Systems Alliance

VPP-4.3: The VISA Library

February 26, 2016

Revision5.7

Systems Alliance

VPP-4.3 Revision History

This section is an overview of the revision history of the MP3specification.

Revision 1.0, December 29, 1995
Original VISA document. Changes from VISA Transition Library include locking, asynchronous Heix 32
register access, block moves, sharesimory operations, and serial interface support.

Revision 1.1, January 22, 1997
Added new attributes, error codes, events, and formatted I/O modifiers.

Revision 2.0, December 5, 1997
Added error handling event, more formatted I/O operations, more a#rialtes and extended searching
capabilities.

Revision 2.0.1, December 4, 1998
Added new types taisatype.h for instrument drivers. Added new modes to give more robust functionality
toviGpibControlREN . Updated information regarding contacting Alkance.

Revision 2.2, November 19, 1999
Added new resource classes for GPIB (INTFC and SERVANT), VXI (BACKPLANE and SERVANT), and
TCPIP (INSTR, SOCKET, and SERVANT).

Revision 3.0Draft, January 28, 2003
Added new resource class for USB (INSTR). Addemroted parsing capability.

Revision 3.0, Januaryl5, 2004
Approved at IVI Board of Directors meeting.

Revision4.0 Draft, May 16, 20®
Added new resource class for PXI (INSTR) to incorporate PXISA extensions. Addetiéddensions for
registerbased opeations. Added support farew WIN64 framework

Revision4.0, October 12, 2006
Approved at I1VI Board of Directors meeting.

Revision4.1, February 14, 2008
Updated the introduction to reflect the VI Foundation organization changes. Replaced Nottextwitied by
IVI Foundation specifications.

Revision4.1, April 14, 2008
Editorial change to update the 1Vl Foundation contact information in the Important Information section to
remove obsolete address information and refer only to the 1Vl Foundatiositeeb

Revision4.2, October 16 2008
Tightened requirements for resource strings returnedgdRsrc , viParseRsrc , and
viParseRsrcEx to ensure that they return identical strings for use by the new VISA Router component.

Revision5.0, June9, 2010
Addedsupport for HiSLIP devices under the TCPIP INSTR designation. This includes updates to the resource
string and new attributes. Also added format specifiers for the long long type per ANSI C.

Revision5.1, October 11, 2012
Added support extended VXIbibdock transfer protocols and trigger capabilities according to-¥X4I0.
Extensions for PXINSTR, PXI BACKPLANE

Revision5.4, June 19 2014
Added clarifications (rules and observations) to viOpen, viReadAsync, viWriteAsync and viMoveAsgecl
a new error cod¥l_ERROR_LINE_NRESERVEDo facilitate better mapping of P> trigger error codes.
Added clarifications (rules arermissionpto viMapTrigger and viunmapTriggeExtended
viGpibControlREN to add support for TCPIP devicehanged the wsion to 5.4 to ensure that all VISA
spedfications being voted on at the same time have the same version.

Revision5.4 Editorial Change, June 19, 2015
AddedVI_WARN_QUEUE_OVERFLOWas a possible err@mode returned by viwaitOnEverftidded
clarifications on the effect dhe precision modifier withthe %f specifier.Added clarifications on the value of
failureIndexwhen viPxiReserveTriggers returdsferentstatuscodes Added clarifications on the maximum
length of VISA string attribtes.

Revision 5.7, February26, 2016
Add PXI trigger lines TTLSTTL11.

NOTICE

VPP-4.3 The VISA Librarys authored by the IVl Foundation member companies. For a vendor membership roster
list, please visit the IVl Foundation web sitenatw.ivifoundation.org

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation through
the web site atvww.ivifoundation.org

Warranty

The VI Foundation and its member companies make no warranty of mehyvikih regard to this material,

including, but not limited to, the implied warranties of merchantability and fithess for a particular purpose. The IVI
Foundation and its member companies shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of comA®m trademark rights in any work.

Table of Contents Pagev

Table of Contents

Section 1 Introduction to the VXIplug&play Systems Alliance and the IVl Foundation.............ccccccoeeeiiiieeee. 1
Section 2 Overview of VISA Library SPecifiCationc.ocouuiiiiiiiiiiimmiiiiieeee e ee 1
2.1 Objectives Of this SPECITICALION.........cccceiiuieitiieeeiss s e s ereerr e e reerreeeeeeesernsrsrrrereraeeaaaaeaeaes 1
2.2 Audience for this SPeCIfiCAtION..........cceeii it ———————— 1
2.3 Scop and Organization of this SPeCIfiCatiOn..............ooiiii i erer e eeeeaees 2
2.4 Application of this SPECIfICAION..........cceii it e e een e rre e 2.
I = (=] 1] o (o= PP PPPPPPPPPPPPPN 3.
2.6 Defnition of TErmMS and ACTONYMScciii it i i eeer e s e s e e et eeeeees s asaaseeeresaeeeseeeessmanseseensennnnereeees 4
A A ©70] 11Y/=T 1[0 LSRR 4
Section 3 VISA RESOUICE TEMPIALE.oiiiiiiiiiii et e s smme e e e e e e 1
3.1 VISA TEMPIAIE SEIVICESciiiiiiiiie ittt teet et e s et e e e e e b eeeb et e e e e e annbbe e e e e e e anbsenanrees 1
0 I A @0 £ o] IS Y= Y o] =S RPR 1

3.1.2 COMMUNICALION SEIVICES. ...eiiiiiiiiiiiee ettt ettt e e rerae e e e e e e s e e s e s s s anbe e e eeesaaesnnnensennes 3

3.2 VISA Template INtErface OVEIVIEWL.......cciiiiiiiiiii e reee ittt e ettt reeee sttt e e e e e s stbbe e e e e e s smnee s sabbneeeeeesnes 4
3.2.1 VISATemplate AtHDULES.........oveiiiis i e s e e e e e e e e e e e aeeneeaeeeeeeeannnes 4

3.2.2 VISA TempPlate OPEratiOnS.........ccciiiiiiiiiiiiimcmreeeiriiiis e s e e e e e eeeeaereeeaeeeeeeraaster s eeensaaasaeeaeees 4

T T 1 (=T n Yo [T T YT 8
TR T B (=YY (ST @ o= = o] 8.

G T T 001 V(@ [0 1= T (/) 9

3.4 CharacteriStic CONIOl SEIVICES.cccuuiiiiiiiiiiiieeer ettt et e e e aeeb e bbb et e e e ettt eeeaeeaeesaaamreeeeeeaaaaeaeaaasanas 10
3.4.1 Charactestic CONtrol OPEIratiONS...........uuuuuuuiiiei e i e ceeeieie s e e e ee e e e e et e s e e e e e e e eeaeaeenes 10

3.4.1.1 viGetAttribute (vi, attribute, attrState) 11

3.4.1.2 viSetAttribute (vi, attribute, attrState) 12
3.4.1.3viStatusDesc (Vi, Status, deSC) oo 14

3.5 Asynchronous Operation CONIOl SEIVICES.coiiiiiiiiiiieae ettt eeeee e 15
3.5.1 Asynchronous Operation Control OPEratioNS.......ccoieieeeeeiiiiieiee e eerr e e e 15
3.5.1.1viTerminate (vi, degree, jobld) e 16

3.6 ACCESS CONIIOl SBIVICES .. iiiiiiiiiieeeee ettt ettt eeae e e e s e e s e e s e eee b et ee e e es s snsenssansseeneeeeeeeannnses 17
3.6.1 Session Access Control Service Moel..........ooovviiii i 17

3.6.1.1 LOCKING MECNANISML.......uiiiiiiiiiiiieiie ettt e 17

3.6.1.2 LOCK SNAING....cciiitiiiiie ettt e e s ee et e e e e e b 19

3.6.1.3 ACCESS PrIVIIEOES.o iieeeiiitie ettt e e et e e e e e e e e anaesaaaaeaeas 19

3.6.1.4 Acquiring Exclusive Lock While Owning Shared LocK............ooovvvviiieriiiiinnnnnnn. 22

3.6.1.5 NESIEA LOCKS. ...ceeiiiiiiiiieiei ettt e e e 22

3.6.1.6 LOCKS ON REMOLE RESOUITESuuuutiiiiiiiiiiiiiaaaiititteetee et et e e e e e e e eeereeeeeeeeaeaaaaaaaaeaeas 22

3.6.2 ACCESS CONrol OPEIALIONS.......cciiiiiieiiiiiiiiiee et ee s e e e e e e e et e e e e reeeeeteeeeeaa et e e e e e enanaanaaeeeeaes 23
3.6.2.1viLock (vi, lockType, timeout, requestedKey, accesskey) ... 24

3.6.2. 2 VIUNIOCK (V) coieeee oot reet s s e e e e e e e et eeme e e e ettt s e e e e e e e e anaeeaaaaeaees 29

T A V=T o RS Y=Y Vo] =SSP 31
3.7.1 Event Handling and ProCESSING.........cuuviiieiiiiiieeeiiieee ettt et e e be e 31

3.7.1.1 QUEUING MECNANISIIL....ciiiiiiiiiiiie ettt ee e e et ee e e e e s e e eneees 32

3.7.1.2 Callback MECNANISIL.uuiiiiiiiiiiiie e e e e e e e e e e e s nnneaeees 33

T A o (ol= o 1[0 £ 1TSS 36

3.7.2.1 Exception Handling MoOdel............oooo e 36

3.7.2.2 Generating an Error CONAItiQN.............uuuuriieiiieaeiiiiiiiiiiie e eeeee e 37
3.7.2.3VI_EVENT_EXCEPTION. ...ciiiiiitiiitee e i etietieeeeee e e e e sittee e e e e st esneseaeeessntaeeaeeesnnsneen 38

I RS T V=T o1 @ 0 1=T = 110 TP RPN TTPPR 38
3.7.3.1viEnableEvent (vi,ev entType, mechanism, context)cccoiiiieeeens 39
3.7.3.2viDisableEvent (vi, eventType, mechanism) ..., 42

3.7.3.3 viDiscardEvents (vi, eventType, mechanism) ... a4

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Pagevi Table of Contents

3.7.3.4viWaitOnEvent (vi, inEventType, timeout, outEventType,

(o101 (Ofe] 0111 O PO P P PPPPPPPPPON 46

3.7.3.5 vilnstallHandler (vi, eventType, handler, userHandle) ... 49

3.7.3.6 viUninstallHandler (vi, eventType, handler, userHandle) ... 51

3.7.3.7viEventHandler (vi, eventType, context, userH andle) ... 53

Section 4 VISA RESOUICE MaANAGEMEILuuuuriiiiiereeeeeeieaesrenrterrreerrrrrerteeeearaaessrerrrrrrteeaaeeeeeessimmnereeeseaeeees 1

4.1 Organization Of RESOUICESuuuuuuiieerieieetieeeutietiaerrerrrrrreeteeeeaaaaeertrrtrtattaaaaaaasessiimaraeteeaeeeessesnnsinaasnnnnness 1

4.2 VISA Resource Mam@r INterfaCce OVEIVIEW..........ccoeiiiiiiiicieeee e e e e e s e s s ee s deeeveeeesss s nsnnnseesennsseeeesennnsnns 2

4.2.1 VISA Resource Manager AttHDULES.........coooeii i eeee e eeas 2

4.2.2 VISA Resource Manager FUNCLOMS.occiiiiiiiiieaee ettt 2

4.2.3 VISA Resource Manager OPEratiQIiS..........ueeeeeiiiurrimeeiiieeeesaitieeeeesssibsinesssseeeesssnrseeeeessannneeeas 2

.3 ACCESS BIVICES. .. it iiitittttt ettt ettt e ea e tbe ettt ettt e e et e eaat e et e et e ettt e e e e e e e e e e e e e eaateteeeeeeaaeaeeeeeaeaaeaaannaaaaaeeeaaeaaaaan 3

A.3.1 AJAIESS STING . .eeeeeeeiittiieeeee it eeet et e e e ettt e e e e s et e e et b e et e e e s s bbb et e e e e s s b beeesbbbeeeeesaanbbeeeeeessanbennaes 3

4.3.1.1 AdAress StriNg GIamMIMIal.........oocuueeeeeeriieeeiitieeee e e s atbreeeee s sieeeaasbreeeeessatbereeeessaneeesnd 3

4.3.2 SyYStEM CONfIQUIALION.oiitiiiiiiei it ieeet ettt e et e e e st b e e e e s st b e enbbe e e e e e s sabbneeeeeeaas 1

4.3.3 Access FUNCtions and OPeratiOnS..........cceeviiiiieiieeeeeeeeeeeeieiis s s e s e e e e eseess e s e e e e e aaeeeeeessnnannmnnnenres 8

4.3.3.1viOpenDefaultRM = (SESN) ..uuieiiiiii it e e e e e e eeeee e e e e e e e e ee e 9

4.3.3.2viOpen (sesn, rsrcName, accessMode, timeout, vi) . 11

4.3.3.3viParseRsrc (sesn, rsrcName, intfType, intfNum) s, 14
4.3.3.4viParseRsrcEx (sesn, rsrcName, intfType, intfNum, rsrcClass,

unaliasedExpandedRsrcName, aliasIfEXiStS) i, 16

4.4 SEAICH SEIVICESottt e e ettt et ettt e et eeae b b e b b ettt ettt e et e e e e e e e s aaareeeeaeeaaaaeens 20

4.4.1 Resource Regular EXPreSSIQN.........uuuiiiii i e e eceeeii e s e e e e e ee e eeeeettat s smeeeb s e s e e e aeaeeeeesssenneeeeeennes 20

4.4.2 SEArCH OPEIALIONS.......cceiiiiieeeeiiit et r e s e e e e e ee e e e rereeeeeaeeeeesetara e s e eeansaa s seeeeeaeeeeeerennres 22

4.4.2.1viFindRsrc (sesn, expr, findList, retcnt, instrDesc) .. 23

4.4.2.2viFindNext (findList, INSIIDESC) ooriii e 27

SECtiON 5 VISA RESOUICE ClASSES......ciiiiuueiiiiiiiiiiiieeaiaeetttetaeeeeeeereeeesasesesteeaeeeereetaeaaaeeeessasaeeeeeeeaaaaeeseeesens 28

5.1 INStrUMENt CONLIOI RESOUICE.eeeiiiiiiiiii ettt e e e e e e e e e s et e e e e e e e e e e e e e s s s s s e s mnaeeeeseesaesanannnnsrnnrenes 30

5.1.1 INSTR RESOUICE OVEIVIEM......ceiiiiiiieieieitiieanesaeassneeeteteeeeeeeeeenaasssseseseeeseeeeeeeeeeeeeeeansssereeeeees 30

5.1.2 INSTR ReSOUICE AMIDULES.......cciii i iiieees et eeene e e e e e e e e e e e e e eeeeeeeeeeeeees 34

5.1.3 INSTR RESOUIMTIBVENTS.coiiiiieieiiiitit ettt e e e e e e e e e eeettneaeeeeeeeeebeeann e s e e eeeeamaaaaaaeeeaeaaaaeees 57

5.1.4 INSTR RESOUICE OPEIALIANS uuiiiieiiiiiiiiee ettt ettt e e eeme e et e e e e e s bt e e e semme e e e eenees 63

5.1.5 Differences between VX1 and HiSLIP TCPIP INSTR Systems.........ccoovvvvvivviviicmmeeevnnininnnn. 65

5.2 MEMOIY ACCESS RESOUICE.uuiiiiiiiie ittt ettt e et e st raat e et e et ee b s e e e eete s saaaseeteeten s eeeentaneeeeessnnn 66

5.2.1 MEMACC RESOUICE WVIEW........cceeeiiiiaeiaieiteeee e e e e e e e e bbbt e e e e seebabbbebeeeeeeeeeeeaaansnrenes 66

5.2.2 MEMACC RESOUICE ALLHDULES.ottt eieeeib bbbttt eeeee bbb eeee e e e e e e e e e e seeeneees 68

5.2.3 MEMACC RESOUICE EVENLS.......uiiiiiiieiiiiiieiieeee ettt eeeea s e e e e et e ee e e e e smr s 73

5.2.4 MEMACC ReSoUrce OPEratiQnS...........ccceveiirrrrrieemeeeeeeiiiiiiiissieeeeeeessaaesseeseesesssssssssssnnnnnsmsssesns d 4

5.3 GPIB BUS INtEIfaCE RESOULCEuuiiiiiiiiiiiiiieeeiiiieiieee ettt e et e e e e e eeeeeeee e e eeeeeeeaeaeeeeesssssmmmeeeeaeaeeeeessassaaannnns 16

5.3.1 INTFC RESOUICE OVEIVIEM.....cceeeeiieiiieeeeeieaeeeeesessaeeasaseseeeeeeaaeeeessaasnnnsnnbeeseeeneeeeenannsnnssnsnnnes 76

5.3.2 INTFC RESOUICE AttHDULES.....cce it eeee s e e e eennnnnnnnneenees 17

5.3.3 INTFC RESOUICE EVEINLS... ..ottt e et ee ettt e s e e e e e e emaaa s e s e e eeeaaaeeees 81

5.3.4 INTFC RESOUICE OPEIAtIQNS.uveieieiiiiitiiieeaeee e ettt e e e e ettt e e e seme e e e aibb e e e e e s aabbe e e e e sammee e e eeeees 84

5.4 Mainframe BacKBINE RESOUICE........uuiiiiiiiiiiiei ettt e e e enaebeee 85

5.4.1 BACKPLANE RESOUICE OVEIVIEM.....ccceeeiieiieiiaieeieee e e e e e e e e e e e e aieib bt e e e s s sssnnbnebesbeeeeeeeeanaand 85

5.4.2 BACKPLANE ResoUrce AHDULES.........ooi it ee et ceee bbb e e e e e e e e e 86

5.4.3 BACKPLANE RESOUICE EVENIS..... .ottt ieeee ettt eeeeas s e e e e e eeeeene e smmmeeees 90

5.4.4 BACKPLANE RESOUICE OPEIatiQNS.......uueiieiiiiieiieeeeeeieiieeeeettaaaaa e e e e e e s e s immeeaaaaaaa e e e e s e s aasannnniees 92

5.5 Servant DEZE-SIAE RESOUITE.........uuiiiiiiiiiii ittt ettt e e e e e e e ettt et e e e e e e e e e e s s e s e s s rimmnea e e e e e e e s e s s aaannaaes 93

5.5.1 SERVANT RESOUICE OVEIVIEM.......ccccueeerierreeeiireeiaassnnseereneeeeeereesssmamssssnssnsenrerreereeeeeeemmmmsnnes 93

5.5.2 SERVANT RESOUICE AttHDULES......ccciieiiiiiiieiiieeesscteebt e e e e e s seensesbee e eeeeereeeeeeeeeeeenseeees 94

5.5.3 SERVANT RESOUICE EVEILS......couiiiuiiiieiee e e ceeei e s e e ee e e ee et s e s s e e e e e e e e e eeeestnnneeeeeeenne 98

5.5.4 SERVANT RESOUITBPEIALIONS. ...cciiiiiiitiiiiee e iitiieeettee e e e s e sittee e e e e s aibbeesteee e e e s s snbbeeeeeesaneesennnees 101

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table of Contents Pagevii

5.6 TCP/IP SOCKEL RESOULCE.......ciiuttiiiiie ittt eettieee e e e s ettt e e e s st e e ettt e e e e s s b bbe e e e e e s st e e eatbeeeeeessanbbeeeeeessnsbnnnns 102
5.6.1 SOCKET RESOUICE OVEIVIEW......cuvuiiitiesiiiiiiiraasieeeaesaittteeeessasssinassseeeeesssnsstsesessssnsssesssssees 102
5.6.2 SOCKET ReSOUICE ALIDULES.......uvvieiiieiiiitieeiieee ettt e et e e s e e e nneeeeas 102
5.6.3 SOCKET RESOUICE EVENIS......cciiiiiiiiiiiii ittt e e et e e et e ettt e e e e e e aaaa s e e e e e e e e 105
5.6.4 SOCKET RESOUICE OPEIAtIONS. ...cciiiuttiiiieeiiitieeeitiie e e e e ettt e e e et e enit e e e s e abbre e e e e e e snbbeeeaeees 106

