent API in all IVI
drivers.

3.2 API Technology

The VI Foundation defines requirements for the programming interfaces that an 1VI driver exports. An VI
driver has at least a COM ARI C AP| or a .NET API. An IVI driver may havemore than on@Pl. An [VI
driver may export other API types, such as C++ or LabVIEW. The IVI Foundation specifications do not
preclude driver suppliers from developing drivers with other APls.

Sectiond, IVI Driver Architecture contains the precise requirements for CG@Mand .NET APIs.
3.3 Interchangeability

The primary purpose of the VI Foundation is to enable the development of interchangeable instrument
drivers. IVI drivers must comply with several requirements to be interchangeable. The VI Foundation also
defines optional betviors with which an IVI classompliant specific driver may comply.

IVI custom specific drivers are not interchangeable and thus do not have to implement any of the behaviors
described inthis section

The IVI configuration store plays an integral partichieving interchangeability. The user specifies in the

IVI configuration store which VI classompliant specific driver to use when an application initializes a
session using a clasefined API. The user also specifies in the IVI configuration stotial values for

some of the attributes of the driver. IVI drivers use the IVI configuration store in implementing several of the
behaviors described in this section. Refer to Se@i8nConfiguration of Inherent Featurgfr more

information on the use of the IVI configuration store to configure VI festur

3.3.1 Compliance with a Class Specification

To be interchangeable, an VI classmpliant specific driver complies with one of the IVI class

specifications. The driver implements the base capabilities group defined in the VI class specification. The
driver may support zero, one, or more of the extension capabilities groups. If an I\VtctapSant specific

driver implements an extension capability group, it implements the extension group completely.

An VI classcompliant specific Driver should implemerit the 1VI extension capabilities groups that the
instrument supports.

3.3.2 Accessing Class and Specific APIs

Typically instruments have features that go beyond what the class specifications define. An ideal IVI
classcompliant specific driver would implemerit the features of the instrument that are suitable for
programmatic use. Driver developers are encouraged to implement instrument specific features. VI
classcompliant specific drivers should export instrument specific features in a way that is congisteine
classdefined capabilities. The driver should present the instrument specific features in such a way that the
user can mix calls to class defined features and instrument specific features in a natural manner.

Exceptions to this guideline canau if the driver developer chooses to export multiple perspectives on the
same instrument. One perspective might be compliant with a class specification while another perspective
might be focused on a unique paradigm of the instrument that is not ineahsgigh the classriented
perspective. Nevertheless, it might be feasible to extend theariassed perspective with instrument

specific features, and drivers should do this where feasible.

IVI-3.1: Driver Architecture Specification 35 IVI Foundation

When the user initializes the driver using the cladsfnedAPI, the user should be able to access the
instrument specific features without initializing a new session. Therefore, the driver allows the user to access
the instrument specific features without performing another initialization step.

3.3.3 Use of Virtual Identifiers for Repeated Capabilities

The IVI class specifications define repeated capability names, but they do not define repeated capability

identifiers. Each VI specific driver that complies with a class specification that specifies repeated capabilities
defines its own physical identifiers for repeated capability instances. The set of physical repeated capability
identifiers vary from one instrument to another in the same class. For example, the IviScope specification

defi nes fiChann e biliy, bats doas not define aentfiers far ahprenel instances, such as

ACH10, AChanlo, ifilo, and so on. Therefore, it is not
the physical repeated capability identifiers that the VI specific drivefiael

To refer to repeated capability instances in an interchangeable manner, the user defines virtual repeated
capability identifiers and maps them to the physical repeated capability identifiers that the IVI specific driver
defines. The user specifidsetvirtual identifiers and their mappings in the 1VI configuration store. During
initialization, the IVI specific driver retrieves the virtual identifiers and their mappings from the VI
configuration store. The VI specific driver applies the mappingswthe user calls driver functions that

access repeated capabilities.

The value of virtual repeated capability identifiers is not restricted to instrument interchangeability. Using
descriptive virtual identifiers can make an application program more readgherefore, 1VI specific drivers
support the use of virtual identifiers for instrument specific repeated capabilities as well -akefiteess
repeated capabilities.

The values that users pass to driver functions to identify repeated capabilitgésstaa callecepeated
capability selectors Specific driver functions that take repeated capability selector parameters accept both
virtual and physical identifiers. When the user passes a virtual identifier, the specific driver uses the virtual
identifier mappings from the IVI configuration store to translate virtual identifiers to physical identifiers.
Sectiond.4, Repeated Capability Selectoescribes the syntax for repeated capability selectors

To avoid naming conflicts, physical repeated capability identifiers should mirror the concise hames that the
i nstrument manual or front panel uses. For exampl e,
channel 1. It is expected that usetl select more descriptive terms for virtual identifiers.

A user might inadvertently choose a virtual identifier that is identical to a physical identifier that the IVI
specific driver defines for the same repeated capability. Even if a user is catefuluse duplicate

identifiers, conflicts might occur when the user replaces an instrument with a new instrument. Moreover, the
user might map a virtual identifier that is the same as one of the physical identifiers to a different physical
identifier. In the event that a virtual identifier is identical to a physical identifier, the IVI specific driver treats

it as a virtual identifier and applies the uslefined mapping.

Mapping a virtual identifier to another virtual identifier is not allowed. THkspecific drivers apply the
userdefined mappings only once.

Users may map multiple virtual identifiers to the same physical identifier.

An instrument specific function that returns a repeated capability identifier as an output parameter should
returnthe virtual identifier instead of the physical identifier when a virtual identifier is available and it is
important to provide the identifiers that the user has defifetie user maps multiple virtual identifiers to

the same physical identifier, therfction may return any one of the virtual identifield/I-3.3: Standard
CrossClass Capabilities Specificatiatefines standard functions for discoverability of physical identifiers.

IVI Foundation 36 IVI-3.1: Driver Architecture Specification

3.3.4 Disabling Unused Extensions

A user program might refrain froosing a class extension capability group. Such a program should have the
same behavior regardless of whether or not the instrument it uses has the extended capabilities. Making this
possible imposes additional requirements on VI etasspliant specific dvers.

If a program uses an instrument that has extended capabilities but the program does not configure the settings
for the extended capabilities, the settings are in an unknown state. The unknown state could affect the
behavior of the instrument caphtiés that the program does use. Furthermore, the unknown state is likely to
vary from one instrument to another. Thus, the program is likely to have different behavior when used with
different instruments.

It is not reasonable to expect the program tafigore the settings for the unused capabilities. To do so would
require that all instrument drivers that the program might ever use must implement the extended capability
group. Such a requirement would conflict with the principle that drivers have ternmapt only the extension
capability groups that the instrument supports.

Therefore, the responsibility falls on the driver. An instrument driver that implements an extension capability
group has the ability to make the instrument behave as if the irsitwhid not have the extended

capabilities. Making instruments behave as if extension capability groups do not exist islisalididg

unused extensions

The IVI class specifications suggest how to disable each extension capability group. For example, t
IviDmm base capabilities provide functions for taking a single measurement. The IviDmm class defines a
multipoint extension group that provides functions for acquiring multiple samples from multiple triggers. If a
program uses only the base capabilitigh an instrument that has multipoint capabilities, the lviDmm
specification suggests that the specific driver disable the multipoint extension group by ensuring that the
trigger count and sample count are 1 when the instrument is armed for an acquisitio

Disabling unused extensions is a required behavior of IVI-daswpliant specific drivers. The driver

disables all extensions in the Initialize and Reset With Defaults functions. Normally, an extension remains
disabled until a program explicitly usiésand therefore the driver does not have to take any other action.
However, if an operation on another capability group has the side effect of reconfiguring the disabled
extension group, the driver disables the extension group again before the exgemgaffects the behavior

of the instrument.

The driver also disables instrument specific features in the Initialize and Reset with Default functions when
the features affect the behavior of the cldsBned capabilities.

3.3.5 Applying Configurable Initial Settings from the IVI Configuration Store
An VI specific driver defines the set of attributes for which it allows users to specify initial values in the 1VI
configuration store. The installation program for the driver includes special information irthéethe
IVI configuration storeRefer toSection 53.3, Defining Configurable Initial Settings in the VI
Configuration Storein 1VI-3.17: Installation Requirements Specificatiéor more information.

An VI specific driver applies the configurahil@tial settings for the session when the user calls the Initialize
and Reset With Defaults functions.

An IVI specific driver defines the order in which it applies the configurable initial settings.

IVI custom specific drivers may also implement thistdiee.

3.3.6 Interchangeability Checking
Interchangeability checking is an optional feature of 1VI drivers.

IVI-3.1: Driver Architecture Specification 37 IVI Foundation

If an VI driver implements interchangeability checking and the user enables it, the driver generates an
interchangeability checking warning when thevdriencounters a situation in which the application program
might not produce the same behavior when used with a different instrument. Different kinds of drivers are
responsible for different kinds of interchangeability checking. Various conditions caratgn
interchangeability warnings, and drivers may perform various levels of interchangeability checking.

Three types of conditions can result in interchangeability checking warnings:

Attribute Not in a User-Specified State

A program is not interchangealifét performs an operation that relies on a state the program does
not fully specify. When this happens, the behavior of the operation is likely to vary based on either
the initial state of the instrument or the state to which a previous program cedfiherinstrument.

A state is not fully specified when one or more of the attributes that comprise the state are notin a
userspecifiedstate An attribute is in a usespecified state when the program explicitly sets the
attribute. The attributes remaiimsa userspecified state until the instrument setting to which the
attribute corresponds changes as a result of the program configuring another attribute, or the
program calls a reset or automatic setup function. Examples of reset functions includenBeset
Reset With Defaults, as definedIWi-3.2: Inherent Capabilities SpecificatioAn example of

automatic setup function is Auto Setup as defined in the IviScope class. Setting attribute values
according to the configurable initial settings does nofpiibutes in a usespecified state.

Each IVI class specification defines guidelines for checking for this type of condition. The
guidelines describe the operations that depend on instrument states and the attributes that comprise
those states.

This fom of interchangeability checking is performed on a capability group basis. When
interchangeability checking is enabled, the driver always performs this interchangeability checking
on the base capabilities group. In addition, the driver performs thishategeability checking on

all extension groups that the user has accessed.

This form of interchangeability checking is an optional feature of VI etasspliant specific
drivers.IVI-3.2: Inherent Capabilities Specificatiaefines how IVI specific driverthat do not
implement interchangeability checking behave when the user attempts to enable interchangeability
checking.A driver that does implement this form of interchangeability checking can do so at either a
minimalor full level.

A driver that implements minimal interchangeability checlkingsiders an attribute to be in a
userspecified state if the program has ever set the attribute. The driver does not account for cases
where the value of the attribute changes as a side effdw program configuring another attribute.

A driver that implements fulhterchangeabilitghecking accounts for cases where the value of the
attribute changes as a side effect of the program configuring another attribute.

Instrument Specific Value Used

IVI Foundation

IVI classcompliant specific drivers implement cladsfined functions and attributes. Normally,
these functions and attributes are also the basis of the instrument specific API for the driver.
Consequently, 1VI classompliant specific drivers sometimaccept instrument specific values for
parameters for which the class specification defines a discrete set of values.

IVI class drivers generally do not validate function parameters and attributes that represent
instrument settings and thus do pog¢vent users from passing instrument specific values. However,
a program that uses instrument specific values for-clased function parameters and attributes is
not interchangeable. Therefore, some 1VI class drivers record interchangeability warhérmgthe
program uses instrument specific values for etiefined function parameters and attributes.

This form of interchangeability checking is optional for IVI class drivers. The-claspliant APIs
in IVI-COM and IVI.NET specific drivers may also iplement this form of interchangeability
checking.

38 IVI-3.1: Driver Architecture Specification

Write Access to Read-Only Attribute

An VI classcompliant specific driver might implement an attribute as read/write even though the
class specification defines the attribute as t&=lgt. However, a pragm that attempts to set a value
for a classdefined reaebnly attribute is not interchangeable. Therefore, somed¥¢lass drivers
record interchangeability warnings when the program sets eordgattribute.

This form of interchangeability checkingagtional for IVI-C class drivers. MICOM and IVI.NET
specific drivers do not implement this form of interchangeability checking becauseatapkant

APIs of IVI-COM and IVI.NET specific drivers do not allow programs to set attributes that the class
specification defines as read only.

If an IVI-C or IVI-COM driver implementinterchangeability checkingt maintains a queud avarnings,
and may impose a maximum on the size of queue that holdgé¢hehangeability checkingecords. If the
gueue overflars, the driver discards the oldésterchangeability checkingecord.

If an IVI.NET driver implementénterchangeability checkin@nd if a client has registered to receive the
event, it raises a warning event for each warning at the time the wargiegcied. Warnings are not raised
in the driver constructor. Theser must register an interchangeability checking warning event handler in
order toreceive interchangeability checking warning events.

3.3.7 Coercion Recording
Coercion recording is an optiorfelature for IVI classsompliant specific drivers.

Regardless of whether an IVI classmpliant driver implements coercion recording, the driver is required to
coerce values according to the IVI class specification to which it complies.

IVI custom specift drivers may also implement coercion and coercion recording.

If an IVI-C or IVI-COM driver implements coercion recordingmiintains a queue or warnings, andy
impose a maximum on the size of queue that holds the coercion records. If the queuwavibldriver
discards the oldest coercion record.

If an IVI.NET driver implements coercion recording, and if a client has registered to receive the event, it
raisesa warning event for each warning at the time the warning is detected. Warningsraiseubin the

driver constructor. The user must register a coercion recording warning event handler in order to receive
coercion recording warning events.

3.4 Range Checking

Range checking is a required feature of VI specific drivers. VI specific dnie&usn an error when a user
specifies an invalid value for a function parameter or an attribute and range checking is enabled.

For a parameter or attribute that has a continuous range with a maximum and/or a minimum value, the value
that the user passesimwalid if it is greater than the maximum or less than the minimum. For a parameter or
attribute that has a set of discrete legal values, the value that the user passes is invalid if it is not in the set of
legal values.

When validating a user value agstia discrete set of legal values foriReal64 parameter or attribute, 1VI
specific drivers shall not include a guard band around any of the legal values. Guard bands are unnecessary
and make the driver less interchangeable. Refer to S&:8p@omparing Real Numberfor information

regarding how to handle the imprecision inherent in the computer representation floating point numbers.

IVI-3.1: Driver Architecture Specification 39 IVI Foundation

3.5 Instrument Status Checking

Some VI specific drivers can query the status of the instrument through the instrument 1/O interface. For
example, all IEEE 488.2 devices implement error status registers. Other VI specific drivers can determine
the status of the instrument without performing a separate query. For example, a driver fana plug
instrument card might maintain the status infation in the driver itself. Still other drivers cannot query the
instrument status because the instrument provides no mechanism for this.

Instrument status checking is a required feature of VI specific drivers that can query the status of the
instrument If the driver can query the status of the instrument through the instrument I/O interface, the

driver implements code that queries the instrument status, interprets the response, and returns a special error
code if the status indicates an error has oecli The user then calls the Error Query function to retrieve the
instrument specific error code from the instrument.

In general, if status checking is enabled, the driver invokes the status checking code froafialser
functions that perform instruemt I/O.

3.6 Simulation
Simulation is a required feature of IVI specific drivers.

If simulation is enabled, an IVI specific driver does not perform instrument I/O, and the driver creates
simulated data for output parameters. For example, in each functigretf@ims instrument I/O, the I/O

code might appear in a block that executes only when simulation is disabled. Functions that return output data
contain code that generates simulated data and that executes only when simulation is enabled.

Typically, speciic drivers generate very simple output data based on the existing configuration. For example,
a driver for a DMM might create simulated output data for the Read operation by generating a random
number within the configured measurement range.

If feasible, IVI specific drivers should perform the same range checking when simulation is enabled that it
performs when simulation is disabled.

A specific driver that the user initializes with simulation disabled may allow the user to enable simulation at
some point after initialization. If a specific driver does not allow a user to enable simulation at some point
after initialization, the driver returns an error if the user attempts to enable simulation.

If initialized with simulation disabled, the specificiver creates an I/O session. To ensure that 1/0O sessions
are always closed properly, the Close function in the driver always closes the 1/0O session regardless of
whether simulation is enabled or disabled at the time the user calls the Close function.

A specific driver that the user initializes with simulation enabled does not create an 1/O session.
Consequently, the driver cannot perform I/O if the user subsequently disables simulation. Therefore, if the
user enables simulation during initialization @hdn subsequently attempts to disable simulation, the driver
returns an error.

3.7 State Caching

State caching is an optional feature of IVI specific drivers. For each hardware configuration attribute, an VI
specific driver chooses whether to cache thee sihthe attribute. An VI specific driver may cache all, some,

or none of its hardware configuration attributes. A driver supports state caching if it caches one or more of its
hardware configuration attributes.

If the user enables state caching, thedpecific driver maintains a software copy of what it believes to be

the current instrument setting for each attribute the driver chooses to cache. If the 1VI specific driver believes
that the cache value accurately reflects the state of the instrutreantsiders the cache value touadid. If

IVI Foundation 40 IVI-3.1: Driver Architecture Specification

the instrument driver does not believe the cache value reflects the state of the instrument, it considers the
cache value to biavalid. The driver avoids performing I/O when the cache value is valid and theaise
the attribute to same value.

3.8 Configuration of Inherent Features
Users can enable or disable many of the inherent features of VI drivers. Users enable and disable the features
through attributes. These configurable inherent features are the fajtowin

Interchangeability Checking

Simulation

Range Checking

Coercion Recording

State Caching

=A =4 =4 =4 -4 -4

Instrument Status Checking

For each attribute, the user can specify an initial value in the 1VI configuration store or through the
OptionsString parameter of the Indlize function. The IVI driver honors the value that the user specifies
in the OptionsString parameter of the Initialize function. If the user does not specify a value in the
OptionsString parameter, the driver honors the value the user specifies iMltkherifiguration store. If

the user does not specify a value in eitherdptionsString parameter or the VI configuration store, the
driver uses the default value th&t-3.2: Inherent Capabilities Specificati@pecifies for the attribute.

When a progam creates a session through an 1VI class drtheiVI-COM Session Factoyyr one ofthe
IVI.NET session factory methodthe user must specify a logical name that identifies the driver, the
instrument, and the initial settings.

When a program creaea session through the specific driver directly, the user can specify either a logical
name or an I/O resource descriptor. All IVI specific drivers can accept logical names as well as 1/0O resource
descriptors for the Resource Name parameter in the ingifinction. Notice that if the user specifies an 1/0
resource descriptor, the user cannot expect the driver to use settings from the IVI configuration store.

Table3-1 summarizes the order of precedence the driver uses to assign initial values for inherent features.

Table 3-1. Precedence Order of Inherent Features Configuration

Type of Resource Logical Name I/0 Resource Descriptor
Name
Source of attribute valu| OptionsString parameter OptionsString parameter

in arder of precedence IVI configuration store default value

default value

3.9 Comparing Real Numbers

Because of the imprecision inherent in the computer representation of floating point numbers, it is not
appropriate for instrument drivers to determine whether two real numbers are equal by comparing them based
on strict equality. Therefore, IVI driverseuuzzy comparison with approximately 14 decimal digits of

precision when comparing awjReal64 values withviReal64 values that instruments return or that users
specify as parameter or attribute values.

IVI-3.1: Driver Architecture Specification 41 IVI Foundation

IVI-C and IVFCOM drivers that generate or recogaiinfinity or NaN values use the Floating Point shared
component. Refer tt/1-3.12: Floating Point Services SpecificatiolVI.NET drivers use
Double.Negativelnfinity, Double.Positivelnfinity, or Double.NaN.

3.10 Multithread Safety

Multithread safety is a tpiired feature of IVI drivers.

All IVI drivers prevent simultaneous access to a session in multiple threads of the same process from
interfering with the correct behavior of the driver. This level of rthltead safety is the only level that IVI
driversare required to implement.

IVI.NET drivers may offer a higher level of mulfiread safety. This is discussed further in Sedid0.7,
Multithread Safety

3.11 Resource Locking

The IVI Foundation has not defined the requirements for Resource Locokifgr managingsimultaneous
access from other users

3.12 Events

In some cases it is useful for an instrument driver to notify an application program that an event has occurred.

Drivers can implement events using a callback mechanism. An IVI driver need not implement the callback
mechanism unless it uses events to nafignt programs. The standard VI interfaces do not use events.
Each driver is responsible for documenting the events it uses.

IVI-COM drivers do not use COM connection points for event notification because connection points require
using ActiveX automatio and exhibit poor performance, especially when remote DCOM access is involved.

3.13 Use of I/O Libraries for Standard Interface Buses

IVI specific drivers use the VISA I/O library for I/O communication over a GPIB or VXIbus interface. The
VISA I/O library has two distinct API types: VIS& and VISACOM. The VXIplug&play specification
VPP-4.3.2: VISA Implementation Specification for Textual Langudgéaes the VISAC API. The

VXI plugé&play specificationVPP-4.3.4: VISA Implementation Specificatiamn COM defines the

VISA-COM API. IVI drivers that use VISA use one or both of the API types. The IVI Foundation
specifications do not preclude driver suppliers from developing drivers that interface with additional I/O
libraries, as long as the driver warlvhen VISA is present and the additional I/O libraries are not present.
For example, a driver that communicates over GPIB might work as long as either th&\ABRor the
NI-488 API is present.

For bus interfaces other than GPIB or VXIbus, a commonfinee standard 1/O library should be used, if
available. It is recommended that driver suppliers use the VISA I/O library if the bus and protocol are
supported by VISA. If VISA is not used, care should be taken to handle ADE differences and OS differences.
If a proprietary 1/O library is used, the driver supplier should ensure that it eaxistovith VISA. In the

future, the 1Vl Foundation might require the use of specific 1/O libraries, such as VISA, for other interface
types without precluding driversdm using additional 1/O libraries.

The VISA Shared Components provided by the 1VI Foundation include .NET Primary Interop Assemblies
(PIAs) that can be easily accessed by developers of IVI.NET drivers.

IVI Foundation 42 IVI-3.1: Driver Architecture Specification

3.13.1 Direct I/O

IVI drivers are not required to implementh e compl et e set of an instrumentés
users of IVI drivers for instruments that communicate via messaged interfaces may wantsend

messages to and receive results lrctly from instrumentsTo enables this, IVI driver®r message

based instruments arequiredto provide a general /O mechanism. 1%4,API Style Guidedefines a

common API for this purpose.

The Direct I/O API includes read and write functions as well as an optional attribute that holds a reference to
the underlying 1/O.

The Direct I/O API is not applicable for instruments that are not messespsl (for example, PXI and VXI
devices). Sincéhe API does not apply to all instruments, IVI drivers that include the APl implement it as a
part of their instrument specific interfaces.

3.14 Shared Components

The VI shared components are software modules that enable VI drivers to adhere to thelidekiouhe
IVI specifications. VI drivers are required to use the shared components to ensure interoperability with other
IVI drivers. These components provide:

1 Access to the IVI configuration store
Dynamic loading/instantiation of specific instrumenivdrs
Threadsafe session management ford@Idrivers

Error reporting services for IMC drivers

=A =4 =4 =4

A standard way for returning and recognizing infinity and NaN values

For more information on the use requirements for the shared components, refer tiowhego
specifications:

IVI-3.5: Configuration Server Specification
IVI-3.6: COM Session Factory Specification
IVI-3.9: C Shared Components Specification
IVI-3.12: Floating Point Services Specification

3.15 Source Code Availability

IVI drivers shall include sage code if the source code is a simple translation of the driver calls to a separate
publicly documented and officially supported interface and does not include proprietary or confidential
content Users sometimes find it very valuable to have accesstaiment driver source code. Having access
to source code allows a user to debug and fix instrument drivers in time critical situations when the user
cannot wait for the driver supplier to fix the problem.

A driver supplier that does not distribute saionde should make an effort to deliver highality drivers
and provide comprehensive technical support.

IVI drivers that include source code shall also provide instructions on rebuilding the driver in at least one
publicly available development enviroemt.

3.16 Extent of Instrument Functionality Covered by IVI Drivers
IVI drivers for instruments that have an ASCIl command set such as SCHhgblalinent the full

functionality of the instrument available via commands and queries with a few exce@mms. commands
and queries are not suitable for an instrument driver or could even break driver or instrument functionality if

IVI-3.1: Driver Architecture Specification 43 IVI Foundation

exposed to the usehn 1VI driver for aSCPIbasednstrument, for example, might not implement SCPI
commands from the following nodes:

il

=A =4 4 =4 =

DIAGnostic
FORMat (may be used internally but not exposed to users)
SYSTem:COMMunicate
Service or Factory Calibration functionality
Undocunented SCPI (factory use only)
Other features not normally accessed through the programmatic interface, for example:
o DISPlay
o HARDCopy
o MEMory:STATe
o CURSor

IVI driver users can send any commandstoamedsags ed i nstrument using
functions.

the dri

IVI drivers for instruments that have an ASCIl command set such as SCPI shall document the implemented
ASCIlI commands and characterize the commands that are not implemented, and the characterization should
have a level of detail that is consisterithathe list of commonly unimplemented functionality provided

above.

Partially i mplemented ASCI I commands may be

IVI Foundation

44 IVI-3.1: Driver Architecture Specification

document

4.1 VI Driver Architecture

The VI Foundation currently standardizestbreeinterface technologies: COMNSI-C, and .NET. IVI

drivers conform tane or more of the standard technologl®$ driver suppliers choose which architectures
to support based on the needs of their customers. As computer and software technology evolves, other
interface technologies may becopwpular within the instrument control community. As this change occurs,
new interfaces may be defined to incorporate new capabilities.

This section discusses issues specific to the COMnd .NETarchitectures.
Section5.14.1 Enumerations

For all types of IVI drivers, enumeration values shall be expjiggecified inthe sourceodefor the
enumeration One of thanembes shall be assigned a value of zero.

IVI-COM Requirementsontains the precise requirements specific teQM drivers.
Section5.16 1VI-C Requiementscontains the precise requirements specific teQ\drivers.

Section5.17, IVI.NET Requirementgontains the precise requirements specific to IVI.NET drivers.

4.1 IVI-COM Driver Architecture

This section describes how NMIOM instrument drivers use COMchnology. This section does not attempt
to describe the technical features of COM, except where necessary to explain a partieDaMVeéature
This section assumes that the reader is familiar with COM technology.

IVI-COM drivers implement the 1VI Btrument driver features described in Secfiof Substitutions

This specification uses paired angle bracketsdicate that the text between the brackets is not the actual

text touse, but instead indicates the kind of text that can be used in place of the bracketed text. Sometimes
themeaning is selévident, and no further explanation is given. The following list includes those that may
need additional explanation for some reade

1 <ClassName> The name of an VI instrument class as defined by an VI Instrument Class specification.

For example, #@AlviDmmo.

1 <ClassType>: The name of an IVI instrument class as defined by an IVI Instrument Class specification,
without twieol ealomgexXiampl e, ADmmo .

1 <Componentldentifier>: For IVMCOM and IVI.NET, the string returned byspecificd r i ver 0s
Component I dentity attribute. This string uniqguel

1 <Prefix>: ForIViCclasddr i vers, the string returned by the dri
class driver prefix will commonly be an | VI cl ass
ForlVI-C specific drivers, the sbDriverPrafixattrdbbites Fored by t he

exampl e, ANI 34560

1 <ConpanyName>: The name of the driver vendor (not the instrument manufacturer). For example,
ifAgil ent Technol ogi es, Il nco.

2 For those who are new to COM technology, we recommend the following books:

9 Chappell, DavidUnderstanding ActiveX and OLEMicrosoft Press, 1996. A high level introduction.
9 Rogerson, Daldnside COM, Microsoft Press, 1997. A technical tutorial with examples.

9 Box, Don,Essential COM AddisonWesley, 1998. Aid e pt h t echni cal discussion ofes how COM d
are valuable.

IVI-3.1: Driver Architecture Specification 45 IVI Foundation

1 <ProgramFilesDir>: The Windows program files directory. This varies adiffesent versions of
Windows. In some contexts, it is not intended to differentiate between thié &4d 32bit program
files directories found on 6Mit versions of Windows that include Windows On Windows (WOW), but
to be understood as a generic refae to the program files directory.

1 <ProgramDataDir>: The Windows data directory. This varies across different versions of Windows. It
is generally understood to apply to all users.

1 <lviStandardRootDir>: The root install directory for the IVI Sharednffonents, whickonsists of
executables and other files neédo create and run IVI drivers. By default, this directory is
i<Pr ogr a ¥ iFdurdatibi vV O .

1 <RcName: The name of a repeated capability. Repeated capabilities may be defined speles or
by specific driver developers.

1 <FwkVerShortName>: The IVI.NET short name for a version of the .NET Framework.

Where it is important to indicate the case of substituted text, casing is indicated by the case of the text
between the brackets

1 <ClassName* ndi cates Pascal casing. For example, fAlviD
T <cl assName> indicates camel casing. For exampl e,
T <classname> indicates al/l | ower case. For exampl e
T <CLASSNAME> indicates al/l upper case. For exampl e
1 <CLASS_ NAME> indcates all upper case with underscores between words. For example,

Al VI _DMMO .

Features and Intended Use of IVI Driveasd presnt them to test system programmers in the form of COM
interfaces.

4.1.1 Target Operating Systems

Referto Section2.16 Operating Systems

4.1.2 Target Languages and Application Development Environments

IVI-COM drivers work in the target languages and application developmenbiements listed iTable4-1.

IVI Foundation 46 IVI-3.1: Driver Architecture Specification

Table 4-1. Target languages and ADEs for IVI-COM drivers

32-bit 64-bit

Agilent VEE Agilent VEE*

MathWorks MATLAB MathWorks MATLAB
Microsoft Visual Basic .NET Microsoft Visual Basic .NET
Microsoft Visual C# Microsoft Visual C#
Microsoft Visual C++ Microsoft Visual C++

Microsoft Visual Basic

Microsoft Visual Basic for Applications | Microsoft VisualStudioTools for
Office (VSTO)

National Instruments LabVIEW National Instruments LabVIEW
National Instruments LabWindows/CVI | National Instruments LabWindows/CV

* Note: The intent is teupport the 64it versions of these ADEs when they are available.

In principle, IVI-COM drivers can work in other development environments in which @OMET is
supported, including Borland C/C-and Microsoft NET Common Language SpecificatioBL(S) compliant
languages

IVI-COM drivers need not support IDispatch based environments such as VB Script, Visual J++, or J Script.
However, it is possible to construct wrappers around@@M drivers to support IDispatch and the
appropriate data conversions.

4.1.3 IVI-COM Driver Overview

An IVI-COM instrument driver is instantiated as a COM object accompanied, optionally, by COM helper
objects. An IVICOM driver object exposes multiple interfaces, including standard IVI interfaces, instrument
specific interfaces, ana limited set of standard COM interfaces.

Standard IVI interfaces include 1VI inherent interfaces and 1VI etasspliant interfaces for each of the

defined IVI instrument classes. Standard VI interfaces provide a standard syntax through which application
programs interact with the driver. This standard syntax, when used in combination with-@@®W§Eession
Factory, provides the same level of syntactical interchangeability in th€ DI architecture as that

provided bylVI.NET andby IVI class driverdn the IVI-C architecture. Thus, IVI class drivers are not

required for syntactical interchangeability in the {8OM architecture. Refer to Secti@rB.2.2 How
Interchangeability Works in COMor more details on achieving interchangeability using@®@M drivers.

Instrument specific interfaces providecess to instrument specific functionality. Typically, instrument

specific interfaces mirror VI classompliant interfaces for the instrument features that are within the scope

of the functionality defined by the IVI class specifications. However, imsni specific interfaces also

include additional methods and properties that provide access to the features that are beyond the scope of the
IVI class specifications.

To use an IVACOM driver in an IVIC environment, a layer of code translates-G/tallsto 1VI-COM calls
that the underlying INICOM driver can recognize. This layer of code conforms to thed\API
requirements and to additional requirements specifi&eation 7 Specific Driver Wrapper Functions
IVI-3.2: Inherent Capabilities Speigétion.

To use an IVAC driver in an IVICOM environment, a layer of code translatesGOM calls to IVIC calls
that the underlying INAC driver can recognize. This layer of code conforms to theJ®&M API
requirements and to additional requiremenecgjed inSection 7 Specific Driver Wrapper Functions
IVI-3.2: Inherent Capabilities Specification

IVI-3.1: Driver Architecture Specification 47 IVI Foundation

4.1.4 IVI-COM Interfaces

The methods and properties of FZIOM drivers are grouped into multiple interfaces based on functionality.
This groupingallows for a natural hierarchical structure that organizes the overall driver functionality.

All IVI -COM drivers contain the interfaces for the IVI inherent features as well as interfaces that implement
the instrument specific capabilities of the instrum&vil -COM classcompliant drivers also contain VI
classcompliant interfaces. The interfaces for the VI inherent features are defiféd3r2: Inherent

Capabilities SpecificationThe IVI-COM classcompliant interfaces are defined in the IVI class

specifications.

The IVI classcompliant interfaces for a particular instrument class are identical from driver to driver. The
interfaces that implement the 1VI inherent methods and properties are identical for@MDMIdrivers and
have the same interfatie (IID). Keeping the interfaces identical is what makes the drivers syntactically
interchangeable.

Instrument specific interfaces are necessarily different from one instrument to another, whereas

classcompliant interfaces are identical for all driverithin the same class. Thus, the classnpliant
interfacesinanMCOM dr i ver are always different from the dri
Typically, the IVI classcompliant interfaces are thin layers of code that call instrument specififaoesr

This allows the instrument specific interfaces to leverage the syntax of theatapbant interfaces.