Section 6 VISA ReSoUrceSPEcCifiC OPEIatiONS........ccciiiuriiiieeiiiieeeiiie e e et e et eeeib e e e e s sbbr e e e e s sebbeeneeees 1

6.1 BASIC I/ SBIVICES....eeiiiiiee e ettt e e e e o e ettt ettt et e e aannse bt e b bttt e et et e e e e e e e eaetbeereeeeeees 2
6.1.1 viRead(vi, buf, count, retCOUNL) oo s 2
6.1.2 viRead Async(vi, buf, count, jobld) e —————— 5
6.1.3 viReadToFile(vi, fileName, count, retCount) a1 8
6.1.4 viwrite(vi, buf, count, retCOUNL) e 11
6.1.5 viwriteAsync(vi, buf, count, jobld) L ——— 13
6.1.6 viwr iteFromFile(vi, fleName, count, retCount) 16
6.1.7 VIAssertTrigger(Vi, ProtoCOl) o ——— 18
6.1.8 VIREAASTB(Vi, SLAIUS) coieiiiiie ittt e et e et e e it e e e e e e e e e et e e nanne s 20
N Y (O[T | S (Y O PP PP PP PPPR 22

6.2 FOrMALIEA 1/O SEIVICESoi ittt teeee ettt ettt e e e e ae bbb et e ettt ettt et eees bt e b be e e e e e eeeeeeeeeeeessaamreees 24
6.2.1 ViSetBuf(Vi, Mask, SIZE) e ———— 24
6.2.2 VIFIUSN(Vi, MASK) oot 26
6.2.3 ViPrintf(vi, writeFmt, argl, arg2,...) e 28
6.2.4 viVPrintf(vi, writeFmt, params) e rrne e e 37
6.2.5 viSPrint f(vi, buf, writeFmt, argl, arg2, ...) e 38
6.2.6 VIVSPrintf(vi, buf, writeFmt, params) e 39
6.2.7 viBufWrite(vi, buf, count, retCount) SRS &
6.2.8 viScanf(vi, readFmt, argl, arg2,...) SR £
6.2.9 viVScanf(vi, readFmt, PArams) o 52
6.2.10 viSScanf(vi, buf, readFmt, argl, arg2, ...) e 52
6.2.11 viVSScanf(vi, buf, readFmt, params) e 54
6.2.12 viBufRead(vi, buf, count, retCouNnt) e 55
6.2.13 viQueryf(vi, writeFmt, readFmt, argl, arg2,...) e 57
6.2.14 viVQueryf(vi, writeFmt, readFmt, params) e 59

LG T 1V 1= T g To) Y @ TS Y= Y T = 61
6.3.1 viln8(vi, space, offset, Val8) 61
6.3.2 viln16(Vi, space, offset, VallB) 61
6.3.3 viln32(vi, space, offset, val32) e 61
6.3.4viln64 (vi, space, Offset, ValB4) 61
6.3.5 viOut8(vi, space, offset, Val8) e 64
6.3.6 viOUutl6(vi, space, offset, VallB) e 64
6.3.7 viOut32(vi, space, offset, val32) 64
6.3.8 viOut6 4(vi, space, offset, valB4d) e 64
6.3.9 viMoveln8(vi, space, offset, length, buf8) 67
6.3.10 viMovelnl16(vi, space, offset, length, bufl6) 67
6.3.11 viMoveln32(vi, space, offset, length, buf32) 67
6.3.12 viMoveln64(vi, space, offset, length, buf64) 67
6.3.13 viMoveln8EXx(vi, space, offset64, length, buf8) L 67
6.3.14 viMoveln16Ex(vi, space, offset64, length, bufl6) 67
6.3.15 viMoveln32Ex(vi, space, offset64, length, buf32) L 67
6.3.16 viMoveln64Ex(vi, space, offset64, length, buf64d) 67
6.3.17 viMoveOut8(vi, space, offset, length, buf8) L 71
6.3.18 viMoveOutl6(vi, space, offset, length, bufl6) 71
6.3.19 viMoveOut32(vi, space, offset, length, buf32) 71
6.3.20 viMoveOut64(vi, space, offset, length, buf64) 71

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Pageuviii Table of Contents

6.3.21 viMoveOut8EXx(vi, space, offset64, length, buf8) 71
6.3.22 viMoveOutl16Ex(vi, space, offset64, length, bufl6) e 71
6.3.23 viMoveOut32Ex(vi, space, offset64, length, buf32) 71
6.3.24 viMoveOut64EXx(vi, space, offset64, length, buf64) s 71
6.3.25 viMove(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset,
(o LTS AT/ To L TR =Y T 11) USSR 75
6.3.26 viMoveEXx(vi, srcSpace, srcOffset64, srcWidth, destSpace,
destOffset64, destWidth, [ength) e 75
6.3.27 viMoveAsync(vi, srcSpace, srcOffset, srcWidth, destSpace,
destOffset, destWidth, length, jobld) 79
6.3.28 viM oveAsyncEx(vi, srcSpace, srcOffset64, srcWidth, destSpace,
destOffset64, destWidth, length, jobld) 79
6.3.29 viMapAddress (vi, mapSpace, mapBase, mapSize, access, suggested,
o To (0|21 P PP O TP PPPR PP 83
6.3.30 viMapAddressEx(vi, mapSpace, mapBase64, mapSize, access,
(10 Lo o L= 2 (=T o = To [£ =S PRSPPI 83
6.3.31 VIUNMAPAAUIESS(VI) ceeeeeiieiiiiiii ettt ret et e et e et e e e e s st b e e e e e s s anbbeeensneeeeeeeend 36
6.3.32 ViPeek8(Vi, addr, Val8) e ——— 87
6.3.33 VIPeek16(Vi, addr, VAlL1B) e 87
6.3.34 viPeek32(Vi, addr, VAl32) e ——————— e 87
6.3.35 VIPeekB4(Vi, addr, VAIBA) e ——————— e 87
6.3.36 VIPOKke8(Vi, addr, Val8) i e e e e e e e e eesenns 88
6.3.37 VIPOKEL16(Vi, addr, VAaILB) oo e 88
6.3.38 VIPOKe32(Vi, addr, Val32) e 88
6.3.39 VIPOKEBA(Vi, addr, VAIBA) e ————— e 88
6.4 SNAred MEMOIBEIVICES.ci ittt ittt ettt e st eeeb et e e s e bbbt e e e e s as bt s eaabee e e e s e annbbeeeeeeannbseanaeed 89
6.4.1 viMemAIlloC(Vi, Size, OffSEL) e 39
6.4.2 vIMemAIloCEX(Vi, Size, OffSEIB4) oo 89
6.4.3 VIMemFree(Vi, OffSEL) oo e e e e 91
6.4.4 viMemFreeEX (Vi, OffSEIBA) oot a1
6.5 INterface SPECIfIC SEIVICES .. .uuuuii it eereer e e e e e e e e e e et et e e et et mmmreestean e e s eeaeeaaeeeeanns 92
6.5.1 viGpIibControlREN(VI, MOAE) oo e e e e e 92
6.5.2 viGpIibControlATN(Vi, MOAE) oo e e e eae e 94
6.5.3 VIGPIDSENUIFC(VI) oottt e et e e eamme e e as 96
6.5.4 viGpibCommand(vi, buf, count, retCount) 97
6.5.5 viGpibPassControl(vi, primAddr, SeCAAAr) e 929
6.5.6 vivxiCommandQuery(vi, mode, cmd, reSPONSE) oo errrr e 100
6.5.7 viAssertintrSignal(vi, mode, statusiD) s 102
6.5.8 viAssertUtiISignal(Vi, INE) e 104
6.5.9 viMapTrigger(vi, trigSrc, trigDest, mode) s 105
6.5.10 viUnmapTrigger(vi, trigSrc, trigDest) e 108
6.5.11 viUsbControlOut (vi, bmRequestType, bRequest, wValue, windex,
WLENGEN, DU et e e e 110
6.5.12 viUsbControlln (vi, bmRequestType , bRequest, wValue, windex,
WLength, DUf, FEICNL) et r e et e as 112
6.5.13 viPxiReserveTriggers (vi, cnt, trigBuses, trigLines, failurelndex)
.. 114
Appendix A Required AMIDULES ... et e bbb 1.
A.1 Required AtNDULE TabIES... ..ottt eee bbbttt et e e et e et e eaebeebe e e et e eeaeaaaaaeeeeeeaannees 1
Resource Template AttDULESoooi e e 1
INSTR Resource Attributg€&Seneric) (CONtINUE)..........uveeiiiiiiiiiiiieeeeee e 2
INSTR Resource Attributes (Message Based)..........uuiiiiiiiiieeeiiie et 2.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Table of Contents Pageix
INSTR Resource Attributes (GPIB and GPUXI SPECIfiC)....ccuvvviiiiiieeeiiiiii e 2
INSTR Resource Attributes (VXI and GPNBXI SPECIfIC).........ccccicveiiiiiiiiieieeerc i e e s eeeeanenees 3
INSTR Resource Attributes (VXI and GPNBXI SPECIfIC).........ccececueviiiiiiiieeeescciinvvevre e e e e e eeeeenenees 3
INSTR Resource Attributes (ASRL SPECITIC).....ccciiiiiiiiieiiiie et 4
INSTR Resource Attributes (TCPIP SPECITIC).........uvriieeiiiiiiiieeeiee et 4.
INSTR Resource Attributes (HISLIP SPECITIC).......cuueiiiiiiiiiiiiiee e 4.
INSTR Resource Attributes (VXI, GPIBXI, USB, and PXI SPECIfiC)........cccuvrrrieiiiiiiiieeeiiie e 4
INSTR Resource Attributes (VXI, GPIBXI, and USB SPeCifiC)..........cccuririiiiiiiiieeciiiee e 4.
INSTR Resource Attributes (USB SPECITIC)........cuuuriiieiiiiiieeeiit et 5
INSTR Resource Attributes (PXI SPECITIC).......ccoiiiiiiii i ceeee e e e e s e e e e eeeed 5
MEMACC Resource AttribULES (GENEIIC)......uuuuirrireieeiieeiecceeirrrreereeeeesaeeeeeeesssmmrereaeaaeeeeeessessansnsnnnneesd 6
MEMACC Resource Attributes (VXI, GPHYXI, and PXI SPeCifiC)...........ooeiiiiiciiiiiienen s 8.
MEMACC Resource Attributes (VXI and GPIBXI SPECIfiC).....cuvvvviieeeeiiiii i eeend 8
MEMACC Resource Attributes (GPHBXI SPECIfIC)uuvririiiiiiiiiiiiiiiie et a e 9
INTFC Resource AttrbULES (GENEIIC) . ..uuiiiiiiiiie ettt eeee e 9
INTFC Resource Attributes (GPIB SPECITIC).......ccviiiiiiiiiiiie i 10
BACKPLANE Resource AttribULES (GENETIC)........iiuuriiieeiiitiieeetiieee ettt e et e et e e e e s sibreeeee e 10
BACKPLANE Resource Attributes (VXI and GPIBXI SPecCific)uevveeiiiiiiiiiiiiieniieeee e, 11
SERVANT Resource AttrbULES (GENELIC).......uuuiieiiiiiiiiie ettt 11
SERVANT Resource Attributes (GPIB SPECITIC)......ccccuiiuiiiiiiiiiieen et 12
SERVANT Resource Attributes (VXI SPECIFIC)......cciiiiiiiiiiiiiiiieeiee et 12
SERVANT Resource Attributes (TCPIP SPECIfIC).........ocvveviiiiiiiiiciie e eeeevveeee e 12
SOCKET Resource AtrbULES (GENEIIC).........iiieiiiiiiiii i ieeteiei e s e e e e e e et e ee e et enne e e e eeeeeraa e r s e e e aeeeenennas 13
SOCKET Resource Attributes (TCPIP SPECIfIC).......ccoiiiiieieiieeiees e eeeveeee e 13
Appendix B Resource Summary INfOrmMatioN.............oiiiiiiiiiiiiieees e reee e e e e e emee s 13
B.1 SummMary Of AMIDULES ... e e e e e e e emeess s e s e e e e e e e eeeeeaetesn s mmnrnnes 13
B.2 SUMMANDT EVENTS......eiiiiiiiiiiiieii ettt rmee et e e e e st bt e e e s ammee e e s bbbt e e e e e anbbe e e e e e smmee s e nneeees 16
B.3 SUMMANY Of OPEIALIONS. . .cciieiiiiee ettt ettt ettt e e e e e bbbt e e e e e sa bbb e eeeer e e e e e e anbbb e e e e e e e nbbeeeeennes 17
Figures
Figure 3.7.1 State Diagram for the Queuing MeChaniSML............ccooiiiiiiirriiie e 32
Figure 3.7.2 State Diagram for the Callback MeChaniSIM.............coooiiiiiiciiii e 35
Tables
Table 3.2.1 VISA Template Required AtrDULES.cooiiiiiiii e et 4
Table 3.2.2 ViVersion Description for VI ATTR_RSRC_IMPL_VERSIOMNNd
VI_ATTR_RSRC_SPEC _VERSION.......coiiuiuieieitiiceeeeecceeseeee s senes s s seneseneneees 5.
Table 3.6.1 Types of Locks Acquired When Requesting Session Has No LocK............ccceevvvieeeniiinnnnn, 18
Table 3.6.2 Types of Locks Acquired When Requesting Session Has &ixellLock Only (Nesting)......... 18
Table 3.6.3 Types of Locks Acquired When Requesting Session Has Shared Lock (Nesting)............ 18
Table 3.6.4 Types of Locks Acquired When Requesting Session Has Shared and Exclusive Locks (l@sting)
Table 3.6.5 Current SeSSION HAas NO LOCK........coiiiiiii i eee s e eennnnes 20
Table 3.6.6 Current Session Has EXCIUSIVE LACKccoiiiiiiiiieeeiee it 20
Table 3.6.7 Current Session Has Shared LACKccooviiioi i eees s 20
Table 3.7.1 State Transitions for the Queuing MeChaniSM..........c.occuiiiiiiiece i 33
Table 3.7.2 State Transition Table for the Callback Mechanism.............cccco i, 36
Table 3.7.3 Special Values foeventType Parameter............ ettt 40
Table 3.7.4 Special Values fomechanisSm Parameter............uueieiiiiiiiiicceeiiiieiiieeeee e e e rmr e e e aee s 40
Table 3.7.5 Special Values foeventType Parameter............ ettt 42
Table 3.7.6 Special Values fomechanisSm Parameter............uueieiiiiiiiiicceeiiiieiiieeeee e e e rmr e e e aee s 43
Table 3.7.7 Special Values foeventType Parameter............eeiiiiiiiiiiiiieeeiiieiiieeeee e 45
Table 3.7.8 Special Values fomechanisSm Parameter.............ueeiiiiiiiiiiceeeieiieeiieeee e e e rmr e e e e ee s 45

VXIplug&play Systems Alliance

VPP-4.3: The VISA Library

Pagex

Table 3.7.9
Table 3.7.10
Table 3.7.11
Table 4.3.1
Table 4.3.2
Table 4.3.3
Table 4.3.4
Table 4.3.5
Table 4.4.1
Table 4.4.2
Table 4.4.3
Table 4.4.4
Table 4.4.5
Table 4.4.6
Table 4.4.7
Tablke 4.4.8
Table 6.1.1
Table 6.1.2
Table 6.1.3
Table 6.1.4
Table 6.1.5
Table 6.1.6
Table 6.2.1
Table 6.2.2
Table 6.3.1
Table 6.5.1
Table 6.5.2
Table 6.5.3
Table 6.5.4
Table 6.5.5
Table 6.5.6
Table 6.5.7
Table 6.5.7
Table 6.5.8
Table 6.5.9
Table 6.5.9

VPP-4.3: The VISA Library

Table of Contents

Special Values fooutEventType Parameter...........cooocciiviiiiiimeeiss s eeessaeeeees a7
Special Values fooutContext Parameter............cceeeveiiiiiiieecieeeeenniiiieee e eiivieeseieeeeee o A7
Special Values fonandler Parameter............cccuuiiiiiiiiieeeiicieree e erenren e 52
Explanation of ADddress String GramMaLi...........uueeeeereriieeeeieniiniieerreereereeeeeeesseserrrrrareaaaaaaeees 3
Examples Of AdArESS StNGS.....cviiiiiiiiie e 6
Special Values forsrcClass — Parameter.........uuuveeeeiiiiiiiiiccceiiiieiieeee e e ne e aa e e 17
Special Values founaliasedExpandedRsrcName ~ Parameter...........ccccvvivieiiiicecnnennen. 17
Special Values foaliaslfExists Parameter...........oo oo 18
SPECIAI ChAIACTELS.ttt ettt e e et e e eeme e e et e e e e e e annes 20
[T PSPPI 20
Regular Expression Characters and OperatQrS.........ccc.uevvrvrrmeeiiiiiunninrinnneeeereresssesnnsnnnneen 21
L= 0 1] 0] =PRSS 21
Special Values fofindList Parameter.. ... eeee e 24
Special Values foretCnt Parameter............coooiiiiiiiiiieeie i 24
Special Characters and their MEaNING..........cccvveeiiii e 24
EXAMIPIES. .ttt e e b e aeereeas 25
Special Values foretCouNnt Parameter...........uveiiiiiiiiiiiieeeeeee st 3
Special Values fojobld Parameter...........coiiiiii e 6.
Special Values foretCouNnt Parameter...........ueiiiiiiiiiiiiieeeieee et 9
Special Values foretCount Parameter.........coooiiveiiiiiiiieeeee e erresa e e e e e e e aees 12
Special Values fojobld Parameter............oeiiii oo 14
Special Values foretCount Parameter........cc.uuviiiiiiiiiiieeeiie e 17
Special Values foretCount Parameter.........coooviveiiiiiiiieeeee e ereesa e e e e e ee e 42
Special Values foretCount Parameter.........c.uuviiiiiiiiiiieeeiee e 56
Special Values fojobld Parameter...........ccoiiii i 80
Special Values fomode Parameter..........cooouiiiiiiiiiiieeeiieeee et 93
Special Values fomode Parameter...........ooouiiiiiiiiiiieeniiieeee et 95
Special Values foretCount Parameter........ccooiviieiiiiiiieeieeee e eereesas e e e e e e e eeaens a8
Special Values fomode Parameter............oouuiiiiioiiiieeiiiiee e 101
Special Values fomode Parameter............oooviviiiiiiiiieiiiie e e e e eeee e e e e e e eeae e 103
Special Values folrigSIC ParametersS........cooouiiiieiiiiiieeiiee ettt 106
Special Values fotrigDest Parameters............ouuvuiiiiiiiicceeiiiiie e 106
Special Values fotrigSrc Parameters.........coooviiiiviiiiiiieeeeis e e e v ieeae e e e e e eeeeaanens 109
Special Values folrigDest ParametersS........ooiiviiiiiiiiiiiieeeiiceee et 109
Special Values foretCnt Parameter............oovvviiiiiiiiieiiiiss e e e e eree e e e e e e e 113
Special Values fofailurelndex Parameter..........ooiiiiiiiiiiie e 116

VXIplug&play Systems Alliance

Section 1: Introduction to the VXIplug&play Systems Alliance and the 1Vl Foundation Page 11

Section 1 Introductionto the VXIplug&play Systems
Alliance and the IVI Foundation

The VXIplug&play Systems Alliance wa®unded bymembersvho shared a common

commitment to endiser success with open, multivendor VXI systems. The alliance
accomplished major improvements in ease of use by endorsing and implementingncomm
standards and practices in both hardware and software, beyond the scope of the VXIbus
specifications. The alliance used both formal and de facto standards to define complete system
frameworks. These standard frameworks gaveusads "plug & play" intesperability at both

the hardware and system software level.

The IVI Foundation is an organization whose members share a common commitment to test
system developer success through open, powerful, instrument control technology. The VI
Foundat i opuépsse ip to deretop and promote specifications for programming test
instruments that simplify interchangeability, provide better performance, and reduce the cost of
program development and maintenance.

In 2002, the VXplug&play Systems Alliance voteatbecome part of the IVI Foundation. In
2003, the VXplug&play Systems Alliance formally merged into the IVI Foundation. The VI
Foundation has assumed control of the MMy &play specifications, and all ongoing work will
be accomplished as part of thd Foundation.

All references to VXplug&play Systems Alliance within this document, except contact
information, were maintained to preserve the context of the original document.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Section 2: Overview of VISAbrary Specification Page 21

Section 2 Overview of VISA Library Specification

This section introduces the VISA specification. The VISA specification is a document authored by the
VXl plug&play Systems Alliance. The technical work embodied in this document and the writing of this
document weregrformed by the VISA Technical Working Group.

This section provides a complete overview of the VISA specification, and gives readers general
information that may be required to understand how to read, interpret, and implement individual aspects of
this sgecification. This section is organized as follows:

A Objectives of this specification

A Audience for this specification

Scope and organization of this specification

Application of this specification

References

Definitions of terms and acronymn

Conventions

o o o Io o Do

Communication

2.1 Objectives otthis Specification

The VISA specification provides a common standard for thepldg&play System Alliance for
developing multivendor software programs, including instrument drivers. This specification describes the
VISA software model and the VISA Application Programming Interface (API).

VISA gives VXI and GPIB software developers, particiylanstrument driver developers, the functionality
needed by instrument drivers in an interfamgependent fashion for MXI, embedded VXI, GPIKI,

GPIB, and asynchronous serial controllers. pig&play drivers written to the VISA specifications can
execute on VXplugé&play system frameworks that have the VISA 1/O library.

2.2 Audience forthis Specification

There are three audiences for this specification. The first audience is instrument driver developers
whether an instrument vendor, system ing¢gr, or end usér who wishto implement instrument driver
software that is compliant with the Vplug&play standards. The second audience is I/O vendors who wish
to implement VISAcompliant I/O software. The third audience is instrumentation end users and
application programmers who wish to implement applications that utilize instrument drivers compliant with
this specification.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 22 Section 2: Overview of VISA Library Specification

2.3 Scope and Organization afhis Specification

This specification is organized in sections, with each section discuspartj@ilar aspect of the VISA
model.

Section 1 explains the VXlugé&play Systems Allianceand its relation to the IVI Foundation

Section 2 provides an overview of this specification, including the objectives, scope and organization,
application, referezes, definition of terms and acronyms, and conventions.

Section 3 describes the VISA Resource Template.
Section 4 describes the VISA Resource Manager Resource.
Section 5 presents the VISA Instrument Control Resource and other I/O resource classes.

Section 6 presents tloperations defined in Sectiorehd describes a compliant implementation.

2.4 Application ofthis Specification

This specification is intended for use by developers ofpiXj&play instrument drivers and by developers

of VISA 1/O software. It is also useful as a reference for end users gilvg&play instrument drivers.

This specification is intended to be used in conjunction with the- 3RBpecifications, including the
Instrument Drivers Architecture and Design Specificaf@RP-3.1), thelnstrument Driver Functional

Body SpecificatiofvVPP-3.2), thelnstrument Interactive Developer Interface SpecificafRP-3.3), and
thelnstrument Driver Programmatic Developer Interface SpecificafidPP-3.4). These related

specificatiors describe the implementation details for specific instrument drivers that are used with specific
system frameworks. VXllug&play instrument drivers developed in accordance with these specifications
can be used in a wide variety of highevel software evironments, as described in tBgstem

Frameworks SpecificatiofVPP-2).

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 2: Overview of VISAbrary Specification Page 23

2.5 References

The following documents contain information that you may find helpful as you read this document:
A ANSI/IEEE Standard 488-1987,IEEE Standard Digital Interfae for Programmable Instrumentation

A ANSV/IEEE Standard 488-2992,|EEE Standard Codes, Formats, Protocols, and Common
Commands

ANSI/IEEE Standard 1014987,|IEEE Standard for a Versatile Backplane Bus: VMEbus
ANSI/IEEE Standard 1172000, Standat Serial Interface for Programmable Instrumentation
PXI-4, PXI Module DescriptionFile Specification

VPP-1, VXIplug&play Charter Document

VPP-2, Systentrameworks Specification

VPP-3.1,Instrument Drivers Architecture and Design Specification

VPP-3.2,Instrument Functional Body Specification

VPP-3.3,Instrument Driver Interactive Developer Interface Specification
VPP-3.4,Instrument Driver Programmatic Developer Interface Specification
VPP-4.3.2,VISA Implementation Specification fbextual Languages

VPP-4.3.3,VISA Implementation Specification for the G Language

VPP-6, Installation and Packaging Specification

VPP-7, Soft Front Panel Specification

VPP-9, Instrument Vendor Abbreviations

VXI-1, VXIbus System Specificai Revision 1.4, VXIbus Consortium

VXI-11, TCP/IP Instrument ProtocpVXlbus Consortium

IVI-6.1: HighSpeed LAN Instrument Protocol (HiSLDIP

o o P o Do Bo Po o I o Do Do o I o o Do Do

IVI-6.3: IVI VISA PXI Plugin

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 24

Section 2: Overview of VISA Library Specification

2.6 Definition of Terms and Acronyms

The following are some commonlsed terms within this document

Address

ADE
API

Attribute

Bus Error

Commander

Communication
Channel

Controller

Device

HiSLIP

Instrument

Interface

Instrument Driver

Mapping

Operation

VPP-4.3: The VISA Library

A string (or other language construct) that uniquely locates and identifies a
resource. VISA defines an AS@based grammar that associates strings with
particular physical devices or interfaces and VISA resources.

Application Development Environment

Application Programmers Interface. The direct interface that an end user se
when creating an application. The VISA API consists of the sum of all of the
operations, attributes, and events of each of the \R8gource Classes.

A value within a resource that reflects a characteristic of the operational sta
resource.

An error that signals failed access to an address. Bus errors occur withvedw
accesses to memory and usuailypolve hardware with bus mapping capabilitie
For example, noexistent memory, a neaxistent register, or an incorrect devi
access can cause a bus error.

A device that has the ability to control another device. This term can also de
the unique device that has sole control over another device (as with the VXI
Commander/Servant hierarchy).

The same aSessionA communication path between a software element and
resource. Every communication channel in VISA is ugiq

A device that can control another device(s) or is in the process of performin
operation on another device.

An entity that receives commands from a controller. A device can be an
instrument, a computer (acting in a poontrollerrole), or a peripheral (such as
plotter or printer). In VISA, the concept of a device is generally the logical
association of several VISA resources.

HiSLIP (High Speed LAN Instrument Protocol) is a protocol for fizi3ed
instrument control thgtrovides the instrumetlikke capabilities of conventional
test and measurement protocols with minimal impact to performance.

A device that accepts some form of stimulus to perform a designated task, t
measurement function. Two commomrfes of stimuli are message passing ant
register reads and writes. Other forms include triggering or varying forms of
asynchronous control.

A generic term that applies to the connection between devices and controlle
includes the communidan media and the device/controller hardware necess
for crosscommunication.

Library of functions for controlling a specific instrument

An operation that returns a reference to a specified section of an address sf
andmakes the specified range of addresses accessible to the requester. Th
function is independent of memory allocation.

An action defined by a resource that can be performed on a resource.

VXIplug&play Systems Alliance

Section 2: Overview of VISAbrary Specification

Process

Register

Resource Class

Resource or
Resource Instance

Session

SRQ

Status Byte

Template Function

Top-level Example

Virtual Instrument

VISA

VISA Instrument
Control Resources

VISA Resource
Manager

VXIplug&play Systems Alliance

Page 25

An operating system component that shares &sysh s r e s 0 u-pracess
system is a computer system that allows multiple programs to execute
simultaneously, each in a separate process environment. A-phogiess system
is a computer system that allows only a single program to execute ahgginé
in time.

An address location that either contains a value that is a function of the stat
hardware or can be written into to cause hardware to perform a particular ac
or to enter a particular state. In other words, an addresioio¢hat controls
and/or monitors hardware.

The definition for how to create a particular resource. In general, this is
synonymous with the connotation of the watdssin objectoriented
architectures. For VISA Instrument Control Reseu@lasses, this refers to the
definition for how to create a resource that controls a particular capability of
device.

In general, this term is synonymous with the connotation of the almjettin
objectoriented architeares. For VISAresourcemore specifically refers to a
particular implementation (anstancein objectoriented terms) of a Resource
Class. In VISA, every defined software module is a resource.

The same a€ommunication Channelh communicatiorpath between a softwal
element and a resource. Every communication channel in VISA is unique.

IEEE 488 Service Request. This is an asynchronous request from a remote
device that requires service. A service request is essentially an inteomj fr

remote device. For GPIB, this amounts to asserting the SRQ line on the GP
For VXI, this amounts to sending the Request for Service True event (REQT

A byte of information returned from a remote device that shows the current :
andstatus of the device. If the device follows IEEE 488 conventions, bit 6 of
status byte indicates if the device is currently requesting service.

Instrument driver subsystem function common to the majority ofpld¢g&play
instrument dvers

A high-level testoriented instrument driver function. It is typically developed
from the instrument driver subsystem functions.

A name given to the grouping of software modules (in this case, VISA resoL
with any associated or required hardware) to give the functionality of a tradi
standalone instrument. Within VISA, a virtual instrument is the logical group
of any of the VISA resources. The VISA Instrument Control Resources Orge
serves as a maas to group any number of any type of VISA Instrument Contr
Resources within a VISA system.

Virtual Instrument Software Architecture. This is the general name given to !
document and its associated architecture. The architecture consigtsroéin
VISA components: the VISA Resource Manager and the VISA Instrument
Control Resources.

This is the name given to the part of VISA that defines all of the deyieeific
resource classes. VISA Instrument ConRekources encompass all defined
device and interface capabilities for direct, {@vel instrument control.

This is the name given to the part of VISA that manages resources. This
management includes support for opening, closingfiadthg resources; setting
attributes, retrieving attributes, and generating events on resources; and so

VPP-4.3: The VISA Library

Page 26 Section 2: Overview of VISA Library Specification

VISA Resource This is the name given to the part of VISA defines the basic constraints and

Template interface definition for the creation andeusf a VISA resource. All VISA
resources must derive their interface from the definition of the VISA Resour
Template.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 2: Overview of VISAbrary Specification Page 27

2.7 Conventions

Throughout this specification you will see the following headings on certain paragraphs. These headings
instill special meaning on these paragraphs.

Rulesmust be followed to ensure compatibility with the System Framework. A rule is characterized by the
use of the wordSHALL andSHALL NOT in bold upper case characters. These words are not used in
this manner for angther purpose other than stating rules.

Recommendatiorsonsist of advice to implementors that will affect the usability of the final device. They
are included in this standard to draw attention to particular characteristics that the authors believe to be
important to end user success.

Permissionare included t@uthorizespecific implementations or uses of system components. A
permission is characterized by the use of the Wi in bold upper case characters. These permissions
are granted to ensure specific System Framework components are well defined and can be tested for
compatibility and interoperability.

Observationspell out implications of rules and bring attention tiodls that might otherwise be
overlooked. They also give the rationale behind certain rules, so that the reader understands why the rule
must be followed.

A note on the text of the specificatioAny text that appears without heading should be considesed
description of the standard and how the architecture was intended to operate. The purpose of this text is to
give the reader a deeper understanding of the intentions of the specification including the underlying model
and specific required features. sigch, the implementor of this standard should take great care to ensure
that a particular implementation does not conflict with the text of the standard.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Section 3: VISA Resource Template Page3-1

Section 3 VISA Resource Template

VISA defines an architecture consisting of many resouttwgsencapsulate device functionality. Each
resource can give specialized services to applications or to other resources. Achieving this capability
requires a high level of consistency in the operation of VISA resources. This level of consistency is
achieed through a precisely defined, extensible interface, which provides-defigied set of services.

Each VISA resource derives its interface from a template that provides standard services for the resource.
This increases the ability to reuse, test, aathtain the resource. These basic services from the template
include the following:

A Creating and deleting sessions (Life Cycle Control)
Modifying and retrieving individual resource characteristics caleedbutes(Characteristic Control)
Terminatirg queued operations (Asynchronous Operation Control)

Restricting resource access (Access Control)

A
A
A
A Performing basic communication services (Operation Invocation and Event Reporting)

3.1 VISA Template Services

3.1.1 Control Services

The VISA templée provides all the basic resource control services to applications. These basic services
include controlling the life cycle of sessions to resources/devices and manipulating resource characteristics.
A summary of these services for VISA is presented below

A Life Cycle Control
VISA controls the life cycle of sessions, find lists, and events. Once an application has finished using
any of them, it can uséClose() to free up all the system resources associated with it. The VISA
system is also responsitfte freeing up all associated system resources whenever an application
becomes dysfunctional.

A Characteristic Control
Resources can have attributes associated with them. Some attributes depict the instantaneous state of
the resource and some define i@ide parameters to modify the behavior of the resources. VISA
defines attribute manipulation operations to set and retrieve the status of resources. These attributes are
defined by individual resources. The operation for modifying attributéSésAttri bute() and
the operation that retrieves the attributeg@etAttribute()

A Asynchronous Operation Control
Resources can have asynchronous operations associated with them. These operations are invoked in
the same way that all other operations are ipdolknstead of waiting for the actual job to be done,
they register the job to be done and return immediately. When the 1/O is complete, an event is
generated to indicate the completion status of the associated operation. An application wanting to abort
slch an asynchronous operation can vierminate() with the unique job identifier returned from
the operation to be aborted.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 32 Section 3: VISA Resource Template

A Access Control
Applications can open multiple sessions to a VISA resource simultaneously. Applications can access
the VISA resource through the different sessions concurrently. However, in certain cases, an
application accessing a VISA resource might want to restriet agbplications or sessions from
accessing that resource. VISA defines a locking mechanism to restrict accesses to resources for such
special circumstances. The operation used to acquire a lock on a reseilmek{s , and the
operation to relinquish tHeck isviUnlock()

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page3-3

3.1.2 Communication Services

Applications using VISA access resources by opening sessions to them. The primary method of
communication to resources is by invoking operations. A VISA system also allows information exchange
throughevents.

A Operation Invocation
After establishing a session, an application can communicate with it by invoking operations associated
with the resources. In VISA, every resource supports the operations described in the template. In
addition to the spefit error codes listed for each operation, the following generic error codes can be
returned by any operation:

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (b
V|_ERROR_|NV_OBJECT are the same Va|ue)‘

VI_ERROR_NSUP_OPER The given session does not support this operatior|

VI_ERROR_NIMPL_OPER The given operation is not implemented.

VI_ERROR_SYSTEM_ERROR Unknown system error (miscellaneous error).

VI_ERROR_INV_PARAMETER The value of some paramedewhich parameter is
not knowrd is invalid.

VI_ERROR_USER_BUF A specified user buffer is not valid or cannot be
accessed for the required size.

OBSERVATION 3.1.1
It is possible that in the future, any operation may return success or error codes nottigged in
specification. Therefore, it is important that applications check for general success or failure before
comparing a return value to known return codes.

OBSERVATION 3.1.2
It is the intention of this specification to have success and warning codesaber than or equal to zero
and error codes less than zero. The specific status values are specified in the corresponding framework
documents. Only unique identifiers are specified in this document.

A Event Reporting
VISA provides callback, queuing, dnvaiting services that can inform sessions about resalafieed
events.

RECOMMENDATION 3.1.1
If an operation defines an error code for a given parameter, a VISA implementation should normally use
that error code.

PERMISSION 3.1.1
If a VISA implementation cannot determine which parameter caused an error, such as when using a lower
level driver, then iMAY returnVi_ERROR_INV_PARAMETER

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 34 Section 3: VISA Resource Template

3.2 VISA Template Interface Overview

This section summarizes the interface that each VISA implementatiorinoogtorate. The different
attributes and operations are described in detail in subsequent sections.

3.2.1 VISA Template Attributes

RULE 3.2.1
Every VISA systenSHALL implement the attributes and operations described in the VISA Resource
Template.

RULE 3.2.2
Every VISA systenSHALL implement the following attributesvl_ATTR_RSRC_NAME
VI_ATTR_RSRC_SPEC_VERSION/I_ATTR_RSRC_IMPL_VERSIONVI_ATTR_RSRC_MANF_ID
VI_ATTR_RSRC_MANF_NAMEI _ATTR_RM_SESSIONVI_ATTR_USER_DATA
VI_ATTR_MAX_QUEUE_LENGTNI_ATTR_RSRC_CLASSandVlI ATTR_RSRC_LOCK_STATE

RULE 3.2.3
The value of the attributél ATTR_RSRC_SPEC_VERSIOSHALL be the valu®©0500700h

OBSERVATION 3.2.1
The value of the attributél ATTR_RSRC_SPEC_VERSIONS a fixed value that reflects the version of the
VISA specification to which the implementation is compliant. This value will change with subsequent
versions of the specification.

Table 3.2.1 VISA Template Required Attributes

Symbolic Name Access Priviege Data Type Range
VI_ATTR_RSRC_IMPL_VERSION RO Global ViVersion 0h to FFFFFFFFh
VI_ATTR_RSRC_LOCK_STATE RO Global | ViAccessMode VI_NO_LOCK

VI_EXCLUSIVE_LOCK

VI_SHARED_LOCK

VI_ATTR_RSRC_MANF_ID RO Global Viuint16 Oh to 3FFFh
VI_ATTR_RSRC_MANF_NAME RO Global ViString N/A
VI_ATTR_RSRC_NAME RO Global ViRsrc N/A
VI_ATTR_RSRC_SPEC_VERSION RO Global ViVersion 00500700h
VI_ATTR_RM_SESSION RO Local ViSession N/A
VI_ATTR_MAX_QUEUE_LENGTH R/W* | Local Viuint32 1h to FFFFFFFFh
VI_ATTR_RSRC_CLASS RO Global ViString N/A
VI_ATTR_USER_DATA R/W Local ViAddr *x
VI_ATTR_USER_DATA 32 R/W Local Viuint32 0h to FFFFFFFFh
VI_ATTR_USER_DATA_64** R/W | Local Viuint64 Ohto

FFFFFFFFFFFFFFFF

* This attribute becomes RO ong&nableEvent() has been called for the first time.
** Specified in the relevant VP#.3x framework document.
*** Definedonly for frameworkghatare 64bit native

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template

Attribute Descriptions

VI_ATTR_RSRC_IMPL_VERSION

VI_ATTR_RSRC_LOCK_STATE

VI_ATTR_RSRC_MANF_ID

VI_ATTR_RSRC_MANF_NAME

VI_ATTR_RSRC_NAME

VI_ATTR_RSRC_SPEC_VERSION

VI_ATTR_RM_SESSION

VI_ATTR_MAX_QUEUE_LENGTH

VI_ATTR_RSRC_CLASS

VI_ATTR_USER_DATA
VI_ATTR_USER_DATA_32
VI_ATTR_USER_DATA 64

Page 35

Resource version that uniquely identifies eacthefdifferent
revisions or implementations of a resource.

The current locking state of the resoyneflecting any locks
granted to an open session to the device using the same
interface and protocolhe resource can hmlocked, locked
with an exclusive lock, or locked with a shared lock.

A value that corresponds to the VXI manufacturer ID of the
manufacturer that created the implementation.

A string that corresponds to theX¥Ymanufacturer name of the
manufacturer that created the implementation.

The unique identifier for a resource compliant with the address
structure presented in Sectio34, Address String

Resource versiothat uniquely identifies the version of the
VISA specification to which the implementation is compliant.

Specifies the session of the Resource Manager that was used
to open this session.

Specifies the maximumumber of events that can be queued
at any time on the given session.

Specifies the resource c¢l ass
defined in Section 5.

Data used privately by the application for a particular session.
This data is not used by VISA for any purposes and i
provided to the application for its own use.

Table 3.2.2 ViVersion Description for VIATTR_RSRC_IMPL_VERSIONind
VI_ATTR_RSRC_SPEC_VERSION
Bits 31 to 20 Bits 19to 8 BitsOto 7

Major Number

Minor Number Sub-Minor Number

OBSERVATION 3.2.2

VI_ATTR_RSRC_LOCK_STATE returns the combined lock state for all sessions of the same type. If
there are three sessions open to the same device, with one beiid @Kt twdbeing HiSLIP sessions,

then if one of the HiSLIP sessions holds a lock, both HiSLIP sessions will return a lock indication for this
attribute, while the VX411 session will not.

RULE 3.2.4

The value of the attributél ATTR_RSRC_IMPL_VERSIONSHALL increnent with each new revision

provided by a manufacturer.