4.1.5 Interface Reference Properties

Navigating from one COM interface to another can be accomplished in two ways. One way is to use
Querylinterface tauery directly for a particular interface. The other way is for interfaces to contain properties
that refer to other interfaces. These properties are datiedace reference properties

The first technique is particularly suited for Microsoft VisuakQisers. Microsoft Visual Basic users can
also use the first technique througfplicit casting In implicit casting, the user calls Querylnterface
implicitly through theSet statement.

The second technique can be used from Visual C++, but is particussfyl in Visual Basic. Visual Basic
recognizes the interface types of interface reference properties. When a user types in the name of an interface
reference property in the Visual Basic editor, Visual Basic uses its knowledge of the interface typlayo dis

a list of methods and properties in the interface. This list can contain other interface reference properties.
Thus, Visual Basic users can navigate through an arbitrary number of interface reference properties. Consider
the following Visual Basic stament:

[tf1.1tf2.1tf3.1tf4.Method

Itf1 is a reference to an interface held in the varigtile . Similarly,Itf2 ,1tf3 , anditf4 are also

interface reference properties. As the user types each of these names, Visual Basic displays a dropdown list of
metlods and properties in the corresponding interface. After tyifing followed by a period, a list of all of

the properties and methodslifit appears, allowing the user to select one. After selettfing and typing

the period, a list of the methods angerties intf2 appears, and so on, until the programmer selects

Method. Thi s behavior is part of Visual Basicds I ntell]

In addition, IVFCOM drivers occasionally requiteelperobjects. For example, IMCOM drivers include a

helper objecfor each collection. Application programs cannot query the main driver object for a helper
objectds interface. I nstead, the application prograr
property. Refer to Sectioh1.9 Repeated Capabilitie$or more information on IMICOM collections.

IVI-COM drivers make extensive use of interface reference properties to navigate from interface to interface.

Any interface that can be reachesing an interface reference property can also be reached by calling
Querylinterface on the object that implements the interface.

IVI Foundation 48 IVI-3.1: Driver Architecture Specification

4.1.6 Interface Hierarchy

IVI-COM drivers take advantage of interface reference properties to organize interfaces hierarchitally. Eac
interface has exactly one parent interface and zero or more child interfaces. No circular references or series of
references exist. The interface hierarchy is primarily organized by functionality, while also being consistent
with COM conventions where psible. The hierarchy for inherent features is documented IVtFHR2;

Inherent Capabilities Specificatiohe hierarchies for clasompliant interfaces are documented in the
corresponding IVI class specifications.

IVI-COM classcompliant interface leirarchies are not necessarily organized according to the capability
groups defined in the IVI class specifications. Furthermored®M interface hierarchies do not necessarily
correspond to the IVC function tree (p file) hierarchies.

4.1.7 Custom vs. Automation Interfaces

IVI-COM drivers exposeustom interfacesvhich inherit directly from IlUnknown, rather thamitomation
interfaces which inherit from IDispatch. Using custom COM interfaces instead of automation interfaces
leads to COM objects that are sil@r to develop, capable of high performance, easier to version, and usable
from most application development environments. The subsections that follow explain these advantages in
detail.

4.1.7.1 Simpler to Develop

Although, in general, a single COM object can@sg many interfaces to the user, a COM object with an
automation interface cannot expose multiple interfaces. The IDispatch interface, from which automation
interfaces inherit, cannot be implemented to recognize more than one interface per COM objeat. Thus
separate COM object must exist for each wésible automation interface. If IMCOM drivers used

automation interfaces, the drivers would require many COM objects, one for every IVI standard interface and
every instrument specific interface supporgche driver. All the objects would have to coordinate access to
shared resources, such as 1/0, and global variables, such as cached state information.

To summarize, automation implies a fragmented;ajectperinterface implementation strategy, whase
custom interfaces allow many interfaces to exist in a single, coordinated object.

4.1.7.2 Capable of High Performance

When a single object implements multiple custom interfaces, Querylnterface can be used to obtain interface
references. Using Querylnterfacdaster than using interface reference pointers. This is particularly true
when using DCOM or when obtaining a reference that involves marshalling. Using custom interfaces rather
than multiple objects with automation interfaces enables perforrsamsitiveapplications to benefit from

the speed of Querylnterface when navigating among the interfaces of-@®©MlIdriver.

Every use of an interface reference property results in a separate call to the driver. COM is unable to avoid
making this call. The functiothat implements the interface reference property might call Queryinterface
internally to obtain the reference, create a new object each time it executes, or return a cached pointer. On the
other hand, Querylnterface has a predictable implementatioradiado Querylnterface are optimized in a

variety of ways when marshalling.

Programmers can minimize performance penalties related to interface reference properties with careful
programming. For example, application programmers can cache the value pbadehor can use With
statement. In languages where Querylnterface cannot be called directly, a mechanism that calls
Querylinterface indirectly might be available. For example, in Visual BasiSetheommand calls
Querylinterface if the target of ti8et statement assignment is declared as an interface type.

IVI-3.1: Driver Architecture Specification 49 IVI Foundation

4.1.7.3 Easier To Version

In COM, effective versioning involves creating a new interface whenever an interface changes. Application
programs that query for the old interface get the old interface, whegppésations that know how to query

for the new interface can obtain the new interface. Vendors can upgrade their drivers to recognize new
versions of interfaces without breaking applications of the old versions of the driver. Therefore, effective
COM versoning involves having multiple interfaces on an object. Since multiple automation interfaces on an
object is problematic, custom COM interfaces make versioning easier.

4.1.7.4 Accommodating Automation

Automation is required in some cases, particularly when using scripting languages such as VB Script and J
Script.

Because IVAICOM drivers are restricted to automation data types, it is possible to create wrappers that expose
automation interfaces. Develers are encouraged to create such wrappers particularly if providing support

for scripting languages is an important consideration. These wrappers can be included in the-€z0ié VI

driver as the custom IMCOM interfaces.

The resulting architecture, amation wrapper on top of the custom &€0OM interfaces of an VI driver, is
probably the most efficient way of developing automation drivers. Notice, however, that because automation
wrappers are not a requirement for {8OM drivers, interchangeability Isnited to IVI-COM

classcompliant drivers that implement automation wrappers for their-claspliant interfaces.

4.1.8 Data Types

IVI-COM interfaces are restricted to a subset of automation data types. Refer to médfidalowed Data
Types for the set of data types allowable in {OM driver interfaces. Thienables IVICOM drivers to
work well in a variety of ADESs, including automatidsased ADES, and allows easier integration with-©/I
drivers.

4.1.8.1 Enumerations

IDL enumerations for NVACOM drivers are strongly typed. Two enumerations that otherwise couldaefer
the same attribute but have a different set of enumeration values are typed differently.

For instance, all NACOM drivers that comply with the IviDmm specification have an enumeration for the
Function property. However, not all DMMs support the sanmetion values. Drivers for DMMs with

different sets of function values have different instrument specific enumerations for the Function property.
Furthermore, unless a DMM has exactly the same set of function values as the set defined for the class, the
instrument specific enumeration is distinct from the class enumeration.

4.1.8.2 Safe Arrays

Arrays in IVI-COM driver interfaces are implemented as COM safe arrays. For example, an array of longs is
declared aSAFEARRAlong) . Safe arrays are sadescribing and iclude the number of dimensions and

the size of each dimension. When safe arrays are passed as parameters, separate size parameters are not
necessary, nor are parameters that indicate the number of elements in the array. Instead, the safe array is
created vth the exact size necessary to hold the number of elements in the array.

For input safe arrays, the application program must create the safe array with the exact number of elements
necessary to hold to input data. There are no separate parametersfycasgcsize or number of elements.
Suppose an application program must pass an arbitrary waveform of 200 points to the driver. The application
creates a safe array with exactly 200 elements, fills the array with the waveform points, and passes the array
to the driver.

IVI Foundation 50 IVI-3.1: Driver Architecture Specification

For output safe arrays, the driver creates the array similarly or modifies an input safe array to achieve the
same end. The application program must examine the safe array to determine the number of elements in the
array before processing i

4.1.9 Repeated Capabilities

Repeated capabilities may be representédianways in IVI-COM drivers. Repeated capability instances
may be specified by a method that selects the active instingcselector styler by selecting a particular
instance from@a IVI-COM collection(the collection style)

IVI-COM collections are similar to, but not the same as, standard ActiveX collections. Standard ActiveX
collections are built with automation interfaces. -IMDM collections are built with custom interfaces.
IVI-COM collections involve two interfaces. One interface represents a single item in the collection. The
name of the interface is singular. The second interface represents the set, or collection, of individual items,
and the name is plural. For instantd® interface for an individual oscilloscope channel is named
IlviScopeChannel whereas the interface for the collection is named IlviScopeChannels.

Refer to Section Repeated Capability Groum 1VI-3.3: Standard Cros€lass Capabilities Specification
for the specific API requirements ftre selector and collection styleBoth ways of representing repeated
capabilities provide the user with the ability to navigate through repeated capability hierarchies.

Refer to Sectiod.4, Repeated Capability Selectofsr information on howusers specify a repeated
capability instance within a hierarchy and a set of repeated capability instances.

Note: IVI-C drivers often use repeated capability name parameters to each method or attribute that accesses
the repeated capability (tiparameterstyld. Use of the parameter style is discouraged inG@M APIs
because parameterized properties become get/set methods in .NET P$A code.

A class specification may use collections in the-GOM API and the string parameter approach in theQVI
API. Section 12Repeated Capabilitiesn IVI-3.4: API Style Guidedescribes each approach and contains
guidelines for choosing among the different alternatives.

4.1.10 Session

Session parameters are not used ir@AM methods and properties. The object idgradrves the same
purpose in IVICOM as the session does in &l

4.1.11 Interface Requirements

IVI-COM drivers expose their functionality through interfaces. VI instrument drivers in general have some
features that are common to all drivers and others that@anmon to all drivers of a particular instrument
class. In IVICOM instrument drivers, these features are exposed througlilefiled, standard interfaces.
IVI-COM specific instrument drivers also may expose instrument specific functionality thraaghdes

that are specific to that driver.

4.1.11.1 Standard COM Interfaces

IVI-COM drivers implement two standard COM interfaces, ISupportErrorinfolRnodideClassinfo2
Driver users do not typically use these interfaces directly.

The names for alhterfaces defined by IVI start with llvi.

3 The FgenVFCOMAPI uses this techniguer historical reasons

IVI-3.1: Driver Architecture Specification 51 IVI Foundation

4.1.11.2 Inherent Features

Every IVI-COM driver implements a set of interfaces that expose the VI inherent features as described in
IVI-3.2: Inherent Capabilities SpecificatioAn 1VI-COM custom driver does not implementy other

standard IVI interfaces. llviDriver is the root of the IVI inherent interfaces. When a@OM driver is
instantiated, Querylinterface for IlviDriver always returns a valid interface reference.

The hierarchy of IMM\COM inherent interfaces is deribed in Section 2, COM Inherent Capabilitigsn
IVI-3.2: Inherent Capabilities Specification

4.1.11.3 Class-Compliant Interfaces

Every IVI-COM classcompliant driver implements a set of interfaces that export the IVI-claspliant

features defined in theooesponding IVI class specificatiofror interfaces defined in an VI instrument

class, the interface names begin witiClassName> where ClassName represents the instrument class
name. The root interface name has nothing more added to the instrument class name. For other interfaces,
additional words are addelat when possible, are the safoe the correspondinigvels in the C function
hierarchy

I<ClassNamesinherits from llviDriver. Interface reference properties to other etasspliant interfaces are
included in I<ClassName to provide access to the clagsmpliant interface hierarchy. In rare cases,
commonly used methods and properties freasing the instrument may also be included @ldssName.

When an IVICOM classcompliant driver is instantiated, Queryinterface fo€lassName>always returns a
valid interface reference.

IVI-COM drivers may implement clas®mpliant interfaces for uoitiple instrument classes.

4.1.11.4 Instrument Specific Interfaces

Instrument specific interfaces begin withGomponentldentifier where thec Componentldentifier is a
unique identifier for the driver. The Component Identifier is same as the Component Idatitifieite

defined in Section 42, Component Identifiein IVI-3.2: Inherent Capabilities Specificatiohe root
interface of the primary instrument specific interface is namé&bmponentldentifier. For example, an
instrument specific trigger interfader the Agilent 34401 DMM would be named IAgilent34401Trigger, and
the root interface would be 1Agilent34401.

Insofar as is practical, the instrument specific interfaces of an IVI-ctaspliant driver reflect the syntax of
the classcompliant interfaces

4.1.11.5 Default Interfaces

Default interfaces are applicable to Microsoft Visual Basic version 6.0 and Visual Basic for Applications.

The default interface for all IMCOM drivers is £ Componentldentifier. This may seem countantuitive,

since from the persptiee of interchangeability it might seem that the root 1VI clagmpliant interface

should be the default. However, interchangeability without application code changes can be achieved only by
using the IVICOM Session Factory, which always returns lUnknaather than the default interface. The

default interface plays no role in interchangeability and thus can be used for cases where the application
program wants access to the instrument specific interfaces.

4.1.11.6 Instrument Specific Direct 1/0 API

A specificlVI-COM driver for device(s) that use messdigesed communication includes a System interface
with methods for reading and writing string and byed a propertjor setting the 1/0 timeout. It may
optionally include a property that provides accesséothrdr i ver 6 s under |l ying 1/ O.

IVI Foundation 52 IVI-3.1: Driver Architecture Specification

The root interface of such an INIOM driver includes a reference to the System interface.

4.1.12 Driver Type Libraries

To allow users to swap instruments without recompiling dinténg, the IVl Foundation publishes type
libraries br standard IVI interfaces. One type library contains the IVI inherent interfaces, and one type library
exists for each class specification.

4.1.13 Versioning COM Interfaces

The IVI-COM inherent and classompliant interfaces are uniquely identified by IIDs arllil mot change
after being published i1-3.2: Inherent Capabilities Specificatian the corresponding class specification.

When the IVI Foundation approves a class specification or the specification for inherent capabilities, it also
approves the cogsponding type library. After the 1Vl Foundation distributes a type library, the interfaces
that the type library defines are not subject to modifications. Any modifications necessary as a result of a
specification change requires the creation of one aemew interfaces. Note that a new version of an

existing interface is, in fact, a new interface.

Because interfaces are strongly typed in IDL, an interface reference property changes when the interface to
which it refers has a new version. In turn, itmerface that contains the interface reference property requires
a new version. In an interface hierarchy, this process continues to the top level of the hierarchy.

Enumerations are strongly typed in COM. Any interface that contains any reference toremation

requires a new version when any changes are made to the enumeration. Following this rule strictly implies
that an enumeration requires a new version whenever values are added or deleted from the enumeration. In
practice, drivers may compromisegiprinciple at the expense of displaying an inaccurate list of values in
IntelliSense.

An IVI-COM driver may implement multiple versions of the same interface. This means that, when drivers
are updated, application programs that access old interfadegonkl using the new driver, while new
applications can access new interfaces.

4.1.14 Driver Classes

Note: In this sectiom;lassrefers to a COM class rather than an IVI instrument class.

Drivers may consist of more than one class. In fact, multiple classes@ssary if the driver implements

IVI collections. The user instantiates timaindriver class. The main IVI driver class is named
<Componentldentifier. The main driver class implements all the IVI inherent interfaces and all the VI
classcompliant inerfaces other than collection interfaces. This ensures that Queryinterface succeeds for
well-known standard interfaces. The main driver class also impleme@tsiiponentidentifier and all the
instrument specific interfaces that syntactically leveragetdnedard VI interfaces.

Typically, only the main driver class is registered. Helper classes, such as classes that implement collections,
are not registered. If the driver contains an ActiveX automation wrapper, the automation class that
implements £ Compmentldentifier is also registered.

Driver classes are packaged asb®r 64-bit DLLs. If an IVI-COM driver is a COM wrapper on top of an
IVI-C driver, the IVICOM class and the IVC driver may be packaged as one DLL. An ActiveX automation
wrapper maye packaged in the same DLL as the main driver class. Refer to SedohQ Packaging for
more information on file and module requirements.

IVI-3.1: Driver Architecture Specification 53 IVI Foundation

4.1.15 IVI-COM Error Handling

IVI-COM drivers report status using standelRESULTcodes and a COM error object. Each type library
defines an rumeration of all the status codes that the interfaces defined in the type library return. The
enumerations provide constant identifiers for each status value.

Refer to Sectio®.12 IVI Error Handling, for details of IVI error handling.

4.1.16 Threading
COM drivers are implemented to live in the matireaded apartnme (MTA).
IVI-COM drivers are thread safe and are registered wit

Application program threads that call MIOM driver functions are expected to cadinitializeEx with
COINIT_MULTITHREADEDas the value of the"®parameter.

4.1.17 Driver Packaging

Refer to Sectio’.15.1Q Packaging for packaging requirements for IMCOM drivers.

4.2 IVI-C Driver Architecture

This section discusses issues specific te@Wrivers.

4.2.1 Target Operating Systems

Referto Sectiorn2.16 Operating Systems

IVI-C drivers can work ononsupportecperating systegif the following conditions are met:

1 A compiled version of the IMC driver is available, or source code is available and an ANSImpiler
is available for that operating system.

1 The C shared components are compiled and available for that operating system.
1 An /O library that the IVAC driver uses is available for that operating system.

1 Any other support libraries that the driveessare available for that operating system.

To enable use omonsupportedperating systems, IMC drivers should avoid making operating system
specific calls.

Note: The IVI Foundation does not define vendderoperability and crosgendorinterchangeability for

drivers that are ported to other operating systems. Therefore, the IVl Foundation considers such drivers to be
nortcompliant when used on other operating systems.

4.2.2 Target Languages and Application Development Environments
IVI-C drivers work in the target languages and application development environments listdadan-2. In

principle, IVI-C drivers can work in other ADEs thaltow callsto dynamic link libraries, such as Borland
C/C++.

IVI Foundation 54 IVI-3.1: Driver Architecture Specification

Table 4-2. Target languages and ADEs for IVI-C drivers

32-bit 64-bit

Agilent VEE Agilent VEE*

MathWorks MATLAB MathWorks MATLAB

Microsoft Visual C++ Microsoft Visual C++

National Instruments LabVIEW National Instruments LabVIEW
National Instruments LabWindows/CVI | National Instruments LabWindows/CVI

* Note: The intent is to support the-®4 versions of these ADEs when thare available.

IVI-C drivers can also work in Microsoft Visual C# and Visual Basic .N&ifonly with additional
development effort cihe use oB8™ party tools.

4.2.3 IVI-C Driver Overview

This section provides a general overview of the different typesle€ldrivers and how they work together
in a system.

4.2.3.1 Class and Specific Drivers

An IVI-C driver exports a C API. All IVC drivers export functions and attributes that comply With3.2:
Inherent Capabilities Specificatiohe additional functions andtdbutes that an I\IC driver exports
depend on the type of driver. An NG driver is a class driver, a classmpliant specific driver, or a custom
specific driver.

1 An IVI-C class driver exports the complete set of functions and attributes definesl o thie 1VI class
specifications, including the base capabilities and all extension capabilities. The include file foiGan VI

class driver contains C definitions for all the attribute values and error codes that the class specification
defines.

1 AnIVI-C classcompliant specific driver exports functions and attributes for the class capabilities that it
implements. It may also export instrument specific functions and attributes.

1 An IVI-C custom specific driver does not comply with any of the defined sfassfications. It exports
instrument specific functions and attributes.

Although IVI-C class drivers export inherent, base, and extension capabilities, they do not actually implement
them. Except for a few inherent functions and attributes defined exelj$or class drivers, class driver

functions and attributes provide a p#éissough layer to the IVC specific driver. An IVIC specific driver is
responsible for implementing the operations of functions and attributes and for communicating with the
instrument. The IVAC specific instrument driver contains the information for controlling the instrument,
including the command strings, parsing code, and valid ranges of each instrument setting.

4.2.3.2 Sessions

When using an IVAC driver, an application program ctes and initializes an instrument driver session in a
single call to the Initialize function. The application program closes and destroys the instrument driver
session by calling the Close function.

IVI-C drivers use unique integer handles of tyfgessio n to identify an instrument driver session. The

Initialize function returns the handle that application programs use to reference the instrument driver session
in subsequent calls to instrument driver functions.

IVI-3.1: Driver Architecture Specification 55 IVI Foundation

4.2.3.3 Interchangeability

Interchangeability for IVAC drivers is achieved through I\G class drivers. An application program makes
calls to an IVIC class driver, which, in turn, dynamically loads the-/tlasscompliant specific driver that
the user specifies in the IVI configation store. The IVC class driver communicates through the-(¥I
specific driver to control the instrument.

By using the IVIC class driver API in the application program, the user can interchange sgécific
instrument drivers and correspondingtimments without affecting test code. When using ard\¢lass
driver, the user designates which {&€Ispecific driver to use by specifying a logical name. The user
configures the logical name in the VI configuration store. Refer to Sez#bR.3 How Interchangeability
Works in G for more details on how ass achieve interchangeability without recompiling elimking.

4.2.3.4 Accessing Instrument Specific Functions after Class Driver Initialization

An application program that uses an J€Iclass driver can also access instrument specific functionality by
obtainirg the session handle for the $Zl specific driver. After initializing the I\AC class driver session, the
application program can call the Get Specific Driver C Handle function on the class driver session to obtain
the handle to the specific driver sessi®he application program then uses this handle to call functions
directly in the IVIC specific driver. Typically, the application uses the-O/kpecific driver session handle

only to call instrument specific functions or access instrument speciflouadts.

4.2.3.5 Accessing Specific Drivers Directly

Application programs may use an M specific driver without the presence of an-Wiclass driver. In this
case, the application program opens the session through tiedptcific driver. Typically, a useakes this
approach when interchangeability is not a requirement or when programming to@rcligtom specific
driver.

4.2.3.6 Leveraging VXIplug&play Driver Standards

The IVI-C architecture leverages the architecture standards defined by thaig&play Alliance. Some

IVI-C requirements remain the same as those defined by tha\ge€iplay Alliance, such as function panel
format and sub file format. In these instances, the appropriate sections provide references to the

VXI plug&play specifications. Other requiremes, such as error handling and naming formats, build on the
existing VXIplug&play specifications. For these requirements, the VI Foundation redefines the rules and
conventions. SectioB.12, IVI Error Handling, provides the error handling requirements for all IVI drivers.
Refer toSectiorB.6, IVI-C RequiementsandlVI-3.4: API Style Guidéor conventions regarding naming and
function prototypes for IIC drivers.

4.2.4 Use of C Shared Components

This section describes how NG drivers use C shared components.

Refer tolVI-3.9: C Shared ComponentpeRificationfor more details on the C Shared Components APIs.

4.2.4.1 Creating and Destroying Sessions

IVI-C drivers use the Session Management API to create and destroy instrument driver session€CThe VI
driver calls thaviSession_New function during initiaization to create a session. The {@Idriver then

uses theviSession_SetDataPtr function to associate a pointer with the session handle. The pointer
provides access to the instrument driver data that is specific to the particular session. Subsetjoant func
calls use théviSession_GetDataPtr function to retrieve the pointer to the session data.

IVI Foundation 56 IVI-3.1: Driver Architecture Specification

When an application program calls the Close function on theCldtiver, the IVIC driver destroys the
session by calling thigiSession_Dispose function. ThelVI -C driver is responsible for deallocating the
instrument driver data that is specific to the session.

When an application program uses an-0/tlass driver, the IMC class driver and the underlying M
specific driver create separate sessions. ViheCl class driver stores the handle for the specific driver session
in the class driver session data. The application can obtain the specific driver session handle by calling the
Get Specific Driver C Handle function, which is defined\iih-3.2: InherentCapabilities Specification

4.2.4.2 Dynamic Driver Loading

Application programs can use P class driver functions without referencing {€lspecific drivers in the
source code. To make this possible,-l¥ktlass drivers dynamically load NG specific driverstarun time.
IVI-C class drivers use the Dynamic Driver Loader API for this purpose.

The application program passes a logical name to the Initialize function. This function traverses the VI
configuration store to find the IMC specific driver that is assiated with the logical name. The M class
driver passesthe IMC s peci fi c dr i v evDiverLoates dewl e functon. Mhistfuaction h e
then loads the specific driver.

4.2.4.3 Function Pass-Through

Each IVIC class driver function that the applicen program calls acts as a pdlssugh layer to an IVC
specific driver function. When the application program invokes ard¢lass driver function, the class
driver obtains the address of the corresponding specific driver function by calling the

IviD riverLoader_GetFunctionPtr function. If the specific driver does not export the function, the
IviDriverLoader_GetFunctionPtr function returns a null pointer for the address. Otherwise, the&IVI
class driver function uses the address to call the assotédt&ti specific driver function. The class driver
function passes to the specific driver all the parameters that the user passed to the class driver.

An alternative approach is for the M class driver to call theiDriverLoader_GetFunctionPtr

functionfor each usecallable function during initialization. The IMT class driver then stores the addresses
of the usercallable functions of the specific driver in the class driver session data. THzdMks driver

uses the stored address to call the djpediiver when the user invokes an M class driver function.

4.2.4.4 Multithread Locking

IVI-C drivers allow application programs to use the same session in multiple threa@sdiivVers
accomplish this by locking session resources while a call on therséssictive. IVHC driver functions that
take an IVI session handle as an input parameter lock the 1VI session on entry usiiSgskhien_Lock
function and unlock it on exit using théSession_Unlock function. An exception to this is the Close
function, which calls théviSession_Unlock function prior to calling théviSession_Dispose

function.

4.2.4.5 Error Handling

Each IVI driver sets and retrieves errors in a consistent manner. When an error condition occurs;the VI
driver passes an error code and aoredescription string to theiSession_SetError function. The

IVI-C driver function also returns the error code as the return value of the function. When handling the error,
the application program can retrieve the error code and description by dadlifgiC dr i ver 6 s Ge't
function, which, in turn, calls thieiSession_GetError function.

To create an error description string, an-l¥driver may use thiErrorMessage_Get and the
IviErrorMessage_FormatWithElaboration functions.

IVI-3.1: Driver Architecture Specification 57 IVI Foundation

4.2.5 Repeated Capabilities

Repeated capabilities may be represented in two ways i€ fivers. Repeated capability instances may be
specified by a string parameter to each function that accesses the repeated cgpahititgter styledr by a
function that selects the active instafselector style) Section 12Repeated Capabilitiesn IVI-3.4: API

Style Guidedescribes the two approaches and contains guidelines for choosing betwedn tfearal, the
parameter style is prevaiein I1VI-C drivers.

IVI-C driversprovide functions to discover the string names for repeated capability instances. These
functions takea one-based index.

Refer to Sectiod, Repeated Capability Group IVI-3.3: Standard Cros€lass Capabilities Spdatation,
for the specific API requirements for each approach. Both ways of representing repeated capabilities provide
the user with the ability to navigate through repeated capability hierarchies.

Refer to Sectiod.4, Repeated Capability Selectofer information on how users specify a repeated
capability insance within a hierarchy and a set of repeated capability instances.

4.2.6 Accessing Attributes

IVI-3.2: Inherent Capabilities Specificatiatefines a set of attribute accessor functions for setting and getting
attribute values using IVC drivers. To provide fotype safety|VI-3.2: Inherent Capabilities Specification

defines a separate attribute accessor function for each data type. The generic names for these sets of functions
are Set Attribute <type> and Get Attribute <type>.

4.2.6.1 Repeated Capabilities for Attributes

The attribute accessor functions include a repeated capability selector parameteCtealhetString) for
use with channdbased attributes or attributes of repeated capabilities. When using attribute accessor
functions on attributes that do nqipy to repeated capabilities, application programs gag$uULL or an
empty string for the parameter.

4.2.7 Include Files

An include file foranIVI driver contairs the following:

1 C prototypes for all functions that the driver exports.

1 C constant definitions for all attributes and attribute values that the driver exports
1 C constant definitions for all status codes that the driver can return.

Thefunctions,attributes, attributevalues andstatus codgthat an IVIC driver exports may be inherent,
classdefined, or instrument specific.

The following are examples of haive naming ofinherent and clasdefined attributes and status codes are
handled in the include file for an IMT driver.

1 The definition of an inherent attribufer attribute valuejn an IVI driver include file is the same as the
definition for the attribute inlVI-3.2: Inherent Capabilities Specificatipaxcept thaPREFIX in the
constant name is replaced thye valid driver prefix. For exampléf the following definition is in
IVI-3.2: Inherent Capabilities Specificatipn

#define PREFIX_ATTR_RANGE_CHECK IVI_INHERENT_ATTR_BASE + 2

IVI Foundation 58 IVI-3.1: Driver Architecture Specification

then the following definition of the Range Check attribute appeareimclude file for an VI specific
driver for the Agilent 34401A:

#define AG34401A_ATTR_RANGE_CHECK 1050002

1 The definition of a clasdefined attributdor attribute valugin an IVI driver include file is the same as
the definition for that attributer attribute value in th&/I specificationfor thatclass, except thatass
prefix in the constant name is replaced by the driver prefix. For exaifnhle following definition is in
IVI-4.2: IviDmm Class Specification

#define IVIDMM_ATTR_TRIGGER_SO URCE 250004

then the following definition of the Trigger Source attribute appears in the include file for an VI specific
driver for the Agilent 34401A:

#define AG34401A_ATTR_TRIGGER_SOURCE 250004

1 The definition of a clasdefined status code in an IVI driver include file is the same as the definition for
that status code in tH¥I specificationfor that class, except thatassprefix in the constant name is
replaced by the driver prefix. For explg, if the following definition is inlVI-4.2: lviDmm Class
Specification

#define IVIDMM_WARN_OVER_RANGE 0x3FFA2001

then the following definition of the Over Range warning appears in the include file for an VI specific
driver for the Agilent 34401A

#define AG34401A_ WARN_OVER_RANGE 0x3FFA2001

The inherent status codes definedMir-3.2: Inherent Capabilities Specificati@o not begin with a
replacableprefix. An example i$VI_ERROR_INVALID VALUE. The include file for an IIC driver does
not provide instrument specific versions of inherent status code némsésad, it includea common include
file that defines those names.

Notice that by providing driver specific C constants for cldsned attributes, attribute values, and status
codesas well as driver specific function namas, IVI-C classcomplaint specific driver can be used without
reference to class names. An application program devetapensehe classdefinedfeatures othe driveras

if they were instrument specific. Developers do not have to understand which features adefalessand
which are instrument specific.

An application program developer who uses class drivers can use the C constants from the class driver
include file for classlefined features and C constants from the specific driver include file for instrument
specific features. The constamtd function namefor the clasglefined features have class prefixes whereas
the constanand function naméor the instrument specific features have instrument prefixes. This helps the
developer identify the neimterchangeable portions of the application program.

All include files for IVI-C drivers define constants as macros.

Note: An IVI driver supplier may definéunctions,attributes, attribute values, and status codes that are
common among multiple drivers. Suftinctions,attributes, attribute values, and status codes are referred to
asvendor specificUnless otherwise noted, vendor spediiiections,attributes, attribute values, and status
codes are treated as instrument specific in the VI specifications.

4.2.8 Interactive Development Interface

An interactive development interface is a tool that allows users to operate an instrument driver function
interactively Interactive operation of an instrument driver function helps the user understand the behavior of

IVI-3.1: Driver Architecture Specification 59 IVI Foundation

the function, the function prototype, and the meanings and valid values of parameters. The interactive
development interface for IMC drivers is a set dinction panels

A function panel presents an instrument driver function graphically, with help text, and allows the user to
execute the function. An IVC driver organizes its function panels in a hierarchy to assist users in locating
functions.

Functionpanels are not available in all programming environments. For environments that do not support
function panels, documentation such as Windows help files help users learn how to use driver functions.

Function panels are also required for pKig&play drivers. IVI-C function panels are consistent in format
and style with VXplug&play function panels.

Each IVIC driver defines its interactive development interface infanetion pane(.fp) file and onesub

(.sub) file. The function panel contains information each function that the driver exports, including the
parameters of each function. The sub file contains the information on each attribute the user can access
through the Set Attribute <type> and Get Attribute <type> functions.

4.2.8.1 Function Panel File

A function panel.{p) file contains the following information:
1 afunction tree, which represents the function hierarchy
1 data types of each function parameter and return value
1 size and placement of function parameters and return values on each panel

1 help de@umentation for each function and parameter

Refer to Section Gunction Panel File Formain the VXIplug&play specificationVPP-3.3: Instrument
Driver Interactive Developer Interface Specificatimn information on the function panel file format.

4.2.8.2 Function Hierarchy

The function hierarchy provides valuable information to the userCldtivers that conform to standard

function hierarchies makes it easier for users to understand new function hierarchies more quickly. Insofar as
is practical, thdunction hierarchies of IVI classompliant instrument specific drivers reflect the hierarchies
defined in the class specifications.

Section 43, C Inherent Capabilitiesin IVI-3.2: Inherent Capabilities Specificatipspecifies the hierarchy
for the IVIinherent functions.

Each IVI class specification specifies a function hierarchy for the-diefssed functions.

Section 13.1C Function Hierarchyin 1VI-3.4: API Style Guidecontains guidelines on grouping functions
into a hierarchy.

4.2.8.3 Sub File
A sub (sub) file describes the attributes that users can access through the Set Attribute <type> and Get
Attribute <type> functions. In particular, a sub file contains the following information:
1 an attribute hierarchy, which organizes attributes into logjcaups
1 the name and data type of each attribute
9 the valid values for enumerated attributes
1

help documentation for each attribute and attribute value

IVI Foundation 60 IVI-3.1: Driver Architecture Specification

Refer to Section Function Panel Sub File Formah the VXIplug&play specificationVPP-3.3: Instrumat
Driver Interactive Developer Interface Specificatimn information on the sub file format.