VXIplug&play Systems Alliance

VPP-4.3: The VISA Library

(for

Page 36 Section 3: VISA Resource Template

OBSERVATION 3.2.3
The value of the attribut¢l ATTR_RSRC_IMPL_VERSIONSs a value that is defined by the individual
manufacturer with the only constraint of incrementing the total version value secgignt revisions.

RECOMMENDATION 3.2.1
It is recommended that the value of sulmor versions be nerero only for prerelease versions (beta). All
officially released products should have a-suibor value of zero.

RULE 3.2.5
The attributevl_ATTR_MAX QUEUE_LENGTSHALL be R/W (readable and writeable) until
viEnableEvent() is called for the first time on a session.

RULE 3.2.6
The attributevi_ ATTR_MAX_QUEUE_LENGTBHALL be RO (read only and not writeable) after
viEnableEvent() is called for the firstime on a session.

OBSERVATION 3.2.4
The previous two rules allow for a nalynamically resizable implementation of queue lengths for VISA
implementations. Queue lengths can be changed immediately after creation of a session but not after
general operatin has begun (that is, aftéEnableEvent() has been called).

RULE 3.2.7
IF a framework is 3it, THEN the values of the attributé4 ATTR_USER_DATAand
VI_ATTR_USER_DATA_32SHALL be identical.

RULE 3.2.8
IF a framework is 64it, THEN the values of the attributé4 ATTR_USER_DATAand
VI_ATTR_USER_DATA_64SHALL be identical.

RULE 3.29
IF a framework is 3bit, THEN the attributevI ATTR_USER_DATA 64SHALL NOT be defined.

OBSERVATION 3.25
A user on a 3bit framework can store 6dit data via a private structure referenced by-bi8pointer.

RULE 3.2.10
IF a framework is 64it, THEN a VISA implementatiofSHALL provide onlyoneuser data value per
session.|F a user callsiSetAttribute with the attributevi_ATTR_USER_DATA_32followed by a call

to viGetAttribute with the attributevi_ ATTR_USER_DATA_64 THEN a VISA implementation
SHALL return the 32bit value that was previously set on that session.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 37

3.2.2 VISA Template Operations

viClose(vi)

viGetAttribute(vi, attribute, at trState)
viSetAttribute(vi, attribute, attrState)

viStatusDesc(vi, status, desc)

viTerminate(vi, degree, jobld)

viLock(vi, lockType, timeout, requestedKey, accessKey)

viUnlock(vi)
viEnableEvent(vi, eventType, mechanism, context)
viDisableEvent(vi, eventTyp e, mechanism)

viDiscardEvents(vi, eventType, mechanism)

viwaitOnEvent(vi, inEventType, timeout, outEventType, outContext)
vilnstallHandler(vi, eventType, handler, userHandle)
viUninstallHandler(vi, eventType, handler, userHandle)

RULE 3.2.11
Every VISA systenSHALL implement the following operationsiClose() , viGetAttribute() ,
viSetAttribute() , ViStatusDesc() , ViTerminate() , viLock() ,viUnlock() ,
viEnableEvent() , viDisableEvent() , viDiscardEvents() , ViWaitOnEvent() ,
vilnstallHandler() , andviUninstallHandler()

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 38 Section 3: VISA Resource Template

3.3 Lifecycle Services

Once an application has opened a session to a VISA resource using some of the services in the VISA
Resource Mnager, it can uséClose() to close that session. Thi€lose() operation is also used to
free find lists returned from theFindRsrc() operation as well as events returned from the
viwaitOnEvent() operation.

3.3.1 Lifecycle Operations

viClose(vi)

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template

3.3.1.1viClose (vi)

Purpose

Close the specified session, event, or find list.

Page 39

Parameter
Name Direction Type Description
vi IN ViSession Unigue logical identifier to a session, event
ViEvent or find list.
ViFindList
Return Values
Type ViStatus This is the operational return status. It returns eithe!
completion code or an error code as follows.
Completion Codes Description
VI_SUCCESS Session, event, or find list closed successfully.
VI_WARN_NULL_OBJECT The specified object referencetisinitialized.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
Vl_ERROR_'NV_OBJECT are the same Va'ue)_

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously allocated data
structureorresponding to this session or object
reference.

Description

This operation closes a session, event, or a find list. In this process all the data structures that had been

allocated for the specified are freed.

Related Items
See als@iOpen()

Implementation Requirements

RULE 3.3.1
In a VISA system, a&i that receives theiClose()
free all related data structures.

RULE 3.3.2
IF the valuevi_NULL is passed to théClose()
completion cod&/|_WARN_NULL_OBJECT

VXIplug&play Systems Alliance

operationSHALL attempt to close the givem and

operation,THEN a VISA systenBHALL return the

VPP-4.3: The VISA Library

Page 310 Section 3: VISA Resourd@emplate

3.4 Characteristic Control Services

Resources have attributes associated with them. Some attributes depict the instantaneous state of the
resource and some define alterable parameters to modify behavior of the resparaéens. VISA

defines attribute manipulation operations to set and retrieve the status of resources. These attributes are
defined by individual resources. This section describes the operations used to set and retrieve the value of
individual attributes.

This section also includes an operation that can be used to retrieve afeahalple description for a given
error code from a given session.

3.4.1 Characteristic Control Operations

viGetAttribute(vi, attribute, attrState)
viSetAttribute(vi, attribute, attrState)
viStatusDesc(vi, status, desc)

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 311

3.4.1.1 viGetAttribute (vi, attribute, attrState)

Purpose
Retrieve the state of an attribute.

Parameters
Name Direction Type Description
Vi IN ViSession Unique logicalidentifier to a session, event,
ViEvent or find list.
ViFindList
attribute IN ViAttr Session, event, or find list attribute for whic
the state query is made.
attrState ouT ViAttrState The state of the queried attribute for a
specified resource. The interpretation of the
returned value is defined by the individual
resource.
Return Values
Type ViStatus This is the operational return status. It returns eithel

completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Session, event, or fifldst attribute retrieved
successfully.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
V|_ERROR_|NV_OBJECT are the same Va|ue)_

VI_ERROR_NSUP_ATTR The specified attribute is not defined by thérenced

session, event, or find list.

Description
TheviGetAttribute() operation is used to retrieve the state of an attribute for the specified session,
event, or find list.

Related Items
SeeviSetAttribute().

Implementation Requirements

RULE 3.4.1
IF attribute is a string attributeTHEN viGetAttribute SHALL write no more than 256 characters
into attrState , including the nulcharacter

OBSERVATION 3.4.1
RULE 3.4.1 states the maximum length of a VISA string attributee 255 characters

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 312

3.4.1.2 viSetAttribute

Purpose

Set the state of an attribute.

(vi, attribute, attrState)

Section 3: VISA Resourd@emplate

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to a session, event
ViEvent or find list.
ViFindList
attribute IN ViAttr Session, event, or find list attribute for whic
the state is modified.
attrState IN The state of the attribute to be set for the
specified resource. The interpretation of the
individual attribute value is defined by the
resource.

Return Values

Type ViStatus

This is the operational return status. It returns eithe
completion code or an error code as follows.

Completion Codes

Description

VI_SUCCESS

Attribute value set successfully.

VI_WARN_NSUP_ATTR_STATE

Although the specifiedttribute state is valid, it is not
supported by this implementation.

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (bo
are the same value).

VI_ERROR_NSUP_ATTR

The specifiedattribute is not defined by the referenc
session, event, or find list.

VI_ERROR_NSUP_ATTR_STATE

The specified state of the attribute is not valid, or is
supported as defined by the session, event, or find

VI_ERROR_ATTR_READONLY

The specifiedattribute is reagbnly.

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed becaus
the resource identified by has been locked for this
kind of access.

Description

TheviSetAttribute()

event, or find list.

Related Items
SeeviGetAttribute().

VPP-4.3: The VISA Library

operation is used to modify the state of an attelfar the specified session,

VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 313

Implementation Requirements

RULE 3.4.2
IF a resource cannot set an optional attribute séN® the specified attribute state is val&IND the
attribute description does not specify otherwiddEN the resourc&HALL return the error code
VI_ERROR_NSUP_ATTR_STATE

OBSERVATION 3.4.2
BothVI_WARN_NSUP_ATTR_STATandVI_ERROR_NSUP_ATTR_STATiadicate that the specified
attribute state is naupported. Unless a specific rule states otherwise, a resource normally returns the error
codeVI_ERROR_NSUP_ATTR_STAT®hen it cannot set a specified attribute state. The completion code
VI_WARN_NSUP_ATTR_STATIB intended to alert the application thahalgh the specified optional
attribute state is not supported, the application should not fail. One example is attempting to set an attribute
value that would increase performance speeds. This is different than attempting to set an attribute value that
specifies required but nonexistent hardware (such as specifying a VXI ECL trigger line when no hardware
support exists) or a value that would change assumptions a resource might make about the way data is
stored or formatted (such as byte order). See spettfibute descriptions for text that allows the
completion cod&/I_WARN_NSUP_ATTR_STATE

OBSERVATION 3.4.3

The error cod&/|_ERROR_RSRC_LOCKHB returned only if the specified attribute is Read/Write and
Global, and the resource is locked by another session.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 314 Section 3: VISA Resourd@emplate

3.4.1.3viStatusDesc (vi, status, desc)

Purpose
Return a usereadable description of the status code passed to the operation.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to a session, event
ViEvent or find list.
ViFindList
status IN ViStatus Status code to interpret.
desc ouT ViString The useireadable string interpretation of the
statuscode passed to the operation.
Return Values
Type ViStatus This is the operational return status. It returns eithe
completion code or an error code as follows.
Completion Codes Description
VI_SUCCESS Description successfully returned.
VI_WARN_UNKNOWN_STATUS The status code passed to the operation could not
interpreted.
Description
TheviStatusDesc() operation is used to retrieve a useadable string that describes the status code
presented.

Implementation Requirements

RULE 3.4.3
IF a status code cannot be interpreted by the sedditilN the resourc&HALL return the warning
VI_WARN_UNKNOWN_STATUS

RULE 3.44
The output stringlesc SHALL be valid regardless of the status return value.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 315

3.5 Asynchronous Operation Control Services

Resources can have asynchoos operations associated with them. These operations are invoked the same
way in which all other operations are invoked. Instead of waiting for the actual job to be done, they register
the job to be done and return immediately. An application that waatsdrt such an asynchronous

operation can uséTerminate() with the unique job identifier that is returned from the operation to be

aborted. Examples of asynchronous operationsiBeadAsync() andviWriteAsync() . Refer to
Section6, VISA Resourc&peciic Operations for more information on these and other asynchronous
operations.

PERMISSION 3.5.1
A vendorMAY support multiple outstanding asynchronous operations per session.

RULE 3.5.1
IF an implementation supports multiple outstanding asynchronous operations per Abd3itire
interface typeof the resourcés half duplex THEN it SHALL process the operations in the order in which
they are initiated.

OBSERVATION 3.5.1
For a full duplexresource such as asynchronous sesidte and reasbperations can occur in parallel
without interfering with each other. For other resource typeggssing asynchronous operations in the
order in which they are initiated ensures thdtesandreadshappen in a predictable order.

OBSERVATION 3.5.2
This specificatiorplaces no requiraents on an implementation regarding the order of asynchronous

operations with respect to synchronous operations on the same session, nor regarding the order of
synchronos or asynchronous operations between sessions.

3.5.1 Asynchronous Operation Control Operations

viTerminate(vi, degree, jobld)

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 316 Section 3: VISA Resource Template

3.5.1.1viTerminate (vi, degree, jobld)

Purpose
Request a VISA session to terminate normal execution of an operation.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to an object.
degree IN ViuInt16 VI_NULL
jobld IN ViJobld Specifies an operation identifier.

Return Values

Type ViStatus This is the operational return statusieturns either a
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Request serviced successfully.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid
VI_ERROR_INV_OBJECT (both are the same value).
VI_ERROR_INV_JOB_ID Specified job identifier is invalid.
VI_ERROR_INV_DEGREE Specifieddegree is invalid.

Description
This operation requests a session to terminate normal execution of an operation, as specifiediby the
parameter. Thibld parameter is a unique value generated from each call to an asynchronous operation.

If a user passedl_NULL as the jobld value taTerminate() , a VISA implementation should abort any
calls in the current process executing on the speacifiedAny call that is terminated this way should
returnvVi_ERROR_ABORTDue to the nature of muithreaded systems, for example where operations in
other thrads may complete normally before the operatidarminate() has any effect, the specified
return value is not guaranteed.

Related Items
viReadAsync() , viwriteAsync() , ViMoveAsync()

Implementation Requirements
There are no additional implementatioquaements other than those specified above.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 317

3.6 Access Control Services

In VISA, applications can open multiple sessions to a VISA resource simultaneously. Applications can
access the VISA resource through the different sessions concurrently. However, in certain cases,
applications accessing a VISA resource might want toicesther applications from accessing that

resource. For example, suppose an application needs to perform successive write operations on a resource.
The application also requires that during the sequence of writes, no other operation can be invoked through
any other session to that resource. VISA defines a locking mechanism to restrict accesses to resources for
such a special circumstance.

RULE 3.6.1
Every VISA resource on a multitasking or multithreading operating syStéALL safely handle
concurrent operation invocations.

3.6.1 Session Access Control Service Model
3.6.1.1 Locking Mechanism

The VISA locking mechanism enforces arbitration of accesses to VISA resources eseagien basis. If
a session locks a resourogerations invoked on the resource through other sessions are serviced, or
returned with an error, depending on the operation and the type of lock used.

If a VISA resource is not locked by any of its sessions, all sessions have full privilege toanyoke

operation and update any global attributes. Sessions are not required to have locks to invoke operations or
update global attributes. However, if some other session has already locked the resource, attempts to update
global attributes or execute certaperations will fail. Refer to descriptions of the individual operations to
determine which would fail when a resource is locked. Locking a resource restricts access from other
sessions, and in the case where an exclusive lock is acquired, guarantepsrtieons do not fail because

other sessions have acquired a lock on that resource. Locking a resource prevents other sessions from
acquiring an exclusive lock.

VISA defines two different types, or modes, of loclexclusiveandsharedlocks, which s denoted by
VI_EXCLUSIVE_LOCKandVI_SHARED_LOCKrespectivelyviLock() is used to acquire a lock on a
resource, andiUnlock() is used to release the lock. This section describes the exclusive lock type.
Section 3.6.1.2 describes shared locks, whielsanilar to exclusive locks in terms of access privileges,
but which still can be shared between multiple sessionsVTRETR_RSRC_LOCK_STATR&ttribute
specifies the current locking state of the resoveflecting any lock granted to an opsgssiorto the

device using the same interface and protocol

Attributes

Symbolic Name Access Privilege Data Type Range

VI_ATTR_RSRC_LOCK_STATE RO Global | ViAccessMode VI_NO_LOCK
VI_EXCLUSIVE_LOCK
VI_SHARED_LOCK

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 318

RULE 3.6.2

RULE 3.6.3

Section 3: VISA Resource Template

Every VISA resourc&HALL support both exclusive and shared locks.

Every VISA resourc&HALL support thevl ATTR_RSRC_LOCK_STATHttribute.

Types of Locks Acquired When Requesting Session Has No Lock

Table 3.6.1
Lock Any Other Session Has
Requested No Locks | Exclusive Lock| Shared Lock Shared and
Exclusive Locks
Exclusive Yes No No No
Shared Lock Yes No Yes* Yes*

Types of Locks Acquired When Requesting Session Has Exclusive Lock Only (Nesting)

Table 3.6.2
Lock Any Other Session Has
Requested No Locks | Exclusive Lock| Shared Lock Shared and
Exclusive Locks
Exclusive Yes *x *x *x
Shared Lock No *k *x *x

Types of Locks Acquired When Requesting Session Has Shared Lock (Nesting)

Table 3.6.3
Lock Any Other Session Has
Requested No Locks | Exclusive Lock| Shared Lock Shared and
Exclusive Lockg
Exclusive Yes *x Yes No
Shared Lock Yes *x Yes Yes

Types of Locks Acquired When Requesting Session Has Shared and ExclusiséNexsting)

Table 3.6.4
Lock Any Other Session Has
Requested No Locks | ExclusiveLock| Shared Lock Shared and
Exclusive Lockg
Exclusive Yes *x Yes *x
Shared Lock No * No *x

d

*%

etails.

VPP-4.3: The VISA Library

The locking mechanism will not allow thétuation to occur.

VXIplug&play Systems Alliance

Only if the current session is aware of the access key. See Section Bd@ck.3haringfor more

Section 3: VISA Resource Template Page 319

3.6.1.2 Lock Sharing

Because the locking mechanism in VISA is session based, multiple threads sharing a session that has
locked a VISA resource have the same privileges for accessing the resource. Some applications, though,
might hae separate sessions to a resource and might want all the sessions in that application to have the
same privilege as the session that locked the resource. In other cases, there might be a need to share locks
among sessions in different applications. Esa#intisessions that acquired a lock to a resource may share

the lock with other sessions it selects, and exclude access from other sessions.

This section discusses the mechanism that makes it possible to share locks. VISA defines adock type
VI_SHARED_LCCKJ that gives exclusive access privileges to a session along with the capability to share
these exclusive privileges at the discretion of the original session. A session can lock a VISA resource
using the lock typ&I|_SHARED_LOCHKo get exclusive accessiyiteges to the resource. When sharing the
resource using a shared lock, thieock() operation returns asccessKey that can be used to share the
lock. The session can then share this lock with any other session by passing arancekti@y . Before
other sessions can access the locked resource, they need to acquire the lock by passigihe in
therequestedKey parameter of theiLock() operation. InvokingiLock() with the same key will
register the new session to have the same access priaflg¢ge original session. The session that acquired
the access privileges through the sharing mechanism can also pass the access key to other sessions for
sharing of resource. All the sessions sharing a resource using the shared lock should synchronize thei
accesses to maintain a consistent state of the resource.

VISA provides the flexibility for the applications to specify a key to use asddessKey , instead of

VISA generating theccessKey . The applications can suggest a key value to use through the

r equestedkey parameter of theiLock() operation. If the resource was not locked, the resource will use
thisrequestedkey as theaccessKey . If the resource was locked using a shared lock and the
requestedkey matches the key with which resource was lockeel résource will grant the shared access
to the session. If an application attempts to lock a resource using a shared lock, and pagsesas the
requestedkey parameter, then VISA will generate actesskey for the session.

A session seeking to shaae exclusive lock with other sessions needs to acquiteStHHARED_LOCHKock
for this purpose. If it requestd_EXCLUSIVE_LOCK, no valid access key will be returned. Consequently,
the session will not be able to share it with any other sessions. Thisipoacminimizes the possibility of
inadvertent or malicious access to the resource.

3.6.1.3 Access Privileges
If a session has an exclusive lock, other sessions cannot modify global attributes or invoke operations, but
can still get attributes. If thsession has a shared lock, other sessions that have shared locks can also
modify global attributes and invoke operations. A session that does not have a shared lock will lack this

capability.

If a session has a shared lock to a VISA resource, ipegfiorm any operation and update any global
attribute in that resource, unless some other session has an exclusive lock

The following tables describe the access privileges of a session under the various locking conditions.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 320 Section 3: VISA Resource Template

Table 3.6.5 Current Session HaNo Lock

Access Privilege of Other Sessions

Operations Current All Other One Session Has At Least One
Session Can Perform Sessions Have an Exclusive Session Has a

No Locks Lock Shared Lock
Get Attributes Yes Yes Yes
Set Local Attributes Yes Yes Yes
Set Global Attributes Yes No No
Operations Yes No* No*

Table 3.6.6 Current Session Has Exclusive Lock

Access Privilege of Other Sessions
Operations Current All Other One Session Hag At Least One
Session Can Perform Sessions Have an Exclusive Session Has a
No Locks Lock** Shared Lock
Get Attributes Yes il Yes
Set Local Attributes Yes *x Yes
Set Global Attributes Yes *x Yes
Operations Yes *x Yes

Table 3.6.7 Current Session Has Shared Lock

Access Privilege of Other Sessions
Operations Current All Other One Session Has At Least One
Session Can Perform Sessions Have an Exclusive Session Has a
No Locks Lock*** Shared Lock
Get Attributes Yes Yes*** Yes
Set Local Attributes Yes Yes*** Yes
Set Global Attributes Yes No*** Yes
Operations Yes No*, *** Yes

* Some operations may be allowed. Refer to individual resources for more information.