4.2.8.4 Attribute Hierarchy

The attribute hierarchy provides valuable information to the userCldtivers that conform to standard
attribute hierarchies make it éasfor users to understand new attribute hierarchies more quickly. Insofar as
is practical, the attribute hierarchies of IVI clagsmpliant instrument specific drivers reflect the hierarchies
defined in the class specifications.

Section 43, C InherentCapabilities in 1VI-3.2: Inherent Capabilities Specificatipspecifies the hierarchy
for the IVI inherent attributes.

Each IVI class specification specifies an attribute hierarchy for the-dédissed attributes.

Section 13.1C Attribute Hierarchyin 1VI1-3.4: API Style Guidecontains guidelines on grouping attributes
into a hierarchy.

4.2.9 Instrument Specific Direct 1/0 API

A specific IVI-C driver for device(s) that use messdgsed communication includes two functions for
reading and writinglataand atimeout attribute for controlling the 1/0O timeout. It may also optionally
include an attribute that provides access to the dri

Both the function and attribute hierarchies of specific@/irivers for devices that use messagsed
communication include a level 1 category narBgstem . Functions or attributes related to direct 1/O,

including the read and write functions and the timeout and session attributes, shall be placed in this level of
the hierarchy.

4.3 IVI.NET Driver Architecture

This section describes how IVI.NET instrument drivers use .NET technology. This section does not attempt
to describe the technical features of .NET, except where necessary to explain a particular IVI.NET feature.
This section assumes that the readeansiliar with .NET technology.

IVI.NET drivers implement the IVI instrument driver features described in SettibSubstitutions

This specification uses paired angle bracketmdicate that the text between the brackets is not the actual

text touse, but instead indicates the kind of text that can be used in place of the bracketed text. Sometimes
themeaning is selévident, and no further explanation is given. The following list includes those that may
need additional explanation for some reade

I <ClassName> The name of an IVI instrument class as defined by an IVI Instrument Class specification.

For example, dAlvi Dmmo.

1 <ClassType>: The name of an IVI instrument class as defined by an VI Instrument Class specification,
without twiedol ealomgexXiampl e, ADmmo .

1 <Componentldentifier>: For IMCOM and IVI.NET, the string returned byspecificd r i ver 6 s
Component Il dentity attribute. This string uniquel

1 <Prefix>: ForIVICclasdr i vers, the string returned by the dri
class driver prefix will commonly be an | VI <cl ass
ForlVI-C specific drivers, the sbDriverPrafixattrdbites Fared by t he

exampl e, ANI 34560

1 <ConpanyName>: The name of the driver vendor (not the instrument manufacturer). For example,
AAgil ent Technol ogies, I ncbo.

IVI-3.1: Driver Architecture Specification 61 IVI Foundation

il

<ProgramFilesDir>: The Windows program files directory. This varies adiffssent versions of
Windows. In some contexts, it is not intended to differentiate between thié &4d 32bit program

files directories found on 6Mit versions of Windows that include Windows On Windows (WOW), but
to be understood as a generic refae to the program files directory.

<ProgramDataDir>: The Windows data directory. This varies across different versions of Windows. It

is generally understood to apply to all users.

<lviStandardRootDir>: The root install directory for the VI Share@onents, whickonsists of
executables and other files neédo create and run IVI drivers. By default, this directory is
i<Pr ogr a ¥ iFdurdatibi vV O .

<RcName>: The name of a repeated capability. Repeated capabilities may be defined speles or
by specific driver developers.

<FwkVerShortName>: The IVI.NET short name for a version of the .NET Framework.

Where it is important to indicate the case of substituted text, casing is indicated by the case of the text
between the brackets

1

= =4 =4 =

Features and Intended Use of IVI Driveasd present them to test system programmers in the form of .NET

<ClassName* ndi cates Pascal <casing. For example, fAlviD
<className> indicates camel casing. For exampl e,
<classname> indicates all | ower case. For exampl e
<CLASSNAME> indicates all upper case. For exampl e

<CLASS_NAME> indtcates all upper case with underscores between words. For example,
il VvVl _DMMO.

interfaces.

4.3.1 Target .NET Framework Versions

IVI.NET drivers requirethe full version oMicrosoft .NETFramework neither.NET Framework Client

Profilesnor .NET Corearesufficient. The minimum version of Microsoft .NET Framework that the IVI.NET

driver supports cannot be less than 2.0, and the recommended versioi & @2 lists therelevant
frameworkversions, along with the full version nber and théVI .NET Framework versioshort name,

<FwkVerShortName>
Table 4-2. .NET Framework Versions
.NET Framework Version | Full Version <FwkVerShortName>
2.0 v2.0.50727 Fx20
3.0 v3.0 Fx30
3.5 v3.5 Fx35
4.0 (Recommended) v4.0.30319 Fx40
4.5 v4.5.50709 Fx45

IVI Foundation

62 IVI-3.1: Driver Architecture Specification

4.3.1.1 IVI.NET Framework Version Short Name
The IVI.NET Framework versioshort names<FwkVerShortNamep is used tgrovide .NET Framework

versionspecific names for registry keys, Software Module Table entries, andVigtant folders. The format
is Fx<framework major version><framework minor version>

4.3.2 Target Operating Systems
Referto Sectior2.16 Operating Systems
4.3.3 Target Languages and Application Development Environments

IVI.NET drivers work in the target languages and application development environments liEaddeid 3.

Table 4-3. Target languages and ADEs for IVI.NET drivers

32-bit 64-bit

Agilent VEE Agilent VEE*

MathWorks MATLAB MathWorks MATLAB

Microsoft Visual Basic .NET Microsoft Visual Basic .NET

Microsoft Visual C# Microsoft Visual C#

Microsoft Visual C++ Microsoft Visual C++

National Instruments LabVIEW National Instruments LabVIEW
National Instruments LabWindows/CVI | National Instruments LabWindows/CV|

* Note: The intent is to support the-®4 versions of these ADEs when they axailable.

IVI.NET drivers comply with the Common Language Specification (CLS), so that in principle, IVI.NET
drivers can work in other development environments in which the .NET CLR is supported.

4.3.4 IVI.NET Driver Overview

An IVL.LNET instrument driver isnstantiated as a .NET class accompanied, optionally, by .NET helper
classes. An IVL.NET driver class implements a variety of interfaces and classes including standard VI
interfaces and instrument specific classes and interfaces.

Standard IVI interfacesiclude VI inherent interfaces and VI classmpliant interfaces for each of the

defined IVI instrument classes. Standard VI interfaces provide a standard syntax through which application
programs interact with the driver. This standard syntax, wheninsgmnbination withone ofthe IVI.NET
sessionfactoly methodsprovides the same level of syntactical interchangeability in the IVI.NET architecture
as that provided bi/1-COM andby IVI class drivers in the I\AC architecture. Thus, IVI class driverga

not required for syntactical interchangeability in the IVI.NET architectReder to Sectior2.9.2.2 How
Interchangeability Works in COlInd .NET for more details on achieving interchangeability using IVI.NET
drivers.

Instrument specific classes and interfaces provide accesstriament specific functionality. Typically,
instrument specific classes and interfaces mirror IVI etagapliant interfaces for the instrument features
that are within the scope of the functionality defined by the 1VI class specifications. Howevemarst
specific classes and interfaces also include additional methods and properties that provide access to the
features that are beyond the scope of the VI class specifications.

IVI-3.1: Driver Architecture Specification 63 IVI Foundation

4.3.5 IVI.NET Interfaces

The methods and properties of IVI.NET drivers are gealipto multiple interfaces based on functionality.
This grouping allows for a natural hierarchical structure that organizes the overall driver functionality.

All IVI.NET drivers contain the interfaces for the IVI inherent features as well as interfatémfiiement

the instrument specific capabilities of the instrument. IVI.NET etasapliant drivers also contain VI
classcompliant interfaces. The interfaces for the VI inherent features are defiféd3r2: Inherent
Capabilities SpecificationThelVI.NET classcompliant interfaces are defined in the IVI class specifications.

The IVI classcompliant interfaces for a particular instrument class are identical from driver to driver. The
interfaces that implement the 1VI inherent methods and properesientical for all IVI.NET drivers.
Keeping the interfaces identical is what makes the drivers syntactically interchangeable.

Instrument specific classes and interfaces are necessarily different from one instrument to another, whereas
classcompliant nterfaces are identical for all drivers within the same class. Thus, thecolagdiant

interfaces in an | VI .NET driver are different from t
IVI classcompliant interfacemay bethin layers of cde that call instrument specific classes and interfaces.

This allows the instrument specific classes and interfaces to leverage the syntax of {bentdisst

interfaces.

One of the ways that IVI.NET differs from IMCOM is that IVI.NET drivers may exjge instrument specific
classesn scenarios where IVCOM would exposénterfaces This is a subtle difference, but allows the
IVI.NET driver developer more implementation flexibility in the instrument specific API.

4.3.6 Navigating IVI.NET Hierarchies

There ae three cases to consider.

1. Navigating from classompliant API to instrument specific API and vice verseo accomplish this, it
is necessary to use IServiceProvider.GetService() to navigate from one set of interfaces to the other.

2. Navigating from one IVEtlasscompliant API to another IVI classompliant API in the same drivérTo
accomplish this, it is necessary to use IServiceProvider.GetService() to navigate from one set of
interfaces to the other.

3. Navigating within either the clagompliant or infument specific APT To accomplish this, it is best to
use interface reference properties (properties that return a reference to another class or interface). In
some cases it is possible to cast from one interface to another, but this may or magesat suc
depending on implementation.

Interface reference properties create a hierarchy that the user can easily navigate. C# or VB.NET can
navigate through an arbitrary number of reference properties. Consider the following code:

[tf1.1tf2.1tf3.1tf4.Method

I tf1 is a reference to a class or interface referenced by the vadtiable Similarly,Itf2 , Itf3 , anditf4

are also reference properties. As the user types each of these names, IntelliSense displays a dropdown list of
methods and properties in the copasding class or interface. After typiitél followed by a period, a list

of all the properties and methoddtil appears, allowing the user to select one. After selettting and

typing the period, a list of the methods and propertiéin appearsand so on, until the developer selects
Method .

I n addition to the driverds main class, I VI . NET dr i v
IVI.NET drivers include a class for each repeated capability collection. Application programs mustlaecess

helper object through a reference property. Refer to Settiof Repeated Capabilitie$or more

information on IVL.NET collections.

IVI Foundation 64 IVI-3.1: Driver Architecture Specification

IVI.NET drivers make extensive use of reference properties to navigate to other classes and interfaces
supported by the driver. Again, note that IVI.NETvers may reference classes directly using reference
properties in the instrument specific classes and interfaces, a feature which allows IVI.NET driver
implementations to be a bit more flexible. In the inherent and-ctaspliant APIs, only interfaceser
allowed (in order to provide syntactical interchangeability) and so all reference properties are interface
reference properties.

4.3.7 Interface Hierarchy

IVI.NET drivers take advantage of reference properties to organize classes and interfaces hierakatbally.
class or interface has exactly one parent class or interface and zero or more child classes or interfaces. No
circular references or series of references exist. The hierarchy is primarily organized by functionality, while
also being consistent witNET conventions where possible. The hierarchy for inherent features is
documented in thB/I-3.2: Inherent Capabilities Specificatiolhe hierarchies for clagompliant interfaces

are documented in the corresponding VI class specifications.

IVI.NET class-compliant interface hierarchies are not necessarily organized according to the capability
groups defined in the IVI class specifications. IVI.NET interface hierarchies are similar@QOMI
hierarchies, but do not necessarily correspond to th€lftinction tree (p file) hierarchies.

4.3.8 Data Types
IVI.NET APIsare restricted tdNET Common Language Specification (CLS) compliant data types

4.3.8.1 Enumerations

Enumerations for IVI.NET drivers are strongly typed. Two enumerations that otherwise could tieéer to
same attribute but have a different set of enumeration values are typed differently.

For instance, all IVI.NET drivers that comply with the lviDmm specification have an enumeration for the
Function property. However, not all DMMs support the same foimatalues. Drivers for DMMs with

different sets of function values have different instrument specific enumerations for the Function property.
Furthermore, unless a DMM has exactly the same set of function values as the set defined for the class, the
instrument specific enumeration is distinct from the class enumeration.

4.3.9 Repeated Capabilities

Repeated capabilities may be represented in two ways in IVl .NET drivers. Repeated capability instances
may be specified by a method that selects the active instdueelector stylpor by selecting a particular
instance from an IVI .NET collection (tle®llection stylg.

IVI.NET repeated capability collection interfaces must derive from
Ivi.Driver.llviRepeatedCapabilityCollection<T>, where T is the type of theectbn member class or

interface. IVI.NET interfaces that represent instances of a repeated capability (i.e., collection members) must
derive from lvi.Driver.RepeatedCapabilityldentification. Refer to SectiorRépeated Capability Collection

Base Intefaces in IVI-3.18: IVI.NET Utility Classes and Interfaces Specificatifon a full description of

these interfaces.

Refer to Section RRepeated Capability Groum I1VI-3.3: Standard Cros€lass Capabilities Specification
for the specific API requireamts for the selector and collectistyles Both ways of representing repeated
capabilities provide the user with the ability to navigate through repeated capability hierarchies.

Refer to Sectiod.4, Repeated Capability Selectofsr information on how users specify a repeated
capability instace within a hierarchy and a set of repeated capability instances.

IVI-3.1: Driver Architecture Specification 65 IVI Foundation

Note: IVI-C drivers often use repeated capability name parameters to each method or attribute that accesses
the repeated capability (tlparameter style Use of the parameter style iscluraged in in IVI.NET APIs

because parameterized properties are not allowed in CLS compliant .NET ¢odkass specification may

use collections in the IVI .NET API and the string parameter approach in th@ ARI. Section 12,

Repeated Capabilit® in IVI-3.4: API Style Guidedescribes each approach and contains guidelines for
choosing among the different alternatives.

4.3.10 Session

Session parameters are not used in IVI.NET methods and properties. Object identity serves the same purpose
in IVLLNET asthe session does in NC.

4.3.11 Multithread Locking

IVI.NET drivers offer three modes of multithread locking. The mode used by an IVI.NET driver is
determined by the parameters passed to the IVI.NET driver constructor. The type of locking used by an
IVI.NET driver instance is established at construction time and cannot be changed during the lifetime of the
driver instance. Each mode of locking is explained in the sections below.

4.3.11.1 Per-Instance Locking
This level of multithread locking is required fidI.NET drivers.

Perinstance locking ensures that access to the same instance of an IVI.NET driver is synchronized between
multiple threads in the samgpDomain Threads accessing different instances of the same IVI.NET driver
are not synchronized, nare threads accessing the driver in diffes®mpDomains This means that multi
threaded applications that wish to synchronize access to a driver must take care to share a single instance
amongst threads, rather than creating different instances orediffereads.

Perinstance locking is used when the client application invokes the IVI.NET driver constructor with
LockTypeAppDomainspecified for the lockType parameter and an empty string supplied for the accessKey
parameter.

4.3.11.2 AppDomain-Wide Locking
Thislevel of multithread locking is optional for IVI.NET drivers.

AppDomainwide locking ensures that all instances of an IVI.NET driver created with the same access key

are protected from simultaneous access by all threads witip@Domain This means thalient

applications that wish to synchronize access to a driver can do so even in the face of of multiple instances, so
long as the instances that need to be synchronized share the same access key. Threads accessing instances of
the IVI.NET driver fromdifferent AppDomainsare not synchronized, nor are threads accessing instances that
were created with different access keys.

The access key is usgpecified and serves as a lock identifier for the lock that must be obtained before a
thread can invoke arider function. There are no specific requirements regarding the format or content of the
access keyHowever, memory is allocated anthy not bdreed for each unique access key us€dus, it is

not good practice to generate arbitrarily unique ackegs. Instead, users should generate a key that

logically represents the resource being lockEdr example, the access key may correspond to the 1/O
resource name , such as a VISA resource descriptor.

4The Fgen IVI.NET API uses this technique, but only to provide compatibility with the original Fgen capability class
design.

IVI Foundation 66 IVI-3.1: Driver Architecture Specification

AppDomainwide locking is used when the client applion invokes the IVI.NET driver constructor with
LockTypeAppDomainspecified for the lockType parameter and a-eampty string supplied for the
accessKey parameter.

Note that drivers that implemeAppDomainwide locking muspreserve the integrity aftiver state data
between multiple instances of the driva@tis may include requiring the client to reset the instrument to a
known state each time they are granted access to the driver.

4.3.11.3 Machine-Wide Locking
This level of multithread locking igptional for IVI.NET drivers.

Machinewide locking ensures that all instances of an IVI.NET driver created with the same access key are
protected from simultaneous access by all threads with&palDomains anghrocessess on the same
machine.

As with AppDomainwide locking, the access key is usprecified and serves as a lock identifier for the lock
that must be obtained before a thread can invoke a driver function. There are no specific requirements
regarding the format or content of the access key.ekample, the access key may correspond to the I/O
resource name, such as a VISA resource descriptor.

Machinewide locking is used when the client application invokes the IVI.NET driver constructor with
LockType.Machine specified for the lockType parameted a norempty string supplied for the accessKey
parameter.

Note that drivers that implememtachinewide locking must preserve the integrity of driver state data
between multiple instances of the driver. This may include requiring the client tohegattrument to a
known state each time they are granted access to the driver.

4.3.12 Class and Interface Requirements

IVILNET instrument drivers expose three kinds of featuhaiserent capabilities are features common to all
drivers. Classompliant interfaes are common to all drivers of a particular instrument class. IVI.NET
specific instrument drivers also may expose instrument specific functionality through classes and interfaces
that are specific to that driver.

4.3.12.1 Naming and .NET Namespaces

IVI.NET drivers have their own namespagctgrefore names do not need to contain as much distinguishing
information as do IVAC or IVI-COM names. For example, in AG and IVFCOM instrument specific APIs,

the component identifier is needed to distinguish class fawes, and enumeration names across multiple
drivers. In IVL.LNET the component identifier is not needed to distinguish class, interfaces, and enumeration
names.

4.3.12.2 Inherent Features

Every IVI.NET driver implements a set of interfaces that expose the IViénhé&atures as described¥fi-

3.2: Inherent Capabilities SpecificatioAn IVI.NET custom driver does not implement any other standard
IVI interfaces. llviDriver is the root of the IVI inherent interfaces. When an IVI.NET driver is instantiated, a
legd cast to llviDriver always returns a valid reference.

The hierarchy of IVI.NET inherent interfaces is described in SectionMEL, Inherent Capabilitiesn IVI-
3.2: Inherent Capabilities SpecificatiorThe namespace for the IVI.NET inherent interfaisdvi.Driver.

IVI-3.1: Driver Architecture Specification 67 IVI Foundation

4.3.12.3 Class-Compliant Interfaces

Every IVL.NET classcompliant driver implements a set of interfaces that export the IVI-caspliant
features defined in the corresponding VI class specificatigldssName is the root of this set of
interfaces. For example, llviScope is the root of the interfaces that the IviScope class specification defines.

I<ClassName extenddlviDriver. Interface reference properties to other clessipliant interfaces are
included in kClassName to provide access to the clagsmpliant interface hierarchy. In rare cases,
commonly used methods and properties for accessing the instrument may also be inckiGébsName.

When an IVI.NET classompliant driver is instantiated, calling 1ServicetAder.GetService() witktypeof
I<ClassName always returns a valid reference.

IVI.NET drivers may implement classompliant interfaces for multiple instrument classes.

The namespace for an IVI classmpliant APl is lvicClassSType>. Note that thdvi.<ClassType>in the
namespace name and th€lassName in the interface names are redundas€lassNamehas been
retained in IVI.NET classompliant interfaceto keep continuity with NMCOM interface names
<ClassName need not appear in other class tgadinitions, including exceptions, supporting classes, and
enumeration names.

4.3.12.4 Instrument Specific Classes and Interfaces

The namespace for instrument specific driveksGempanyName><Componentldentifier, where
<CompanyNames the name of the driver mdor. Since<Componentldentifiersis part of the namespace
name, it need not be used in IVI.NET in names where it would be used-@QWI.

One of the ways that IVI.NET differs from IMLOM is that IVI.NET drivers may expose instrument specific
classesn scenarios where IVCOM would exposénterfaces This is a subtle difference, but allows the
IVI.NET driver developer more implementation flexibility in the instrument specific API.

IVI.NET instrument specific interface names must begin with I. Fangte, an instrument specific trigger
interface for the Agilent 34401 DMM could be named ITrigger.

I VI . NET class names should foll ow Mi dherearerfothérs publ i s
requirements for IVI.NET instrument specific clasanesother tharthe class at the root of the instrument

specific reference hierarchy. The root of an IVI.NET reference hierarchy is always a class named
<Componentldentifier. For example, an instrument specific trigger class for the Agilent 34401 Dddid ¢

be named Trigger, but the root class would be Agilent34401.

Insofar as is practical, the instrument specific interfaces of an IVI-ctaspliant driver reflect the syntax of
the corresponding clas®mpliant interfaces.

4.3.12.5 Repeated Capability Interfaces

IVI.NET interfaces that represent a single instance of a repeated capability consist of the appropriate prefix,

as described in therevioustwo sections, followed by the the name of the repeated capability. For class

compliant interfaces, thiisl<ClassName><RcName> For instrument specific interfaces, this is
I<Componentldentifier><RcName> For exampl e, All vi Pwr Meter Channel 0

IVI.NET repeated capability collection interfaces consist of the appropriate prefix,a#ddsn the last

t wo sections, followed by the name o Fortldseomplianpeat ed ¢
interfaces, this is<ClassName>< RcName Collection. For instrument specific interfaces, this is
I<Componentldentifier><RcNameSollection For example, Allvi Pwr Meter Char

Al Agil ent 34410TraceColl ectiono.

IVI Foundation 68 IVI-3.1: Driver Architecture Specification

4.3.12.6 Instrument Specific Direct I1/O API

A specific IVI.NET driver for device(s) that use messagsed communication includes a System interface
with methods for readinand writing string and bytesd a propertjor setting the 1/0 timeout. It may
optionally include a property that provides access t

The root interface of such an IVI.NET driver includes a reference to the System interface

4.3.13 Standard Inherent and Class Assemblies

To allow users to swap instruments without recompiling dinténg, the IVI Foundation publishes .NET
assemblies for standard IVI.NET API definitions. One assembly contains the IVl inherent inteafangs
with the IVI.NET utility classes and interfaceend one assembly exists for each class specification.

4.3.14 Versioning .NET Interfaces

The IVL.NET inherent and classompliant assembliearenot changed or deleted after being published in
IVI-3.2: Inherent Capabilies Specificatiomr the corresponding class specificatidrhe only exception is
that new members may be added to enumerations.

When the IVI Foundation approves a class specification or the specification for inherent capabilities, it also
approves the corresponding .NET asserm#fter the 1Vl Foundation distributes an assembly, the interfaces
that the assembly definasenot changed

New versions of standard IVI.NET assemblies include policy files so that programs written to acclbs the o
version(s) of the assemblies will also work with the new versions.

4.3.15 Driver Classes

Note: In this sectiorglassrefers to a .NET class rather than an VI instrument class.

IVI.NET specific divers may consist of more than one class. In fact, multipksekare necessary if the
driver implements IVkepeated capabilityollections. The user instantiates thaindriver class. The main
IVI driver class is named Componentldentifier. Once the client program has a reference to the main VI
driver classthe llviDriver interface and the root interface of any clesmliant hierarchy that the driver
implements can be accessed usBgrviceProvider.GetService()

Driver classes are packaged.M&T assemblyLLs.

4.3.16 IVL.NET Error Handling

IVI.NET specific drives report errors by throwing exceptions/arnings are reported by a .NET Warning
event defined in the inherent capabilities.

In general, existing .NET exceptions are used when an appropriate one exists, in order to reduce the number
of exceptions that argpecific to IVI inherent capability, instrument class, and instrument specific interfaces.
However, some standard IVI exceptions are used for reporting errors from the underlying I/O software and
the Configuration Server. IVI.NET exceptions are derifrech the System.Exception ckasRefer to

Section5.12.2 IVI.NET Error Handling for details of IVINET error handling.

5 The exception, of course, is sjfaxations that were approved prior to the creation of the IVI.NET standards. For
these speffications, IVI.NEMmaterialwill be added and approved coincident with the approval of this ggation.

IVI-3.1: Driver Architecture Specification 69 IVI Foundation

Warnings are reported by a .NET Warning event defined in the inherent inteRafestoSection11.1,
IVI.NET,in IVI-3.4: API Style Guidefor details of IVIwarnings Refer to Section 9VI.NET Event
Descriptions in IVI-3.2: Inherent Capabilities Specificatipfor the definition of the warning event.

4.3.17 Driver Packaging

Refer to Sectio®.17.12 Packaging for packaging requirements for IVI.NET drivers.

4.3.18 Choosing a Version of the IVI.NET Shared Components for Building the Driver

When a driver developer builds an IVI.NET driver against a particular version of the IVI.NET Shared
Components, that version or a later version of the shared components must be installed en theeendd s
system 6r the driver to function.

A driver developer may build an IVI.NET driver against the earliest version of the IVI.NET Shared
Components that meets the requirements for the IVI.NET driver being developed, or against any later
version. A driver builegainst an earlier version of the IVI.NET Shared Components will work with a greater
number of subsequent IVI.NET Shared Component versions than a driver built against a later version of the
IVI.NET Shared Components, and so is more likely to work witbraien that the endser may already

have installed.

With these facts in mind, driver developers are encouraged to build against the oldest version of the IVI.NET
Shared Components that meets the requirements of their IVI.NET driver and their develomoesd.

4.4 Repeated Capability Selectors

Repeated capabilities can be represented in three different ways in IVI Bidparameter style allows
users to select repeated capabilities wahameters teverymethod and properthatapplies to the repeate
capability The selector style allows users to select repeated capabilities mgtipds that select the active
instancés). Thecollectionstyle allows users to select one repeated capability from a collectionallNM\PIs
are capable of using aif the methods.

IVI-COM driverscan represemepeated capabilitiassingall three methodsut the parameter style is
discouraged

IVI-C driverscan represent repeated capabilitiethaparametestyle or the selector styldut notusingthe
collection style.

IVI.NET drivers can represent repeated capabilities using all three methods, but the parameter style is
discouraged.

For all approaches, users identify repeated capability instances using repeated capability selectors. This
section describes trsyntax and use of repeated capability selectors.

For the purpose of repeated capability selector sythaxparameter style and selector stytek inthe same
way. Accordingly, he rest of this section refers to {h@rameter/selectoapproach.

4.4.1 Simple Repeated Capability Selectors

To specify a single, nenested repeated capability instance, a repeated capability selector consists of a single
physical or virtual repeated capability identifier. The selector is the same regardless of whether the user is
specifying a parameter or using a collection. However, the selector is used in different ways in the two
approaches.

IVI Foundation 70 IVI-3.1: Driver Architecture Specification

For example, to specify the physical i deAPlfdri er fAche
the IviScope class, theuserpass fichanlo as the second parameter.

ReadWaveform (vi, Afichanlo, 1024, 5000, waveform, &count,

To specify n
n

hanlodo to t he-CReAPdorWalviSsdpedadass, tmeaigeh od of t}
passes ficha 0

c
1 av$-COMhcellectom.l ect or f or t he

Measurements. |l tem(fichanl0o). ReadWaveform (5000, waveform,

To specify i
t

hanlo0 to the Read Waveform method of th
fchanlodo as e h

c
h selector for t e | VI.NET coll ection.

Measure ment s[Aichanld]. ReadWaveform (waveform);

4.4.2 Representing a Set of Instances

To specify a set of repeated capability instances, repeated capability selectepeased capability ranges
andrepeated capability lists

A repeated capability range consists ddwer bound repeated capability identifidollowed by a hyphen

(-), followed by arupper bound repeated capability identifieFhe range indicates all instances from the
lower bound to the upper bound, inclusiveEach driver that allows repeated capability ranges specifies an
ordering of the physical repeated capability identifiers that it defines. In a valid range, the lower bound
identifier is less than or equal to the upper bound identifier.

A repeated cagbility list is a commeseparated sequence of repeated capability identifiers, a
commaseparated sequence of repeated capability ranges, or a exgparated list of identifiers and ranges.

In a valid list, no identifiers repeat and no ranges overlapwveier, identifiers may appear in any order.

White space after commas is ignored. A repeated capability list may be enclosed within square fjrackets (

The repeated capability identifiers used in ranges and lists may be physical identifiers ordé@rttifis.
The following selectors represent the same set of repeated capability instances:

i1, 2, 3, 6, 8, 9, 100

fi[13,6,8 -101] 0o

n13,6 -6,8 -100

n810, 3, 2, 1, 60
The following selectors are invalid:

630

nil, 2, 10

13,3 -50

When used with as a function parameter, a repeated capability range or list is used in the same way as a
simple selector. An example might be:

Enabl eChannel-14 21 43 0)) ;

When used with NMACOM collections, a repeated capability rarag list is used in the same way as a simple
selector. An example might be:

Channel s. |-1&@2(3100) . Enabl e () ;

IVI-3.1: Driver Architecture Specification 71 IVI Foundation

IVI.NET collections do not use repeated capability ranges. Per the normal .NET collection syntax,
collections are restricted to simpleeated capability identifiers.

The repeated capability identifiers used in ranges and lists may be physical identifiers or virtual identifiers.

4.4.3 Representing Nested Repeated Capabilities

The representation of nested repeated capabilities differs depemdivitether the parametselector
approach or the collection approach is being used.

4.4.3.1 Representing Nested Repeated Capabilities in the Parameter/Selector Approach

When using the parametselectorapproach for specifying nested repeated capabilities,ealhfbrmation

needed to navigate the hierarchy is represented in a single selector string. The repeated capability identifiers
at each level in the hierarchy are concatenated using colons as separators. Each identifier may be physical or
virtual. The idatifier for the repeated capability instance at the top level of the hierarchy appears first in the
string. White space around colons is ignored. Such selectors arehtetlthical repeated capability

selectors

As an example, consider a power suppith four output channels, each of which has two configurable
external triggers. To configure a specific trigger, the user specifies the output channel and the trigger. A
function call might look like the following:

ConfigureExternal Tri gger SquieQluevel);: Tri glo

wh e O@l:Tfigl © e

r resents a specific trigger TigToigl) for
andulfo are ph

p
ysical identifiers for the respective r

4.4.3.2 Representing Nested Repeated Capabilities in the Collection Approach

When using IVICOM or IVL.NET collections to represent nested repeated capabilities, each level in the
hierarchy is modeled as a separate collection. To select an item in the collection, the user identifies the
instance of the repeateapability for that level only. Each collection in a hierarchy is accessed separately.

Consider the example described in the previous section. Usirg@W collections, the code mighppear
as follows

OQutputs.ltem(fAOutldo). Triggers. |l tem(ATriglo). Configure(Sou
UsingIVI.NET collections, the code mighppear as follows

Out puts[AOutl1lo].Triggers[ATriglo]. Configure(source, | evel

4.4.4 Mixing Hierarchy with Sets

Selectors for nested repeated captieilimay contain lists or ranges at any level of the hierarchy. Mixing
hierarchy with lists or ranges is syntactically complex because it requires using the gotmmma (), and
hyphen {) operators in the same selector. Titerpretation of such a selector can be ambiguous unless the
order of precedence is clear. The use of square bragkdtsay be required to resolve ambiguity between
the colon () and comma,() operators.

The order of precedence is square bracketys fyphen (), colon ¢), and comma,(). Each operator is
evaluated from left to right.

For examplefi a-1a 3 : b 2 : [¢ 5expandsdo the following list:

fal: b2:c5, al: b2:c¢c7, a2:b2:c¢ch5, a2:b2;c¢c7, a3:b2:c¢ch5, a3:b2:
IVI Foundation 72 IVI-3.1: Driver Architecture Specification

whereasi a-1a 3 : b 2 : c Seyvaluates to
fal: b2:c5, a2:b2:¢c5, .a3:b2:c5, c70

Note: Althoughbothexamples are syntactically correahly the first example is valid. All repeated
capability identifiers within a list of repeated capability identifiers nmaste the same level of nesting after
expansion

4.4.5 Ambiguity of Physical Identifiers

This section discusses rules for preventing ambiguity in the physical identifiers defined by a driver.

4.4.5.1 Uniqueness Rules for Physical Identifiers

Each physical identifier must be unique:
91 within a single repeated pability,
9 across multiple repeated capabilities that are not nested

9 across multiple repeated capabilities that are nested at the same level under fher samepeated
capabilityinstance.

For purposes of this rule, repeated capability identieedl be case insensitive.

This rule does not apply to repeated capabilities that are nested under different parent repeated capability
instances or that are nested at different levels in a repeated capability hierarchy. In these cases, repeated
capabilities may use the same phgsidentifiers if the driver can reliably distinguish which repeated

capability instance is intended. Normally the context in which a parameter or collection appears is sufficient
for the driver to determine the intended repeated capability instance.

Table 44 contains a valid set of physical repeated capability identifiers for an VI driver thathbtesl
repeated capabilities. In this case, two trigger instances are méghedbut are nested under separate
parentsputl andout2 . Therefore, th&i g1 instances are unambiguous.

Table 4-4. Example of Unambiguous Nested Repeated Capabilities

First Level Second Level
Repeated | Physical Nameg Repeated | Physical Name
Capability of Instance | Capability of Instance

Name Name
trigl
outl Trigger | trig2
Output trig3
trigl
out2 Trigger | trig2
trig3

4.4.5.2 Sharing a Repeated Capability across Class-Compliant Interfaces

Duplicatephysicalidentifiers can occur in a driver that ilements multiple classompliant interfaces, each

of which has aimilarrepeated capabilitylf the repeated capabilities refer to the same physical entities, the
driver may represent them wittsingle repeated capability, thereby avoidingpbssibility of duplicate
physical identifiers.

For example, consider an MJOM driver that exports the IviScope and IviDigitizer classnpliant
interfaces, each of which has a Channel repeated cap#midlitgfersto the samaet ofphysical channelen

IVI-3.1: Driver Architecture Specification 73 IVI Foundation

the instrument. The driver developer may define one Channel repeated cathaitiity IviScope and
IviDigitizer interfaces share.

4.4.5.3 Disambiguating Physical Identifiers

In cases where using the same physical identifier across multiple repeated tiapab#ims natural but
violates the rules specified Bection4.4.5.1 Unigqueness Rules for Physical Identifigtee following two
approaches may be used:

1 The driver defines different, uniquehamed physical identifiers.

1 The driver definegjualified physical identifiers A qualified physicaidentifier consists of ahysical
name qualifier such as aepeated capability name ongaalified repeated capability name, two
exclamation points(), followed by the physical identifier. Driver functions that take repeated
capability selector parameters must accept the qualified physical identifiers. Driver functions may also
accept unqualified identifiers if the driver can reliably determine wigpkated capability the user
intended Notice that a qualified repeated capability name is required when the same repeated capability
name is used in multiple classes with which the driver complies.

Consider an IMMCOM driver that exports the IviScope awiSwtch classcompliant interfaces, each of

which has a Channel repeated capabil&though the repeated capabilities refer to different physical

entities on the instrument, tider i ver devel ocpo@r awha@lon fivei tthoi nuseeaciity. r epeat e
To avoid violating the uniqueness rules specifie8ectiond.4.5.1 Uniqueness Rules for Physical

Identifiers the driver developer may do either of the following:

T Use different, unqual i fsiom@ho ®,bcygeChlcoadwtdiCcidd@®nt iamider s, s
fiswtchChl1 O .

1 Use the following galified physical identifiers:
o IviScopeChannel!!lchO
0 IviScope Channel !lchl
o Ivi SwtchChannel !'chO
o Ivi SwtchChannel !'chl

Because the driver Ewaysable todistinguish between lviScope and IviSwtch functions and attributes
the driver acceptshannel selectqgp ar a met er s dviScope oChannel fllah@ s a ¢h@o) i

4.4.6 Expanding Virtual Identifiers

When specifying a virtual identifier in the IVI configuration store, the user can specify a mapping to more
than just a simple physical identifier. For example, a user might map a virtual identifier to a set of physical
identifiers or to a hierarchical Isetor containing only physical identifiers.

Typically, IVI configuration utilities do not validate the strings to which virtual names are mapped. After the
IVI specific driver replaces the virtual identifiers in a repeated capability selector wiskrithgs to which
the identifiers are mapped, the driver validates the resulting expression.

When IVI drivers expand the mapping of a virtual identifier, the driver inserts brackets around mapped
strings that contain at least one commpahut no colons:(). Inserting the brackets ensures that the proper
order of precedence is maintained. For example, assume that the user creates the following virtual identifier
mappings in the VI configuration store:

MyWindow = Display2:Window1

MyTraces = Tracel,Trace 3

IVI Foundation 74 IVI-3.1: Driver Architecture Specification

If the user passésMy Wi nd o w: Myasma saeetsrpthe driver expands the mappings to result in the
following selector:

Display2:Window1:[Tracel,Trace3]

After the IVI specific driver expands the virtual identifiers in a selector, the result is egdlegsical
repeated capability selector

Notice that mapping virtual identifiers to hierarchical selectors is of no value when usi@gIMI
collections to represent repeated capabilities.

4.4.7 Formal Syntax for Repeated Capability Selectors

The following desdbes the formal syntax for repeated capability selectors.

A syntactically valid repeated capability selector consists of zero ornmpeated capability path segments
separated by colons), White space around colons is ignored. When used witiCldM collections,

repeated capability selectors have exactly one repeated capability path segment. In other words) colons (
are not allowed in repeated capability selectors used witiCl™\ collections.

A repeated capability path segment consists of one or rapeated capability list elementeparated by
commas (). White spaceafter commas is ignored. A repeated capability path segment may be enclosed in
square bracketg] ().

A repeated capabilitist element consists ofrepeated capability tokeor a repeated capability range.
A repeated capability range consists of two repeated capability tokens separated by &-Hyphen

The order of precedence of operators is square bra¢kgtshfyphen {), colon (), and comma,(). Each
operator is evaluated from left to right.

A repeated capability token is a physical repeated capability identifer or a virtual repeated capability
identifier.

A syntactically valid physical or virtual repeated capabitigntifier consists of one or more of the following
charactersa-z, A-Z, 0-9, |, and_.

IVI-3.1: Driver Architecture Specification 75 IVI Foundation

5. Conf ormance Requirements

5.1 Introduction

The IVI Foundation defines standard APIs for VI drivers. These APls include IVl inherent capabilities and
the base and exteed capabilities for each IVI instrument class. The IVI Foundation also defines
requirements for how drivers that implement these APIs behave.

The IVI Foundation allows for some flexibility in implementing the standard APls. Two types of flexibility
exist. Some elements of these APls are optional. For example, an I\Viocdeagdiant specific driver does not
have to implement the extended class capability groups of its class. However, if it does implement an
extension group, it complies with all requiremefotsthat extension group. Another example is
interchangeability checking. IVI clag®mpliant specific drivers are not required to implement this feature. If
an IVI driver implements interchangeability checking, it implements all the interchangeabétiict
functions thatVI-3.2: Inherent Capabilities SpecificatiaefinesIVI.NET, IVI-COM and IVFC
classcompliant specific drivers differ in how they handle optional functions they do not implemes@. VI
classcompliant specific drivers do not expdine functions. IVICOM classcompliant specific drivers export
the methods, but the methods return the Function Not Supported BFFINET classcompliant specific
drivers export the methods, but the methods thré&wractionNot Supporteaxception.

Another type of flexibility lies in the extent to which an IVI driver implements a feature. For example, VI
specific drivers are required to implement the attribute for enabling and disabling state caching. However,
each VI specific driver hathe choice of implementing state caching for all, some, or none of its attributes.
Interchangeability checking is another example. IVI cla@sipliant specific drivers that implement the
interchangeabilifchecking API comply with the interchangeabilityecking rules defined in the class
specifications. An IVI driver that tracks the state of the instrument and thus recognizes when instrument
settings become invalid, can provide more complete interchangeability checking than a driver that does not
track he state of the instrument. However, tracking the state of the instrument is not required in
implementing interchangeability checking.

Range checking is another example of flexibility that the IVl Foundation allows in the implementation of a
feature. IVI pecific drivers are required to validate all parameters to the extent that it is feasible. In many
cases VI specific drivers can completely validate parameters that represent instrument settings. In some
cases, however, the valid range of an instrumetibganight depend on the interrelationship of many state
variables in the instrument. The algorithm that the instrument uses to determine the valid range for the
parameter might be so complex that it is unreasonable to replicate in the driver. Inghtkeasiver should

at least verify that the parameter falls within the maximum and minimum allowable values.

This section enumerates the required and optional features of IVI drivers. This section also identifies the
features for which the 1VI Foundatiailows 1VI drivers flexibility in implementation and describes the types
of flexibility allowed. This section also contains requirements for how IVI drivers document their level of
compliance with the specifications.

5.2 Conformance Verification Process And IVI Conformance Logo Usage

5.2.1 Purpose of Conformance Verification

Conformance verification is necessary for two reasons: first to verify that the driver complies with the
requirements of the various applicable IVI specifications, and second, to provide tinectibation
necessary to allow the 1Vl Foundation to grant the IVI Conformant logo.

5.2.2 Verification Process
IVI Drivers shall be evaluated and tested to verify that they meet all applicable 1VI requirements.

IVI Foundation 76 IVI-3.1: Driver Architecture Specification

AppendixB i Example IVI ConformanceTl estscontains a detailed list of all potential dimensions along
which VI driversshouldbe tested. Section 5.2.2.1 describes the minimum set of tests thaivifl d
suppliersshall perform.

5.2.2.1 Requirements for Testing VI Drivers
This section describes the minimum testing that VI driver suppliers shall perform on an IVI driver before
releasing it.

5.2.2.1.1 Unit Test Procedure

Every entry poinin the driver shallbé e st ed i n si mul ati on mode and connec
supported instrument$he complete unit test shall be ranleast once on onest setupas defined below.

Instrument ModeandFirmware Revision

BusInterface

Operating SysterandService Pack

OS BitnessaandApplication Bitness

VISA Vendor andVersion {f VISA is required by the drivér
1 IVl Shared Componentéersion

=A =4 =4 -4 -4

Using the driver in simulation mode, the driver tester shall do the following:

1 Call allimplemented functions/methods at least once and verify that they return without failure.
1 Use at least one legal value for each instrument setting and verify that the driver accepts the value(s).

Using the driver wittan instrumentthe driver tester shalin one or more client programs that call the driver
and verify that the driver and instrument respond as expected, either by reading values back from the
instrument or through external mearighe client programs(s) shall test the driver in the followirays:

1 The client program(s) shall test each function/method with the values listed below for each
parameter that represents an instrument setting. The program(s) or tester shall verify that all output
values are reasonable for each set of input parasnetsed.

1 Atleast one legal value
1 If the driver performs range checking over one or more continuous rangesatifeaf the
following:
o0 legal values at the limits of each range
o illegal values at the limits of each range
0 one legal value within each range
9 If the driver coerces inputs to discrete numeric sedtithggneach of the following:
0 atleast one value between each discettng
o legal values at the limits of the entimnge
o atleast one illegal value
1 For parametexwith a discrete set of explicitly specified legal valussch asnumerations and
Booleans), eaclegal value and at least one illegal value

1 The client program(s) shall test each attributd &svere a function/method, that is, as the single
parameter to a fAiSetAttributedo call and a return

1 The client program(s) shall test at least one function/method and one attribute with each repeated

capability instance specifier ledalr the setup and at least one illegal repeated capability instance
specifier.

IVI-3.1: Driver Architecture Specification 77 IVI Foundation

5.2.2.2 Driver Installation Testing
The installatiorshall be tested by:

1 Installing the driver

1 Instantiating and running the driver using the configuration store

1 Instantiating and ruring the driver by instantiating it directly by client code
1 Testing every exampiacluded with the driver

Installationtesting shall be done om laast two operating systemsnless the driver only supports a single
operatingsystem. Unless the driver supports only one bitness, at leastste@ operating system shall be
32-bit, and at least one shall be-b#. Each operating system tested must have been updatedsaitica
pack that is whin 6 months of being the mastcent unless no service packs are available.

5.2.2.3 Driver Buildability Testing

For drivers that include source codee drivertestershallre-build the driver from the installed source code
according tahedocumented instruction$ he driver tester shall xiéy that the rebuilt driver works on at
least one&combination obperating systepservice paclstate anditness.

5.2.2.4 Documentation of Testing
The compliance documentation for the drishell contain:

1 Alist of the test setups on which the compketeofunit tests were run

1 Alist of the operating system on which installattestingwas done

9 Alist of the operating systems on which driteiildability testing was done
I Alist of known issues that refleall test failures

5.2.3 Driver Registration

Driver providers wishing to obtain and use the 1VI Conformance logo shall submit to the IVI Foundation the
driver compliance document describedettion5.23 Compliance Documentatipalong with driver

information and a point of contact fdret driver. The information shall be submitted to the IVI Foundation
website: complete upload instructions are available on the site. Driver vendors who submit compliance
documents will receive an email from the VI Foundation containing IVI Conformantgaaghics.

The VI Foundation may make some driver information available to the public for the purpose of promoting
IVI drivers. All information is maintained in accordance with the IVI Privacy Policy, which is available on
the 1Vl Foundation website.

5.2.4 Permissible Uses of The IVI Conformant Logo
The IVI Conformant Logo may be used for promotion and publicity of registered I1VI Specific Drivers and

IVI Class Drivers. The Logo shall not be used to promote Specific Driver Wrappers, Custom Class Drivers,
or anyother IVI-related or IVienabled products.

IVI Foundation 78 IVI-3.1: Driver Architecture Specification

-
_

Figure 5-1. IVI Conformant Logo

E:]'ﬁil'h'l nt |

5.3 API Types

IVI drivers shall export at least one of the following API typ®&ET, COM or C. These API types are
described in Sectior& 1, IVI-COM Driver Architecture4.2, IVI-C Driver Architecturgeand4.3, IVI.NET
Driver Architectue. If the IVI driver exports a COM API, it shall comply with the requirementSexftion
5.14.1 Enumerations

For all types of IVI drivers, enumeration values shall be expjictecified inthe sourceodefor the
enumeration One of thenembes shall be assigned a value of zero.

IVI-COM Requirementdf the IVI driver exports a C AP, it shall comply with the requirementSexftion
5.16 IVI-C Requiements If the IVI driver exports a .NET API, it shall comply with the requirements of
Section5.17, IVI.NET Requirements

An VI driver that exportsnultiple APIs from an IVI driver may implement one as native and or mores
a wrapperlVI-3.2: Inherent Capalities Specificatiordefines a few extra functions that wrapper APIs shall
implement

5.3.1 IVI Class Driver API Types

An VI class driver shall export a C API.

An VI class driver may export a COM API.

An VI class driver may export a CLS compliant .NBEIPI.

An VI class driver shall be able to load and call into-l¥tlasscompliant specific driver of the same class.
An IVI class driver may load and call into M\GOM classcompliant specific drivers of the same class.

An IVI class driver may load and Itanto IVI.NET classcompliant specific drivers of the same class.

5.4 Compliance with Other Specifications

All IVI drivers shall comply withlVI-3.2: Inherent Capabilities SpecificatiohV/I drivers that claim
conformance with an IVI instrument class shaliply with the specifications for that class. See Se&ibn
Compliance wh Class Specificationgor more details. Note that some VI class specifications reference
IVI-3.3: Standard Cross Class Capabilities Specificafmrequirements that are shared among multiple
classes. IVI custom specific drivers yrfallow 1VI-3.3: Standard Cross Class Capabilities Specification
when applicable to the instrument specific features. IVI specific drivers shall export instrument specific
features in a manner that is compliant wWigth-3.4: API Style Guide

IVI-3.1: Driver Architecture Specification 79 IVI Foundation

5.5 Compliance with Class Specifications

This section describes the requirements an VI specific driver shall follow to be compliant with an VI class
specification. In addition, it provides requirements for VI clasmpliant specific drivers to comply with a
capabilitygroup.

5.5.1 Minimum Class Compliance

An VI classcompliant specific driver shall implement the base class capabilities and zero or more of the
class extension capability groups for the VI class with which the driver claims compliance. The VI
classcompliantspecific driver shall comply with the requirements of the base capability group. If an VI
driver implements a class extension capability group, it shall comply with all the requirements of the
extension capability group.

Each VI class specification cotina requirements for minimum compliance that may go above and beyond
the requirements specified in this section.

5.5.2 Requirements for IVI-C, IVI-COM, and IVI.NET APIs

An IVI-COM or IVI.NET classcompliant specific driver shall export all APIs for the VI clagth which

the driver claims compliance. If the INGOM or IVI.NET driver does not implement one or more of the API
elemens that the class specification defines, the driver returns the appropriate Not Supported error from the
unsupported APIs, methodsydapropertieslVI-3.2: Inherent Capabilities Specificatiatefines the Not

Supported error.

An IVI-C classcompliant specific driver shall export all functions and attributes that the capability groups
that it implements require. All IMC specific drives shall precede all functions and attribute names with the
specific driver prefix. Refer to Secti@nl16.4 Prefixes for more information.

5.5.3 Capability Group Compliance
For an VI specific driver to be compliant with a capability group defined within the IVI class specification
for which the driver claims compliar, the 1VI specific driver shall comply with the following rules:

1 The IVI specific driver shall implement all attributes that the capability group defines. Refer to Section
5.6.1 Attribute Compliance Rulefor details.

1 The IVI specific driver shall implement all functions that the capability group defines. Refer to Section
5.6.2 Function Compliance Rulefor details.

The VI specific driver shall implement the behavior model that#pability group defines.

The VI specific driver shall prevent the presence of an extended capability from affecting the behavior
of the instrument unless the application program explicitly uses the extension capability group. Refer to
Sections3.3.4and5.10.1.4for more detailed requirements Disabling Unused Extensions

1 The IVI specific driver shall comply with any additional compliance rules or exceptions that the class
specification defines for the capability group.

Note: If the class specification defines additional compliance rules or exceptions to the above rules for a

capability group, the additional rules and exceptions appear in compliance notes section for the capability
group in the class specification.

5.5.4 Coercion

For attritutes that allow for a continuous range of values, the VI driver shall coercepessfied values if
the instrument implements only a discrete set of values.

IVI Foundation 80 IVI-3.1: Driver Architecture Specification

In general, an 1VI classompliant specific driver shall coerce usprecified values in accordee with the
IVI class specification with which it complies.

Typically, for each reaValued attribute, 1VI class specifications define a coercion direction in which an VI
specific driver coerces a usspecified value. Possible coercion directionsfaté p o |, ADowno, and fN

1 UpT indicates that an IVI specific driver may coerce a sgexcified value to the nearest value
that the instrument supports that is greater than or equal to thepesified value.

1 Downi indicates that an IVI specific drivenay coerce a usapecified value to the nearest
value that the instrument supports that is less than or equal to thepesdied value.

1 Nonei indicates that the VI specific driver is shall not coerce a-specified value. If the
instrument canndte set to the usespecified value, the VI specific driver shall return an error.

In certain cases, an IVI clasempliant specific driver may coerce a uspecified value a manner different

from the VI class specification. The driver may do thiswheet i nst rument can satisfy
more appropriately with a value that is different from the value that the class specification coercion rules

suggest. For example, if a user specifies a range of 10.01 volts for a DMM measurement and the lviDmm

class specification specifies that the value be coerced up, the instrument might coerce this value down to 10.0
because the instrument can measure up to 11.0 volts when in the 10.0 volt range.

The driver may rely on the instrument to coerce values ifrtsteLiment coerces usspecified values in a
manner consistent with the VI class specification.

5.6 Attribute and Function Compliance Rules

This section describes the compliance requirements for algsessible attributes and usatlable
functions defied inlVI-3.2: Inherent Capabilities Specificati@nd the VI class specifications.

5.6.1 Attribute Compliance Rules
To comply with a particular attribute that a specification defines, an IVI specific driver shall comply with the
following rules:
1 The IVI specifc driver shall implement the behavior that the specification defines for the attribute.

91 If the attribute has defined values, the IVI specific driver shall implement at least one of the defined
values.

1 If an attribute has defined values and the IVI spedifiver adds instrument specific values for the
attribute, the IVI specific driver shall define the instrument specific values to be equal to or greater than
the base extension value that the attribute defines for instrument specific values.

91 If the attribute does not have defined values, the 1VI specific driver is required to support only the values
that the instrument supports.

1 The IVI specific driver shall comply with any additional compliance rules or exceptions that the
specification defines for theteabute.

Note: If the specification defines additional compliance rules or exceptions to the above rules for an attribute,
the additional rules and exceptions appear in compliance notes section for the attribute in the specification.

To comply with a particular attribetthat a specification defines, an IVI class driver shall comply with the
following rules:

1 If the specification also allows VI specific drivers to implement the attribute, the VI class driver
attribute acts as a pasgwough to the specific driver attrite.

1 If the specification does not allow IVI specific drivers to implement the attribute, the 1VI class driver

IVI-3.1: Driver Architecture Specification 81 IVI Foundation

implements the behavior that the specification defines for the attribute.

If an attribute has defined values and an IVI custom dessr adds additional values for the attribute,
the VI custom class driver shall define the additional values to be equal to or greater than the base
extension value that the attribute defines for this purpose.

5.6.1.1 Complementary Attributes and Configuration Functions

IVI driver configuration function parameters that set an instrument state variable shall have a corresponding
read/writeattribute. Exception: For state variables closely coupled in the instrument, the attributes may be
readonly.

The following naming conventions shall be observed for attributes that correspond to instrument state
variables:

|l

For IVI-COM and IVI.NET, the name of the property shall correspond to the name of the pardfoeter.

example, if a configure function includes a parameterme d fAf oo06, the correspondi

namedFoo or TriggerFoo

For IVI-C, the corresponding attribute shall correspond to the name of the paraR@texample, if a
configure trigger function i ncl ogltributesnaneaiglalmeet er
<CLASS_NAME> ATTR_TRIGGER_FOO

5.6.2 Function Compliance Rules

To comply with a particular function that a specification defines, an IVI specific driver shall comply with the
following rules:

f
f

The IVI specific driver shall implementeatbehavior that the specification defines for the function.

If the IVI specific driver returns status codes other than the status codes that the specification defines for
the function, the actual values of the instrument specific status codes shallihegheitimstrument

specific function status code range as specifiethinle’5-3. Status Code Typeand RangedNote This
requirement is not applicable IVI.NET.

If the specification specifies that the 1VI specific driver use the value of an input parameter to set a
particular attribute, the IVI specific driver shall implement the parameter in accordance with the same
compliance requirements that thpesification defines for the attribute. Notice that class specifications
do not restrict VI specific drivers from defining instrument specific values for attributes.

If the specification specifies that the IVI specific driver return the value of a gartaftribute in an
output parameter, the IVI specific driver shall implement the parameter in accordance with the same
compliance requirements that the specification defines for the attribute.

If the specification defines values for a function paraméter|VI specific driver shall support at least
one of the defined values.

If the specification defines values for a function parameter and the VI specific driver defines instrument
specific values for the parameter, the IVI specific driver shall deffieénistrument specific values to be
equal to or greater than the base extension value that the parameter defines.

If the specification does not define values for a function parameter, the 1VI specific driver is required to
implement only the values thattinstrument supports.

The VI specific driver shall comply with any additional compliance rules or exceptions that the
specification defines for the function.

Note: If the specification defines additional compliance rules or exceptions to the abovieradsnction,
the additional rules and exceptions appear in compliance notes section for the function in the specification.

IVI Foundation

82 IVI-3.1: Driver Architecture Specification

na

To comply with a particular function that a specification defines, an IVI class driver shall comply with the
following rules:

1 If the specification also allows VI specific drivers to implement the function, the IVI class driver
function acts as a pasisrough to the specific driver function.

1 If the specification does not allow VI specific drivers to implement the function, theldi¢s driver
implements the behavior that the specification defines for the function.

5.7 Use of Shared Components

All IVI drivers except IVI class drivers shall use the IVI Configuration Server shared component to retrieve
userconfigured values for inhereattributes, configurable initial settings, and user mappings for channel
names and other repeated capabilities.

All IVI -C or IVI-COM drivers that generate infinity or Nallues or that perform comparisons on such
values shall use the Floating Point shared compohénr8.12: Floating Point Services Specification
specifies the API for generating and recognizing infinity and NaN valeesIVI.NET, Positivehfinity,
Negadivelnfinity, and NaN are part of the floating point types.

All IVI -C drivers shall use the Session Management and Error Message components. IVI class drivers shall
use the Dynamic Driver Loading component to load@®/$pecific drivers. The Session Managmt, Error
Message, and Dynamic Driver Loading components are defin®d-819: C Shared Components

Specification

IVI class drivers that load IVCOM specific drivers shall use the MIOM Session Factory. The NGOM
Session Factory is definedlivil-3.6: COM Session Factory Specificatid¥l class drivers that load
IVI.NET specific drivers shall usene ofthe IVI.NET sessionfactoly methodsThe IVI.NET sessionfactory
methodsaredefined inlVI-3.2: Inherent Capability Specificatipand in thendividual instrument class
specifications

5.7.1 Use of the IVI Configuration Server

IVI-3.5: Configuration Server Specificatigpecifies COM and C APIs for the IVI configuration store. IVI
drivers shall not access the VI configuration store except throegtvtiConfiguration ServerlVI.NET
drivers may access the IVI configuration store using the standard VI Configuration Server PIAs.

Multiple VI configuration store files can exist on a system. Refer to Section B1&t&ntiating the Right
Configuraton Store From Software Modules 1VI-3.5: Configuration Server Specificatidor details on
how to an IVI driver correctly instantiates the configuration store.

IVI drivers shall not write to the IVI configuration store. VI drivers shall not read\thednfiguration
store after the Initialize function returns.

For more information on the inherent settings that are configurable through the IVI configuration store, refer
to Sectior3.8, Configuration of Inherent Featured-or more information on configurable initial settings that
are configurable through th¥1 configuration store, refer to Sectid@3.5 Applying Configurable Initial

Sdtings from the IVI Configuration Store

5.8 Use of I/O Libraries for Standard Interface Buses

If an VI specific driver communicates with a device using a GPIB or VXIbus interface, it shall use the
VISA-C API, VISA-COM API, or VISA-COM PIlAsfor I/O communication, as defined in Vplug&play
specifications/PP-4.3.2: VISA Implementation Specification for Textual Languagd¥PP-4.3.4: VISA
Implementation Specification for CONIhe driver may also use another lfrary in addition to the VISA

I/O library, as long as the driver works when VISA is present and the additional 1/O library is not present.

IVI-3.1: Driver Architecture Specification 83 IVI Foundation

If an IVI specific driver communicates with a device using a bus other than GPIB or VXlbus, VISA may be
used as th#O library.

5.9 Repeated Capability Identifiers and Selectors

This section specifies the requirements for defining physical repeated capability identifiers and parsing
repeated capability selectors.

5.9.1 Defining Physical Repeated Capability Identifiers

An IVI specific driver that contains repeated capabilities shall define exactly one unqualified physical
identifier for each staticallknown repeated capability instance. This applies even if the driver defines only
one repeated capability instance.

An VI specfic driver shall comply with the uniqueness rules specified in Sedtibi Ambiguity of
Physical Identifiers

5.9.2 Applying Virtual Identifier Mappings

During initialization, an VI specific driver shall retrieve the virtual repeated capability identifiers and their
mappings from the IVI configuration store.

Whena user passes a repeated capability selector to an VI driver functionGQOMIor IVI.NET

collection item, the VI specific driver shall replace each instance of a virtual repeated capability identifier in
the selector with the corresponding mappeadgtriAn VI specific driver shall not replace an instance of a
virtual identifier that appears as a substring of another virtual identifier. For example, if the session
configuration in the IVI configuration store defines a mapping_tean3, the driver @esnotapply that

mapping in the selectéir My Ch an 3 o

The driver shall replace a virtual identifier with its mapped string even if the virtual identifier is also a valid
physical identifier for an instance of the repeated capability.

Note: It is importanfor theuser to avoid the case where a virtual identifier is mapped to a physical identifier
that is identical to a different virtual identifier in the same repeated capability.

Refer toAppendix AT Example: Applying Virtual IdentifieMappings for an example of how an IVI
specific driver applies virtual identifier mappings in a repdatapability selector.

5.9.3 Validating Repeated Capability Selectors

After applying the virtual identifier mappings to a repeated capability selector, an IVI specific driver shall
validate the fully resolved selector.

IVI specific drivers may perform partigalidation on repeated capability selectors before or during the
application of virtual identifier mappings. However, because the mapped string for a virtual identifier may
contain operators, the VI specific driver is not able to fully validate threet@luntil it applies all the
mappings. Refer to Sectidn4.7, Formal Syntax for Repeated Capability Selectéwsa list of the valid
selector operators.

If the IVI driver finds an invalid condition in the repeated capability selector, the driver shall return one of the

following error codes: BadhWrormed Sedctor, Invalid Number of Levels in Selector, Invalid Range in
Selector, Unknown Name in Selector, Unknown Physical Identifier, or Unknown Channel Name.

IVI Foundation 84 IVI-3.1: Driver Architecture Specification

5.9.4 Accepting Empty Strings for Repeated Capability Identifiers

An VI specific driver that defines exagtbne instance of a namested repeated capability shall accept empty
string as a valid physical repeated capability selector. For example, consider an IVI specific driver that
complies with the IviFgen class specification and that interfaces to ammesttthat has only one channel.
The VI specific driver defines a physical identifier for the channel. The IVI specific driver accepts the
physical identifier and empty string as valid physical selectors for the channel. In tGeai¢hitecture

VI_NULL can be used in place of empty string.

An VI specific driver shall not allow empty string in any other case. In particular, if an IVI driver defines
exactly one instance of a repeated capability that is part of a hierarchy, the IVI specifisloziVeequire
that the physical repeated capability selector contain the physical identifier for that repeated capability.

5.9.5 Indexing Repeated Capabilities

Whenever a repeated capability instance has a corresponding index,-theuhidI IVFCOM indexes shabe
onebased and IVI.NET indexes shall be zbased.This includes

1 Properties and methods that return a repeated capability instance name given a particular index
1 Collection indexes (IVMCOM and IVI.NET)

5.10 IVI Features
This section describes tifieature requirements for 1VI drivers. These requirements pertain to the behavior of

the drivers. Some behaviors are required of all IVI drivers, while others are required only-abcigsznt
drivers.

5.10.1 Interchangeability

Interchangeability is a featurd kI class-compliant specific drivers and IVI class drivers, but not IVI
custom specific drivers.

5.10.1.1 Consistency of Instrument Specific APIs with Class API

When an IVI classompliant specific driver implements instrument specific capabilities, the dheeitds
export those capabilities in a way that is consistent with the-difgsed capabilities.

5.10.1.2 Accessing Specific APIs without Reinitializing

When a user initializes an VI driver using a clasdined API, the driver shall allow the user to access
instrument specific features without performing another initialization step.

5.10.1.3 Use of Virtual Identifiers for Repeated Capabilities

Refer to Sectio®.9, Repeated Capability Identifiers and Selectors

5.10.1.4 Disabling Unused Extensions

An VI classcompliant specific driver shall disable all extension capability groups imitiaize and Reset

With Default functionsAn IVI classcompliant specific driver shall ensure that instrument settings that
correspond to a particular extension capability group do not affect the behavior of the instrument until one of
the following comlitions occurs

1 The application program calls a function that belongs to the extension capability group.

IVI-3.1: Driver Architecture Specification 85 IVI Foundation

1 The application program sets an attribute that belongs to the extension capability group.

1 The application program sets an attribute in another cayatpiiup to a value that requires the presence
of the extension capability group. This applies regardless of whether the application sets the attribute
directly or through a highevel function call.

When implementing this feature, an VI classmpliant pecific driver may optimize the implementation as
it sees fit.

An VI classcompliant specific driver shall also disable instrument specific features in the Initialize and
Reset with Default functions if the features affect the behavior of the dtdised capabilities.

5.10.1.5 Applying Configurable Initial Settings from the 1VI Configuration Store

At initialization, an VI specific driver shall retrieve the configurable initial settings from the IVI driver
session configuration in the 1VI configuration sorFor each attribute and associated value in the
configurable initial settings, the VI specific driver shall set the attribute to the value in the Initialize and
Reset With Defaults functions. ReferSection 53.3, Defining Configurablelnitial Settings in the VI
Configuration Storein IVI-3.17: Installation Requirements Specificatidor details on how the installation
program for an 1VI specific driver sets up configurable initial settings information in the VI configuration
store.

The mecharsim for applying configurable initial settings may be used to allow users to configure the value of
classdefined attributes, instrument specific attributes, or vendor specific attributes.

5.10.1.6 Interchangeability Checking

Interchangeability checking Enabledf the Interchange Check attribute is se¥toTRUE.
Interchangeability checking disabledif the Interchange Check attribute is seVtoFALSE.

If an IVI driver does not implement interchangeability checking, the driver shall return an error iéthe us
attempts to enable interchangeability checking.

If interchangeability checking is enabled, an IVI classpliant specific driver shall check for attributes that
are not in a usespecified state. The driver shall implement this type of checking &t ¢fta full or minimal
level as specified in Sectidh3.§ Interchangeability Checking

IVI classcompliant specific drivers and IVI class drivers may implement other types of interchangeability
checking.

5.10.1.7 Coercion Recording

Coercion recording isnabledf the Record Coercions attribute is seloTRUE. Coercion recording is
disabledif the Record Coercions attribute is settoFALSE.

If an IVI specific driver does not implement coercion recording, the driver shall return an error if the user
attempis to enable coercion recording.

If an IVI specific driver implements coercion recording, the driver shall create a record for each
userspecified value that it coerces. The driver may impose a maximum on the size of the queue that holds the
coercion recads. If the queue overflows, the driver shall discard the oldest coercion record.

5.10.2 Interchangeability Features in Custom Drivers

IVI custom specific drivers may implement the following interchangeability features:

91 applying configurable initial settings frothe VI configuration store

IVI Foundation 86 IVI-3.1: Driver Architecture Specification

1 coercion recording

All IVI custom specific drivers that apply configurable initial settings shall do so in the same manner as
described in Sectiob.10.1.5 Applying Configurable Initial Settings from the VI Configuration Store

All IVI custom specific drivers that implement coerci@tording shall do so in the same manner as
described in Sectiob.10.1.7 Coercion Recording

5.10.3 Range Checking

Range checking isnabledwhen the Range Check attribute is setitorRUE. Range checking disabledif
the Range Check attribute is seMOFALSE.

If range checking is enabled, the VI specific @rishall validate all parameters to the extent that it is
feasible. IVI specific drivers shall perform range checking regardless of whether simulation is enabled.