** These cases will not arise because the locking mechanism does not permit such locks to be granted to
different sessions.

*** These cagearise when a session holding a shared lock also acquires an exclusive lock.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 321

OBSERVATION 3.6.1
Tables 3.6.4, 3.6.5, and 3.6.6 list the general rules for what is permitted under various locking conditions.
This information applies unless explicityated differently in specific descriptions of attributes or
operations. However, there can be exceptions to the rule. For example, some operations may be permitted
even when there is an exclusive lock on the resource, or some global attributes magadtidgen there
is any kind of lock on the resource. These exceptions, when applicable, are mentioned in the description of
the individual operations and attributes.

In a VISA 2.2 system, only the 1/O operations listed in Sections 5 and 6 are restyitheddcking
scheme. Also, not all the operations are restricted by locking. Refer to descriptions of the individual
operations to determine which are applicable for locking.

RULE 3.6.4
IF anoperation respects lockeND the current session does not édkie lockAND the locking session is
not a HiSLIP sessiom,HEN the operatiorBHALL immediately returrvi ERROR_RSRC_LOCKED

RULE 3.65
IF a session uses HiSLIPHEN a VISA implementatioBHALL pass exclusive and shared lock requests
on that session tihe device, excluding nested locks.

RULE 3.6.6
IF a session uses HiSLIPHEN aVISA implementatiorSHALL return the HiSLIP remote lock state for
VI_ATTR RSRC_LOCK_STATE

RULE 3.6.7
IF alock is granted on a HiSLIP sessi®{EN operationghat respect locks made by other HiSLIP
session$SHALL be blocked in the HiSLIP device until the lock is released dSRA\BHALL return
VI_ERROR_RSRC_LOCKED

RECOMMENDATION 3.6. 1
For HiSLIP connections, VISA shouldait its normal VISA timeoubefore returning
VI_ERROR_RSRC_LOCKED

OBSERVATION 3.6.2
For HiSLIP sessions, access privileges are enforced by the HiSLIP device.

RECOMMENDATION 3.6.2
HiSLIP devicesshouldextend HiSLIP lock enforcement to other connection styles. They shimaki
operations that respect locks made by-RBBLIP connections not holding the HiSLI&ck until that lock
is released VISA implementations cannot determine from a VISA resource descriptor which connections
made via other interfaces or LAN protocal® to the same device as the one made via HiSLIP. Only the
HiSLIP device knows which connections are to the same instrument-arssuiment.

OBSERVATION 3.63
Holding HiSLIP locks and enforcing access privileges in the HiSLIP device sattaltiple hosts to
manage safe access to the HiSLIP device. rdlotningimmediatevl ERROR_RSRC_LOCKERTrrors
allows more natural use of HiSLIP locks for critisgctionstyle programming patterns. HiSLIP locks
may caus&/|_ERROR_RSRC_LOCKELRrrorsafter a VISA timeoutf an operation is blocked by a lack

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 322 Section 3: VISA Resource Template

3.6.1.4 Acquiring Exclusive Lock While Owning Shared Lock

When multiple sessions have acquired a shared lock, VISA allows one of the sessions to acquire an
exclusive lock along with the shat lock it is holding. That is, a session holding a shared lock could also
acquire an exclusive lock using thieock() operation. The session holding both the exclusive and shared
lock will have the same access privileges that it had when it was hotdirglpared lock only. However,

this would preclude other sessions holding the shared lock from accessing the locked resource. When the
session holding the exclusive lock unlocks the resource usingltileck() operation, all the sessions
(including the oe that had acquired the exclusive lock) will again have all the access privileges associated
with the shared lock. This is useful when multiple sessions holding a shared lock must synchronize. This
can also be used when one of the sessions must exeeutetical section. In the reverse case, in which a
session is holding an exclusive lock only (no shared locks), VISA does not allow it to change to
VI_SHARED_LOCK

3.6.1.5 Nested Locks

VISA supports nested locking. That is, a session can lock the\éiBAeresource multiple times (for the

same lock type). Unlocking the resource requires an equal number of invocationsioflkinek()

operation. Each session maintains a separate lock count for each type of locks. Repeated invocations of the
viLock() operation for the same session will increase the appropriate lock count, depending on the type of
lock requested. In the case of a shared lock, negtingk() calls will return with the samaccessKey

every time. In case of an exclusive logk,ock() will not return anyccessKey , regardless of whether

it is nested or not. When a session locks the resource a multiple number of times, an equal number of
invocations of the&iUnlock() operation is required to actually unlock the resource. In other words, for

each invocation ofiLock() , a lock count will be incremented and for each invocationflock()

the lock count will be decremented. A resource can be actually unlocked only when the lock count is 0.

For nesting shared locks, VISA does not requiracress key be passed in to invokeviheck()

operation. That is, a session does not need to pass in the access key obtained from the previous invocation
of viLock() to gain a nested lock on the resource. However, if an appliciiespass in an accegsy

when nesting on shared locks, it must be the correct one for that session. Refer to the description of the
viLock() operation for further description of thecesskey parameter.

3.6.1.6 Locks on Remote Resources

The locking mechanism describedtliis section is guaranteed to work for all processes and resources
existing on the same computer. When using remote resources, however, the networking protocol may not
provide the ability to pass lock requests to the remote device or resource. In thisaasshould still

behave as expected from multiple sessions on the same computer. For example, when usingthe VXI
protocol, exclusive lock requests can be sent to a device, but shared locks can only be handled locally. A
less secure example is thatiltiple controllers in a VXI system may each have their own view of the

system and may have duplicate locks without knowledge of each other.

RULE 3.6.8
A VISA implementationrSHALL enforce locking as described in this specification for all sessions,
processes, and resources on the same computer.

RECOMMENDATION 3.63

Multiple VISA entities on separate computers with access to the same resource should share lock
information if possible.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 323

3.6.2 Access Control Operations

viLock(vi, lockType, timeout, requestedKey, accessKey)
viUnlock(vi)

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 324 Section 3: VISA Resource Template

3.6.2.1viLock (vi, lockType, timeout, requestedKey, accessKey)

Purpose
Establish an access mode to the specified resource.

Parameters
Name Direction Type Description
Vi IN ViSession Unique logical identifieto a session.
lockType IN ViAccessMode Specifies the type of lock requested, whig

can be eithevl_EXCLUSIVE_LOCKor
VI_SHARED_LOCK.

timeout IN Viuint32 Absolute time period (in milliseconds) tha
a resource waits to get unlocked by the
locking session before returning this
operation with an error.

requestedKey IN ViKeyld This parameter is not used and should b
to VI_NULL whenlockType is
VI_EXCLUSIVE_LOCK (exclusive locks).
When trying to lock the resource as
VI_SHARED_LOCKshared), a segn can
either set it to/I_NULL, so that VISA
generates aaccessKey for the session, o
the session can suggestaanessKey to
use for the shared lock. Refer to the
description section below for more detaild

accessKey ouT ViKeyld This parameter should be setio NULL
whenlockType s VI_EXCLUSIVE_LOCK
(exclusive locks). When trying to lock the
resource a¥l_SHARED_LOCKshared), the
resource returns a unique access key for
lock if the operation succeeds. This
accesskKey can hen be passed to other
sessions to share the lock.

Return Values

Type ViStatus This is the operational return status. It returns eitl
a completion code or an error code as follows.

Completion Codes Description
VI_SUCCESS Specified access modesaccessfully acquired.
VI_SUCCESS_NESTED_EXCLUSIVE Specified access mode is successfully acquired
and this session has nested exclusive locks.
VI_SUCCESS_NESTED_SHARED Specified access mode is successfully acquireq
and this session has nested shioeks.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 325

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid
VI_ERROR_INV_OBJECT (both are the same value).
VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained beca

the resource is already lockedth a lock type
incompatible with the lock requested.

VI_ERROR_INV_LOCK_TYPE The specified type of lock is not supported by tf
resource.

VI_ERROR_INV_ACCESS_KEY TherequestedKey value passed in is not a vali
access key to the specified resource.

VI_ERROR_TMO Specified type of lock could not be obtained

within the specified timeout period.

Description
This operation is used to obtain a lock on the specified resource. The caller can specify the type of lock
requested exclusive or shared loékandthe length of time the operation will suspend while waiting to
acquire the lock before timing out. This operation can also be used for sharing and nesting locks.

TherequestedKey and theaccesskey parameters apply only to shared locks. These paranasterst
applicable when using the lock tygé EXCLUSIVE_LOCK; in this caserequestedKey andaccessKey
should be set tgl_NULL. VISA allows user applications to specify a key to be used for lock sharing,
through the use of thequestedkey parameter. Alternatively, a user application can pagsuULL for
therequestedKey parameter when obtaining a shared lock, in which case VISA will generate a unique
access key and return it through teessKey parameter. If a user application does sfyei

requestedkey value, VISA will try to use this value for theecessKey . As long as the resource is not
locked, VISA will use theequestedKey as the access key and grant the lock. When the operation
succeeds, thequestedKey will be copied into the & buffer referred to by theccessKey parameter.

The session that gained a shared lock can passdessKey to other sessions for the purpose of the
sharing the lock. The session wanting to join the group of sessions sharing the lock can use tae key as
input value to theequestedKey parameter. VISA will add the session to the list of sessions sharing the
lock, as long as thequestedkey value matches thaccesskey value for the particular resource. The
session obtaining a shared lock in this manviBithen have the same access privileges as the original
session that obtained the lock.

It is also possible to obtain nested locks through this operation. To acquire nested locks, invoke the
viLock() operation with the same lock type as the previausdation of this operation. For each session,
viLock() andviUnlock() share a lock count, which is initialized to 0. Each invocatioriLatk() for

the same session (and for the séwmkType) increases the lock count. In the case of a shared lock, it
returns with the samaccessKey every time. When a session locks the resource a multiple number of
times, it is necessary to invoke tiginlock() operation an equal number of times in order to unlock the
resource. That is, the lock count increments for éaabcation ofviLock() , and decrements for each
invocation ofviUnlock() . A resource is actually unlocked only when the lock count is O.

Related Items
SeeviUnlock()

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 326 Section 3: VISA Resource Template

Implementation Requirements

OBSERVATION 3.6.4
It is the intention of this specification theiKeyld be implemented as a string type. SigeNULL may
not be compatible with a string type in every language, aleegih string can be substituted wherever
VI_NULL is used in a reference to a paramefdypeVikeyld .

RULE 3.69
A resourcéSHALL maintain an exclusive lock count and a shared lock count for each session that holds a
lock on the resource.

RULE 3.6.10
IF aviLock() operation requests and acquires an exclusive lock successHIEN the exclusive lock
count associated with that sess®iHALL be incremented by 1.

RULE 3.6.11
IF aviLock() operation requests and acquires an shared lock succesBHMEIN the shared lock count
associated with that sessiBRALL be incremented by 1.

RULE 3.6.12
IF aviLock() operation requesting a shared lock is invoked from a session whose associated exclusive
lock count is nofzero (meaning the session has an exclusive [BEIEN theviLock() operation
SHALL return the erroI_ERROR_RSRC_LOCKED

RULE 3.6.13
IF thelockType parameter i¥|_EXCLUSIVE_LOCK THEN theviLock() operationSHALL ignore the
value of thaequestedkey parameter.

RULE 3.6.14
IF thelockType parameter i¥|_EXCLUSIVE_LOCK AND theaccesskey parameter points to a valid
user bufferTHEN theviLock() operationSHALL set the value odccessKey to be a zerdength
string.

RULE 3.6.15
IF an application makes a request for a shared lock on a refNE¢herequestedkey value is set to
VI_NULL, AND the resource is not lockedHEN VISA SHALL generate thaccesskey to allow
sharing of the lock.

OBSERVATION 3.6.5
An accesskKey used for sharing a lock to a resource need only be unique for a resource, but two different
resources can have the sammeessKey .

RULE 3.6.16
IF VISA generates thaccessKey , THEN VISA SHALL generate thaccessKey with a value that is
guaranteed unique from all other VISA hosts.

OBSERVATION 3.6.6
An accessKey used for sharing a lock to a resource is guaranteed ufimenther hosts if it is based in
part on hostnique data, such as a GUID or MAC address.

RULE 3.6.17
IF an application makes a request for a shared lock on a resAitDetherequestedkey value is not set
to VI_NULL, AND the length of theequestedK ey is greater than or equal to 256 characf€H=N the
viLock() operationSHALL returnVI_ERROR_INV_ACCESS_KEY

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 327

RULE 3.6.18
IF an application makes a request for a shared lock on a resAitDetherequestedkey value is not set
to VI_NULL, AND the length of theequestedkey s less than 256 charactefd\D the resource is not
locked, THEN VISA SHALL use theequestedKey value as the access key to the resource.

OBSERVATION 3.6.7
An application can specify any valid string agquestedkey value when acquiring a shared lock. Care
should be taken in choosing tieguestedkey value; otherwise, if a string is chosen that can be easily
replicated, chances are other sessions may have chosen the same string and the sessions might unknowingly
endup sharing the resource.

RULE 3.6.19
VISA SHALL support nested locking.

RULE 3.6.20
IF a session that holds a shared lock on the resource makes another invocatieiLafkpe operation
with the same lock typ&d,HEN the resourc&HALL return the sae access key as the one returned in the
previous invocation ofiLock()

RULE 3.6.21
IF a session is being clos@dND that session has lock(s) to the resoufdd¢EN the resource locked
through that sessidBHALL be unlocked by setting both exclusivedahared lock counts associated with
that session to O befoviClose() returns.

RULE 3.6.22
IF viLock() cannot acquire the lock immediateRHEN the operatiofSHALL wait for at least the time
period specified in thémeout parameter before returning with an error.

RULE 3.6.23
IF the timeout is/I_TMO_IMMEDIATEAND viLock() cannot acquire the lock immediateRHEN the
viLock() operationSHALL return immediately with an error.

RULE 3.6.24
IF aviLock() operation requestsid acquires an exclusive lock successfullfEN VISA SHALL
ensure that the lock state of the resource associated with the given sessionvs E&IAbUSIVE_LOCK

RULE 3.6.25
IF aviLock() operation requests and acquires a shared lock succes&hllythe lock state of the
resource associated with the given sessionva$O_LOCKprior to theviLock() operation,THEN
VISA SHALL ensure that the lock state of the resource associated with the given session is set to
VI_SHARED_LOCK

RULE 3.6.26
IF aviLock() operation requests and acquires a shared lock succesafdllythe lock state of the
resource associated with the given session waginbD_LOCKprior to theviLock() operation,THEN
VISA SHALL NOT modify the lock state of the resource assedatith the given session.

RULE 3.6.27
IF aviLock() operation requests and acquires an exclusive lock succesafllythe exclusive lock
count associated with the given session was zero prior toLthek() operation,THEN viLock()
SHALL returnvl_SUCCESS

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 328 Section 3: VISA Resource Template

RULE 3.6.28
IF aviLock() operation requests and acquires an exclusive lock succesahllythe exclusive lock

count associated with the given session wasz®wa prior to theviLock() operation,THEN viLock()
SHALL returnVl_SUCCESS_NESTEDEXCLUSIVE

RULE 3.6.29
IF aviLock() operation requests and acquires a shared lock succesafdllythe shared lock count

associated with the given session was zero prior teithek() operation,THEN viLock() = SHALL
returnVi_SUCCESS

RULE 3.6.30
IF aviLock() operation requests and acquires a shared lock succesafdllythe shared lock count

associated with the given session was-pero prior to theviLock() operation,THEN viLock()
SHALL returnVl_SUCCESS_NESTED_SHARED

RULE 3.6.31
IF aviLock() operation requests a shared lo8KD the exclusive lock count associated with the given

session is zerdAND the shared lock count associated with the given session-semofAND the
requestedkey parameter is not set Wd_NULL, AND the value ofequestedkey is not the same as
the access key for the resource associated with the given s@$$ied,viLock() SHALL return
VI_ERROR_INV_ACCESS_KEY

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 329

3.6.2.2viUnlock (vi)

Purpose
Relinquish a lock for the specified resource.

Parameter

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Return Values

Type ViStatus This is the operational return status. It returns eitl
a completion code or an error code as follows.

Completion Codes Description
VI_SUCCESS Lock successfully relinquished.
VI_SUCCESS_NESTED_EXCLUSIVE Call succeeded, but this session still has neste
exclusive locks.
VI_SUCCESS_NESTED_SHARED Call succeeded, but this session still has neste

shared locks.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid
VI_ERROR_INV_OBJECT (both are the same value).
VI_ERROR_SESN_NLOCKED The current session did not have any lock on th

resource.

Description
This operation is used to relinquish the lock previously obtained using tio&() operation.

Related Items
SeeviLock()

Implementation Requirements

RULE 3.6.32
IF the exclusive lock count is nezero for the given session after an invocationioflock() , THEN
the operatiorSHALL returnVl_SUCCESS_NESTED_EXCLUSIVE

RULE 3.6.33
IF the exclusive lock count is zero for the given sesAdD the shared lock count is naerofor the
given session after an invocationwitfinlock() , THEN the operabn SHALL return
VI_SUCCESS_NESTED_SHARED

RULE 3.6.3#4

IF the exclusive lock count associated with a session izaom THEN the exclusive lock cour@HALL
be decremented for each invocatiorviafnlock() from that particular session.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 330 Section 3: VISA Resource Template

RULE 3.6.35
IF the shared lock count associated with a session ig@a@nAND the exclusive lock count associated
with the session is zerdHEN the shared lock couHALL be decremented for each invocation of
viUnlock() ~ from that particular session.

RULE 3.6.36
When the exclusive lock count is decremented to O for a particular session, the Sé#aldn relinquish
the exclusive lock on the resource.

RULE 3.6.37
When the shared lock count is decremented to O for a particular session, theSidgdibnrelinquish tte
shared lock on the resource.

RULE 3.6.38
IF both the exclusive and shared lock count associated with a sessidiHiEN),any invocation of the
viUnlock() operation on that sessi@HALL NOT decrement any lock count aBHALL return
VI_ERROR_SESN_NLOCKED

RULE 3.6.39

A resourceSHALL be unlocked only when the both the lock counts are 0 for all the sessions accessing the
resource.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 331

3.7 Event Services

VISA defines a common mechanism to notify an application when certain conditions occur. These
conditions or occurrences are referred tewants Typically, events occur because of a condition requiring
the attention of applications. Awvent is a means of communication between a VISA resource and its
applications.

VISA provides two independent mechanisms for an application to receive notification of event
occurrences: queuing and callback handling. An application can enable eith#r prelsbanisms using
theviEnableEvent() operation. The callback handling mechanism can be enabled for one of two modes:
immediate callback or delayed callback queuing. VilBeableEvent() operation is also used to switch
between the two callback modes.eMiDisableEvent() operation is used to disable either or both
mechanisms.

In order to receive events using the queuing mechanism, an application must invoke the
viwaitOnEvent() operation. In order to receive events using the callback mechanism, an application
must install a callback handler using thiestallHandler() operation.

When an application receives an event occurrence via either mechanism, it can determine information
about the event by invokingGetAttribute() on that event. When the application no longer needs the
event information, it must caliClose() on that event.

3.7.1 Event Handling and Processing

The VISA event model provides two different ways for ppleation to receive event notification. The

first method is to place all of the occurrences of a specified event type in a sesseonqueue. There is

one event queue per event type per session. The application can receive the event occurreryces later b
dequeuing them with th@waitOnEvent() operation. The other method is to call the application

directly, invoking a function that the application installed prior to enabling the event. A callback handler is
invoked on every occurrence of the specifiedrdyv

RULE 3.7.1
Every VISA resourc&HALL implement both the queuing and callback event handling mechanisms.

The queuing and callback mechanisms are suitable for different programming styles. The queuing
mechanism is generally useful for noritical events that do not need immediate servicing. The callback
mechanism is useful when immediate responses are néddesi: mechanisms work independently of

each other, so both can be enabled at the same time. By default, a session is not enabled to receive any
events by either mechanism. TWiEnableEvent() operation can be used to enable a session to respond
to a spedied event type using either the queuing mechanism, the callback mechanism, or both. Similarly,

theviDisableEvent() operation can be used to disable one or both mechanisms. Because the two
methods work independently of each other, one can be enableshbledi regardless of the current state of
the other.