The valid range of an instrument setting might depend on the interrelationship of marvagtdiles in the
instrument. The algorithm that the instrument uses to determine the valid range for the parameter might be so
complex that it is unreasonable to replicate in the driver. In this case, the driver should at least check that the
parameterdlls within the absolute maximum and minimum allowable values.

All VI specific drivers shall fully validate parameters in cases where the instrument does not handle errors in
a reasonable manner.

When an VI specific driver performs range checking & Real64 parameter or attribute that has a
discrete set of legal values, ttgver shall not include a guard band around any of the legal values.

5.10.4 Instrument Status Checking

Instrument status checkingesabledf the Query Instrument Status attribute isteevl_TRUE. Instrument
status checking idisabledif the Query Instrument Status attribute is sefltd~ALSE .

If the IVI specific driver can determine the status of the instrument through the instrument I/O interface, the
driver shallimplement code that determines the instrument status and return the Instrument Status error code
if the instrument status indicates that an error has occurred. When instrument status checking is enabled, the
driver shall invoke the status checking codéhim following types of functions:

1 All user-callable classlefined functions that perform instrument 1/O, unless the class specification
specifies otherwise.

1 All usercallable instrument specific functions that perform instrument I/O, except for functiose
operations are included as part of a higher level function. Functions whose operations are included as
part of a higher level function may invoke the status checking code.

The driver shall document which useallable functions that perform 1/O dotimplement status checking.

If a driver can determine the instrument status without performing a separate query and response or other
action that has a significant performance impact, the driver shall invoke the status checking code without
regard to tk setting of the Query Instrument Status attribute. If determining the instrument status has a
significant performance impact, the driver shall not invoke the status checking code when instrument status
checking is disabled. For the purpose of this mlerying the instrument across a mesdaaged interface

has a significant performance impact.

If the instrument does not support the ability to query the instrument status, the setting of the Query
Instrument Status attribute shall haveaffecton thebehavior of the instrument driver.

The setting of the Query Instrument Status attribute shall have no effect on the operation of the Error Query
function.

IVI-3.1: Driver Architecture Specification 87 IVI Foundation

Note: The driver shall never invoke the status checking code when simulation is enabled.

5.10.5 Simulation

Simulation isenabledf the Simulate attribute is setYd_TRUE. Simulation isdisabledif the Simulate
attribute is set t&/I_FALSE.

An VI specific driver shall provide sufficient functionality when simulation is enabled such that it is usable
in an application when the instrument is not present. When simulation is enabled, the VI specific driver shall
do the following:

1 Refrain from performing 1/O.

1 Perform range checking when the Range Check attribute is'¢effRUE. The range checking that the
IVI specific driver performs need not be as complete as when simulation is disabled.

Perform the same parameter coercion that the driver performs when simulation is disabled.

Return simulated data for output parameters. An VI specific driver may providiguwaifle settings
for the output data values and status return values for each function.

The Close function in the driver shall close the I/O session regardless of whether simulation is enabled or
disabled.

If the specific driver is initialized with simui@an disabled, the specific driver may return the Cannot Change
Simulation State error if the user attempts to enable simulation prior to calling the Close function.

If the specific driver is initialized with simulation enabled, the specific driver skt the Cannot Change
Simulation State error if the user attempts to disable simulation prior to calling the Close function.

5.10.6 State Caching

State caching isnabledf the Cache attribute is setW TRUE. State caching idisabledif the Cache
attributeis set tovl_FALSE.

If state caching is disabled, the VI specific driver shall perform I/O whenever a user program sets a hardware
configuration attribute.

If state caching is enabled and the user sets a hardware configuration attribute, the I\¢| dypemifshall
avoid performing 1/O when all the following conditions are true:

9 The driver caches the state of the attribute.
M The cache value for the attribute is valid.

1 The cache value for the attribute is equal to the value that the user requests.

5.10.7 Multithread Safety

An VI driver shall be multithread safe.

For IVI-C drivers, each user callable functiexcept Initialize, Close, Lock, and Unlgdhall acquire a
multithread lock on a session and not release it until the function returns. For thizérfiiaction, IVIC
drivers do not acquire or release a multithread lock. For the Close functie@, dxivVers may release the
multithread lock before the return. Except for the Lock function, user callable functions@dxiVers shall
never return \ile still holding onto a lock. I\MC drivers shall acquire and release multithread locks using
the Session Management API in the C shared components. Class Driver Specifications may provide
additional rules and exceptions for acquiring and releasingrafléthread lock.

IVI Foundation 88 IVI-3.1: Driver Architecture Specification

For IVL.NET drivers, each user callabtethodexcept the two overloads of the Loglethod shall acquire a
multithread lock and not release it until tinethodreturns. The lock acquired within eactethodcall shall

be consistent with the moaé locking (perinstance AppDomainrtwide, or machinavide) established in the

call to the IVI.NET driver constructor. The mode of locking shall not change over thméfef an IVI.NET

driver session. See Section 8¥-3.2: Inherent Capabilities Specificatidar details on how thenode of

locking is determined.See Sectiod.3.11, Multithread Lockingfor an explanation of the three modes of
IVI.NET driver locking. The lock shall also be the same lock used to implement the Lock functions exposed
via the IlviDriverUtility interface. It irecommended that IVI.NET drivers use the LockManager class in the
Ivi.Driver.dll assembly to implement both locking within eanhthodcall as well as locking via the
[lviDriverUtility.Lock method

5.10.8 Resource Locking

The IVI Foundation has not yet defineetrequirements for Resource Locking.

5.10.9 Extensible Access to Instrument Features

All IVI specific drivers that use messagased 1/0 shall include functions that allow a user to send
userspecified strings to the instrument and return results. Such funstiaisiot obviate the need for
well-designed functions and attributes for robust access to instrument specific features.

IVI drivers that interface with nhemessagéased instruments may export functions that allow the user to
directly communicate with thinstrument.

5.11 Configuration of Inherent Features
All 1IVI specific drivers shall accept logical names as well as I/O resource descriptors for the Resource Name
parameter in the Initialize function.

If the user passes a logical name to the Resource Naamagter of the Initialize function, the driver shall
use the following precedence to assign values for each inherent attribute:

1. Value specified in th©ptionsString parameter.
2. Value specified in the IVI configuration store.
3. Default value as defined IvI-3.2: Inherent Capabilities Specification

If the user passes an I/O resource descriptor to the Resource Name parameter of the Initialize function, the
driver shall use the following precedence to assign values for each inherent attribute:

1. Value specified irthe OptionsString parameter.
2. Default value as defined ivI-3.2: Inherent Capabilities Specification

5.12 IVI Error Handling

5.12.1 IVI-C and IVI-COM Error Handling
Each IVFC driver function, IVICOM driver method, and IMCOM driver property shall return status
information in the form of a 3Bit integer value that complies with the following rules:
1 If no error or warning conditions occur, the value shall be zero.
9 If an error occurs, the value shall be less than zero.

1 If awarning occurs and no errors occur, vadball be greater than zero.

Each IVI driver function shall return status information in the form of-biBihteger. A status code of O for
all IVI drivers shall mean successful completion.

IVI-3.1: Driver Architecture Specification 89 IVI Foundation

For both the IVICOM and IVIC drivers, bit 31 is the sign biStatus values greater than zero are reserved
for completion codes. Status values less than zero are reserved for errors.

IVI-COM drivers shall adhere to the bit pattern format describ&alie5-1. All IVI -C drivers shall adhere
to the bit pattern format describedTiable5-2. IVI-C Status Code§.able5-3. Status Code Types and
Ranges lists the reserved status code ranges reétoyn&/| driver components.

Table 5-1. IVI-COM Status Codes

15 bits Y U 4 Dbits VY U 12 bits Y
31 30 16 15 12 11 0

([an)

Bit 31: Severity
0 = success or warning
1 =error
Bits 3016: facility code
0004 = FACILITY_ITF
Bits 1512: Type of error (se€able5-3. Status Code Types and Ranges)

Bits 110: Identify a particular error within the specified type

Table 5-2. IVI-C Status Codes
14 Y 0 4 bits Y 0 12 Y
31 30 29 16 15 12 11 0

([an)

Bit 31: Success or failure
0 = success or warning
1 =error
Bit 30: Reserved (always 0)
Bits 2916: Driver type or 10 definition
3FFA = IVI drivers and components
3FFF = VISA
Bits 1512: Type of error (se€able5-3. Status Code Types and Ranges)

Bits 110: Identify a particular error within the specified type

IVI Foundation 90 IVI-3.1: Driver Architecture Specification

Each status code than 1VI driver returns shall have a unique integer value. To prevent status code value
conflicts within the API of an IVI driver, the IVl Foundation has established status code ranges for different
types of status codes. Bits-12 are used to identify ¢hstatus code typ&able5-3. Status Codes Types and
Ranges lists the status code types and the bit patterns that identify them. All IVI drivecestpdyl with the

ranges infable5-3. Status Codes Types and Ranges.

Table 5-3. Status Code Types and Ranges

IVI -COM VI -C Type
bits 1512 bits 1512
0x0 (0000) 0x0 (0000) VISA errors and warnings, defined fPP-4.x - VXI plug&play
VISA Specifications.
0x7 (0111) 0x0 (0000) Common errors and warnings defined in SectitnCommonVI-
C and IVFCOM Error and Completion Code# IVI-3.2: Inheren
Capabilities Specificatian
0x1 (0001) 0x1 (0001) Errors and warnings defined by IVI shared components, and
and warnings défed inlVI-3.3: Standard Cross Class Capabil
Specification
0x2 (0010) 0x2 (0010) Errors and warnings defined in the individual IVI class
specifications.
0x3 (0011) 0x3 (0011) *reserved*
0x4 (0100) 0x4 (0100) Errors and warnings defined imdividual IVI specific drivers.
0x5 (0101) 0x5 (0101) Errors and warnings defined by individual IWISS role
components.
0x6 (0110) 0x6 (0110) Vendor specific gors and warnings.
0x8 - OxB 0x8- 0xB
(1000}(1011) | (1000)(1011)
0xC - OxF 0xC - OxF *reserved*
(1100)(1111) | (1100)(1111)

The IVI Error Coordinator is responsible for subdividing the status code range for IVI shared components and
standard crosslass capabilities. This ensures that the status codes for the IVI sharpdnents and

standard crosslass capabilities do not conflict with each other. Refer to the individual specifications for

actual status code values. Contact the IVI Error Coordinator to obtain a list of thengils or to allocate a

new subrange.

Statis code values defined in IVI class specifications are not unique from one VI class to another.

Instrument specific status code values are not unique from one IVI specific driver to another.

Vendor specific status code values are not unique from orré&m another.
5.12.1.1 Example Values

Table5-4. Error Code Value Examples lists the example values for the various status code types. Each
example value represents an error and uses 0x001 for Hits 11

Table 5-4. Error Code Value Examples

VI -COM
0x80040001

VI -C
O0xBFFF0001

Component

VISA error code.

IVI-3.1: Driver Architecture Specification 91 IVI Foundation

0x80047001 |OxBFFA0001 |Common or inherent error code.

0x80041001 |OxBFFA1001 |Shared components or standard cross class capabilityceder
0x80042001 |OxBFFA2001 |Class specification error code.

0x80044001 |OxBFFA4001 ||Vv| specific driver error code.

0x80045001 |OxBFFA5001 |]V]-MSS role component error code.

0x80046001 |OxBFFA6001 |Vendorspecific error code.

0x80048001 {0x80048001 -

0x8004B001 |0x8004B001

5.12.1.2 Base Values

Table5-5. Error and Completion Code Base Values lists the base values for the status code ranges that IVI

drivers may use.

Table 5-5. Error and Completion Code Base Values

Name C Identifier Actual C Value | Actual COM
Value
Inherent Error Base | IVI_INHERENT_ERROR_BASE 0xBFFA0000 0x80047000
Inherent Warning Bag VI_INHERENT_WARN_BASE 0x3FFA0000 0x00047000
inSynC Error Base IVI_LXISYNC_ERROR_BASE 0xBFFA3000 0x80043000
inSynC Warning Bas| IVI_LXISYNC_WARN_BASE 0x3FFA3000 0x00043000
Specific Error Base | IVI_SPECIFIC_ERROR_BASE 0xBFFA4000 0x80044000
Speciﬁc Warning Bas| IVI_SPECIFIC_WARN_BASE 0x3FFA4000 0x00044000
Class Error Base IVI_CLASS_ERROR_BASE 0xBFFA2000 0x80042000
ClassWarning Base IVI_CLASS_WARN_BASE 0x3FFA2000 0x00042000
Shared Component IVI_SHARED_COMPONENT_ERROR_BA| 0xBFFA1000 0x80041000
Error Base
Shared Component IVI_SHARED_COMPONENT_WARN_BAS 0x3FFA1000 0x00041000
Warning Base
Vendor Specific Erro IVI_VENDOR_SPECIFIC_ERROR_BASE | 0xBFFA6000 0x80046000
Base OxBFFA8000 1 | 0x80048000
0xBFFABOQO 0x8004B000
Vendor Specific IVI_VENDOR_SPECIFIC_WARN_BASE | 0x3FFA6000 0x00046000
Warning Base Ox3FFA8000 i | 0x00048000
Ox3FFABO0O 0x0004B000

1 Inherent Error Base and Inherent Warning Base are the base values for common status codes that the VI
Foundation defines. Refer to Sectibh CommonVI-C and IVFCOM Error and Completion Codef
IVI-3.2: Inherent Capabilities Specificatidar the lig of these common status code values.

1 LxiSync Error Base and LxiSync Warning Base are the base values for common status codes that the VI
Foundation defines as part of the LxiSync APIl. RefdWte3.15 IviLxiSync Specificaticior more
details

1 SpecificError Base and Specific Warning Base are the base values from which an IVI specific driver
defines the status code values of the instrument specific errors and warnings.

IVI Foundation 92 IVI-3.1: Driver Architecture Specification

1 Class Error Base and Class Warning Base are the base values from which the Bfieddsstions
define status code values.

1 Shared Component Error Base and Shared Component Warning Base are the base values for status codes
used by shared components and standard cross class capabilities that the IVI Foundation defines. Refer to

the erpr and completion codes sectionfi-3.3; Standard Cross Class Capabilities Specificatiad in
the specifications for the shared components for the list of these status code values.

1 Vendor Specific Error Base and Vendor Specific Warning Base are shevhhues from which a
software supplier defines vendor specific status codes.

5.12.2 IVL.NET Error Handling

In general, standard .NET exception clasd®adlbe used to return exceptions from IVI inherent, class
compliant, or instrument specific APIs.

IVI.NET drivers may throw exceptions that are derived from inherent or-ctaspliant exceptions from
inherent, class compliant or instrument specific interfaces.

If an existing .NET class is not appropriate, IVI APIs may define a new exception tlessh cases, both
an exception class and an error string shall be created for each distinct éearevir exception class shall
derive directly or indirectly from System.Exception, ainshall not derive from
System.ApplicationException or System.Syseption.

The exception class name sHad{
<Name>Exception_

where<Name>is a series of worden Pascal casinghat describe the exception

To represent warnings, the instrument class shall define a warning class with static GUID members for each

type of warning that can be issued by the driver. The warning class shall be named as follows:
<ClassName>Warnings_

For general information about specific IVI.NET exceptions, refer to IV|I&lrent Capabilities, which
defines a variety of useful exceptions for driver writers.

5.12.2.1 Remapping .NET Exceptions

Underlying ®ftwarecalled bylVI.NET driversmight report errorgfor example, C return codes) throw
exceptions If theunderlying softvare throws exceptions from which the driver cannot recover, drivers may
allow the exceptions to propagate up the stack orasaign the caught exception to the InnerException
property of a new exceptiaand throw tle new exceptionIf the underlying softare reports errors without
using exceptions, the driver shall throw a suitable excepfitiis sectiordescribes some specific cases

5.12.2.1.1 .NET Runtime and Framework Exceptions

If an IVI.NET driver catches an exception from the .NET runtime or a .NET frankesl@ssthe drivermay
re-throw the exception as is.

5.12.2.1.2 1/O Timeout Exceptions
The Ivi.Driver.IOTimeoutException shall be thrown by the driver in cases where the driver is reporting an

I/O timeout that the calling program can be reasonably expected to héfitile underlying 1/0 software
reported the timeout as an exception, the disheuldassign the caught exception to the InnerException

property

5.12.2.1.3 Configuration Server Exceptions

IVI-3.1: Driver Architecture Specification 93 IVI Foundation

If an

IVI.NET driver detects an error from the Configuration Server thatrinot handle, it shall throw an

Ivi.Driver.ConfigurationServerException.

If an

IVI.NET driver catches an exception other than an Ivi.Driver.ConfigurationServerException from the

Configuration Server that it cannot handle, it shall throwvaBriver.ConfigurationServerException, ariid
shall assign the caught exception to the InnerException property.

5.12.2.2 .NET Warnings

Warnings from IVI.NET components shall not be returned as return values or exceptions. Instead, each
driver shall implement an event callé¢arning defined in llviDriverOperation. If the calling program
wishes to receive warnings, they will need to register this event handler.

Each warning shall be defined as a static property of type System.GUID and shall be a member tifa class
contairs only warnings.

5.13 Comparing Real Values

IVI drivers shall use fuzzy comparisons with approximately 14 decimal digits of precision when comparing
floating point parameters or attribute values with any of the following types of values:

f
f
f

Discrete legaValues
Minimum and maximum limits of continuous ranges

Discrete values which the driver coerces to a continuous range of values

5.14 Allowed Data Types

IVI-C usercallable functions shall use the data types listeéthinle5-6. Compatible Data ypes for IVI
Drivers with the following restrictions:

1

VI -

IVI-C drivers shall not use signed-b# integers, except for theestResult output parameter of the
Self Te¢ function. This exception provides compatibility with the \WKIg&play specifications.

IVI-C drivers shall use arrays of 3itt integer values to represent integer arrays, except when typical
usage involves arrays of at least one million elements @sa specification requires the use of arrays of
16-bit or 8bit integer values.

IVI-C drivers shall use arrays of @it floating point values to represent floating point arrays, except
when typical usage involves arrays of at least one millements or a class specification requires the
use of arrays of 3Bit floating point values.

To represent a scalar output parameter;@\rivers shall use data types of the farixType>* , such
asVvilnt32* orViReal64* . The formVvi<Type>* is equivalento the formViP<Type> used in
Section 3.5.1Compatible Typesn VXI plug&play specificationVPP-4.3.2: VISA Implementation
Specification for Textual Languages

IVI-C drivers shall use the typ#Session only for session handles.
The IVI-C drivers shdluse the data type declarationdviivisaType.h . Refer to theAppendix Ci
Contents ofviVisaType.tFile, for alisting of IviVisaType.h

COM ueer-callablemethod shall use the data types listed in Tab& Eompatible Data Type for IVI

Drivers.

il

|l

IVI Foundation

IVI-COM drivers shall use arrays of 3t integer values to represent integer arrays, except when typical
usage involves arrays of at least am#lion elements or a class specification requires the use of arrays of
16-bit or 8bit integer values.

IVI-COM drivers shall use arrays of @it floating point values to represent floating point arrays, except

94 IVI-3.1: Driver Architecture Specification

when typical usage involves arrays of asteane million elements or a class specification requires the
use of arrays of 3Bit floating point values.

IVI.NET usercallablemethod are free to use any .NET data types, with the following restrictions:

il

All public .NET data types shall be Commonnigaiage Specification (CLS) compliaeixcept that the
following nonCLS-compliant types are allowed: System.SByte.

IVI.NET drivers shall use the System namespace data types listed in TabBobpatible Data Type
for IVI Drivers, rather than C# or VB.NEReywords for Boolean, integer, floating point, and string

parameters.

IVI.NET drivers should use arrays of System.Int32 values by default, but may use arrays of System.Byte,

System.SByteSystem.Int16, or System.Int64. If the array represents wavefospeotrum data, the
IWaveform or ISpectrum types shall bepportel. Refer taSection 5]Waveform<T> Interfaceand
Section 7]Spectrum<T> Interfaceof IVI-3.18: IVI.NET Utility Classes and Interfaces Specificafian

a description of the IWaveform dniSpectrum types.

IVI.NET drivers should use arrays of System.Double by default, but may use arrays of System.Single. If

the array represents waveform or spectrum data, the IWaveform or ISpectrum types sigbdoed
Refer toSection 5]Waveform<™ Interface and Section 1Spectrum<T> Interfaceof IVI-3.18:
IVI.NET Utility Classes and Interfaces Specificatfona description of the IWaveform and ISpectrum

types.
Table 5-6. Compatible Data Types for IVI Drivers
Type Description C API Type Name | COM API Type Name | .NET API Type Name

Boolean value ViBoolean VARIANT_BOOL System.Boolean
Signed 8bit integer Vilnt8 CHAR System.SByte
Array of signed it integer | Vilnt8[] SAFEARRAY(CHAR) System.SByte[]
values
Undgned 8bit integer ViByte BYTE System.Byte
Array of unsigned-bit intege| ViByte[] SAFEARRAY(BYTE) System.Byte[]
values
Signed 16bit integer Vilntl6 N/A System.Int16
Array of 16bit integer values Vilnt16[] SAFEARRAY(SHORT) System.Int16[]
Signed 32oit integer Vilnt32 LONG System.Int32
Array of 32bit integer values Vilnt32[] SAFEARRAY(LONG) System.Int32]]
Signed 64pit integer Vilnt64 __int64 System.Int64
Array of 64bit integer values| Vilnt64{] SAFEARRAY(__int64) System.Int64[]
Signed Decimal System.Decimal
64-bit floating point number | ViReal64 DOUBLE System.Double
Array of 64bit floating point | ViReal64[] SAFEARRAY(DOUBLE) | System.Double[]
values
Array of 32bit floating point | ViReal32[] SAFEARRAY (FLOAT) System.Single[]
values
Pointer to a C string ViString or BSTR System.String or

ViChar(] System.Text.

StringBuilder
An IVI-C or VISA resource | ViRsrc BSTR System. String
descriptor
95 IVI Foundation

1VI-3.1: Driver Architecture Specification

An IVI-C or I/O library sessiq ViSession LONG N/A

handle

An IVI or VISA return status | ViStatus HRESULT N/A

type

A constant C string ViConstString BSTR System.String
An attribute ID ViAttr N/A N/A
Enumeration Vilnt32 <Etype> <Etype>
Interface Reference N/A <Itype> <Itype>

Some oldeprogramming environments and operating systems do not suppbittitegers. For example:
1 Microsoft Visual Basic 6.0 does not supportifitintegers.

1 MicrosoftVisual C++ 6.0 does not support-6# integers as a valid automation type.

1 Microsoft COM on Windows 2000 does not supportdinteger SAFEARRAYS.

Therefore, users in these environments cannot use VI drivers with APIs that conldtimnédgers.

5.14.1 Enumerations

For all types of VI drivers, enumeration values shall be explisilecified inthe sourceodefor the
enumeration One of thenembes shall be assigned a value of zero.

5.15 IVI-COM Requirements
This section contains requirements specific to the@@M architecture. Other sections that contain
requirements specific to MCOM drivers are the following:

Section5.5.2 Requirements for IVC, IVI-COM, andIVI.NET APIs

Section5.7, Use of Shared Components

Section5.10.7 Multithread Safety

Section5.12 IVI Error Handling

Section5.14, Allowed Data Types

=A =4 =4 A =4

Note Th e
class.

word Aclasso used without quali fiVtiastrumenh i n t hi

5.15.1 IVI-COM Driver Classes

IVI-COM specific instrument drivers shall consist of one or more COM classes.

Exactly one of these classes shall be cremaimbl e usir

class
1 The name oftte main class shall beComponentidentifier.
1 The default interface for the main class shallb€omponentidentifier.

1 The main class shall be registered properly as a COM class. R&ection 8.1|VI-COM Registry
Requirementdn IVI-3.17: Installaton Requirements Specificatidor more details.

1 The DlIRegisterServer entry point in the driver DLL shall register the main class by adding appropriate
entries to the system registry.

1 The DllUnregisterServer entry point in the driver DLL shall unregigtermain class by removing
appropriate entries from the system registry.

IVI Foundation 96 IVI-3.1: Driver Architecture Specification

1 The main class shall implement the standard@ZIM inherent interfaces, the root MJOM
classcompliant interface for each instrument class supported by the driver, and the trootéms$
specific interface. It should implement all other claempliant and instrument specific interfaces except
those implemented by collection classes.

91 The driver shall not create other classes independent of the main class nor allow other clatibes to
the main class. This avoids memory leaks.

5.15.2 Standard COM Interfaces

All IVl -COM instrument drivers shall implement the standard COM interfaces ISupportErrorinfo and
IProvideClassInfo2lVI-COM instrument drivers shall return a valid interface pointer when a client
application calls Querylnterface on these standard COM interfaces.

If an IVI-COM instrument driver is implemented with several COM classes, all of the classes shall
implement ISupportErrorinfo, and the main class shall impledfotiideClassinfo2

IVI-COM instrument drivers shall support COM errorsifarovideClassind2, and shall report such support
from the InterfaceSupportsErrorinfo method of the ISupportErrorinfo interface.

5.15.3 IVI-COM Inherent Interfaces

The IVI-COM inherent interfaces are defined¥fi-3.2: Inherent Capabilities Specification

All IVl -COM specific hstrument drivers shall implement all of the inherent interfaces except
[lviClassldentity.

If the driver is implemented with several COM classes, only the main class shall implement the inherent
interfaces.

The IVI Foundation distributes the INGOM driverinterfaces as a type library packaged as the sole
component in a DLLI¢iDriverTypeLib.dll).

IVI-COM instrument drivers shall return a valid interface pointer when a client application calls
Querylnterface on each of the inherent interfaces.

IVI-COM instument drivers shall support COM errors for each of the inherent interfaces and shall report
such support from the InterfaceSupportsErrorinfo method of the ISupportErrorinfo interface.

5.15.4 IVI-COM Class-Compliant Interfaces

The IVI-COM classcompliant interface are defined in the various IVI instrument class specifications.

An IVI-COM classcompliant specific instrument driver shall export all of the ctamspliant interfaces
defined by the corresponding IVI instrument class specification.

The IVI Foundation wstributes the IVICOM classcompliant interfaces as a series of type libraries, one per
class. The type libraries are packaged as the sole component in aDéadsName> TypeLib.dil).

A call to Querylinterface on the main class shall succeed for allotaspliant interfaces, except for
interfaces that implement repeated capabilities as collections.

For each COM class that a driver implements, the class shall support COM errors for each of the

classcompliant interfaces that it implements, and the cthsdl report such support from the
InterfaceSupportsErrorinfo method of the ISupportErrorinfo interface.

IVI-3.1: Driver Architecture Specification 97 IVI Foundation

5.15.5 IVI-COM Instrument Specific Interfaces

Instrument specific interfaces shall conform to the standards fe€0OM interfaces listed iivI-3.4: API

Style Guide Instrument specific interfaces in the same driver shall be related to one another in a hierarchy
constructed using interface reference properties, except for hidden interfaces. The root interface of the
hierarchy shall be namedComponentidentiér>.

Instrument specific interfaces should leverage the syntax of theatagdiant interfaces, where possible.

The type library packaged in the driver DLL for an480M driver shall include the instrument specific
COM interfaces.

A call to Queryinteface on the main class shall succeed for all instrument specific interfaces, except for
interfaces that implement repeated capabilities as collections.

For each COM class that a driver implements, the class shall support COM errors for each afithenhst
specific interfaces that it implements, and the class shall report such support from the
InterfaceSupportsErrorinfo method of the ISupportErrorinfo interface.

5.15.5.1 Instrument Specific Direct I/O API

Specific IVI-COM drivers for devices that use messagsed communication shall include a System

interface nametkComponentldentifier>System . This interface shall include methods named

ReadString , WriteString , ReadBytes , andWriteBytes and aproperty namedOTimeout that allows

a client program tget andset the timeout of the underlying /Ot may optionally include a property nhamed

DirecttO orSession t hat provides access to the driverés under

Specific IVI-COM drivers for devices that use message thasenmunication shall include an interface
reference property nam@ystem that returns a reference to tk€omponentidentifier>System
interface.

Refer to Section 16.3 iVI-3.4: API Syle Guide for the exact syntax of the IMCOM direct I/O API

5.15.6 Help Strings

The IDL file for an IVFCOM driver shall contain the following help strings.

1 A help string that is associated with the type library. Its format shéilllb& | Component
Identifier >< ComponentRevision > Type Libraryo

1 A help string that isssociated with the class itself. Its format shalfilbeV | Component
Identifier > I nstrument.Drivero

<Component Identifier > is the same as the string returned by the Component Identifier attribute, and
<Component Revision > is the same as the string neted by the Component Revision attribute.

These two help strings appear prominently in various tools that browse for available COM classes in type
libraries.

5.15.7 Threading

IVI-COM drivers shall be registered with the fAbotho th

IVI-COM drivers &all be implemented to live in the muttireaded apartment (MTA).

IVI Foundation 98 IVI-3.1: Driver Architecture Specification

5.15.8 Interface Versioning

IVI-COM drivers shall implement standard FZIOM interfaces exactly as published by the VI Foundation.
IVI-COM drivers shall not make any modifications to a stantidredCOM interface and export it as a
standard IVACOM interface. Instrument specific interfaces shall conform to the versioning guidelines
defined in Section 5.1VI.NET andIVI-COM Interface Versioningn IVI-3.4: API Style Guide

5.15.9 Backwards Compatibility

When an IVICOM driver is initially released, the driver shall implement the most recently approved version
for each standard IMCOM interface that it exports. The driver may also implement support for older
interface versions.

When a driver is modifid to add support for a more recent version of a standar@ Qi interface, the
driver shall retain support for the older versions that it already implements for the interface. The driver may
also implement support for older versions that it does meady implement for the interface.

When an IVICOM driver is modified, it shall retain support for all versions of the instrument specific
interfaces that it already implements.

5.15.10 Packaging

All IVl -COM specific drivers shall install the followirites:

1 Microsoft Windows Dynamic Link Library.§ll) with a type library.

1 Help File ¢(hlp , .pdf , .doc , .chm, or other commonly used help file format

1 Readme Text Filer¢adme.txt).

IVI-COM specific drivers may install the following files. These filesraeessary to provide support for
ANSI-C clients, and may be preferred by some users for C++ clients.

1 Header File for type library. 1)

1 COM GUID Definition File (i.c)

The dynamic link library.@ll) filename shall begin with the value that the Componeantifier property

returns. For example, if the Component Identifier property retagitent34401a , the name of the
dynamic link library shall bégilent34401a .dll

Note: The 32bit dynamic link library name folivVI -COM driver DLLs may be the same #se 64bit

dynamic link library name because COM does not use the PATH environment variable to instantiate COM
classes. However, where thd -COM driver and a C wrapper gpackaged in the same DLL, the C naming
standards for DLLs shall be used. Seetion5.15.10.1C Wrappers Packaged With M\IOM Drivers for

C wrapper naming details.

Table5-7 lists the DLLrequirementsvhen a supplier pvides both 32it and 64bit versions of a driver.
Table5-8 lists the DLLrequirementsvhen a supplier only provides a-B& or only a 64bit driver. Required
means th®LL shall be installed for the specified driver bithess and operating syisteatid means the
DLL shall not be installed for the specified driver bitness and operating system

IVI-3.1: Driver Architecture Specification 99 IVI Foundation

Table 5-7. Required install files when both 32-bit and 64-bit
versions of the driver are provided

File type 32-bit driver on a | 32-bit and64-bit
32-bit OS driver on a 64it
0s
32-bit DLL Required Required
64-bit DLL Invalid Required

Table 5-8. Required install files when only a 32-hit or a 64-hit
version of the driver is provided

File type Only 32-bit Only 64-bit
driver provided | driverprovided

32-bit DLL Required Invalid

64-bit DLL Invalid Required

Note: IVI-3.17: Installation Requirements Specificatjpmovides instrument driver suppliers with installation
requirements for VI drivers.

The help file shall use a documentation file formegtdily viewable by customersuch as Windows Help
(-hlp), Portable Document Formapdf), compiled HTML (chm), or Microsoft Word documentdoc).
The filename shalbe easily recognizable as associated with the driver.

Thereadme.txt file typically contains installation recommendations, such as those described in Section
2.51.5 Recommendations for Useis IVI-3.17: Installation Requirements Specificati@s well as other
information that users may need to know before installing the driver. It may also contain other information a
user may find useful before installing the driver.

If there are no special installation recommendations applicable, a statement to that effect shall be included in
thereadme.txt file.

If the header file is installed, the file shall have the same name as the dynamic link library file with the
appropriate.q) extension.

If the COM GUID definition file (i.c) is installed, the file shall begin with the value that the Component
I dentifier proipe ratpy emateuc)estehsmin.tdlor exaneple,(if the Component
Identifier property retursAgilent34401a , the name of the COM GUID shall bgilent34401a i .c .

If a supplier provides both 32it and 64bit versions of a driver, the contents of the includesfile) and the
COM GUID definition files (_i.c) shall be the same. This is to enstina users can easily recompile their
application from 3zbit to 64bit, or vice versa.

The source files for NMICOM drivers may also be installed. If the source files are installed, at least one of the
source files shall have the same name as the dyriakidrary with an appropriate extension. If the source
files are installed, all necessary files for rebuilding the driver shall be installed.

If the DLL requires the presence of other DLLs, the-GOM specific driver may also install the additional
DLLs.