The queuing mechanism is discussed in section 3. QLdying MechanisnThe callback mechanism is
described in section 3.7.1Rallback Mechanism

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 332 Section 3: VISA Resource Template

3.7.1.1 Queuing Mechanism

The queuing mechanisin VISA gives an application the flexibility to receive events only when it requests
them. An application retrieves the event information by usingithiaitOnEvent() operation. If the
specified event(s) exist in the queue, these operations retrieveetttargformation and return

immediately. Otherwise, the application thread is blocked until the specified event(s) occur or until the
timeout expires, whichever happens first. When an event occurrence unblocks a thread, the event is not
gueued for the sessi on which the wait operation was invoked. For more information about these
operations, see section 3.7E¥ent Operations.

Figure 3.7.1 shows the state diagram for the queuing mechanism. This state diagram includes the enabling
and disabling of the quing mechanism and the corresponding operations.

D - Disable state

EQ Q - Queuing state
EQ - Enable queuing
DQ - Disable queuing

DQ

Figure 3.7.1 State Diagram for the Queuing Mechanism

The queuing mechanism of a particular session can be in one of two different Biatdsed oQueuing

(enabled for queuing). A session can transition between these two states ugiBgallieEvent() or
viDisableEvent() operation. Once a session is enabled for queuing (EQ transition@osthée), all the

event occurrences of the specified eugpe are queued. When a session is disabled for queuing (DQ
transition toD state), any further event occurrences are not queued, but event occurrences that were already
in the event queue are retained. The retained events can be dequeued at any tittne using

viwaitOnEvent() operation. An application can explicitly clear (flush) the event queue for a specified

event type using thé@DiscardEvents() operation.

RULE 3.7.2

IFt here are any e v eAND the guauinggmechanisrms transitidnsietn statas,e
THEN the resourc&HALL NOT discard any events from the queue.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 333

The following table lists the state transitions and the corresponding values for the mechanism parameter in
theviEnableEvent() andviDisableEvent() operations.

Table 3.7.1

State Transitions for the Queuing Mechanism

Destination State

Paths Leading to
Destination State

Value of M echanism Parameter

Operation to Use to
Get State Transition

Q

EQ

VI_QUEUE

viEnableEvent()

D

DQ

VI_QUEUE, VI_ALL_MECH

viDisableEvent()

Every VISA resource provides an attribute for configuring and maintaining session queues. The
VI_ATTR_MAX_QUEUE_LENGT&ttribute specifies the maximum number of events that can be queued at
any time on the given session.

Attributes

Symbolic Name
VI_ATTR_MAX_QUEUE_LENGTH

AccessPrivilege
R/W

Data Type
ViuInt32

Range
1 to FFFFFFFFh

Local

RULE 3.7.3
Every VISA resourc&HALL support the/I_ ATTR_MAX_QUEUE_LENGTattribute.

RULE 3.7.4
IF a queue is fulAND a new event is to be placed on the qua@i#EN the event with the lowest priority
SHALL be discarded.

RULE 3.7.5
A VISA 2.2 systenSHALL define the lowest priority to mean the most recent timestamp.

OBSERVATION 3.7.1
Because new events have a later timestamp (and therefore a lower priority) than events already on the
gueue, a queue full condition means that new events will be discarded and the state of the queue will not be
altered.

3.7.1.2 Callback Mechanism

The VISA event model also allows applications to install functions that can be called back when a
particular event type is received. TVimstallHandler() operation can be used to install handlers to
receive specified event types. The handlers are invokederg eccurrence of the specified event, once

the session is enabled for the callback mechanism. One handler must be installed before a session can be
enabled for sensing using the callback mechanism.

RULE 3.7.6
IF no handler is installed for an event&fND an application callsiEnableEvent() AND the
mechanism parameter i¥|_HNDLR, THEN theviEnableEvent() operationSHALL return the error
VI_ERROR_HNDLR_NINSTALLED

VISA allows applications to install multiple handlers for an event type on the sasierseMultiple
handlers can be installed through multiple invocations ofithstallHandler() operation, where
each invocation adds to the previous list of handlers. If more than one handler is installed for an event

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 334 Section 3: VISA Resource Template

type, each of the handlers is itkeal on every occurrence of the specified event(s). VISA specifies that the
handlers are invoked in Last In First Out (LIFO) order.

RULE 3.7.7
A VISA implementationSHALL allow at least 4 handlers to be installed on a given session for a given
event type.

PERMISSION 3.7.1
A VISA implementatiorMAY allow as many handlers as it wishes. VISA does not enforce a maximum
limit on the number of handlers that can be installed.

RULE 3.7.8
IF multiple handlers are installed for the same event type on the sasi@sESlEN VISA SHALL
invoke the handlers in the reverse order of their installation (LIFO order).

When a handler is invoked, the VISA resource provides the event context as a parameter to the handler.
The event context is filled in by the resource. Applications can retrieve information from the event context
object using theiGetAttribute() operation

An application can supply a reference to any applicadisimed value while installing handlers. This

reference is passed back to the application asstitelandle parameter to the callback routine during

handler invocation. This allows applicationdristall the same handler with different applicatitefined

contexts. For example, an application can install a handler with a fixed value 0x1 on a session for an event
type. It can install the same handler with a different value, for example 0x2, fartteeevent type. The

two installations of the same handler are different from one another. Both handlers are invoked when the
event of the given type occurs. However, in one invocation the value passed to userHandle is Ox1 and in the
other it is 0x2. Thusevent handlers are uniquely identified by a combination of the handler address and

user context pair. This identification is particularly useful when different handling methods need to be done
depending on the user context data. Refer toithentHandl er() prototype for more information.

An application may install the same handler on multiple sessions. In this case, the handler is invoked in the
context of each session for which it was installed (within the process environment).

RULE 3.7.9
IF a handér is installed on multiple sessioA$1EN the handleSHALL be called once for each
installation when an event occurs.

OBSERVATION 3.7.2
In a multithreaded operating system, the callback may occur in a different thread than the one from which
vilnstallH andler() s called.

OBSERVATION 3.7.3
The order of callbacks is only guaranteed for multiple handlers on a given session. A VISA
implementation may perform callbacks to handlers on multiple sessions (or processes) in any order.

An application can uninall any of the installed handlers using thigninstallHandler() operation.
This operation can also uninstall multiple handlers from the handler list at one time.

The following section discusses Figure 3.7.2, the state diagram of a resource implerhergailpack
mechanism. This state diagram includes the enabling and disabling of the callback mechanism in different
modes. It also briefly describes the operations that can be used for state transitions. The table following the
diagram lists different sta transitions and parameter values foniE@ableEvent() and

viDisableEvent() operations.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 335

EHpar

D = Disabled state EH = enable handling (callbacks)
H = Handling state DH = disabled handling
Hpar = Suspended handling EHp4r = Suspended handling

Figure 3.7.2 State Diagram for the Callback Mechanism

The callback mechanism of a particular session can be in one of three differentBisdbted Handling,

or suspended handlindfa). When a session transitions to the handling state (EH transitidistate), the
callback handler is invoked for all the occurrences of the specified event type. When a session transitions to
the suspended handling ®4{EH,5 transition toHpgay), the callback handler is not invoked for any new

event occurrences, but occurrences are kept in a suspended handler queue. The handler is invoked later,
when a transition to the handling state occurs. When a session trensitithe disabled state (DH

transition to theD state), the session is desensitized to any new event occurrences, but any pending
occurrences are retained in the queue. In the suspended handling state, a maximum of the
VI_ATTR_MAX_QUEUE_LENGTHRuUmber of gent occurrences are kept pending. If the number of pending
occurrences exceeds the value specified in this attribute, the lpr@dty events are discarded as

described in section 3.7.1.Queuing MechanismAn application can explicitly clear (fluskhe callback

queue for a specified event type usingtibéscardEvents() operation.

The following table lists the state transition diagram for the callback mechanism and the corresponding
values for thenechanism parameter in theiEnableEvent() orviDis ableEvent() operations.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 336 Section 3: VISA Resource Template

Table 3.7.2 State Transition Table for the Callback Mechanism

Destination Source Paths Leading to Value of M echanism Operation to Use for
State State Destination State Parameter State Transition
H D EH VI_HNDLR viEnableEvent()
H Hbar EH VI_HNDLR viEnableEvent()
Hbar D EHpar VI_SUSPEND_HNDLR viEnableEvent()
Hpar H EHpar VI_SUSPEND_HNDLR viEnableEvent()
D H DH VI_HNDLR, viDisableEvent()
VI_SUSPEND_HNDLR,
VI_ALL_MECH

D Hbar DH VI_SUSPEND_HNDLR, viDisableEvent()
VI_HNDLR, VI_ALL_MECH

RULE 3.7.10
IF the callback mechanism mode for event handling is changedircd8tSPEND_HNDLRo VI_HNDLR,
THEN all the pending events for the event type specifieslémtType parameter ofiEnableEvent()
SHALL be handled befordEn ableEvent() completes.

OBSERVATION 3.7.4
The queuing mechanism and the callback mechanism operate independently of each other. In a VISA
system, sessions keep information for event occurrences separate for both mechanisms. If one mechanism
reaches itpredefined limit for storing event occurrences, it does not directly affect the other mechanism.

3.7.2 Exceptions

In VISA, when an error occurs while executing an operation, the normal execution of a VISA resource
halts. The resource notifies applicat of the error condition, invoking the applicatiepecified callback
routine for the exception event. The notification includes sufficient information for the application to know
the cause of the error. Once notified, the application can tell the $§St&m the action to take, depending

on the severity of error. VISA provides this functionality through an exception event, which is referred to
as arexceptiorfor the remainder of this document. The facility to handle exceptions is referred to as the
exception handling mechanisim this document. In VISA, each error condition defined by operations of
resources can cause exception events.

In VISA, exceptions are defined as events. The excep@maling model follows the evehtandling

model for callbaks, and it uses the same operations as those used for general event handling. For example,
an application callsilnstallHandler() andviEnableEvent() to enable exception events. The

exception event is like any other event in VISA, except that the qugeaad suspended handler

mechanisms are not allowed.

3.7.2.1 Exception Handling Model

This section describes the exceptltandling model in VISA. In the VISA system, exceptions follow the
event model presented earlier in this section. As describix ieverrhandling model, it is possible to

install a callback handler which is invoked on an error. This installation can be done using the
vilnstallHandler() operation on a session. Once a handler is installed, a session can be enabled for
exception gent usingviEnableEvent() operation.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 337

When an error occurs for a session operation, the exception handler is executed synchronously; that is, the
operation that caused the exception blocks until the exception handler completes its execution. When
invoked, the exception handler can check the error condition and instruct the exception operation to take a
specific action. It can instruct the exception operation to continue normally (returning the indicated error
code) or to not invoke any additiortedndlers (in the case of handler nesting). A given implementation

may choose to provide implementaterpeci fi ¢ return codes for usersbd
alternate actions based on those implementad@tific codes.

RULE 3.7.11
All VISA i mplementationSHALL invoke exception handlers in the context of the thread that caused the
exception event.

PERMISSION 3.7.2
A given implementation of VISMAY define vendoispecific return codes for user exception handlers to
return.

PERMISSION 3.7.3
A given implementation of VISMAY take vendoidefined actions based on vendgrecific return codes
from a userds exception handl er.

OBSERVATION 3.7.5
An example of a vendespecific return code from an exception handler is one that causes the VISA
implementation to close all sessions for the given process and exit the application. Remember that using
vendorspecific return codes makes an application incompatible with other implementations.

As stated before, an exception operation blocks untiéxiseption handler execution is completed.

However, an exception handler sometimes may prefer to terminate the program prematurely without
returning the control to the operation generating the exception. VISA does not preclude an application
from using gplatform-specific or languagepecific exception handling mechanism from within the VISA
exception handler. For example, the C++ try/catch block can be used in an application in conjunction with
the C++ throw mechanism from within the VISA exception handle

OBSERVATION 3.7.6

When using the C++ try/catch/throw or other exceptiandling mechanisms, the control will not return to

the VISA system. This has several important repercussions for both users and VISA implementors:

1) If multiple handlers were insteld on the exception event, the handlers that were not invoked prior to
the current handler will not be invoked for the current exception.

2) The exception context will not be deleted by the VISA system when a C++ exception is used. In this
case, the applicain should delete the exception context as soon as the application has no more use for
the context, before terminating the session. An application should ug€ltisg() operation to
delete the exception context.

3) Code in any operation (after calling axception handler) may not be called if the handler does not
return. For example, local allocations must be fieefdreinvoking the exception handler, rather than
after it.

3.7.2.2 Generating an Error Condition
In VISA, when an error occurs, the nodneaecution of that session operation halts. The operation notifies
the error condition to the application by raising an exception event. Raising the exception event will

invoke the exception callback routine(s) installed for the particular sessiod, drasénether this event is
currently enabled for the given session.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

e X

Page 338 Section 3: VISA Resource Template

One situation in which an exception event will not be generated is in the case of asynchronous operations.

If the error is detected after the operation is posted ¢nce the asynchnous portion has begun), the
status is returned normally via the 1/0 completion event. However, if an error occurs before the
asynchronous portion beginise(, the error is returned from the asynchronous operation itself), then the

exception event willtdl be raised. This deviation is due to the fact that asynchronous operations already
raise an event when they complete, and this I/O completion event may occur in the context of a separate

thread previously unknown to the application. In summary,@esapplication event handler can easily
handle error conditions arising from both exception events and failed asynchronous operations.

3.7.2.3VI_EVENT_EXCEPTION

Description
Notification that an error condition has occurred during an operation ingacati

Event Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_EXCEPTION
VI_ATTR_STATUS RO ViStatus N/A
VI_ATTR_OPER_NAME RO ViString N/A

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logicalidentifier of the event.
VI_ATTR_STATUS Status code returned by the operation generating the error.
VI_ATTR_OPER_NAME The name of the operation generating the event.

RULE 3.7.12

The name of the operation contained/inATTR_OPER_NAMEHALL be exactly as presented in this
specification,The VISA Library

OBSERVATION 3.7.7
For an exception generated from thieock() operationVl_ATTR_OPER_NAMEvould contain the string
"viLock "

OBSERVATION 3.7.8
The intent of providingyl_ATTR_OPER_NAMES to be able to provide diagnostic information, such as

printing the name of the operation causing the event. Comparing the operation name in order to perform

different actions, while valid, is not a recommended programming style.

3.7.3 Event Operations

viEnableEvent(vi, eventType, mechanism, context)
viDisableEvent(vi, eventType, mechanism)

viDiscardEvents(vi, eventType, mechanism)

viwaitOnEvent(vi, inEventType, timeout, outEventType, outContext)
vilnstallHandler(vi, eventType, handler, userHandle)

viun installHandler(vi, eventType, handler, userHandle)

Handler Prototype:
viEventHandler(vi, eventType, context, userHandle)

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template

3.7.3.1viEnableEvent

Purpose

Page 339

(vi, eventType, mechanism, context)

Enable notification of a specified event.

Parameters

Name

Direction

Type

Description

vi

IN

ViSession

Unique logical identifier to a session.

eventType

IN

ViEventType

Logical event identifier.

mechanism

IN

Viuint16

Specifies event handling mechanisms to bg

enabled. The queuing mechanism is enabl
by specifyingvl_QUEUE and the callback
mechanism is enabled by specifying
VI_HNDLRoOr VI_SUSPEND_HNDLRIt is
possible to enable both mechanisms
simultaneously by specifyg "bit-wise OR"

of VI_QUEUEand one of the two mode valug
for the callback mechanism.

context IN ViEventFilter VI_NULL

Return Values

Type ViStatus

This is the operational return status. It returns eithe|
completion code or an error codefabows.

Completion Codes

Description

VI_SUCCESS

Event enabled successfully.

VI_SUCCESS_EVENT_EN

Specified event is already enabled for at least one
the specified mechanisms.

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

Thegiven session or object reference is invalid (bot
are the same value).

VI_ERROR_INV_EVENT

Specified event type is not supported by the resour

VI_ERROR_INV_MECH

Invalid mechanism specified.

VI_ERROR_INV_CONTEXT

Specified event context is invalid.

VI_ERROR_HNDLR_NINSTALLED

A handler is not currently installed for the specified
event. The session cannot be enabled for the
VI_HNDLR mode of the callback mechanism.

VI_ERROR_NSUP_MECH

The specified mechanism is not supported for the
given event type.

VXIplug&play Systems Alliance

VPP-4.3: The VISA Library

Page 340 Section 3: VISA Resource Template

Description
This operation enables notification of an event identified bythetType parameter for mechanisms
specified in thenechanism parameter. The specified session can be enabled to queue events by specifying
VI_QUEUE Applications can enable the session to invoke a callback function to execute the handler by
specifyingVI_HNDLR. The applications are required to install at least one handler to be enabled for this
mode. Specifyingyl_SUSPEND_HNDLFRnables the sessionreceive callbacks, but the invocation of the
handler is deferred to a later time. Successive calls to this operation replace the old callback mechanism
with the new callback mechanism. SpecifyMigALL_ENABLED_EVENTSor theeventType parameter
refers toall events that have previously been enabled on this session, making it easier to switch between the
two callback mechanisms for multiple events.

Table 3.7.3 Special Values foeventType Parameter

Value Action Description

VI_ALL_ENABLED_EVENTS | Switch all events that were previously enabled to the
callback mechanism specified in tinechanism
parameter.

Table 3.7.4 Special Values fomechanism Parameter

Value Action Description

VI_QUEUE Enable this session to receive the specified event via th
waiting queue. Events must be retrieved manually via tf
viwaitOnEvent() operation.

VI_HNDLR Enable this session to receive the specified event via a
callback handler, which must have already hiestalled
via vilnstallHandler()

VI_SUSPEND_HNDLR Enable this session to receive the specified event via a
callback queue. Events will not be delivered to the sess
until viEnableEvent() is invoked again with the
VI_HNDLR mechanism.

Notice that any combination of VISAefined values for different parameters of the operation is also
supported (except forl_HNDLR andVI_SUSPEND_HNDLRwhich apply to different modes of the same
mechanism).

Related Items
See the handler prototypekEv entHandler() for its parameter description. Also see the
vilnstallHandler() andviUninstallHandler() descriptions for information about installing and
uninstalling event handlers.

Implementation Requirements

OBSERVATION 3.7.9
This specification mandatdisat event queuing and callback mechanisms operate completely
independently. As such, the enabling and disabling of the two modes in done independently (enabling one
of the modes does not enable or disable the other mode). For examigleglifeEvent() is called once
with VI_HNDLR and called a second time with QUEUE both modes would be enabled.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 341

RULE 3.7.13
IF viEnableEvent() is called with thenechanism parameter equal to the "hitise OR" of
VI_SUSPEND_HNDLRindVI_HNDLR, THEN viEnableEvent() SHALL returnvVl_ERROR_INV_MECH

RULE 3.7.14
IF the event handling mode is switched freiMSUSPEND_HNDLRo VI_HNDLRfor an event typeTHEN
handlers that are installed for the evBHRALL be called once for each occurrence of the corresponding
event pendingn the session (and dequeued from the suspend handler queue) before switching the modes.

OBSERVATION 3.7.10
A session enabled to receive events can start receiving events befdantitde Event(pperation returns.
In this case, the handlers set foreaent type are executed before the completion of the enable operation.

RULE 3.7.15
IF the event handling mode is switched frofinHNDLRto VI_SUSPEND_HNDLRor an event typefHEN
handler invocation for occurrences of the event §pALL be deferred ta later time.

RULE 3.7.16
IF no handler is installed for an event typ&]EN the request to enable the callback mechanism for the
event typeSHALL returnVl_ERROR_HNDLR_NINSTALLED

RULE 3.7.17
IF a session has events pending in its queude{f) viClos e() is invoked on that sessionHEN all
pending event occurrences and the associated event contexts that have not yet been delivered to the
application for that sessid@HALL be freed by the system.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 342

3.7.3.2 viDisableEvent

Purpose

Section 3: VISA Resource Template

(vi, eventType, mechanism)

Disable notification of an event type by the specified mechanisms.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
eventType IN ViEventType Logical event identifier.
mechanism IN Vilint16 Specifies event handling mechanisms to be

disabled. The queuing mechanism is disabl
by specifyingvl_QUEUE and the callback
mechanism is disabled by specifying
VI_HNDLRoOr VI_SUSPEND_HNDLRIt is
possible to disable both mechanisms
simultaneously by sp#ying VI_ALL_MECH

Return Values

Type ViStatus

This is the operational return status. It returns eithe
completion code or an error code as follows.