IVI Foundation 100 IVI-3.1: Driver Architecture Specification

If the IVI-COM driver installs multiple files of the same type, the additional files may use different
filenames. Unless an additional file is shared between drivers for instruments from multiple manufacturers,
the additional files should begin withe twacharacter abbreviation for the instrument manufacturer reserved
in the VXIplug&play Alliance specificatio’VPP-9: Instrument Vendor Abbreviations

5.15.10.1 C Wrappers Packaged With IVI-COM Drivers

To help identify files as belonging to a particular driveivet files and directories make use of a unique
driver identifier. For IVHC drivers, this is the driver prefix. For IMGOM drivers, this is theomponent
identifier. When creating and distributing an4&Iwrapper on top of an IMCOM driver, special
consideration is needed for prefix as@mponenidentifier usage. Most of the supported ADEs can find IVI
C wrapper files more easily if all the driver flare consistently named using the-¥prefix. Thereforean
IVI-C wrappelpackaged with an IMCOM driver shall comply with the following rules:

1 If a supplier provides both 3@t and 64bit versions of a driverthe driver always installs C wrappdos
both versions of the driver or neither version of the driver.

1 For each supported operating system bitnessMihdriver installer shall create singledriver specific
directoryin the<IViStandardRootDir> \ Drivers directoryfor both the nordispersd IVI-COM
driver files and the ncedispersed IVAC wrapper files. Theirectory shall be namagsing thelVI-C
wrapper prefix.

1 Allinstalleddriverfiles, except the .NET PlAshallbe named using the IMVC wrapper prefix rather
than the IVICOM componenidentifier. The .NET PIAs shall be named using the GOM component
identifier, as though no IVC wrapper were present

1 ThelVI-C wrapper shall be implemented in the {8OM driver DLL. The dynamic link library (.dll)
file name shall follow the requements specified in Secti@nl6.14 Packaging for IVI-C driver
dynamic link library names.

91 The IVI driver installershall not install théVl-COM .h and_i.c files. The IVIC wrapper files
provide the necessary include files for Crgse

1 The IVI driver installershallcreate a singleoftware module entriyn the VI configuration storéor both
the IVI-COM driver andthe IVI-C wrapper. The Name, ModulePath, Pre@indProgID attributesas
well as the Published APIs collectiahal follow the requirements specified 8ection 53, Details on
Software Module Entries in the IVI Configuration StarelVI-3.17: Installation Requirements
Specification

ThelVIICOM dri ver &8s c o mp olWleOwrapperdpeefix need nibkethe same,dhouglntieey
may be.

Because files names are basadhelVI-C wrapper prefix, the file naming and installation requirements

differ slightly from the IVFCOM driver packaging requirements specified in Sediid®.1Q Packaging

Table5-9 shows example pathnames based on arQ®M driverfor which thecomponenidentifier is

AAgi |l ent 3tdpirleAoi xanids fNAg34401ad0. Al l pat hnames ar e
<IVIStandardRootDir>

Table 5-9. Example File Names for COM Drivers Packaged with C Wrappers

File PathNamerelative to <IVIStandardRootDir> \

.NET interop DLL Bin\Primary InteropAssemblie$Agilent.Agilent34401A.Interop.dll

.NET interophelpfile Bin\Primary Interop Assemblig&gilent.Agilent34401A.Interop.xml

Driver DLL Bin\Ag34401a.dll(32-bit dynamic link library
Bin\Ag34401a_64.dll (6bit dynamic link library

IVI-3.1: Driver Architecture Specification 101 IVI Foundation

Driver directory DriversAg34401a

Driver helpfile Drivers Ag344014Ag34401a.chm

Driver helpindex DriversAg344014Ag34401a.chi

Driver .fp file DriversAg344014Ag34401a.fp

Driver .sub file Drivers Ag3440138Ag34401a.sub
Readmedile Drivers Ag34401aReadme.txt

C header IncludeAg34401a.h (for C wrapper only)
Cimport library Lib\msdAg34401a.lib

Note: A driver supplier that previously distributed an@©OM driver without a C wrapper and then
distributes the INAICOM drivemwith a C wrapper needs to be aware of the following:

1 If the name of the driver DLL changes, the driver installer shall check for the presence of both the
old DLL name as well as the new DLL name to determine whether the driver already exists on the
system(as specified isection 51.2, Detecting the Presence, Vendor, and Version of aGOM or
IVECDriver, inIVE3.17: Installation Requirements Specificajion

1 If the name of the Software Module in the configuration store changes, the driver instadiér sh
update existing VI driver session configuration entries that refer to the old Software Module to
refer to the new Software Module.

1 If the old driver installed the generated and_i.c files, then user applications that depend on
those files will havéheir new builds broken. Since built binaries do not depend on these files,
existing built binaries will not break.

An IVI-COM driver supplier that intends to distribute a C wrapper in a later release can avoid these issues.
The first two issues can bgaded bychoosing a&somponentdentifier that is also a valid IVC driver

prefix, as defined in Sectidnh16.4 Prefixes The third issue can be avoided by not shipping the genetated
and_i.c files with the original release of the IMCOM driver.

5.16 IVI-C Requirements
This section contains requirements specific to theQ\drchitecture. Other sections that contain requirements
specific to IVFC drivers are the following:
I Section5.5.2 Requirements for IVC, IVI-COM, andIVI.NET APIs

Section5.7, Use of Shared Components

Section5.10.7 Multithread Safety

Section5.12, IVI Error Handling

Section5.14, Allowed Data Types

=A =4 =4 =

5.16.1 Separate Sessions for IVI-C Class and IVI-C Specific Drivers

Whenan IVI-C class driver loads an IMT classcompliant specific driver, the class driver and specific driver
shall create separate sessions. The class driver Initialize function shall return the class driver session. The
class driver shall return the spécifiriver session when the application program calls the Get Specific Driver
C Handle function.

IVI Foundation 102 IVI-3.1: Driver Architecture Specification

5.16.2 Function Prototypes

The general function prototype for all NZ drivers shall be in the form of the following:
ViStatus _VI_FUNC <function name> (<parameter> [, <parameter>]) ;

The first element of an IY¥C instrument driver function prototype shall be the specification of the type of the
value the function returns. This return value shall always be ofigatus . ThelvivisaType.h

include file defined/iSta tus . A listing of lvivisaType.h can be found in th&ppendix Ci Contents of
IviVisaType.H-ile.

The second element of an P instrument driver function prototype shall be the function qualifier, which
provides information to ADEs about access options and conventionsVIIJINC maao shall be used for
the function qualifier. TheVI_FUNC macro is defined in thiiVisaType.h include file. The definition

of the_VI_FUNC macro varies based on the target operating system and ADE.

The remaining elements of the function prototype dtmlihe function name, the parameter list, and the
terminating semicolon. The function name shall begin with the driver prefix as defined in Set@ich

Prefixes The number of characters in a function name, excluding the prefix, shall not exceed 79 characters.
Additional restrictions on function and parameatames are defined iWI-3.4: API Style Guide

All IVI -C driver functions that require a session handle to identify the instrument shall define the session
parameter to be of typéSession and specify it as the first parameter in the argument list.

IVI-C driver functions shall not use variable parameter lists.

IVI-C driver functions shall be limited to a maximum of 18 parameters.

5.16.3 Accessing Attributes

An IVI-C driver shall export the Set Attribute <type> and Get Attribute <type> functions to providss agce
all nonprivate attributes of the driver.

5.16.4 Prefixes

Each IVIC specific driver shall have a prefix that uniquely identifies the driver. The prefix shall begin with a
two-character vendor code as defined in the M@ &play specificationVPP-9: Instrunent Vendor

Abbreviations followed by characters that uniquely identify the driver. The prefix shall be a maximum of 31
characters.

Each IVIC class driver shall use the class name specified in the 1VI class specification with which the driver
complies, sch adviScope , as the class prefix

All function names, attribute names, attribute value names, and parameter value names th@tdnvey|

exports shall use the driver és pr ddfinedinstrumengar dl ess of
specific, or vendor specific. The names of all cldsBned, instrument specific, and vendor specific status
codesthatanIMC dr i ver can return shal |l -Bdrigershallexpdrtithet he dr i

common status codes & return using the names tht-3.2: Inherent Capabilities Specificati@nd the
IVI shared component specifications define.

The IVI Foundatiorspecifications use the terrRREFIX andPrefix in formal syntax specifications.
Wherever the literal strinBREFIX appears in formal syntax, the actual driver prefix for the@wWriver shall
be substituted using uppercase. Wherever the literal Strifig appears in formal syntax, the actual driver
prefix for the IVFC driver shall be substituted using a detent case sensitivity. It is recommended that all
IVI-C specific drivers use lowercase prefixes wRegfix appears in formal syntax.

Examples of prefix usage are given below for the Tektronix VX4790 Arbitrary Waveform Generator:

IVI-3.1: Driver Architecture Specification 103 IVI Foundation

tkvx4790_init() T Initialize function
TKVX4790 ATTR_INSTRUMENT_FIRMWARE_REVISION Inherent attribute

TKVX4790_VAL_WFM_SINE Value for use with th&KvX4790_ATTR_FUNC_WAVEFORMtribute

5.16.5 IVI-C Attribute IDs

Each attribute in an IMC driver shall have a unique integer ID. Thdude file for an IVIC driver shall
define attribute IDs using macros. The number of characters in an attribute macro name, including the prefix,
shall not exceed 100 characters.

To prevent attribute ID conflicts within the API of an Il driver, the IVIFoundation has established 1D
value ranges for different types of attribut€able5-10. Attribute ID Base Vhaues for IVI-C Driverslists
these rangg All IVI-C drivers shall comply with the rangesTiable5-10. Attribute ID Base Vhaues for

IVI-C Drivers

Table 5-10. Attribute ID Base Values for IVI-C Drivers

Attribute ID Base Value
IVI_ATTR_BASE 1000000
IVI_INHERENT_ATTR_BASE IVI_ATTR_BASE + 50000
IVI_INSTR_SPECIFIC_ATTR_BASE IVI_ATTR_BASE + 150000
IVI_CLASS_ATTR_BASE IVI_ATTR_BASE + 250000
IVI_VENDOR_CLASS_EXT_ATTR_BASE IVI_ATTR_BASE + 350000
IVI_VENDOR_INHERENT_EXT_ATTR_BASE IVI_ATTR_BASE + 450000
IVI_MODULE_PRIVATE_ATTR_BASE IVI_ATTR_BASE + 550000
IVI_LXISYNC_ATTR_BASE IVI_ATTR_BASE + 950000
Reserved IVI_ATTR_BASE + 1050000

I IVI_INHERENT_ATTR_BASE is the base value from which the ID values for IVI inherent attributes are
defined. Refer to SectialD, IVI Inherent Attribute ID Definitiongn 1VI-3.2: Inherent Capabilities
Specificatiorfor the list of ID values for inherent attributes.

1 IVLLINSTR_SP ECIFIC_ATTR_BASE is the base value from which an P specific driver defines the
ID values of the instrument specific attributes that it exports, excluding any vendor specific attributes.
Notice that the ID values for instrument specific attributes ateimique from one I\AIC driver to
another.

1 IVI_CLASS_ATTR_BASE is the base value from which the IVI class specifications define attribute 1D
values. Notice that the ID values for clatfined attributes are not unique from one 1VI class to another.

1 IVI _VENDOR_CLASS_EXT_ATTR_BAS$&the base value from which an VI driver supplier defines 1D
values for vendor specific attributes that a particular@ustom class driver and set of corresponding
IVI-C specific drivers export. This is useful if a softeaupplier wants to add vendor specific
extensions to a class specification that the 1Vl Foundation defines. Notice that the attribute ID values are
not unique from one vendor defined class to another.

1 IVI_VENDOR_INHERENT_EXT_ATTR_BASIS the base valuedm which a software supplier defines ID
values for vendor specific attributes that are inherent to all it€l'8pecific drivers and/or IVC class
drivers. Notice that the ID values for vendor specific inherent attributes are not unique from one vendor
to another.

1 IVI_MODULE_PRIVATE_ATTR_BASEHS the base value from which any IVI software module can define
hidden attributes. Hidden attributes are attributes that the software module uses internally and does not
export.

IVI Foundation 104 IVI-3.1: Driver Architecture Specification

1 IVI_LXISYNC_ATTR_BASE is the base vakifrom which the IVI LxiSync API defines attikes. Refer
to IVI 3-15 IviLxiSync Specificatiofor details.

The following is an example declaration of the ID for an instrument specific attribute:
#define HP34401A_ATTR_MATH_OPERATION (IVI_INSTR_SPECIFIC_A TTR_BASE + 2)

The following is an example declaration of the ID for a cldsfined attribute:
#define IVIDCPWR_ATTR_VOLTAGE_LEVEL (IVI_CLASS_ATTR_BASE + 1)

Refer to Sectio®.16.7 Include File for rules on declaring attribute IDs for inherent and ethefted
attributes in the include files for IMC classcompliant specific drivers.

5.16.6 IVI-C Status Codes

The include file for an NAC driver shall define status codes using macros. SegtidhIVI Error Handling,,
describes the formats and ranges for status code values.

The following is an example declaration of an instrument specific error using the base identifiers described in
Section5.12.1.2 Base Values

#define TKDS30XX_ERROR_OPTION_NOT_INSTALLED (IVI_SPECIFIC_ERROR_BASE + 2)

The following is an example declaration of a cldsfined warning using the base identifiersalded in
Section5.12.1.2 Base Values

#define IVIDMM_WAR N_OVER_RANGE (IVI_CLASS WARN_BASE + 1)

Refer to Sectio®.16.7 Include File for rules on declaring status codes for cldsBned errors and warnings
in the include files for IMIC classcompliant specific drivers.

5.16.7 Include File

The include file for an NAC driver shall contain C prototypes for all functighat the driver exports.

The include file for an INAC driver shall contain C constant definitions for all attributes and attribute values
that the driver exports.

The include file for an INAC driver shall contain C constant definitions for all statdes that the driver can
return.

The include file for an INAC driver shall define constants as macros.

The include file for an NAC driver shall allow itself to be included multiple times in the same source file
without generating compiler errors or nuangs.

5.16.8 Function Panel File

The function panel file for an IVC driver shall comply with either version 4.1, 5.1, or 9.0 of the format
specified in Section &unction Panel File Formain the VXIplug&play specificationVPP-3.3: Instrument
Driver Interactive Developer Interface SpecificatiomNote: 1VI-C instrument drivers shall not use versio
9.0 until after June 2007.

The function panel file for an IVC driver shall comply with Sections 3.3 through 3.5.5 in theplxd&play
specificationvVPP-3.3: Instrument Driver Interactive Developer Interface Specificatexeept for RULE 3.4
and RULE 3.9. The following are the IVI replacements for these rules, respectively:

1 The visual representation of the return value of an@\Mundion shall be placed in the lower right hand
corner of that functionds function panel. The con

IVI-3.1: Driver Architecture Specification 105 IVI Foundation

adheres to the Section 3.1.2AHditional Compliance Rules for C Functions with ViChar Array Output
Parametersin IVI-3.2: Inherent Capabilities Specificatiorin this case the control shall be named
iStatus or Required Sizebo.

1 If an IVI function panel contains controls whose values are defined constants, the definitions of these
constants shallbeihte dr i ver 6s include file or in a nested i

5.16.9 Function Tree Organization

For all IVI inherent functions that an IME driver exports, the function tree for the driver should follow the
inherent function hierarchy, insofar as it is practical. THeefent function hierarchy is specified in Section
4.3, C Inherent Capabilitiesn 1VI-3.2: Inherent Capabilities SpecificatioRor all classlefined functions
that an IVIC class driver or \AC classcompliant specific driver exports, the function tfeethe driver
should follow the classgefined function hierarchy, insofar as it is practical. The al@$med function
hierarchy is specified in the 1VI class specification.

All' VI -C drivers shall comply with the guidelines in Section 18.FunctionHierarchy; in IVI-3.4: API
Style Guideon grouping functions into a hierarchy.

5.16.9.1 Extending the Function Tree for Instrument Specific Functions
An IVI-C specific driver shall augment the function tree with instrument specific functions according to the
following rules:
1 No instrument specific functions shall appear at the root level in the function tree.
1 Instrument specific categories may appear at the root level.

1 Instrument specific functions and categories may appear within a category specified in &t inher
function hierarchy.

1 For an IVIC classcompliant specific driver, instrument specific functions and categories may appear
within a category specified in the cladsfined function hierarchy.

5.16.10 Sub File

The sub file for an I\VAC driver shall comply witlthe format specified in Section Function Panel Sub File
Format, in the VXIplug&play specificationVPP-3.3: Instrument Driver Interactive Developer Interface
Specification

5.16.11 Attribute Hierarchy

For all IVI inherent attributes that an NG driveruses, the attribute hierarchy for the driver should follow
the inherent attribute hierarchy, insofar as it is practical. The inherent attribute hierarchy is specified in
Section 43, C Inherent Capabilitiesin IVI-3.2: Inherent Capabilities Specification

For all classdefined attributes that an IMT class or IVAC classcompliant specific driver uses, the attribute
hierarchy for the driver should follow the cladsfined attribute hierarchy, insofar as it is practical. The
classdefined attribute hierahy is specified in the IVI class specification.

All IVI -C drivers shall comply with the guidelines in Section 18.Attribute Hierarchyin IVI-3.4: API
Style Guideon grouping attributes into a hierarchy.

5.16.11.1 Extending the Attribute Hierarchy for Instrument Specific Attributes

An IVI-C specific driver shall augment the attribute hierarchy with instrument specific attributes according to
the following rules:

IVI Foundation 106 IVI-3.1: Driver Architecture Specification

No instrument specific attributes shall appear at level 1.
Instrument specific categories may appatdevel 1.

Instrument specific and vendor specific attributes or categories may appear within the inherent attribute
hierarchy.

1 For an IVIC classcompliant specific driver, instrument specific attributes and categories may appear
within a category spéied in the clasalefined attribute hierarchy.

5.16.12 Instrument Specific Direct I/O API

Specific IVI-C drivers for devices that use messagesed communication shall includBrefix>_ViReadand
<Prefix>_ViWrite functions and an attribute nameBrefix>_ ATTR_SYSTEM_IO_TIMEOUT. It may
optionally include an attribute name@refix>_ ATTR_SYSTEM_IO_SESSIORhat provides access to the
driverés underlying 1/ O.

The function hierarchy of specific IMC drivers for devices that use messagsed communication shall
include a level 1 category nam&gstem Functions related to direct I/O, including the read and write
functions, shall be placed in this level of the hierarchy.

The attribute hierarchy of specific MQ drivers for devices that use messageed communication shall
include a level 1 category nam8gstem Attributes related to direct 1/O, including the timeout and session
attributes, shall be placed in this lewélthe hierarchy.

Refer to Section 16.2 itVI-3.4: API Style Guidefor the exact syntax of the IMT direct 1/0 API.

5.16.13 Backwards Compatibility

The versioning guidelines defined in Section B\2;C Interface Versioningn IVI-3.4: API Style Guide
gualantee that the inherent and classnpliant capabilities of the driver are backwards compatible with
previous versions of the driver.

When an IVIC driver is initially released, the driver shall comply with the most recent version of the IVI
Foundation spafications.

When a driver is modified to add support for a more recent version of an IVl Foundation specification, the
driver shall comply with the most recent versions of all IVI Foundation specifications with which it claims
compliance.

The instrumenspecific capabilities of INAC instrument drivers shall conform to the versioning guidelines
defined in Section 5.2VI-C Interface Versioningn 1VI-3.4: API Style Guide This ensures that the
instrument specific capabilities of the driver are backlsaompatible.

5.16.14 Packaging

All IVI -C specific drivers shall install the following files:

Include File (h)

Microsoft Windows Dynamic Link Library.§ll) with a type library
Microsoftcompatible DLL Import Library File.fb)

Function Panel Filefp)

Attribute Information File &ub)

=A =4 =4 -4 -4 =4

Help File ¢(hlp , .pdf , .doc , .chm, or other commonly used help file format

IVI-3.1: Driver Architecture Specification 107 IVI Foundation

1 Readme Text Filer¢adme.txt).

The include file (), import library file (lib), function panel file .o), and attribute information file
(.sub) shall use the same filename except for the filename extension. The filename shall begin with the value
that the Specific Driver Prefix attribute returns.

If a supplier provides both 32it and 64bit versions of a drivetthe contents of the include fdéh),
function panel fils (.fp), and attribute information fik(.sub) shall be the same. This is to ensure that
users can easily recompile their application fronrb820 64bit, or vice versa.

If a supplier provides both 32it and 64bit versions of a driverthe driver shall install two import library

files, one for compiling 3dit applications and one for compiling-®t applications. Ifa supplieonly
providesa 32bit or only a 64bit driver, the driver shall instatinly one impot library. Table5-11 lists the

valid combinations of DLL and import libraries wharsupplier provideboth 32bit and 64bit versions of a
driver. Table5-12lists the validcombination of DLL and import libraries whensupplieronly providesa

32-bit or only a 64bit driver. Requiredmeans thédile shall be installed for the specified driver bitness and
operating systeninvalid means the file shall not be installed for the specified driver bitness and operating
system.

Table 5-11. Required install files when both 32-bit and 64-bit
versions of the driver are provided

IVI Foundation

File type 32-bit driver on a | 32-bit and64-bit

32-bit OS driver on a 64it
oS

32-bit DLL Required Required

64-bit DLL Invalid Required

32-bit Import Required Required

Library File

64-bit Import Required Required

Library File

Table 5-12. Required install files when only a 32-bit or a 64-bit
version of the driver is provided

File type Only 32-bit Only 64-bit
driver available | driveravailable

32-bit DLL Required Invalid

64-bit DLL Invalid Required

32-bit Import Library File Required Invalid

64-bit Import Library File Invalid Required

The 32-bit dynamic link library (Il) filenameshall have the santeotnameas the include fileexcept that
fi320 may b e.Farpxamptedf¢hd name of the include filag84401a.h , the name of th82-bit
dynamic link library shall bag34401a .dll orag34401la_ 32.dll . The latter form is consistent with the
VXl plug&play specifications.

108

IVI-3.1: Driver Architecture Specification

The 64bit dynamic link library (@Il) filenameshall have the sanmteot nameas the include fileexcept that
fi_640 shallbe appendedFor example, ifie name of the include file &g34401a.h , the name of the 6Hit
dynamic link library shall bag34401a_ 64.dll

Note: The 32bit dynamic link library name needs to be distinct from thdoB4lynamic link library name

because both filegre inthe systenpath onwindows 7 (64bit), Windows 8 (64bit), and Windows 10 (64

bit). Nei t her the PATH environment variable nor the oper
environment varible is sensitive tdhe bitness of the application.

The help fileshall use a documentation file forntatdily viewable by customersuch as Windows Help
(.hlp), Portable Document Formapdf), compiled HTML (chm), or Microsoft Word documentdoc).
The filename shalbe easily recognizable as associated with thedr

Thereadme.txt file typically contains installation recommendations, such as those descriBedtion
2.51.5 Recommendations for Useins IVI-3.17: Installation Requirements Specificatias well as other
information that users may need to kinbefore installing the driver. It may also contain other information a
user may find useful before installing the driver.

If there are no special installation recommendations applicable, a statement to that effect shall be included in
thereadme.txt file.

The source files for IMIC drivers may also be installed. If the source files are installed, at least one of the
source files shall have the same name as the include file with an appropriate extension. If the source files are
installed, allnecessary files for rebuilding the driver shall be installed.

A Borlandcompatible DLL import library file may also be installed. If the Borlaodnpatible DLL import
library file is installed, the file shall have the same name as the MicioswipatibleDLL import library file.

If the DLL requires the presence of other DLLs, the-B/6pecific driver may also install the additional
DLLs.

If the IVI-C driver installs multiple files of the same type, the additional files may use different filenames.
Unless an additional file is shared between drivers for instruments from multiple manufacturers, the
additional files should begin with the tvaharacter abbreviation for the instrument manufacturer reserved in
the VXIplugé&play Alliance specificatioVPP-9: Insrument Vendor Abbreviations

5.17 IVI.NET Requirements

Note: To ensure that IVI.NET driver quality is the highest possible, the registration of all IVI.NET drivers
released before 9 June, 2011 requires the approval of the VI Foundation IVI.NET working Ghauly/I
Foundation will treat all changes to IVI.NET material in the specifications and IVI.NET shared components
as editorial changes until the registration of the first driver that implements that particular set of IVI.NET
interfaces.

This section contas requirements specific to the IVI.NET architecture. Other sections that contain
requirements specific to IVI.NET drivers are the following:

1 Section5.5.2 Requirements for IVC, IVI-COM, and IVI.NETAPIs
1 Section5.7, Use of Shared Components

1 Section5.10.7 Multithread Safety

1 Section5.12 VI Error Handling

1 Section5.14 Allowed Data Types

Note The word fAclassodo used without qualification in thi
class.

IVI-3.1: Driver Architecture Specification 109 IVI Foundation

5.17.1 IVI.NET Driver Classes

All IVLLNET APIs shall comply with the .NET Coman Language Specification (CLS). This provides a
measure of language independence when creating and using .NET drivers.

IVI.NET specific instrument drivers shall consist of one or more .NET classes.

One class in the driver assemidgjled themain class
1 Shallimplicitly implement IServiceProvider.

A GetService shall return, at a minimum, a reference to the root IVI.NEFadaggliant
interface for each instrument class supported by the driver,

1 Shall implicitly or explicitly implement llviDriver.If the man class explicitly implements
[IviDriver, it must comply with the following provisions to ensure VI inherent capabilities are
discoverable in common .NET programming tools:

A The main class shall explicitly implement (i.e., privately implement) all members of
[lviDriver.

A Additionally, the main class shall directly implement public members with the same names
and equivalent functionality as the IlviDriver members.

A The specifidriver shall implement classes or interfaces that derive from the interfaces
returned by llviDriver interface reference properties.

1 The main class shall return these classes or interfaces through properties
equivalent to the llviDriver interface referengeperties.

A The classes or interfaces that derive from the interfaces returned by IlviDriver interface
reference properties shall directly implement public members with the same names and
equivalent functionality as the members of the interfaces retusnddibriver interface
reference properties.

A Explicit implementation example:
1 NIDmmis the main driver class.

1 NIDmmDriverUtility includes everything inviDriverUtility and
additional methods or properties.

1 NIDmmexplicitly implementdiviDriver , including thellviDriverUtility
interface reference property.

public class NIDmm: |llviDriver, llvibmm, IDisposable
{ public NIDmmDriverUTtility Utility {é}
IJviDriverUtiIity [lviDriver.Utility {é}
} é
public class NIDmmDriverUtility : llviDriverUTtility{ e}

A Implicit implementation example:
1 NIDmmis the main driver class.
9 In this scenario there is no need for ®mmDriverUtility class.

1 NIDmmimplicitly implementsliviDriver , including thelviDriverUtility
interface reference property.

IVI Foundation 110 IVI-3.1: Driver Architecture Specification

public class NIDmm: |llviDriver, llvibmm, IDisposable

public IllviDriverUtility Utility {é}
é

}
T Shall i mpl ement the driverds constructor

1 Shallimplicitly implement IDisposable, and shehll Dispose when the driver object is destroyed.

The name of the main class shalldi@omponentldentifier. The main driver assembly and all dependant
assemblies shall be installed in the Global Assembly Cache (GAC).

The main driver assembly shall begjistered at installation so that it appears on the Microsoft Visual Studio
list of .NET references.

5.17.2 IVI.NET Namespaces

The namespace for the IVI.NET inherent capabilities describBdi8.2: Inherent Capabilities

SpecificationandlVI-3.18: IVI.NET Utilty Intefaces and Classes Specifciation s h a | | be Al vi.Driv
The namespace for an IVI instrument class shalvbeClassType>For exampl e, il vi.Dmmo.
The namespace for any other |1 VI.NET compon&eaet owned
next el ement of the namespace shall be the name of t

The namespace of IVI.NET instrument drivers shakCompanyName> Componentldentifiersor
<CompanyName>Technology><Componentldentifier>For exampl e, i Agor | ent . Agi | e

ANationall nstr ument s. MVdatleslfoe<Fechnadogyranerdetarnired by Vebdors) 6
not by the IVI Foundation.

All namespaces shalkePascal cdng.
5.17.3 Standard .NET Error Reporting

All IVL.LNET instrument drivers shall consistently use the standard .NET exception mechanism to report
errors. Neither return values nor out parameters shall be used to return error inforRafanto Section
5.12.2 IVL.LNET Error Handlingfor more details.

5.17.4 IVI.NET .NET Interfaces

The main class of each IWET specific instrument driver shathplicitly implement Disposableand
IServiceProvider Other interfaces may either be implicitly or explicitly implementéthe main class

explicitly implements llviDriver, the implementation must follow the provisions specified in Sextdn,
IVI.NET Driver Classes

5.17.5 IVI.NET Inherent Interfaces

The IVL.NET inherent interfaces are definedVfi-3.2: Inherent Capabilities SpecificatioThe VI

Foundatiordistributes the IVI.NET driver interfaces as an assembly packaged as the sole component in a
DLL (lvi.Driver.dll).

The main class of each IVI.NET specific instrument drivery eitherexplicitly or implicitly implement

llviDriver and other IVI.NET Inhererihterfaces. If the main class explicitly implements IlviDriver, the
implementation must follow the provisions specified in Sechidi7.1, IVI.NET Driver Classes

IVI-3.1: Driver Architecture Specification 111 IVI Foundation

The inherent Initialize methad not explicitly implemented in IVI.NET. Instead, the Initialize method shall
be implemented as part of the spexcifidr i ver 6s constructor (s).

5.17.6 IVI.NET Class-Compliant Interfaces

The IVI.NET classcompliant interfaces are defined in the various IVI instrument class specifications.

An IVL.NET classcompliant specific instrument driver shall implement all the etasapliant interfaces
defined by the corresponding IVI instrument class specification.

The IVI Foundation distributes the IVI.NET classmpliant interfaces as a series of assemblies, one per
class. Theassemblieare packaged as the sole component in a DL (<Class Type>. dll).

5.17.7 IVL.NET Instrument Specific Classes and Interfaces

Instrument specific classes and interfaces shall conform to the standards for IVI.NET instrument specific
classes and interfaces listedWi-3.4: API Style Guidelnstrument specific classes and interfaces in the same
driver shall be related to one anethn a hierarchy constructed using reference properties. The root of the
hierarchy shall be the main clas€omponentldentifiet.

Instrument specific classes and interfaces should leverage the syntax of Hwoelpkant interfaces, where
possible.

The public instrument specific classes and interfaces are part of a specific driviireyastthll use the same
namespace as the driver

5.17.7.1 Instrument Specific Direct I1/0 API

Specific IVI.NET drivers for devices that use messhgeed communication shall incle a System interface
named<Componentldentifier>System . This interface shall include methods narReddString

WriteString , ReadBytes , andWriteBytes — and aproperty namedOTimeout that allows a client

program toget andset the timeout of the undenhg 1/O. It may optionally include a property named

DirecttO orSession t hat provides access to the drivero6s wunder

Specific IVI.NET drivers for devices that use messhgsed communication shall include an interface
reference property name&ystem that returns a reference to tk&€omponentidentifier>System
interface.

Refer to Section 16.1 iVI-3.4: APl SyleGuide for the exact syntax of the IVI.NET direct I/O API.

5.17.8 Repeated Capability Interfaces

IVI.NET interfaces that represensimgle instance of a repeated capablitycollection membeghall derive
from Ivi.Driver.llviRepeatedCapabilityldentification. Refer to SectidnRepeated Capability Collection
Base Classesn 1VI-3.18: IVI.NET Utility Classes and Interfaces Spegifion,for details about this
interface.

IVI.NET repeated capability collection interfaces shall derive from
Ivi.Driver.llviRepeatedCapabilityCollection. Refer to Sectiih Repeated Capability Collection Base
Classesin IVI-3.18: IVI.NET Utility Classe and Interfaces Specificatidor details about this interface.

5.17.9 Assembly Level Attributes

.NET Assembly Attributes shall be included for:

IVI Foundation 112 IVI-3.1: Driver Architecture Specification

AssemblyTitle. AssemblyTitle shall be the file name of the assembly.

AssemblyDescription AssemblyDescription shall Hfeee-form; it is required to exist, but it does not
have a particular value.

Assembl yCompany. Assembl yCompany shall be the dri

AssemblyCulture AssembfCul t ur e shall be 0 bglobabzed. Hlscaligethb | i es t ha
AssemblyCulture shall be the value of the culture to which the assembly is localized.

AssemblyProduct. AssemblyProduct st | V | Component Identifier > . NET Ass.embl yo

AssemblyVersion.AssemblyVersion shall be the samettzes version resource values for the same item,
as defined in section 5.19.

1 AssemblyFileVersion AssemblyFileVersion shall be the same as the version resource values for the
same item, as defined in section 5.19.

.NET Assembly Attributes should be inclubléf applicable) for:
1 AssemblyCopyright.
1 AssemblyTrademark.

The .NET assembly IntelliSenkelp shall include comments foaeh IVI.NET class, struct, interface,
enumeration type, enumeration value, exception, method, propedigasameter.

The commets may be inserted in source code as .xml comments, from which the compiler generates an
XML IntelliSense file. Other ways of generating the IntelliSense file are permitted.

5.17.10 Interface Versioning

IVI.NET drivers shall implement standard IVI.NET interfage®ctly as published by the IVI Foundation.
IVI.NET drivers shall not make any modifications to a standard IVI.NET interface and export it as a standard
IVI.NET interface. Instrument specific classes and interfaces shall conform to the versioningngsideli

defined in Sectio®.1, IVI.NET and IVFCOM Interface Versioningof IVI-3.4: API Style Guide

5.17.11 Backwards Compatibility

When an IVI.NET driver is initially released, the driver shall implement standard IVI.NET interfaces
contained in the most recent siEm of the standard IVI.NET assemblies.