Completion Codes

Description

VI_SUCCESS

Event disabled successfully.

VI_SUCCESS_EVENT_DIS

Specified event is already disabled for at least one
the specified mechanisms.

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (bo
are the same value).

VI_ERROR_INV_EVENT

Specifiedevent type is not supported by the resourc

VI_ERROR_INV_MECH

Invalid mechanism specified.

Description

This operation disables servicing of an event identified bythetType parameter for the mechanisms
specified in thenechanism parameter. Specifyingl ALL_ENABLED_EVENTSor theeventType

parameter allows a session to stop receiving all events. The session can stop receiving queued events by
specifyingvVl_QUEUE Applications can stop receiving callback events by specifyingreaftheiINDLR or
VI_SUSPEND_HNDLRSpecifyingvl_ALL_MECHdisables both the queuing and callback mechanisms.

Table 3.7.5

Special Values foeventType Parameter

Value

Action Description

VI_ALL_ENABLED_EVENTS

Disable all events that were previously enabled.

VPP-4.3: The VISA Library

VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 343

Table 3.7.6 Special Values fomechanism Parameter

Value Action Description
VI_QUEUE Disable this session from receiving the specified event(
via the waiting queue.
VI_HNDLRor Disable this session from receiving the speciégdnt(s)
VI_SUSPEND_HNDLR via a callback handler or a callback queue.
VI_ALL_MECH Disable this session from receiving the specified event(

via any mechanism.

Notice that any combination of VISédefined values for different parameters of the operation is also
suppored.

Related Items
See theviEventHandler() prototype for its parameter description. Also seevtingtallHandler()
andviUninstallHandler() descriptions for information about installing and uninstalling event
handlers. Refer to event descriptions for context structure definitions.

Implementation Requirements
RULE 3.7.18
IF a request to disable an event handling mechanism is made forom SEBEN the events pending or
gueued in the sessi@HALL remain pending or queued, respectively, in the session.
OBSERVATION 3.7.11

Note thatviDisableEvent() prevents new event occurrences from being added to the queue(s).
However, event occurrencaleady existing in the queue(s) are not discarded.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 344 Section 3: VISA Resource Template

3.7.3.3viDiscardEvents (vi, eventType, mechanism)

Purpose
Discard event occurrences for specified event types and mechanisms in a session.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
eventType IN ViEventType Logical event identifier.
mechanism IN Vilint16 Specifies the mechanisms for which the

events are to be discarded. THeQUEUE
value is specified for the queuing mechanis
and thevl_SUSPEND_HNDLRalue is
specified for the pending events in the
callback mechanism. It is possible to specif
both mechanisms simultaneously by
specifyingVvl_ALL_MECH

Return Values

Type ViStatus This is the operational return status. It returns eithel
completion code or an error code as follows.

Completion Codes Description
VI_SUCCESS Event queue flushed successfully.
VI_SUCCESS_QUEUE_EMPTY Operation completed successfully, but queue was
empty.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_INV_OBJECT are the same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resour
VI_ERROR_INV_MECH Invalid mechanism specified.

Description
This operation discards all pending occurrences of the specified event types and mechanisms from the
specified session. The information about all the event occurrences that have not yet been handled is
discarded. Thismeration is useful to remove event occurrences that an application no longer needs.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 345

Table 3.7.7 Special Values fogventType Parameter

Value Action Description
VI_ALL_ENABLED_EVENTS | Discard events of every type that is enabled.

Table 3.7.8 Special Values fomechanism Parameter

Value Action Description
VI_QUEUE Discard the specified event(s) from the waiting queue.
VI_SUSPEND_HNDLR Discard the specified event(s) from the callback queue.
VI_ALL_MECH Discard the specified event(s) from alechanisms.

Notice that any combination of VIS8efined values for different parameters of the operation is also
supported.

Related Items
Refer to the event handling mechanism.

Implementation Requirements
OBSERVATION 3.7.12
The event occurrencetsscarded by applications are not available to a session at a later time. This operation

causes loss of event occurrences.

OBSERVATION 3.7.13

TheviDiscardEvents() operation does not apply to event contexts that have already been delivered to
the appliction.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 346 Section 3: VISA Resource Template

3.7.3.4viWaitOnEvent (vi, inEventType, timeout, outEventType, outContext)

Purpose
Wait for an occurrence of the specified event for a given session.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to aession.
inEventType IN ViEventType Logical identifier of the event(s) to wait fo
timeout IN Viuint32 Absolute time period in time units that the
resource shall wait for a specified event t
occur before returning the time elapsed
error. The time uniis in milliseconds.
outEventType ouT ViEventType Logical identifier of the event actually
received.
outContext ouT ViEvent A handle specifying the unique occurrend
of an event.
Return Values
Type ViStatus This is the operational return statusielturns either a

completion code or an error code as follows.

Completion Codes Description
VI_SUCCESS Wait terminated successfully on receipt of an event
occurrence. The queue is empty.
VI_SUCCESS_QUEUE_NEMPTY Wait terminated successfully on receipt of an event

notification. There is still at least one more event
occurrence of the type specified infventType
available for this session.

VI_WARN_QUEUE_OVERFLOW Wait terminated successfully on receipt of an event
notification. Theraveremore event occurrensef the
type specified bynEventType than the configured
queue size could holdo the event queue overflowe(

Error Codes Description
VI_ERROR_INV_SESSION The given session or objagtference is invalid (both
V|_ERROR_|NV_OBJECT are the same Va|ue)_

VI_ERROR_INV_EVENT Specified event type is not supported by the resour

VI_ERROR_TMO Specified event did not occur within the specified tir
period.

VI_ERROR_NENABLED The session must be enabledduents of the specifie

type in order to receive them.

Description
TheviWaitOnEvent() operation suspends execution of a thread of application and waits for an event
inEventType for a time period not to exceed that specifiedilgout . Refer to individual event

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 347

descriptions for context definitions. If the specifieBventType isVI_ALL_ENABLED_EVENTSthe
operation waits for any event that is enabled for the given session. If the specified timeout value is
VI_TMO_INFINITE , the operatin is suspended indefinitely.

Table 3.7.9 Special Values fooutEventType Parameter

Value Action Description

VI_NULL Do not return the type of the event.

Table 3.7.10 Special Values fooutContext Parameter

Value Action Description

VI_NULL Do notreturn an event context.

Related Items
Refer to the overview of this section for more information on event handling. Also refer to the event
descriptions in Section 5.

Implementation Requirements

RULE 3.7.19
IF the valuevi_TMO_INFINITE is specifiedn thetimeout parameter ofiwaitOnEvent() , THEN the
execution threa@HALL be suspended indefinitely to wait for an occurrence of an event.

RULE 3.7.20
IF the valuevl_TMO_IMMEDIATEIs specified in théimeout parameter ofiwaitOnEvent() , THEN
application executiorBHALL NOT be suspended.

OBSERVATION 3.7.14
Notice that this operation can be used to dequeue events from an event queue by setting the timeout value
to VI_TMO_IMMEDIATE

OBSERVATION 3.7.15
viwaitOnEvent() removes the specified event from the event queue if one that matches the type is
available. The process of dequeuing makes an additional space available in the queue for events of the
same type.

OBSERVATION 3.7.16
A user of VISA must caliEnableEvent() to enable the reception of events of the specified type before
callingviwaitOnEvent() . viwaitOnEvent() does not perform any enabling or disabling of event
reception.

RULE 3.7.21
viwaitOnEvent() SHALL dequeue events pending in the queue regardldbe ehabled state of
reception of events.

RULE 3.7.22
IF the valuevi_NULL is specified in theutContext parameter ofiwaitOnEvent() , AND the return
value is successfulLHEN the VISA systenBHALL automatically invokeiClose() on the event
context ratler than returning it to the application.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 348 Section 3: VISA Resource Template

OBSERVATION 3.7.17
TheoutEventType andoutContext parameters to théwaitOnEvent() operation are optional. This
can be used if the event type is known fromitiEentType parameter, or if theventContext is nd
needed to retrieve additional information.

RULE 3.7.23
IF a session has at least one event of the requested type in itsANEuthe requested event type has
been disabled since the arrival of the last evBIHEN callingviwaitOnEvent SHALL return a
success cod&ND SHALL NOT returnVI_ERROR_NENABLED

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template

3.7.3.5 vilnstallHandler

Page 349

(vi, eventType, handler, userHandle)

Purpose
Install handlers for event callbacks.
Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifieto a session.
eventType IN ViEventType Logical event identifier.
handler IN ViHndIr Interpreted as a valid reference to a handle
be installed by a client application.
userHandle IN ViAddr A value specified by an application that can
be used foidentifying handlers uniquely for
an event type.

Return Values

Type ViStatus

This is the operational return status. It returns eithe
completion code or an error code as follows.

Completion Code

Description

VI_SUCCESS

Event handler installesuccessfully.

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (bo
are the same value).

VI_ERROR_INV_EVENT

Specified event type is not supported by the resour

VI_ERROR_INV_HNDLR_REF

The given handler reference is invalid.

VI_ERROR_HNDLR_NINSTALLED

The handler was not installed. This may be returne
an application attempts to install multiple handlers f
the same event on the same session.

Description

This operation allows applications to install handlers on sessions. The handler specifidchinlltie
parameter is installed along with previously installed handlers for the specified event. Applications can

specify a value in theserHandle

parametertat is passed to the handler on its invocation. VISA

identifies handlers uniquely using the handler reference and this value.

Related Items

See theviEventHandler()

VXIplug&play Systems Alliance

description for information.

VPP-4.3: The VISA Library

Page 350 Section 3: VISA Resource Template

Implementation Requirements

RULE 3.7.24
IF the valuevi_A NY_HNDLRs passed as thendler parameter t@ilnstallHandler() , THEN the
operationSHALL return the errovI_ERROR_INV_HNDLR_REF

RULE 3.7.25
Every VISA implementation that returns a value greater than 00100100h for the
VI_ATTR_RSRC_SPEC_VERSIONttribute SHALL support multiple handlers per event type per session.

OBSERVATION 3.7.18
Previous versions of VISA (prior to Version 2.0) allowed only a single handler per event type per session.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template

Page 351

3.7.3.6 viUninstallHandler (vi, eventType, handler, userHandle)

Purpose
Uninstall handlers for events.

Parameters
Name Direction Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier.

handler IN ViHndlr Interpreted as a valictference to a handler t
be uninstalled by a client application.

userHandle IN ViAddr A value specified by an application that can
be used for identifying handlers uniquely in
session for an event.

Return Values

Type ViStatus

This is theoperational return status. It returns either
completion code or an error code as follows.

Completion Code

Description

VI_SUCCESS

Event handler successfully uninstalled.

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The givensession or object reference is invalid (botl
are the same value).

VI_ERROR_INV_EVENT

Specified event type is not supported by the resour

VI_ERROR_INV_HNDLR_REF

Either the specified handler reference or the user
context value (or both) does not mataty installed
handler.

VI_ERROR_HNDLR_NINSTALLED

A handler is not currently installed for the specified
event.

Description

This operation allows client applications to uninstall handlers for events on sessions. Applications should

also specify the value in thserHandle

parameter that was passed while installing the handler. VISA

identifies handlers uniquely using the hand&ference and this value. All the handlers, for which the
handler reference and the value matches, are uninstalled. The following tables list all thee¥ii®a
values and corresponding actions of uninstalling handlers.

VXIplug&play Systems Alliance

VPP-4.3: The VISA Library

Page 352 Section 3: VISA Resource Template

Table 3.7.11 Special Values fohandler Parameter

Value Action Description

VI_ANY_HNDLR Uninstall all the handlers with the matching value in the
userHandle parameter.

Related Items
See theviEventHandler() description for its parameter description. Also seevithieableEvent()
description for information about enabling different event handling mechanisms. Refer to individual event
descriptions for context definitions.

Implementation Requirements

RULE 3.7.26
IF no handler is installed for an event type as a result of thimtipeAND a session is enabled for the
callback mechanism in thd_HNDLR mode, THEN the callback mechanism for the event t¢ALL be
disabled for the session before this operation completes.

OBSERVATION 3.7.19
TheuserHandle value is used by the ras@e to uniquely identify the handlers along with the handler
reference. Applications can use this value to process an event differently based on the value returned as a
parameter of the handler.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 3: VISA Resource Template Page 353

3.7.3.7viEventHandler (vi, eventType, context, userHandle)

Purpose
Event service handler procedure prototype.

Parameters
Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

eventType IN ViEventType Logical event identifier.

context IN ViEvent A handlespecifying the unigue occurrence (¢
an event.

userHandle IN ViAddr A value specified by an application that can
be used for identifying handlers uniquely in
session for an event.

Return Values

Type ViStatus This is the operational return statusieturns either a
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Event handled successfully.
VI_SUCCESS_NCHAIN Event handled successfully. Do not invoke any oth
handlers on this session for this event.

Description
This user handle is called whenever a session receives an event and is enabled for handling events in the
VI_HNDLR mode. The handler services the event and retdrr®JCCESSon completion. Because each
event type defines its own contexttérms of attributes, refer to the appropriate event definition to
determine which attributes can be retrieved usingdhext parameter.

Related Items
Refer to the overview of this section for more information on event handling and exception hamdling,
also to the event descriptions in Section 5.

Implementation Requirements

RULE 3.7.27
The VISA systenBHALL automatically invoke theiClose() operation on the event context when a
user handler returns.

OBSERVATION 3.7.20
Because the event context must still be valid after the user handler returns (so that VISA can free it up), an
application should not invoke tiClose() operation on an event context passed to a user handler.

OBSERVATION 3.7.21
If the user handler wihot return to VISA, the application should célftlose() on the event context to
manually delete the event object. This may occur when a handler throws a C++ exception in response to a
VISA exception event. Note that this is an advanced case, scetfieys observation applies in most cases.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 354 Section 3: VISA Resource Template

OBSERVATION 3.7.22
Normally, an application should retuvth SUCCESSfrom all callback handlers. If a specific handler does
not want other handlers to be invoked for the given event for the given session|dtrsiamun
VI_SUCCESS_NCHAIN No return value from a handler on one session will affect callbacks on other
sessions. Future versions of VISA (or specific implementations of VISA) may take actions based on other
return values, so a user should returrSU CCESSfrom handlers unless there is a specific reason to do
otherwise.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 41

Section 4 VISA Resource Management

This section describes the mechanisms available in VISA to control and manage resources. This includes,
but is not limited to, the assignment of unique resource addresses, ggquece IDs, and operation
invocation. Much of the work is done by the VISA Resource Manager.

The VISA Resource Manager is a resource like any other resource in the system. As such it derives its
interface from the VISA Template. In addition, the VISAsBarce Manager resource provides

connectivity to all of the VISA resources registered with it. It gives applications control and access to
individual resources and provides the services described as follows. The VISA Resource Manager relies on
the resourcg available to it to service requests from the applications and other resources requiring service.

The VISA Resource Manager resource provides basic services to applications that include searching for
resources, and the ability to open sessions to tiesseirces. A summary of these services for VISA is
presented below:

A Access
The VISA Resource Manager allows the opening of sessions to resources established on request by
applications. Applications can request this service ugibgen() . The system hagsponsibility of
freeing up all the associated system resources whenever an application closes the session or becomes
dysfunctional.

A Search
These services are used to find a resource in order to establish a communication link to it. The search is
based on a description string. Instead of locating and searching for individual resources, the VISA
Resource Manager searches for resources assbaidtean interface. Applications can request this
service by using theFindRsrc() andviFindNext() operations.

4.1 Organization of Resources

The VISA Resource Manager provides access to all of the resources that are registered with it. It is
therefae at the root of a subsystem of connected resources. Currently, one such entity is available by
default to a VISA application after initializatiénthe Default Resource Manager. This identifier is used
when opening resources, finding available resourcesparforming other operations at the resource level.

RULE 4.1.1
A VISA systemSHALL make a Default Resource Manager resource available to the rest of the system.

RULE 4.1.2

A session to the Default Resource Manager resdbirt® L be returned from thei OpenDefaultRM()
function.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 42 Section 4: VISA Resource Management

4.2 VISA Resource Manager Interface Overview

This section summarizes the interface that each VISA implementation must incorporate. The different
attributes and operations are described in detail in subsequent sections.

4.2.1 VISA Resouce Manager Attributes

There are no attributes defined in the VISA Resource Manager resource in addition to those defined in the
VISA Resource Template.

RULE 4.2.1
The value of the attribut¢l_ATTR_RSRC_NAMHor the Default Resource ManadeirlALL be ", the
empty string.

RULE 4.2.2
The value of the attribut¢l_ATTR_RM_SESSIONfor the Default Resource Manadg®HALL beVI_NULL.

4.2.2 VISA Resource Manager Functions

viOpenDefaultRM(sesn)

RULE 4.2.3
Every VISA Resource Manager resouidALL implement the following function:
viOpenDefaultRM()

4.2.3 VISA Resource Manager Operations

viFindRsrc(sesn, expr, findList, retcnt, instrDesc)

viFindNext(findList, instrDesc)

viOpen(sesn, rsrcName, accessMode, timeout, vi)

viParseRsrc(sesn, rsrcName , IntfType, intfNum)

viParseRsrcEx(sesn, rsrcName, intfType, intfNum, rsrcClass,
unaliasedExpandedRsrcName, aliasIfExists)

RULE 4.2.4
Every VISA Resource Manager resouidALL implement the following operationsiFindRsrc()
viFindNext() ,viOpen() ,VviP arseRsrc() , andviParseRsrcEx()

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management

4.3 Access Services

The VISA Resource Manager provides facilities to create sessions to resoidpesDefaultRM()
used by an application to get access to the default Resource Mat@gen()
resource through session. In order to open a session to a device resource or any other type of resource
with VISA, it is essential to be able to uniquely identify a resource in the system. The Address String
defined in the following section is the mechanism by whichrélseurce must be uniquely identified.

4.3.1 Address String

An address string must uniquely identify a VISA resource. The address string is uisgbir)

4.3.1.1 Address String Grammar

The grammar for the Address String is shown in Table 4.3.io@p string segments are shown in square

brackets ([]).

Table 4.3.1 Explanation of Address String Grammar
Interface Grammar
VXI VXI[board]:: VXI logical address:.INSTR]
VXI VXI[board::MEMACC
VXI VXI[board][:: VXI logical address:BACKPLANE
VXI VXI[board::SERVANT
GPIB-VXI GPIB-VXI[board::VXI logical address:INSTR]
GPIB-VXI GPIB-VXI[board::MEMACC
GPIB-VXI GPIB-VXI[board][:: VXI logical address:BACKPLANE
GPIB GPIBJboard:: primary addresk:secondary addref{sINSTR]
GPIB GPIB[board::INTFC
GPIB GPIB[board::SERVANT
ASRL ASRL[board|[::INSTR]
TCPIP TCPIPboard|[:: LAN device nanjeSERVANT
TCPIP TCPIPpoard::host addregs.LAN device nanjg:INSTR]
TCPIP TCPIP[board]:host addreds:HiSLIP device nanjgHiSLIP port]][::INSTR]
TCPP TCPIPpoard::host addressport::SOCKET
UsB USBJboard::manufacturer ID:model codeserial numbel: USB interface
numbeti[::INSTR]
PXI PXI[bug::devicg::function[::INSTR]
PXI PXl[interfacq::busdevicg.functior][::INSTR]
PXI PXl[interfacd::CHASSIShassisSLOTslof::FUNCfunctior][::INSTR]
PXI PXl[interfacd::MEMACC
PXI PXl[interfacq::chassis numbeBACKPLANE

VXIplug&play Systems Alliance

is used to get access to a

VPP-4.3: The VISA Library

Page 44 Section 4: VISA Resource Management

The VXI keyword is used for VXI instruments via either embedded or MXlbus controllers. The\GRIB
keyword is used for &PIB-VXI controller. The GPIB keyword can be used to establish communication
with a GPIB device. The ASRL keyword is used to establish communication with an asynchronous serial
(such as R&32) device. The TCPIP keyword is used to establish communicaitiofEthernet

instruments. The USB keyword is used to establish communication with USB instruments.