When an IVL.NET driver is modified, it shall not modify classes and interfaces in such a way as to break
backwards compatibility.

In order to facilitate backwards compatibility, policy and .config files shall beedetl, as appropriate, to
point users of older driver versions to the newer one.

5.17.12 Packaging

All IVI.NET specific drivers shall install the following files:
1 Microsoft Windows Dynamic Link Library.qil).
1 An XML IntelliSense file.
1 Help File (pdf , .doc , .chm, or other commonly used help file format
1 Readme Text Filer¢adme.txt).

The dynamic link library.@ll) flename for the main driver executable shall be

<Namespace<FwkVerShortName*¥ ol | owed by @. dIldlivernamEspaceie x ampl e, i f

IVI-3.1: Driver Architecture Specification 113 IVI Foundation

Agilent.Ag34401A and the driver was built using versigr0.50727 of the .NET Framewqgrhe name of
the dynamic link library shall bagilent.Ag34401A . Fx20 dll

The help file shall use a documtation file formatreadily viewable by customersuch as Portable
Document Formatgdf), compiled HTML (chm), or Microsoft Word documentdoc). The filename shall
be easily recognizable as associated with the driver

Thereadme.txt file typically contains installation recommendations, such as those described in Section
2.52.5, Recommendations for Usein IVI-3.17: Installation Requirements Specificatias well as other
information that users may need to know before installiegdtriver. It may also contain other information a
user may find useful before installing the driver.

If there are no special installation recommendations applicable, a statement to that effect shall be included in
thereadme.txt file.

The source files fotVI.NET drivers may also be installed. If the source files are installed, they shall be
installed with all of the instructions and files necessary to correctly build the driver. For example,
instructions might need to document changes such as:

1 Referenceshat need to be corrected to the target PC.
1 Public/private signing modifications, either to eliminate signing or change the keys.

If the DLL requires the presence of other DLLs, the IVI.NET specific driver may also install the additional
DLLs.

If the IVI.NET driver installs multiple files of the same type, created by the driver supplier, the additional
files may use different filenames. The additional files should begin with the name of the driver supplier.

All .NET Assemblies distributed withan IVidrier s hal | be signed with the ven

The installation directories for IVI.NET drivers will vary by the supported .NET Framework and the driver
version. For details on IVI.NET driver installation, refei\%-3.17: Installation

5.17.13 Signing

The driver supplier shall create a key pair for its organization using the Strong Name tool. The driver supplier
shall publish the public key aneep the private key secret and secure. The same key shall be used to sign all
the IVI.NET drivers andorimary interop assemblies supplied by a driver supplier.

Driver suppliers shall sign their drivers.

5.18 Wrapper Packaging

If a C or COM wrapper is packaged with the native drittez,wrapper and its type library shall be in the
same DLL file as the nativeider. Refer to Sectiob.15.1Q Packaging for packagingequirements for
IVI-COM drivers. Refer to Sectidnh16.14 Packaging for packaging requirements of NG drivers. Refer
to Section 53, Details onSoftware Module Entries in the VI Configuration StarelVI-3.17: Installation
Requirements Specificatigior configuration store requirements for VI drivers.

If a C or COM wrapper is packaged separately from the native driver, all wrappearfilesrshall be the
prefix or component identifier of the native driver
following table contains examples of file name prefixes for different types of IVI drivers.

An IVI.NET driver or wrapper is always packageda separate DLL from an IMCOM or IVI-C driver or
wrapper. The reason is that .NET uses managed C++ tG fiaictions. If they were packaged together, C
and COM drivers would be required to load the .NET CLR.

IVI Foundation 114 IVI-3.1: Driver Architecture Specification

Table 5-13. Example File Name Prefixes for Different Types of VI Drivers

File Name Prefix

Type of Interface in Driver

ag33120a IVI-C driver (uses (prefix)

agel463a IVI-C driver packagedvith COM wrapper (uses @refix)
Agilent34401A IVI-COM driver (uses COMcomponenidentifier)
ag34420 IVI-COM driver packagedvith C wrapper (uses @refix)
Agilent. Ag34401A.Fx20 IVI.NET driver

ag34401aCWrapper C wrapperpackagedseparately (uses frefix)
ag33120aCOMWrapper COM wrapperpackagedseparately (uses CObmponent

identifier)

Agilent. Ag34401A.Fx20Wrap

IVI.NET wrapper packaged separately.

per
Agilent.Agilent34401.Interop

IVI.NET PIA for IVI-COM driver.

5.19 File Versioning

IVI driver DLLs shall contain a Windows version resource with the three entries: CompanyName,
ProductName, and FileVersion.

CompanyName is a string that contains the value of the Specific Driver Vendor, Class Driver Vendor, or
Component Vendor attribute that the IVI d¥rweturns.

ProductName is a string thatcludesthe value of the Specific Driver Prefix, Class Driver Prefix, or
Component Identifier attribute that the VI driver returns.

FileVersion is a string in the following format:

MajorVersion.MinorVersion.BuildV ersion[.InternalVersion]

MajorVersion, MinorVersion, BuildVersion, and InternalVersion are decimal nungpeader than or equal
to zero and less than or equal t®85 The MajorVersion shall not be zero, except for arplease version
of the initial release of a driver. Eactumbermay contain leading zeros but may not exceed 5 digits. The
numberfields are separated by periods, with no embedded spaces. The maximum valid FileVersion is
65535.65535.65535.65535.

A FileVersion string shall contain adst a MajorVersion, MinorVersion, and BuildVersioA. driver shall
be released with an incremented MajorVersion or MinorVersion number avheaf the following
conditions are true:

1 The new version of the driver contains changes in its API syntax.

1 The rew version of the driver contains significant changes to its semantics.

A driver shall be released witit leasian incremente@uildVersionnumber when any of the following
conditions are true:

1 A new bitness of the driver {ovided

IVI-3.1: Driver Architecture Specification 115 IVI Foundation

1 The driver is modified in a way that does not require a MajorVersion or MinorVersion update.

If a supplier provides bota32-bit anda 64-bit version of a driver, thd2-bit and 64bit DLL s shall have the
same MjorVersion, MinorVersion, and BuildVersiomotice that whera 64-bit version of the driver is
initially madeavailable, the 3dit version must be updated at the same time.

For the purpose of determinitige version of an IVI driver, only the MajorVers, MinorVersion, and
BuildVersion are used; the InternalVersion is not used. The InternalVersion is optional and reserved for use
by driver suppliers.

When comparing two FileVersion values, integer comparisons are performed successively for each number
gtartingatthe leftmost number. thefirst two numbers are equal, the next two numbers are compared, and so
on.

Examples:
The following are examples of valid FileVersion values:

1.0.0

2.00.00
01.02.03
11.22.33

5.0.1

3.14.103
4.0.1000.0
0001.1.1.00005

The following are examples of comparisons of FileVersion vdiuethe purpose of comparing driver
versions

5.1.345.213 is greater than 4.3553.3244.234
5.1.345.213 is less than 5.1.346.213
5.2.13.26 is equal t0 5.2.13.56
5.001.100.001 isqual to 5.1.00100.1
2.15.32. 1 is greater than 2.15.18. 1
1l.1.1isequalto 1.1.1.0

5.20 Installation Requirements

All IVI drivers shall be made available to users in a Microsoft Windows installation program. The installation
program shall install all the reqed files and documentation for the driver. For detailed requirements, refer
to IVI-3.17: Installation Requirements Specification

IVI driver suppliers may also distribute installation programs for other operating systems.

5.21 Driver Introduction Documentation

Driver introduction documentatiogshall be a separate file named Introductiompi@fee_ . .<xxe and
shall be installed with the driver in the driver directddyiver introduction documentation may consist
mostly of links to othedocumentation and may contain additional information beyond what is specified in
this section.

Driver introduction documentation shall contain the following sections, each containing the specified
information and using the section names as shown.

Driver Documentation

IVI Foundation 116 IVI-3.1: Driver Architecture Specification

There shall be a section called Driver Documentation. It shall list the location, file names, and purpose of the
various documentation files supplied with the driver, including the compliance document (if separate).

Driver Source Code and Examples

For drivers that supply source code, there shall be a section called Driver Source Code and Examples. It shall
list the location(s) of the source code and examples for the driver, but not each specific source and example
file. If a specific diectory exists dedicated to examples and/or samples, it is sufficient to reference that
directory and not all the subdirectories therein. The section shall include a reference to the location in the
documentation that explains how to build the source.

For drivers that do not supply source code there shall be a section called Examples. It shall list the location(s)
of the examples for the driver, but not each specific example file. If a specific directory exists dedicated to
examples and/or samples,stsufficient to reference that directory and not all the subdirectories therein.

Connecting to the Instrument

There shall be a section called Connecting to the Instrument. It shall explain, or reference documentation that
explains how to get started withe driver (including opening a driver session) in different development
environments.

Configuring Instrument Settings

There shall be a section called Configuring Instrument Settings. It shall explain how to use the driver to
configure instrument settys, using both attributes/properties and Higrel configuration functions. It shall
explain, or reference documentation that explains, how to use attributes/properties in various development
environments.

Configuring Driver Settings

There shall b a section called Configuring Driver Settings. It shall explain that the driver has capabilities,
such as simulation, that the user can configitteer programmatically using attributes/properties or statically
using a configuration utility.

Direct I/O

For drivers that provide Direct I/O functions, there shall be section called Direct I/O. It shall state the names
of the functions which the user can use to communicate directly with the instrument.

Instrument Command Coverage

For drivers formessagéased instruments, there shall be a section called Instrument CorGmearage. It
shall provide a reference to the location in the documentation that lists the instrument commands that the
driver implements and characterizes the instrument comsnidue driver does not implement.

Known Issues

There may be a section called Known Issues that lists the bugs and limitations that were known at the time
the driver was released. If a driver supplier has a web page that lists bugs and limitationfid¢otinel a
driver was released, this section should provide a link to it.

Contacting Support

There shall be a section called Contacting Support. It shall specify how users can contact the driver supplier
to report problems or ask questions relating todttieer.

Driver suppliers are encouraged to include links within each section that provide more detailed information.

The set of development environments that the driver supplier references in the document is at the discretion
of the driver supplier

IVI-3.1: Driver Architecture Specification 117 IVI Foundation

5.21.1 Example Driver Introduction Documentation Files

This section contains example driver introduction documents for three different types of driversGan VI
specific driver, an IVMCOM specific driver, and an IVI.NET specific driver.

The example driver inbduction documents refer to trademarked product names. It is up to the driver
supplier to determine how they will cite trademarks. No trademark citations are included in these examples.

Sample Driver Introduction Document for an IVI-C specific driver
Driver Documentation

The <refix>.txt file can be found in theRrogram Files\IVI FoundationlVI\Drivers<prefix> directory. It
contains notes about the driverds |l evel of compli anc
featuressupported in the driver.

The <refix>.chm file can be found in therogram Files\IVI FoundationlVI\Driversi<prefix> directory.

It contains descriptions of all functions, parameters and their valid values or ranges.

The refix>AttributeInfo.html file @n be found in theRrogram Files\IVI
FoundatioNVI\Drivers<prefix> directory. It contains names and descriptions of all attributes and their valid
values.

Driver Source Code and Examples

The C driver source code and example(s) can be found irPitegram Files\IVI
FoundatioNVI\Drivers<prefix> directory. For instructions on rebuilding a driver, refer to the following
Knowledgebase documentRebulding an VI Specific Driver in NI LabWindows/CVandRebuilding an
IVI Specific Driver in Microsoft Visual Studio

The NI LabVIEW wrapper ViIs and examples carfdiend in the £abVIEWA\instr.lib\<prefix> directory.

Examples of using MATLAB® and Instrument Control Toolbox with4®Idrivers can be found in the
online documentatian

Connecting to the Instrument

The IVI resources pagétfp://ivifoundation.org/resources/default.aspas documents and videos that
explain how to get started with an M@ driver in different development environments:

IVI Getting Started Guide for LabVIEW

IVI Getting Started Guide for LabWindows/CVI

IVI Getting Started Guide for Microsoft Visual C++
IVI Getting started Guide for MATLAB

Configuring Instrument Settings

An VI instrument driver implements each readable or writable setting on the instrument, such as the vertical
voltage range on an oscilloscope, as an attribute.

IVI instrument driverexport highlevel functions that allow you to set the value of multiple attributes in one
call. This can be useful when it is necessary to send settings to an instrument in a particular order.

IVI instrument drivers also allow you to modify and get aueadf individual attributes. You do this by
calling <Prefix>_GetAttribute/i<data type and Prefix>_SetAttributd/i<data type functions To use

IVI Foundation 118 IVI-3.1: Driver Architecture Specification

http://digital.ni.com/public.nsf/allkb/753FCBD48E366B7C862570A00048AFFF?OpenDocument
http://digital.ni.com/public.nsf/allkb/6E74B81158955BEA86257A1600799CEB
http://digital.ni.com/public.nsf/allkb/6E74B81158955BEA86257A1600799CEB
http://www.mathworks.com/help/toolbox/instrument/
http://ivifoundation.org/resources/default.aspx

these functions correctly you need to know the date type, valid values, and ID of the attribute you want to
access. How you do so depends on the development environment you are using.

NI LabWindows/CVI Users
Open the grefix>.fp file, expand the Configuration class, and select one of the
Set/GetAttribute functions. From the function panel window, click orttrgoute 1D
control to display a dialog box containing a hierarchical list of the available attributes.
If you do nd see the attribute you want, click on tié Data Types option in the Data
Type pane of the dialog box.

NI LabVIEW Users
Use a Property Node to access the specific properties of a driver. A property node can be
found in the Connectivity>>ActiveX funains palette.

Microsoft Visual Studio Users
Refer to the grefix>Attributelnfo.html file in the rogram Files\IVI
FoundationVI\Driversi<prefix> directory.

MATLAB Users
Referherefor examples and more information on using-&/drivers with MATLAB and
Instrument Control Toolbox.

Configuring Driver Settings

IVI instrument drivers implement inherent capabilities suckimsilation, range checking, state caching,
coercion recording, interchangeability checking, and instrument status checking. A user can enable/disable
these features either programmatically using an attribute or statically using a configuration utility.

Direct I/O

IVI instrument drivers for messadmsed instruments expatPrefix>_viReadand Prefix>_viWrite
functions, whictenable you to perform direct 1/O with the instrument

Instrument Command Coverage

IVI instrument drivers fomessagdased instruments typically implement the full functionality of the
instrument available via the commands and queries with a few exceplibasprefix>.chm file lists the
instrument commands that the driver implements for each function andqtaraithe same information can
also be found in theprefix>.fp file.

Some commands and queries are not suitable for an instrument driver. The commands from the following
nodes are NOT implemented in this driver:

<DIAGnostic>
<FORMat (may be useidternally but not exposed to users)>
<SYSTem:COMMunicate>
< Service or Factory Calibration functionality>
<Undocumented SCPI (factory use only)>
<Other features not normally accessed through the programmatic interface, for example:
o DISPlay
o HARDCopy
o MEMory:STATe
o CURSor>

=4 =4 =4 -4 A -9

Driver users can send any commandstoamedsags ed i nstr ument using the driv

IVI-3.1: Driver Architecture Specification 119 IVI Foundation

http://www.mathworks.com/ivic

Known Issues

<None>

Contact Support

If you have feedback or need help using this driver, contagiptopriate support contact information

Trademarks

<Optionally add trademark statements here

Sample Driver Introduction Document for an IVI-COM specific driver

Driver Documentation

The readme.txt file can be found in theregram Files\IVI FoundatiolVI\Drivera<ComponentID>
rectory. |t contains notes

di

The <ComponentIB.chm file can be found in thePxogram Files\IVI

FoundatiohVI\Drivers<ComponentID directory. It catains

= =4 =4 -4 -4

f

A getting started example program
General inbrmation about using the driver

about install ati on,

Reference information for all methods armdgerties in the VACOM driver
Reference information for all functions aatiributes in the NAC wrapper
Information about Liag the driver in a variety of development environments includingatis

Studio, LabVIEW, and MATLAB
IVI compliance information

In addition to the .chm file, the driver may install integrated help for Visual Studio 2005/2008 (this may
increase the instatime by several minutes).

Driver Source Code and Examples

The IVI-COM driver source code can be found in tiregram Files\IVI
FoundatiohVI\Driversa<ComponentlDXSourcedirectory. For instructions on rebuilding the driver, refer to

t h

e

iBuilding the Driver Sour

ce Codeo help topic.

Driver example(s) can be found in thBregram Files\IVI FoundationlVI\Drivers<prefix>\Examples

directory. For instructions on rebuildingdar i v er ,

Connecting to the Instrument

Th

e

driver help topic fADriver

Exampl esd document s

MATLAB. Each of these examples illustrates how to connect to an insttumte respective development
environment.
The IVI resources pagéttp://ivifoundation.org/resources/default.afpas documents and videos that
explain how to get started with an FIOM driver in different development environments:

IVI Foundation

IVI Getting Started Guide for LabVIEW
IVI Getting Started Guide for LabWindows/CVI

120

IVI-3.1: Driver Architecture Specification

k nc

refer to the #ADriver Exampl

pr

http://ivifoundation.org/resources/default.aspx

IVI Getting Started Guide for Microsoft Visual C++
IVI Getting started Guide for MATLAB
IVI Getting Started Guide fohgilent VEE

Configuring Instrument Settings

The<ComponentlD>instrument driveapplication programming interface (API) includes methods and
properties for setting instrument state variables, as well as methods for controlling the instrument and reading
results from the instrument. These are documented kGbenponentID> IVICOM Driver > Reference

help topic.

There are two driver API hierarchies that client programs may use to control the instrument. The first is the
instrument specific hierarchy. his hierarchy can be used to access all of the functionality of the instrument.
This hierarchy is available to programs that use one of the driver constructors to instantiate the driver. For
more information on using the driver constructors, refer tortfoemation onDirect Driver Instantiationin

the <ComponentID> IVICOM Driver > Initializing the IVEFCOM Driverhelp topic. For more information

on using the instrument specific hierarchy, refer tod@emponentID> IVICOM Driver > Reference >
I<CompamentID> help topic.

The second hierarchy is the class compliant hierarchy. This hierarchy can be used to access the IVI class API
for the<ClassName>class. This hierarchy is available to programs that use th€OM class factory to

instantiate the dver. For more information on using the class factory, refer to the informatiQ©dm

Session Factorin the <ComponentID> I[VICOM Driver > Initializing the IVFCOM Driverhelp topic. For

more information on using the class compliant hierarchy, refer toGoenponentID> IVICOM Driver >

Reference > llvi<ClassNamehelp topic.

Configuring Driver Settings

IVI instrument drivers implement inherent capabilitiesluding poperties that control driver behavior,
utility methods, and identifying informatiorFor more information on using the inherent capabilities, refer to
the<ComponentID> IVICOM Driver > Reference > llviDrivethelp topic.

Properties that control driver behavior suchsitaulation, range checking, and instrument status checking
can beenablel/disable when initializing the driver or by using configuration information in the VI
Configuration Store. For more informationfeeto theGetting Started > Configuring the Drivérelp topic

Direct I/O

IVI instrument drivers for messadmsed instruments includRead ReadBytesWrite, andWriteBytes
methods, as well as a reference to the underlyingDif@ctlO, which enable you to perform I/O directly
with the instrument. For more information on using these methods and properties, refer to the
<ComponentID> IVICOM Driver > Reference > I<Compondbt> > Systemhelp topic.

Instrument Command Coverage

IVI instrument drivers for messagdmsed instruments typically implement the full functionality of the
instrument available via the commands and queries with a few excepiibahelp reference togdor each
method and property list the instrument command(s) that the driver implements for each function and
parameter.

Some commands and queries are not suitable for an instrument driver. The following commands are NOT
implemented in this driver:

1 All commands in theDIAGnostic> subsystem

IVI-3.1: Driver Architecture Specification 121 IVI Foundation

All commands in thecCALibrate> subsystem
All commands in th&FORMat> subsystem
All commands in theDISPlay> subsystem
All commands in th&SYSTem:COMMunicateseibsystem
Undocumented SCPI commands
Specificcommands
o HARDCopy
o MEMory:STATe
o CURSor>

=A =4 =4 -4 -8 -9

Driver users can send any commandstoamedsags ed i nstr ument using the driyv
Known Issues

The readme.txt file can be found in theregram Files\IVI FoundatiodlVI\Drivera<ComponentID>
directory. It contains information about known issues.

Contact Support
If you have feedback or need help using this driver, contggpropriate support contact informatisn

Trademarks
<Optionally addtrademark statements here

Sample Driver Introduction Document for an IVI.NET specific driver

Driver Documentation

The readme.txt file can be found in theregram Files\IVI

FoundationVI\Microsoft. NET\Framework6%v2.0.5072¥<DriverDirName> directory. It contains notes

about installation, known issues, and the driverods r
The DriverName>.chm file can be found in theProgram Files\IVI

FoundatiohVI\Microsoft NET\Framework6%2.0.5072¥<DriverDirName> directory. It contains

A getting started example program

General inbrmation about using the driver

Reference information for all methods andgerties in the IVI.NETriver

Information about using the driver & variety of development environments includingudis
Studio, LabVIEW, and MATLAB

1 IVl compliance information

= =4 —a A

In addition to the .chm file, the driver may install integrated help for Visual Studio 2005/2008 (this may
increase the install time by sevenaihutes), and may separately install integrated help for Visual Studio
2010.

Driver Source Code and Examples
The IVL.NET driver source code can be found in tieregram Files\IVI

FoundatioNVI\Microsoft. NET\Framework6%2.0.5072¥<DriverDirName>\Sourcedirectory. For
instructions on rebuilding the driver, refer to the

IVI Foundation 122 IVI-3.1: Driver Architecture Specification

Driver example(s) can be found in thBregram Files\IVI
Foundatio\lVI\Microsoft. NET\Framework6%/2.0.5072Y<DriverDirName>\Examples directory. For
instructions on rebuilding a driver, refer to the AL

Connecting to the Instrument

The driver help topic fADr i v elesfoE\Wsaargiudie, tabVIEWNgand ment s pr
MATLAB. Each of these examples illustrates how to connect to an instrument in the respective development
environment.

Configuring Instrument Settings

The<DriverDirName> instrument driver application programming interface (API) includes methods and
properties for setting instrument state variables, as well as methods for controlling the instrument and reading
results from the instrument. These are documented iDrikier API Referencéelp topic.

There are two driver API hierarchies that client programs may use to control the instrument. The first is the
instrument specific hierarchy. This hierarchy can be used to access all of the functionality of the instrument.
This hierarchy is available to programs that use one of the driver constructors to instantiate the driver. For
more information on using the driver constructors, refer to the informatithsoh ng t he Dri ver 0s
Constructordn theUsing the Driver Effectivgl> The .NET API > Instantiating the Drivéelp topic. For

more information on using the instrument specific hierarchy, refer tDrilier AP Reference > Driver

Hierarchy > I<ComponentID>help topic.

The second hierarchy is the class compliant htsar This hierarchy can be used to access the VI class API

for the<ClassName>x | as s . This hierarchy is available to procg
factory method to instantiate the dr iotheinformatoRor mor e
onUsing the IVI Factory Methods the Using the Driver Effectively > The .NET API > Instantiating the

Driver help topic. For more information on using the class compliant hierarchy, referRoitke API

Reference > Driver Hierargh> llvi<ClassName>help topic.

Configuring Driver Settings

IVI instrument drivers implement inherent capabilitiesluding properties that control driver behavior,
utility methods, and identifying informatior-or more information on using the inherent capabilities, refer to
theDriver API Reference > Driver Hierarchy > llviDrivehelp topic.

Properties that control driver behavior suchsitaulation, range checking, and instrument status checking
can beenabéd/disablel when initializing the driver or by using configuration information in the 1VI
Configuration Store. For more information, refer to thséng the Driver Effectively >The .NET APbH
Instantiating theDriver help topic.

Direct I/O

IVI instrument drivers for messagegased instruments inclutRead ReadBytesWrite, andWriteBytes
methods, as well as a reference to the underlyingDifectlO, which enable you to perform I/O directly
with the instrument. For more information on using these methods and properties, ref@rteehAPI
Reference > Driver Hierarchy > I<ComponentID> > Systéelp topic.

Instrument Command Coverage

IVI instrument drvers for messagbased instruments typically implement the full functionality of the
instrument available via the commands and queries with a few excepiibaselp reference topics for each
method and property list the instrument command(s) that therdmplements for each function and
parameter.

IVI-3.1: Driver Architecture Specification 123 IVI Foundation

Some commands and queries are not suitable for an instrument driver. The following commands are NOT

implemented in this driver:

All commands in thecDIAGnostic> subsystem
All commands in thecCALibrate> subsystem
All commands in th&FORMat> subsystem
All commands in theDISPlay> subsystem
All commands in th&SYSTem:COMMunicateseibsystem
Undocumented SCPI commands
Specific commands:
o HARDCopy
o MEMory:STATe
o CURSor>

=A =4 =8 -8 889

Driver users can send angmmandstoamessagea s ed i nstrument using t

Known Issues

The readme.txt file can be found in therggram Files\IVI
FoundatioNVI\Microsoft. NET\Framework64/2.0.5072Y<DriverDirName> directory. It contains
information about known issues.

Contact Support

If you have feedback or need help using this driver, conapropriate support contact information

Trademarks
<Optionally add trademark statements here

5.22 Help

Documentation

Help documentation shall bestalled with the driver. Help documentation may contain additional
information beyond what is specified in this section.

For

each IVAC driver function and NACOM or IVI.NET driver method, an IVI driver shall provide help

documentation for the following

f
f
f
f
1

For

The function prototype

A description of the function usage

For each parameter, a description of its usage and valid values
Return value and status codes

Forinstruments that have an ASCII command set such as, 8@Rtommands used in the function or
method

each IVAC driver attribute and IMCOM or IVI.NET driver property, an 1VI driver shall provide help

documentation for the following:

1
1
f

IVI Foundation

A description of the attribute usage
The data type
Read/write access

124 IVI-3.1: Driver Architecture Specification

he

dri v

Valid values
For IVI-C and IVFCOM, return \alue and status codeand for IVI.NET, exceptions

Forinstruments that have an ASCII command set such as, #@@Riommands used to get or set the
attribute

Common status codes exceptiongor functions and attributes may be presented in a standatibloca
instead of documented for each function and attribute.

The help documentation for IMT drivers may present status codes for attributes in the Set Attribute and Get
Attribute functions.

Each IVI driver shall provide help documentation on known ADFrict®ns, such as minimum versions or
feature requirements of ADEs.

The driver documentation for the identifier parameters in class compliant interfaces shall explain that users
who want to achieve interchangeability should use virtual identifiers amdittual identifiers should be
sufficiently specific to the test system such that they are unlikely to conflict with physical identifiers

5.22.1 Copyright Notice

EachlVI driver shall include the following text in a visible location in the Hetpumentation.

Content from the 1VI specifications reproduced with permission from the VI
Foundation.

The IVI Foundation and its member companies make no warranty of any kind with

regard to this material, including, but not limited to, the implied warran ties
of merchantability and fitness for a particular purpose. The IVl Foundation

and its member companies shall not be liable for errors contained herein or

for incidental or consequential damages in connection with the furnishing,

performance, or use of t his material.

Documeration published before July 2011, that reproduces material from the 1VI specifications shall have
until January 1, 2016, to add the required citation.

5.23 Compliance Documentation

Each IVI driver shall include documentation definitglevel of compliance with the VI specifications and
identifying the optional VI features supported in the driver. The compliance information shall be installed
with the driver. It shall be prominently displayed in the Windows help file or other resabelpl document.
Compliance documentation may contain additional information beyond what is specified in this Hection.
32-bit and 64bit versions of the same driver existetontents of theompliance documestfor them shall

be the same.

The compliase documentation shall contain the following sections, each containing the specified
information and using the section and item names as shown.

Compliance Category Section

The Compliance Category section of the compliance document informs the usetypttbéthe driver

and the API type that it exports. An BIOM or IVI.NET specific driver that complies with multiple

class specifications shall contain a separate Compliance Category section for each class specification
with which it complies. All IVI divers shall include the following items in the Compliance Category
section.

IVI-3.1: Driver Architecture Specification 125 IVI Foundation

IVI Foundation

Compliance Category Name

The Compliance Category Name item shall specify the type of IVI driver as detailed in Qe2tion
Types of IVI DriversThe name of the driver shall be formatted as follows.

IVI[-C, -COM, .NET, -COMI/G -COM/.NET, -C/.NET, -COM/C/.NET][One ofthe
IVI classes, Custom][Class, Specific] Instrument Drive r

Square bracketg] () indicate a set of terms from which one shall be selected. Each part of the name
is defined in the following paragraphs:

AlIVI-C drivers -Ghhailh ube doMpl-COMiversshadluse . Al | I VI
il XIOM6 in the c&lhdINETadrciev erasmesshal l use #Al VI . NETO
name.All IVI drivers that implementmultiple API types shall usefi | Vfdll@wed by the

i mpl emented API s, s e ndhe ecommiahcelngmet he 6/ 6 character

To specify an VI class, all IVI classompliant specific drivers and VI class drivers shall use the
name of the VI class specification. All IVl custom specificdrer s s hal | use ACustom
compliance name.

Al I VI class drivers shall use AClasso in the ¢
ASpecifico in the compliance name.

The following are examples of compliance names.

IVI - C IviDmm Class Inst rument Driver

IVl - C IviDmm Specific Instrument Driver

IVI - COM lviScope Specific Instrument Driver

IV 1 .NET IviScope Specific Instrument Driver

IVI - COM/C Custom Specific Instrument Driver

IVl - COM Custom Specific Instrument Driver

Class Specification Version

The Class Specification Version item specifies the version of the VI class specification in
accordance with which the driver was developedpdatedThis item is not present for IVI custom
drivers.

IVl Generation

The IVI Generatiomepresents a list of specification versions that, taken together, constitute a citable
and distinguishable set.

The VI Generation item specifies a set of minimum VI specification versions with which a specific
driver must comply in order to claim cofignce with a specific IVl Generation. The VI

Foundation web site contains a list of the IVI Generations and the minimum specification versions
required to claim compliance with each.

The 1 VI Generation i s -<gears 0 g n eyee>dsehe sieartfoliosvingd or m o f
the year in which the specification changes that constitute the new generation were approved. The
following are examples of existing IVl Generations: 42003, 1VI-2014. This item is not required

for IVI-2003 drivers.

Class Capability Groups

For IVI specific drivers, the Class Capability Groups item shall contain a tabular list of all the Class
Group Capabilities. If a clagsompliant specific driver implements a capability group for one or

more instrument models that the drivepparts, the documentation shall indicate support for that
capability group. If a classompliant driver does not implement a capability group in the driver, the
documentation shall indicate the driver does not sugpattcapability group. This item is ho

present for IVI custom specific drivers or IVI class drivers.

126 IVI-3.1: Driver Architecture Specification

Certification Statement

All VI drivers shall include a statement certifying that they comply with all applicable requirements
of the IVI specifications at the time this compliance documexst submitted prepared. The
following text shall be used:
<providero6s name> has evaluated and tested this d
that it meets all applicable requirements of the IVI specifications
at the time this compliance document was submitted to the VI
Foundation and agrees to abide by the dispute arbitration provisions
in Section 8 of IVI - 1.2: Operating Procedures, if the IVl Foundation
finds this driver to be non - conformant.

Optional Features Section

For IVI specific drivers, the Optional Features section of the compliance document informs the user of any
optional VI features ineclded in the VI driver. 1VI Class drivers do not have an Optional Feasaotion.
IVI specific drivers shall include the following items in the Optional Features section.

Interchangeability Checking

The Interchangeability Checking item shall specify thiee the specific driver supports
interchangeability checking. If a specific driver implements minimal or full interchangeability
checking, as described in Sect®3.6 Interchangeability Checkindghe documentation shall

specify that the driver supports interchangeability checking. Otherwise, the documestiation

specify that the driver does not support interchangeability checking. This item is not present for VI
custom specific drivers.

State Caching

The State Caching item shall specify whether the driver supports state caching. If a specific driver
implements state caching for one or more attribute, as described in Sedtloé State Caching

the documentation shall specify that the driver supports state caching. Otherwise, the documentation
shall specify that the driver does not support state caching.

Coercion Recording

The Coercion Recording item shall sifgevhether the driver supports coercion recording. If a
specific driver implements coercion recording, as described in Sécfiorl.7 Coercion

Recording the documentation shall specify that the driver supports coercion recording. Otherwise,
the documentation shall specify that the driver does not suppod@oeecording.

Driver Identification Section

The Driver Identification section informs the user of the identity of the driver. All IVI drivers shall include
the following items in this section.

Driver Revision

The Driver Revision item shatlontain the value of the Specific Driver Revision, Class Driver
Revision, or Component Revision attribute that the VI driver returns.

Driver Vendor

The Driver Vendor item shall contain the value of the Specific Driver Vendor, Class Driver Vendor,
or Compment Vendor attribute that the IVI driver returns.

Description

The Description item shall contain value of the Specific Driver Description, Class Driver
Description, or Component Description attribute that the IVI driver returns.

IVI-3.1: Driver Architecture Specification 127 IVI Foundation

Prefix/Component Identifier

The Prefix/Component Identifier item shall contain the value of the Specific Driver Prefix, Class
Driver Prefix, or the Component Identifier attribute that the IVI driver returns.

Hardware Information Section

The Hardware Information section informs theer about the hardware supported by the instrument driver.
All IVI specific drivers shall include the following items in this section:

Instrument Manufacturer
The Instrument Manufacturer item shall contain the name(s) of the instrument manufacturer.
Supported Instrument Models

The Supported Instrument Models item shall contain the value of the Supported Instrument Models
attribute that the 1VI driver returns.

Supported Bus Interfaces

The Supported Bus Interfaces item shall contain an itemized list of the bus interfaces that the VI
driver supports.

<nn>-bit Software Information Section

The 32-bit Software Information sectioand 64bit Software Information secticnform the user abdu
additional software required by the instrument drivEne 32bit Softwarelnformation section shall include
information relevant to the 3@it IVI driver. The 64bit Softwarelnformation section shall include
information relevant to the @it IVI driver. VI drivers that supporbnly 32-bit operating systems shall
include a 32vit Software Information section. VI drivers that supporifdoperating systems shall include
both a 32bit Software Information section and a-b# Software Informatiorsection.

For each software information sectid¥] drivers shall include the following:
Supported Operating Systems

The SuppordOperating Systemgem shall contain a list of supped operating systentlat the
IVI driver was known tovork onat the ime of release

Unsupported Operating Systems

The Unsupported Operating Systems item shall containef ligt Foundation targetedperating
system®on which thdVI driver was known not to work at the time of releasfea driver does not
support oner more of the following operating systems, this item shalthisteoperating system

1 Windows 7(32-bit)

Windows 7 (64bit)

Windows 8 (32bit)

Windows 8 (64bit)

Windows 10 (32bit)

Windows 10 (64bit)

This itemmay be abserit there are nmperating systems to list.

=A =4 =4 A =4

.NET Minimum Runtime Version

The minimum required .NET runtime version shall be specified for all .NET drivetading
wrappers

IVI Foundation 128 IVI-3.1: Driver Architecture Specification

.NET Target Framework Version

The specific version of the .NET Framework against which thedvias compiled shall be
specified for all .NET drivers, including wrappers.

Drivers published after Jan.1 2019 must include this information. Drivers published before this date
may omit the information.

Support Software Required

The Support Software Raged item shall contain a list of the support libraries that the 1VI driver
requires but that are not provided by the IVl Foundation or the operating system. Restrictions, such
as the minimum version number, should be included.

Source Code Availability

The Source Code Availability item shall specify if instrument driver source code is available to
endusers and the conditions under which it is distributed. If the instrument driver is just a thin layer
on top of support libraries, this item shall contastatement indicating as such.

Unit Testing Section

The Testing section informs the user about the unit testing performed on the instrument driver. All IVI
specific drivers shall include the following items in this section:

Test Setup(s)

The Test Setup(shem shall specify a list of test setups on whielu ranthe completeset ofunit tests

as specified in Sectioh2.2.1.1 Unit Test Procedurelf you performed the complete set of unit tests on
a large numer of setups, you can express multiple setups with one specification by listing multiple
values for the various setup elements, as long as you taditvatid combinations implied by the

multiple values listed

Instrument Model and Firmware Revision

The Instrument Model and Firmware Revision item shall specify the instrument models and their
firmware revisions on which you performed the complete set of unit tests. If you performed the
complete set of unit tests using multiple instrument models andiltiple firmware revisions, you
may document that information as shown in the following example:

Instrument Model (Firmware Revision): Agilent 34410A (2.1, 2.21),
Agilent 33411A (2.39)

Bus Interface
The Bus Interface item shall specify the bus ifaiee through which the instrument was connected
to the computer when you performed the complete set of unit tests. If you performed the complete

set of unit tests with multiple bus interfaces, you may document that information as shown in the
following example:

Bus Interface: GPIB, USB, LAN

Operating System and Service Pack

IVI-3.1: Driver Architecture Specification 129 IVI Foundation

The Operating System and Service Pack item shall specify the operating system(s) and
corresponding service pack(s) on which you performed the complete set of unit tests. If you
perfamed the complete set of unit tests with multiple operating systems and/or corresponding
service packs, you may document that information as shown in the following example:

Operating System (Service Pack): Windows 7 (no SP, SP1)
OS Bitness and Application Bitness

The OS Bitness and Application Bitness item shall specify the bitness of the operating system and
the bitness of the application which you used to perform the complete set of unit tests. If you
performed the complete set of unit testsmultiple bitnesses, you may document that information

as shown in the following example:

OS Bitness/Application Bitness: 32-hit/32 -hit , 64-hbit/32 -hbit, 64-bit/64 -
bit

VISA Vendor and Version

The VISA Vendor and Version item shall specify tlendor and version of the VISA

implementation you used to perform the complete set of unititekesdriver requires VISAIf you
performed the complete set of unit tests using multiple VISA implementations, you may document
that information as shown the following example:

VISA Vendor and Version: NI - VISA 5.2, TekVISA 3.3.4

IVI Shared Components Version

The IVI Shared Components Version item shall specify the version of the IVl Shared components
you used to perform the complete set of unit tefigu performed the complete set of unit tests
using multiple versions of the 1Vl Shared Components, you may document that information as
shown in the following example:

IVI Shared Components Version: 2.0, 221

To clarify the implication of listing multile values for multiple items, consider the following partial

example:
Operating System (Service Pack): Windows 8, Windows 7 (SP1)
OS Bitness/Application Bitness: 32-hbit/32 -bit , 64-bit/ 32- bit

This indicates that you performed the complete set of unit tests using the following three combinations:

1 Windows8 32-bit, with a 32bit application
1 Windows 7 (SP1p4-bit, with a32-bit application
1 Windows 7 (SP1B2-bit, with a32-bit application

sincelVI does not support 6dit applications.

Driver Installation Testing Section

The Driver InstallatiorTestingsection informs the user about the driver installation testing performed on the
instrument driver. All IVI specific drivers shanclude the following items in this section:

Operating Systems and Service Packs

IVI Foundation 130 IVI-3.1: Driver Architecture Specification

The Operating Systesand Service Packtem shall specify a list of operating systeamsl service packs
on whichyou performedhe driver instaltiontesting.

OS Bitness

The OS Bitnesstem shall specifghe bitness(es) of theperating systems on whiglou performedhe
driver instalhtiontesting.

Driver Buildability Section

The Driver Buildability section informs the user about the driveldability testing performed on the
instrument driver. All IVI specific driverthat include source codhall include the following items in this
section:

Operating Systems and Service Packs

The Operating Systesand Service Packtem shall specify adit of operating systenand service packs
on whichyou performedhe driverbuildability testing.

OS Bitnhess

The OS Bitnesstem shall specifghe bitness(es) of thaperating systems on whiglou performedhe
driver buildability testing.

Driver Test Failures Section

The Driver Test Failures section informs the user about the failures that the driver testing revealed on the
instrument driver that were not fixed before release. All IVI specific drivers shall include the following items
in this section:

Known Issues

TheKnown Issuestem shall specify a list of known issues that reflect all test failiraswere not
fixed. If there are no known issues, indicate None.

Additional Compliance Information Section

The Additional Compliance lefmation section informs the user about additional information that relates to
compliance but is not included in other defined items. For example, an IVI custom driver may include
notification of another IVI classompliant driver available for the samerdhaare. This section is not present

if no additional compliance information exists.

5.23.1 Example Compliance Text Files

This section contains example compliance documents for three different types of driversC&MVI
classcompliant specific driver, atVI -C custom specific driver, and an P class driver.IVI.NET
compliance documents are similar to {€0OM, with the addition of the .NET Minimum Runtime Version.

Sample Compliance Document for an IVI-COM class-compliant specific driver

IVI-3.1: Driver Architecture Specification 131 IVI Foundation

IVI Compliance Category:

IVI - COM IviFgen Specific Instrument Driver

Class Specification Version:
IVl Generation: VI - 2014
Group Capabilities Supported:

4.00

Base = Supported
StdFunc = Supported
ModulateAM = Supported
ModulateFM = Support ed
ArbWfm = Supported
ArbFrequency = Supported
ArbSeq = Not Supported
Trigger = Supported
InternalTrigger = Supported
SoftwareTrigger = Supported
Burst = Supported

Optional Features:
Interchangeability Checking = True
State Caching = False
Coercion Recording = True

Driver ldentification:
Driver Revision:
Driver Vendor:
Component Identifier:
Description:

Hardware Information:
Instrument Manufacturer:
Supported Instrument Models:
Supported Bus Interfaces:

32-bit Software Information:
Supported Operating Systems:

(32 - bit) , Windows 8 (64 - bit) ,
Unsupported Operating Systems:
Support Software Required:

Source Code Availability:

64- bit Software Information:
Supported Operating Systems:
(64 - bit)

Unsupported Operating Systems:
Support Software Required:
Source Code Availability:

Unit Testing:
Test Setup 1:

Instrument Model
Bus Interface:
Operating System (Service Pack):
OS Bitness/Application Bitness:
VISA Vendor and Version:

IVl Shared Components Version:

IVI Foundation

(Firmware Revision):

21 .0

VTl Instruments

ag33220a

Function/Arbitrary Waveform Generator

Agilent Technologies
33220A

USB, LAN, GPIB

Windows 7 (32

Windows 10 (32
N/A

VISA- COM

Source code included with driver.

- bit), Windows 7 (64
- bit), Windows 10 (64

- bit) , Windows 8
- bit)

Wndows 7 (64 - bit) , Windows 8 (64 - bit) , Windows 10
N/A
VISA- COM

Source code included with driver.

33220A (2. 07)

GPIB, USB, LAN

Windows 7 (SP1)

32-bit/32 - bit, 64 - Dbit/32 - bit
Agilent VIS A- COM (10 Libraries 16.3)
221

132

IVI-3.1: Driver Architecture Specification

Test Setup 2:

Instrum ent Model (Firmware Revision):

Bus Interface:

Operating System (Service Pack):
OS Bitness/Application Bitness:
VISA Vendor and Version:

IVI Shared Components Version:
Driver Installation Testing:

Operating System (Service Pack)
OS Bitness:

Driver Buildability:

Operating System (Service Pack)
OS Bitness:

Driver Test Failures:

Known Issues:

33220A (1.08)

GPIB

Windows 8

32-bit/32 - bit

Agilent VIS ~ A- COM (IO Libraries 16.3)
221

Windows 8, Windows 7 (SP1)
32- bit, 64 - bit

Windows 8, Windows 7 (SP1)
32- bit, 64 - bit

None

Sample Compliance Document for an IVI.NET class-compliant specific driver

IVI Compliance Category:

IVI.NET IviFgen Specific Instrument Driver

Class Specification Version:
IVl Generation: IVI - 2014
Group Capabilities Supported:

4.00

Base = Supported
StdFunc = Supported
ModulateAM = Supported
ModulateFM = Supported
ArbWfm = Supported
ArbFrequency = Supported
ArbSeq = Not Supported
Trigger = Supported
InternalTrigger = Supported
SoftwareTrigger = Supported
Burst = Supported

Optional Features:
Interchangeability Checking = True
State Caching = False

Coercion Recording = True

Driver Identification:
Driver Revision:
Driver Vendor:
Component Identifier:
Description:

Hardware Information:

1VI-3.1: Driver Architecture Specification

21 .0

VTI Instruments

Agilent33 220a

Function/Arbitrary Waveform Generator

133

IVI Foundation

Ins trument Manufacturer: Agilent Technologies
Supported Instrument Models: 33220A
Supported Bus Interfaces: USB, LAN, GPIB

32- bit Software Information:

, Windows 8

Supported Operating Systems: Windows 7 (32 - bit), Windows 7 (64 - bit)
(32 - bit) ,Windows 8 (64-bhit) , Windows 10 (32 - hit), Windows 10 (64 - bit)
Unsupported Operating Systems: N/A

.NET Minimum Runtime Version: 2.0.50727.4927

Source Code Availability: Source code included with driver.

64- bit Software Information:

Supported Operating Systems: Windows 7 (64 - bit) , Windows 8 (64 - bit)
(64 - bit)

Unsupported Operating Systems: N/A

.NET Minimum Runtime Version: 2.0.50727.4927

Source Code Availability: Source code included with driver.

Unit Testing:

Test Setup:

Instrument Model (Firmware Revision): 33220A (2.07)

Bus Interface: GPIB, USB, LAN

Operating System (Service Pack): Windows 7 (no SP, SP1)

OS Bitness/Application Bitness: 32-bit/32 - bit, 64 - bit/ 64- bit
VISA Vendor and Ve rsion: Agilent VIS A (IO Libraries 16.3)
IVl Shared Components Version: 221

Driver Installation Testing:

Operating System (Service Pack) : Windows 7 (SP1)
OS Bitness: 32-bit, 64 - bit

Driver Buildability:

Operating System (Service Pack): Windows 7 (SP1)
OS Bitness: 32- bit, 64 - bit

Driver Test Failures:

Known Issues: None

Sample Compliance Document for an IVI-C custom specific driver

IVI Compliance Category:
IVl - C Custom Specific Instrument Driver

Optional Features:
Interchangeability Checking = False
State Caching = True

Coercion Recording = True

Driver ldentification:

Driver Revision: 1.1.0
Driver Vendor: National Instruments
Prefix: AG81100

, Windows 10

IVI Foundation 134 IVI-3.1: Driver Architecture Specification

Description:

Hardware Information:
Instrument Manufacturer:
Supported Instrument Models:
Supported Bus Interfaces:

32-bit Software Information:
Supported Operating Systems:

(32 - bit), Windows 8 (64 - bit)
Unsupported Operating Systems:
Support Software Required:

Source Code Availability:

64 - bit Software Information:
Supported Operating Systems:
(64 - bit)

Unsupported Operating Systems:
Support Software Required:
Source Code Availability:

Unit Testing:

Test Setup 1:

Instrument Model (Firmware Revision):
Bus Interface:

Operating System (Service Pack):
OS Bitness/Application Bitness:
VISA Vendor and Version:

IVI Shared Components Version:

Driver Installation Testing:

Operating System (Service Pack)
OS Bitness:

Driver Buildability:

Operating System (Service Pack)
OS Bitness:

Driver Test Failures:

Known Issues:

Pulse/Pattern Generator

Agilent Technologies
81101A, 81104A, 81110A, 81130A
GPIB

Windows 7 (32 - bit), Windows 7 (64 - bit) , Windows 8
Windows 10 (32 - bit), Windows 10 (64 - bit)
N/A
NI-VISAver 5.0 or later
NI IVI Compliance Package ver 4.2 orlater
Source code available.
Windows 7 (64 - bit) , Windows 8 (64 - bit) , Windows 10

N/A
NI - VISA ver 5.0 or later
NI IVI Compliance Package ver 4.2 or later
Source code available.

81104A (1.04), 81130A (112)
GPIB

Windows 8, Windows 7 (SP1)
32-bit/32 - bit, 64 - Dbit/32 - bit
NI-VISA 5.2

221

Windows 8, Windows 7 (SP1)
32- bit, 64 - bit

Windows 7 (SP1)

32- bit, 64 - bit

None

Sample Compliance Document for an IVI-C Class Driver

IVI Compliance Category:

IVl - C IlviPwrMeter Class Instrument Driver

Class Specification version:

Driver ldentification:

1VI-3.1: Driver Architecture Specification

1.00

135

IVI Foundation

Driver Revision: 1.0.0

Driver Vendor: National Instruments
Prefix: IviPwrMeter
Description: Class driver for IviPwrMeter

32- bit Software Information:

Supported Operating Systems: Windows 7 (32 - bit), Windows 7 (64 - bit), Windows 8
(32 - bit), Windows 8 (64 - bit) , Windows 10 (32 - bit) , Windows 10 (64 - bit)
Unsupported Operating Systems: N/A

Support Software Required: NI IVI Compliance Package ver 4.2 or later

Source Code Availability: Source code available under separate license.

64- bit Software Information:

Supported Operating Systems: Windows 7 (64 - bit), Windows 8 (64 - bit) , Windows 10
(64 - bit)

Unsupported Operating Systems: N/A

Support Software Required: NI IVI Compliance Package ver 4.2 or later

Source Code Availability: Source code available under separate license.

5.24 Compliance for Custom Drivers

It is possible to create an IVustom specific driver for an instrument that fits within an instrument class.

Driver suppliers may create such IVI custom specific drivers to meet the needs of a special market niche. The
Additional Compliance Information section of the compliance docufieerthese VI custom specific drivers

shall include a statement informing users how to obtain an IVI-claspliant specific driver for the

instrument.

IVI Foundation 136 IVI-3.1: Driver Architecture Specification

AppendiEkx aAmpl e: Applying Virtual | dent

This appendix presents an example of how an IVI specific driver applies virtual repeated capability identifier
mappings in a repeated capability selector. The example is in the form of a procedure that an 1VI specific
driver might follow when the user pses a virtual repeated capability selector to a driver function. The
procedure reflects material from Sectibd, Repeated Capability Selectpend the requirements in Section
5.9.2 Applying Virtual Identifier MappingsIn particular, the procedure uses the syntax terminology defined
in Sectiond.4.7, Formal Syntax for Repeated Capability Selectors

The procedure assumes the following selector string and virtual ieemiéippings:
AMyDisplay: MyWindoMyTMadedc®MgTracelList,trl6,trl17]60

MyDisplay = disp3
MyWindow = winl

MyTracel = trO

MyTrace2 = trl

MyTrace3 = tr2

MyTraceList = tr11 - tr13
trl6e = trl5

1. If the selector is passed as a parameter to a function wharates on a multilevel hierarchy of repeated
capabilities, the VI specific driver parses the selector into path segments. Using the example selector
string, an IVI specific driver that supports nested repeated capabilities parses the selectorasthing int
following three path segments:

MyDisplay
MyWindow
[MyTracel - MyTrace3,MyTraceList,trl6,trl7]

If the number of path segments exceeds the number of levels in the repeated capability hierarchy on
which the function operates, the driver may repore@giar and exit the procedure.

If the IVI specific driver does not use nested repeated capabilities or the selector is passed to a COM
collection, the driver does not parse the selector into path segments. In that case, if the selector contains
colon opertors, the driver may report an error and exit the procedure.

2. If the driver allows multiple instances of the repeated capability to be accessed at once, the driver parses
the selector or the appropriate path segments into list elements. In the exadnpler; that allows
multiple instances to be accessed at the third level of the repeated capability hierarchy parses the third
path segment into the following four list elements.

MyTracel - MyTrace3
MyTraceList

trl6

trl7

3. The driver parses ranges into rateal capability tokens. Any remaining unparsed items are considered
to be repeated capability tokens. In the example, the following are repeated capability tokens:

MyDisplay
MyWindow
MyTracel
MyTrace3
MyTraceList
trl6

trl7

IVI-3.1: Driver Architecture Specification 137 IVI Foundation

f

IVI Foundation

For each repeatezhpability token, the driver checks whether the token matches a virtual identifier the
user defined in the VI configuration store. If so, the driver replaces the token with the string to which
the user mapped the virtual identifier in the VI configuratstore.

In the example, all repeated capability tokens exegpt match virtual identifiers. After the mappings,
the resultant selector string is the following:
Adi sp3: wintr2tfltrotr 13, tr15,tr17]0

If a token matches a virtual identifier, thewdn replaces the token with the mapped string regardless of
whether the token is also a valid physical identifier for an instance of the repeated capability. Notice that
trl6 is both a valid physical identifier and a virtual identifier that mapslt . As requiredfrl6 is

mapped tarls .

The driver performs the replacement operation only on the virtual identifiers that explicitly appear in the
original selector string. For exampleMf/Tracel were mapped tdlyTrace2 , the driver would not
replaceMyTrace2 with its mapped string. The resultant selector string would be the following:

Adi sp3: winl: [-M3tMt aeter221 3, tr 15, tr17]20

Ultimately, the driver would report an error on this selector string bed&ygace2 is not a valid
physical identifier.

The driver then parses the resultant selector into path segments, lists, ranges, and tokens again.
The driver verifies that each token is valid physical name for the repeated capability.

The driver verifies that lists and ranges are valid according to/thiaxsspecified in Sectiofh.4.2
Representing a Set of Instances

If all tokens, lists, and ranges are valid, the result is a valid physical repeated capability selector.

In this example, the resultant selector is the following:
Adi sp3: wint2tfltrotr13, trl5,tr17]0

The selector is a valid physical seledfwat resolves to the following set of physical identifiers:

disp3:winl:trO
disp3:winl:tr2
disp3:winl:trll
disp3:winl:trl3
disp3:winl:trl5
disp3:winl:trl7

138 IVI-3.1: Driver Architecture Specification

AppenBi EKxampll¥l Conformance Tests

The following table documents a suggested checklistst§tand checks that driver vendors may find useful

for assuring compliance with various VI specifications. The list is not comprehensive: driver vendors should
evaluate each development project to determine the best method for assuring complianseal§he li

contains tests that test other driver characteristics areas such as ADE usability that are not covered by VI

specifications.
Test Step Actions
Document Development and Test Document:
Setup(s) Hardware Used
1 Instrument Model(s)
1 FirmwareVersion
1 Options Installed
1 Accessories Used
1 Communication Bus
Software Used, Including Version Information
1 IVI Shared Components
1 Support Components (VISA)
1 Developer Specific Support Libraries
1 ADE
Operating System
1 Operating System(spervice Pack(s), and tBessés)
1 CPU Description
Inherent Capabilities Checks Check or Test:
AP| Compliance
1 Inherent API
Attributes
Values
Data Types
Read/Write Access
Functions
Function Prototypes

IVI-3.1: Driver Architecture Specification 139 IVI Foundation

Test Step

Actions

Class Compliant Capabilities Checks

Check or Test:
API Compliance
1 Class Compliant API
Attributes
Values
Data Types
Read/Write Access
Base Class
Extension
Cross dependencies in extensions
Functions
Prototypes
Base Class
Extension
Cross dependencies in extensions
Behavior
1 Attribute Coercion Direction
1 ParameteréWhen Ignored)
1 Disables Unused Extensions per 1VI3.1, section 3.3.4
1 Other Behavioral Models
1 Simulation

Architecture Checks

Check or Test:

Simulation

Applying UserDefined Settings

Usage of Shared Components

Status Checking How specific do weneed to be?
Resource Locking

Error Handling

Interchange Checking

Multithreading

Installer Tests

Check:
Presence of Proper Files
Common Components
1 Registry Entry
1 Configuration Server Entry

Install Modes
M Silent Install
1 Dialog Install
1 Standard Install
1 Custom Install
1 Uninstall

IVI Foundation

140 IVI-3.1: Driver Architecture Specification

Test Step

Actions |

Instrument Specific Capabilities Checks

Check or Test:
AP| Compliance
1 Instrument Specific Compliant API
Attributes
Values
Data Types
Read/Write Access
Functions
Prototypes
Check:
Adherence to IVI 3.4
1 Naming Conventions
T Parameter Types
1 Help Strings
Other 3.4 Topics
1 Behavior
1 State Caching

Unit Tests

Test:

Function & Attributes Perform as Intended
T Nominal Values

Boundary Conditions

Proper Coercion of Values

Errors are Loggednd Handled

Proper Error Codes are Returned
1 Handling of lllegal Values

Parameters (When Ignored)

= =4 —a -

System Tests

Test:

Driver Attributes/Functions in a Realistic Application Program
For Couplings and Dependencies

For Memory Leaks

Driver Can be Calleéfrom a Class Interface

ADE Tests

Test:

Syntactic Performance in ADE

If the driver provides an interface not specified by the VI Foundation, it should be teste|
an appropriate ADE.

Supplied example programs

Help Tests

Check:
1 Style
Topic Content
Cross References
Table of Contents Hyperlinks
Spelling
1 Context Sensitivity

= =4 —a =

Performance Tests

Test:

Data Throughput
Function/Attribute Execution Time
Memory Usage

Interoperability Tests

Check:
Driver Performance With Other IVI Driverparticipate in the IVI Foundation
Interoperability Forum.

1VI-3.1: Driver Architecture Specification

141 IVI Foundation

AppendiGorCt entt i Wif s aFTiylpee . h

This file is provided as a reference and may not have the same date or version as the actual file installed on
the system.

/
* lviVisaType.h
*
* Copyright (c) Interchangeable Virtual | nstruments Foundation 2006 - 2016.

* All Rights Reserved.

*

#ifndef IVI_VISA_TYPE_H
#define IVI_VISA_TYPE_H

/* This defines the include guard of visatype.h for backward compatibility
* reasons. Please ensure that changes in this ifndef block are reflected
* in visatype.h when necessary.
*

#ifndef _ VISATYPE_HEADER__

#define __ VISATYPE_HEADER__

#if defined(_WING4)

#define _VI_FAR

#define _VI_FUNC _ _fastcall
#define _VI_FUNCC __fastcall
#define _VI_FUNCH __ fastcall

#define _VI_SIGNED signed

#elif (defined(WIN32) || defined(_WIN32) || defined(__WIN32_) || defined(__NT_)) &&
ldefined(_NI_mswin16_)

#define _VI_FAR

#define _VI_FUNC __stdcall
#define _VI_FUNCC __cdecl
#define _VI_FUNCH __stdcall

#define _VI_SIGNED signed

#elif defined(_CVI_) && defined(_NI_i386_)

#define _VI_FAR

#define _VI_FUNC _pascal

#define _VI_FU NCC

#define _VI_FUNCH _pascal

#define _VI_SIGNED signed

#elif (defined(_WINDOWS) || defined(_Windows)) && !defined(_NI_mswin16_)

#define _VI_FAR _far

#define _VI_FUNC _far _pascal _export

#define _VI_FUNCC _far _cdecl _export
#define _VI_FUNCH _far _pascal

IVI Foundation 142 IVI-3.1: Driver Architecture Specification

#define _VI_SIGNED signed
#elif (defined(hpux) || defined(__hpux)) && (defined(__cplusplus) || defined(__cplusplus__))
#define _VI_FAR

#define _VI_FUNC

#define _VI_FUNCC
#define_VI_F UNCH

#define _VI_SIGNED

#else

#define _VI_FAR

#define _VI_FUNC

#define _VI_FUNCC

#define _VI_FUNCH

#define _VI_SIGNED signed

#endif

#define _VI_ERROR (- 2147483647L - 1) /* 0x80000000 */

#define _VI_PTR _VI_FAR *

I* - VISA Types */

#ifndef _VI_INT64_UINT64_DEFINED

#if defined(_WIN64) || ((defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__NT_)) &&
ldefined(_NI_mswin16_))

#if (defined(_MSC_VER) && (_MSC_VER >= 1200)) || (defined(_CVI_) && (_CVI_>=700)) ||
(defined(_ BORLANDC__) && (__BORLANDC__ >= 0x0520)) || defined(__LCC_) || (defined(__GNUC_) &&
(_GNUC__ >=3)) || (defined(__clang__) && (__clang_major__ >= 3))

typedef unsigned __int64 Viuint64;
typedef _VI_SIGNED __int64 Vilnt64;

#define _VI_INT64_UINT64_DEFINED

#if defined(_WIN64)

#define _VISA_ENV_IS_64_BIT

#else

/* This is a 32 - bit OS, not a 64 - bit OS */
#endif

#endif

#elif defined(__GNUC__) && (__GNUC__ >=3)
#include <limits.h>

#i nclude <sys/types.h>

typedef u_int64_t Viuint64;

typedef int64_t Vilnt64;

#define _VI_INT64_UINT64_DEFINED

#if defined(LONG_MAX) && (LONG_MAX > Ox7FFFFFFFL)
#define _VISA_ENV_IS_64_BIT

#else

/* This is a 32 - bit OS, not a 64 - bit OS */
#endif

IVI-3.1: Driver Architecture Specification 143

IVI Foundation

#else
/* This platform does not support 64 - bit types */
#endif

#endif

#if defined(_VI_INT64_UINT64_DEFINED)
typedef ViUInt64 _VI_PTR ViPUInt64;
typedef ViUInté4 _VI_PTR ViAUInt64;
typedef Vilnté4 _VI_PTR ViPInt64;

typedef Vilnt64 _VI_PTR ViAInt64;
#endif

#if defined(LONG_MAX) && (LONG_MAX > Ox7FFFFFFFL)
typedef unsigned int Viuint32;

typedef _VI_SIGNED int Vilnt32;

#else

typedef unsigned long Viuint32;

typedef _VI_SIGNED long Vilnt32;

#endif

typedef ViUInt32 _VI_PTR ViPUInt32;
typedef ViUInt32 _VI_PTR ViAUInt32;
typedef Vilnt32 _VI_PTR ViPInt32;
typedef Vilnt32 _VI_PTR ViAInt32;

typedef unsigned short ViUInt16;
typedef ViUIntl6 _VI_PTR ViPUInt16;

typedef ViUInt16 _VI_PTR ViAU Int16;

typedef _VI_SIGNED short Vilnt16;
typedef Vilnt16 _VI_PTR ViPInt16;
typedef Vilnt16 _VI_PTR ViAInt16;

typedef unsigned char ViuInt8;
typedef ViUInt8 _VI_PTR ViPUInt8;
typedef ViUInt8 _VI_PTR ViAUInt8;

typedef _VI_SIGNED char Vilnt8;
typedef Vilnt8 _VI_PTR ViPInt8;

typedef Vilnt8 _VI_PTR ViAInts;

typedef char ViChar;
typedef ViChar ~ _VI_PTR ViPChar;
typedef ViChar ~ _VI_PTR ViAChar;

IVI Foundation 144 IVI-3.1: Driver Architecture Specification

typedef unsigned char ViByte;

typede f ViByte
typedef ViByte

typedef void
typedef ViAddr
typedef ViAddr

typedef float
typedef ViReal32

typedef ViReal32

typedef double
typedef ViReal64
typedef ViReal64

typedef ViPByte
typedef ViPByte
typedef ViPByte

typedef ViPChar
typedef ViPChar
typedef ViPChar

typedef ViString
typedef ViString

typedef ViString

typedef ViUInt16

_VI_PTR ViPByte;

_VI_PTR ViAByte;

VI_PTR ViAddr;
_VI_PTR ViPAddr;
_VI_PTR ViAAddr;

ViReal32;
_VI_PTR ViPReal32;

_VI_PTR ViAReal32;

ViReal64;
_VI_PTR ViPReal64;

_VI_PTR ViAReal64;

ViBuf;
ViPBuUf;

_VI_PTR ViABuUf;

ViString;
ViPString;

_VI_PTR ViAString;
ViRsrc;
ViPRsrc;

_VI_PTR ViARsrc;

ViBoolean;

typedef ViBoolean _VI_PTR ViPBoolean;

typedef ViBoolean _VI_PTR ViABoolean;

typedef Vilnt32
typedef ViStatus

typedef ViStatus

typedef ViUInt32

ViStatus;
_VI_PTR ViPStatus;

_VI_PTR ViAStatus;

ViVersion;

typedef ViVersion _VI_PTR ViPVersion;

typedef ViVersion _VI_PTR ViAVersion;

typedef ViUInt32
typedef ViObject
typedef ViObject

ViObject;
_VI_PTR ViPObject;

_VI_PTR ViAObject;

IVI-3.1: Driver Architecture Specification 145

IVI Foundation

typedef ViObject ViSession;
typedef ViSession _VI_PTR ViPSession;

typedef ViSession _VI_PTR ViASession;

typedef ViUInt32 ViAttr;

#ifndef _VI_CONST_STRING_DEFINED
typedef const ViChar * ViConstString;
#define _VI_CONST_STRING_DEFINED
#endif

/* - Completion and Error Codes

#define VI_SUCCESS (oL)

/* - Other VISA Definitions

#define VI_NULL 0)
#define VI_TRUE 1)
#define V. |_FALSE 0)

/* - Backward Compatibility Macros
#define VISAFN _VI_FUNC
#define ViPtr _VI_PTR
#endif /* __VISATYPE_HEADER__ */
/* This defines the include guard of vpptype.h for backward compatibility
* reasons. Please ensure that changes in this ifndef block are reflected
* in vpptype.h when necessary.
*/
#ifndef _ VPPTYPE_HEADER__
#define _ VPPTYPE_HEADER__

/* - Completion and Error Codes

#define VI_WARN_NSUP_ID_QUERY (Ox3FFC0101L)
#define VI_WARN_NSUP_RESET (0x3FFC0102L)
#define VI_WARN_NSUP_SELF_TEST (0x3FFC0103L)
#define VI_WARN_NSUP_ERROR_QUERY (0x3FFC0104L)
#define VI_WARN_NSUP_REV_QUERY (0x3FFC0105L)

IVI Foundation 146

*/

*

*/

*

IVI-3.1: Driver Architecture Specification

#define VI_ERROR_PARAMETERL (_VI_ERROR+0x3FFC0001L)
#define VI_ERROR_PARAMETER2 (_VI_ERROR+0x3FFC0002L)
#define VI_ERROR_PARAMETER3 (_VI_ERROR+0x3FFC0003L)
#define VI_ERROR_PARAMETER4 (_VI_ERROR+0x3FFC0004L)
#define VI_ERROR_PARAMETER5 (_VI_ERROR+0x3FFC0005L)
#define VI_ERROR_PARAMETER6 (_VI_ERROR+0x3FFC0006L)
#define VI_ERROR_PARAMETER7 (_VI_ERROR+0x3FFC0007 L)
#define VI_ERROR_PARAMETER8 (_VI_ERROR+0x3FFC0008L)
#define VI_ERROR_FAIL_ID_QUERY (_VI_ERROR+0x3FFC0011L)
#define VI_ERROR_INV_RESPONSE (_VI_ERROR+0x3FFC0012L)

/* - Additional Definitions */
#define VI_ON 1)
#define VI_OFF 0)

#endif /¥ __ VPPTYPE_HEADER__*/

#endif /* IVI_VISA_TYPE_H */

IVI-3.1: Driver Architecture Specification 147 IVI Foundation