Resources classes, including INSTR (instrument control), are discussed in Section 5.

In the PXI INSTR strings, thbus device andfunctionparameters fer to the PCI bus number, PCI device
number, and PCI function number that would be used to access the resource in PCI configuration space.
Thechassisandslot parameters correspond to the chassis number and slot number attributes of the
resource.

Noticethat the address string for a PXI INSTR resource has three acceptable formats.

The default value for optional string segments is shown below.

Optional String Segment Default Value
board 0
GPIB secondary address none
LAN device name inst0
HiSLIP device name hislip0
HiSLIP port 4880
USB interface number lowest numbered
relevant interface
PCI function number 0
RULE 4.3.1
The VISA resource string for a USB INSTSHALL use hexadecimal digits for the manufacturer ID and
model code. Specifically, the new variabl es must
RULE 4.3.2

In a system where all PCI devices are accessible through a single configuration address sptaéadhe
parameteSHALL be zero (0) for all resources.

RULE 4.3.3
A VISA implementation that supports PXI INSTR resourSetALL supportall defined PXI INSTRstring
format.

OBSERVATION 4.3.1
The VISA resource string for a singflenction device on bus zero (3)identical in both formats for PXI
INSTR resources.

OBSERVATION 4.3.2
The Bus/device/function legacy string format does not allow for multiple PXI systems with separate
address spaces. Although Plzised systems typically have a single address spamg tbdre may be a
need for multiple address spaces in the future.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 45

RULE 4.34
A VISA implementationrSHALL support a hostname or a etglimited IPv4 IP address forT CPHest
address

RULE 4.35
A VISA implementationSHALL support a http URhostaddress forTCPIRost addres$or expressing an
IPv6 IP address inldiSLIP VISA address strings.

OBSERVATION 4.3.3
Http URI hostaddress formats are specified in IETF RFC33B#ction3.2.2. For IPv4 IP addresses, they
are simply four detlelimiteddecimal numbers. For IPv6 IP addresses, the address string is enclosed in
square brackets and can contain 6::06 character
simple strings. This RFC makes provision for future versions of IP addreseedl.a

RECOMMENDATION 4.31
A VISA implementation shouldccept a http URI address forTCR1&st addresincluding IPv6 IP
addresses inside square brackets for other TCPIMHi®ItIP address stringsReturning
VI_RSRC_NSW_OPER is acceptable in thiase.

RULE 4.3.6
A VISA implementationrSHALL connect via HiSLIP for address strings withaphanumeri¢diSLIP
devicenams t arting with O6hislipé6.

RULE 4.3.7

A VISA implementationSHALL connect via YXI-11 for address strings with an alphanumér#iN denvice
namestarting witho v x i 6 - b.r 1 \V X4 g plil.h, &nddfi orfics YX¥XL1.3 [See the VXill
specification documents for details.]

RULE 4.3.8

IF the device name is omittéND the device supports VX11 AND the host address indicates an IPv4
connectionTHEN VISA SHALL connect using the VX11 protocol.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

stori

Table 4.3.2

Section 4: VISA Resource Management

Examples of Address Strings

Address String

Description

VXIO0::1::INSTR

A VXI device at logical address 1 in VXI interface VXIO.

GPIB- VXI::9::INSTR

A VXI device at logical address 9 in a GPIBXI controlled VXI
system.

GPIB::1::0::INSTR

A GPIB device at primary address 1 and secondary address O i
GPIB interface 0.

ASRL1:INSTR A serial device located on port 1.

VXI::MEMACC Boardlevel register access to the VXI interface.

GPIB- VXI1:MEMACC Boardlevel register access to GRMBXI interface number 1.
GPIB2::INTFC Interface or raw resource for GPIB interface 2.

VXI::1::BACKPLANE

Mainframe resource for chassis 1 on the defeill system, which
is interface 0.

GPIB- VXI2::BACKPLANE

Mainframe resource for default chassis on
GPIB-VXI interface 2.

GPIB1::SERVANT

Servant/devicsside resource for GPIB interface 1.

VXI0::SERVANT

Servant/devicsside resource for VXI interface 0.

TCPIP0::1.2.3.4::999
:SOCKET

Raw TCP/IP access to port 999 at the specified address.

TCPIP::devicename.
company.com:: INSTR

A TCP/IP device using VXIL1 located at the specified address.
This uses the default LAN Device Nameiraft0

TCPIP::1.2.3.4::ins t0 A TCP/IP device using VXIL1 located at IPv4 IP address 1.2.3.4
ZINSTR

TCPIP::[fe80::1] A TCP/IP device using HiSLIP located at IPN®address fe80::1.
:hislip0::INSTR

USB::0x1234:: 0x5678 A USB Test &Measurement class device with manufacturer ID
A22 -5:INSTR

0x1234, model cod@x5678 and serial number A22. This uses
the devicebds first avail abl e
number 0.

PXI0::3 -18:INSTR

PXI device 18 on bus 3.

PXI10::3 -18.2:INSTR

Function2 on PXI device 18 on bus 3.

PXI0::21::INSTR

PXI device 21 on bus 0.

PXI0::CHASSIS1::SLOT4
ZINSTR

PXI device in slot 4 of chassis 1.

PXI10::MEMACC

Access to system controller memory available to devices in the
system.

PXI0::1::BACKPLANE

Mainframeresource for PXI chassis 1.

VPP-4.3: The VISA Library

VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 47

4.3.2 System Configuration

Although the VISA specification describes certain default values for an implementation, it is valid for a
VISA implementation to allow a user to change various settings on a system viaxdemal
configuration utility. Such a utility is neither defined nor mandated by this VISA specification. Several

optional return values are defined by the VISA Resource Manager, but these may not apply to all VISA
implementations.

PERMISSION 4.3.1
A VISA implementatiorMAY provide an external configuration utility.

RULE 4.39
A VISA implementation that supports PXI INSTR resourBetALL provide a tool for registering

modules using thenodule.ini files specified in the PXI Software Specification. Thel tBBIALL
provide a mechanism for registering those devices in a programmatic or scriptable manner.

RECOMMENDATION 4.3. 2

A VISA implementation that supports PXI INSTR resources should provide an interactive tool for
registering modules that does not req@airgodule.ini file.

OBSERVATION 4.3.4

PXI end users will first install VISA, then use tools provided with the VISA implementation to register the
module description file with the operating system, then install the hardware. For example, on Microsoft
Windows operating system¥ISA would read the module description and generate a Windows Setup
Information (inf) file that the operating system would then use to identify the hardware. Installing the
software before the hardware ensures that the informatithve imodule description file is available to the
operating system when it needs to identify the hardware.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 48 Section 4: VISA Resource Management

4.3.3 Access Functions and Operations

viOpenDefaultRM(sesn)
viOpen(sesn, rsrcName, accessMode, timeout, sesn)
viParseRsrc(sesn, rsrcName, intfType, intfNum)

viParseRsrcEx(sesn, rsrcName, intfType, intfNum, rsrcClass,
unaliasedExpandedRsrcName, aliasIfExists)

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 49

4.3.3.1viOpenDefaultRM (sesn)

Purpose
Return a session to the Default Resource Manager resource.

Parameter
Name Direction Type Description
sesn ouT ViSession Unique logical identifier to a Default
Resource Manager session.

Return Values

Type ViStatus This is the operational return status. It returns eithe
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS Session to the Default Resource Manager resource
created successfully.

Error Codes Description
VI_ERROR_SYSTEM_ERROR The VISA system failed to initialize.
VI_ERROR_ALLOC Insufficient system resources to create a session tg

Default Resource Manager resource.
VI_ERROR_INV_SETUP Some implementatieapecific configuration file is
corrupt or does not exist.
VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be locate
or loaded.
Description

This function musbe called before any VISA operations can be invoked. The first call to this function
initializes the VISA system, including the Default Resource Manager resource, and also returns a session to
that resource. Subsequent calls to this function return usiegsons to the same Default Resource

Manager resource.

Related ltems
See als@iOpen() , viFindRsrc()

Implementation Requirements

RULE 4.3.10
TheviOpenDefaultRM() functionSHALL be invoked before any operation in VISA.

RULE 4.3.11
Repetitive calls to theiOpenDefaultRM() functionSHALL return new and unigue sessions to the
Default Resource Manager.

RULE 4.3.12

IF theviClose() operation is invoked on a session returned fvilpenDefaultRM() , THEN all
VISA sessions opened witheltorresponding Default Resource Manager se&hthlL be closed.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 410 Section 4: VISA Resource Management

RULE 4.3.13
IF theviClose() operation is invoked on a session returned fvipenDefaultRM() , THEN all
VISA system resources associated with the corresponding Default Resource MassigaGstALL be
deallocated.

RULE 4.3.14
For compatibility withearlier versions of thispecification, a VISA systeil®HALL provide the function
viGetDefaultRM() with the same signature and semanticgi@gsenDefaultRM()

OBSERVATION 4.3.5

The functionviOpenDefaultRM() renders theiGetDefaultRM() function obsolete. The function
name has changed to match the semantics of the action that the function performs.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 411

4.3.3.2viOpen (sesn, rsrcName, accessMode, timeout, vi)

Purpose
Open a session to tlspecified device.

Parameters

Name Direction Type Description

sesn IN ViSession Resource Manager session (should always|
the Default Resource Manager for VISA
returned fromviOpenDefaultRM()).

rsrcName IN ViRsrc Unigue symbolic name of a resource.

accessMode IN ViAccessMode Specifies the modes by which the resource
to be accessed. The value
VI_EXCLUSIVE_LOCKIs used to acquire an
exclusive lock immediately upon opening a
session; if a lock cannot be acquired, the
session is closed and an erroraturned. The
valueVI_LOAD_CONFIGis used to configure
attributes to values specified by some extef
configuration utility; if this value is not used
the session uses the default values provide
by this specification. Multiple access modej
can be usedimultaneously by specifying a
"bit-wise OR" of the above values.

timeout IN Viuint32 If the accessMode parameter requests a log
then this parameter specifies the absolute t
period (in milliseconds) that the resource
waits to get unlocked before shoperation
returns an error.

Vi ouT ViSession Unigue logical identifier reference to a
session.

Return Values

Type ViStatus This is the operational return status. It returns eithel
completion code or an error code as follows.

Completion Codes Description
VI_SUCCESS Session opened successfully.
VI_SUCCESS_DEV_NPRESENT Session opened successfully, but the device at the
specified address is not responding.
VI_WARN_CONFIG_NLOADED The specified configuration either does not exist or
could not bdoaded; using VISAspecified defaults.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 412 Section 4: VISA Resource Management

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_NSUP_OPER The givensesn does not support this operation. For

VISA, this operation is supported only by the Defau
Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.

VI_ERROR_INV_ACC_MODE Invalid access mode.

VI_ERROR_RSRC_NFOUND Insufficient location information or resource not
present in the system.

VI_ERROR_ALLOC Insufficient system resources to open a session.

VI_ERROR_RSRC_BUSY The resource is valid, but VISA cannot currently
access it.

VI_ERROR_RSRC_LOCKED Specified type of lock cannot be obtained because

resource is already locked with a lock type
incompatible with the lock requested.

VI_ERROR_TMO A session to the resource could not be obtained wit
the specified timeout period.

VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be locate,
or loaded.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interfac

number is not configured.

Description
This operation opens a session to the $igelcdevice. It returns a session identifier that can be used to call
any other operations of that device.

Related Items
See alswiClose()

Implementation Requirements

RULE 4.3.15
A VISA implementationSHALL support the access mode of opening a session with
VI_EXCLUSIVE_LOCK

RULE 4.3.16
IF a VISA implementation does not provide an external configuration utility to specify the attribute values
AND viOpen() is invoked with theaccessMode value set to/I_LOAD_CONFIG AND the operation is
successfulTHEN the operatiolSHALL returnvi_WARN_CONFIG_NLOADED

OBSERVATION 4.3.6
TheVI_LOAD_CONFIGvalue provides a way to create a session with attribute values initialized other than
the default values. An dphal, external configuration utility is required to support this option.

RULE 4.3.17
A VISA implementation o#iOpen() SHALL use a casesensitive compare function when matching
resource names against the name specifiestiName .

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 413

OBSERVATION 4.3.7
CallingviOpen() with "vXI::1:INSTR " will open the same resource as invoking it with
"vxi:lzinstr "

RULE 4.3.18
IF theaccessMode parameter includes the flag EXCLUSIVE_LOCK, aVISA implementatiorSHALL
use the specifieimeout parametewhenacquiring the lock

PERMISSION 4.3.2
A VISA implementatiorMAY use theimeout parameter when opening the resource, regardless of
whether thevI_EXCLUSIVE_LOCK flag is specified.

RECOMMENDATION 4.3. 3
If the value of théimeout parameter t@iOpen is 0and a VISA implementation uses the timeout
when opening the resource, iiglementatiorshouldbehave as if themeout parameter is the VISA
default timeout value of 2000 milliseconds.

OBSERVATION 4.3.8
It is optional to use the timeout parameter whpaning network resources.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 414 Section 4: VISA Resource Management

4.3.3.3viParseRsrc (sesn, rsrcName, intfType, intfNum)

Purpose
Parse a resource string to get the interface information.

Parameters
Name Direction Type Description

sesn IN ViSession Resource Manager session (should always
the Default Resource Manager for VISA
returned fromviOpenDefaultRM()).

rsrcName IN ViRsrc Unique symbolic nhame of a resource.

intfType ouT Vilint16 Interface type of the given resource string.

intfNum ouT Viuint16 Board number of the interface of the given
resource string.

Return Values

Type ViStatus This is the operational return status. It returns eithe;
completion code or an error code as follows.

Completion Codes Description
VI_SUCCESS Resourcestring is valid.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_INV_OBJECT are the same value).

VI_ERROR_NSUP_OPER The givensesn does not support this operation. For

VISA, this operation is supported only by the Defau
Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.
VI_ERROR_RSRC_NFOUND Insufficient location information aresource not
present in the system.

VI_ERROR_ALLOC Insufficient system resources to parse the string.
VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be locate
or loaded.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but thpexified interface

number is not configured.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 415

Description
This operation parses a resource string to verify its validity. It should succeed for all strings returned by
viFindRsrc() and recognized byiOpen() . This operation is useful if you wantknow what interface
a given resource descriptor would use without actually opening a session to it.

The values returned intfType andintfNum correspond to the attribut®s ATTR_INTF_TYPE and
VI_ATTR_INTF_NUM. These values would be the same if a epemed that resource witiOpen() and
queried the attributes withGetAttribute()

Related Items
See als@iFindRsrc() , viOpen() , andviParseRsrcEx()

Implementation Requirements

RULE 4.3.19
IF a VISA implementation recognizes aliasesibpen() , THEN it SHALL recognize those same
aliases inviParseRsrc()

RECOMMENDATION 4.3. 4
A VISA implementation should not perform any 1/O to the specified resource during this operation. The
recommended implementationiParseRsrc() will return information detamined solely from the
resource string and any static configuration informateng,(.INI files or the Registry).

RULE 4.3.20
A VISA implementation ofiParseRsrc() SHALL use a castnsensitive compare function when
matching resource names against the name speiifiedName .

OBSERVATION 4.3.9
CallingviParseRsrc() with "VXI::1:INSTR " will produce the same results as invoking it with
"vxi:lzinstr "

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 416 Section 4: VISA Resource Management
4.3.34 viParseRsrcEx (sesn, rsrcName, intfType, intfNum, rsrcClass,
unaliasedExpandedRsrcName, aliaslfExists)

Purpose
Parse a resource string to get extended interface information.

Parameters
Name Direction Type Description

sesn IN ViSession Resource Manager session (should always|
the Default Resource Manager for VISA
returned fromviOpenDefaultRM()).

rsrcName IN ViRsrc Unigue symbolic name of a resource.

intfType ouT Vilint16 Interface type of the given resource string.

intfNum ouT Viuint16 Board number of the interface of the given
resource string.

rsrcClass ouT ViString Specifies the resource class (for example,
Al NSTRo0) of the giwv
defined in Section 5.

Unaliased ouT ViString This is theexpanded version of the given

Expanded resource string. The format should be simi

RsrcName to the VISAdefined canonical resource nan

aliaslf ouT ViString Specifies the usetefined alias for the given

Exists resource string, if a VISA implementation
allows aliasesrad an alias exists for the give
resource string.

Return Values

Type ViStatus This is the operational return status. It returns eithel
completion code or an error code as follows.

Completion Codes Description
VI_SUCCESS Resource string is valid.
VI_WARN_EXT_FUNC_NIMPL The operation succeeded, but a lower level driver d
not implement the extended functionality.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 417

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
V|_ERROR_|NV_OBJECT are thesame Va]ue)_

VI_ERROR_NSUP_OPER The givensesn does not support this operation. For

VISA, this operation is supported only by the Defau
Resource Manager session.

VI_ERROR_INV_RSRC_NAME Invalid resource reference specified. Parsing error.
VI_ERROR_RSRC_NFOUND Insufficient location information or resource not
present in the system.

VI_ERROR_ALLOC Insufficient system resources to parse the string.
VI_ERROR_LIBRARY_NFOUND A code library required by VISA could not be locate
or loaded.

VI_ERROR_INTF_NUM_NCONFIG The interface type is valid but the specified interfac

number is not configured.

Description
This operation parses a resource string to verify its validity. It should succeed for all strings returned by
viFindRsrc() and recognized byiOpen() . This operation is useful if you want to know what
interface a given resource descriptor would use without actually opening a session to it.

The values returned intfType , intfNum , andrsrcClass correspond to the attributes
VI_ATTR_INTF_TYPE, VI_ATTR_INTF_NUM, andVI_ATTR_RSRC_CLASSThese values would be
the same if a user opened that resource vildipen() and queried the attributes with

viGetAttribute()

The value returned innaliasedExpandedRsrcName should in most c&s be identical to the VISA
defined canonical resource name. However, there may be cases where the canonical name includes
information that the driver may not know until the resource has actually been opened. In these cases, the
value returned in this pameter must be semantically similar.

The value returned ialiasIfExists allows programmatic access to udefined aliases. If a VISA
implementation does not implement aliases, the return value must be an empty string. If a VISA

implementation allows multiple aliases for a single resource, then the implementation mostepidias
(in an implementatiomefined manner) and return it in this parameter.

Table 4.3.3 Special Values forsrcClass Parameter

Value Action Description

VI_NULL Do not return the resource class.

Table 4.3.4 Special Values founaliasedExpandedRsrcName ~ Parameter

Value Action Description

VI_NULL Do not return the full resource name.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 418 Section 4: VISA Resource Management

Table 4.3.5 Special Values foaliaslfExists Parameter
Value Action Description
VI_NULL Do not return the alias.
Related Items
See alswiFindRsrc() ,viOpen() ,andviParseRsrc()

Implementation Requirements

RULE 4.3.21
IF a VISA implementation recognizes aliasesi@pen() , THEN it SHALL recognize those same
aliases inviParseRsrcEx()

RECOMMENDATION 4.3. 5
A VISA implementation should not perform any I/O to the specified resource during this operation. The
recommended implementationwiParseRsrcEx() will return information determined solely from the
resource string and any static configuration informagég, .INI files or the Registry).

RULE 4.3.22
A VISA implementation ofiiParseRsrcEx() SHALL use a casnsensitive compare function when
matching resource names against the name spetifisgdName .

OBSERVATION 4.3.10
Calling viParseRsrcEx() with "VXI::1:INSTR " will produce the same results as invoking it with
"vxi:lzinstr "

OBSERVATION 4.3.11
Calling viParseRsrc() with "VXI::BACKPLANE " may result irunaliasedExpandedRsrcName
containing eitherVXI0:BACKPLANE " or "VXI0::0::BACKPLANE ". This isbecause the driver may not
know the mainframe number until the resource is actually opened.

RULE 4.3.23
IF a VISA implementation ofiParseRsrcEx() does not support aliasesND thealiasIfExists
parameter is not NULLTHEN the output value ddliaslfExis ts SHALL be an empty string.

RULE 4.3.24
IF a VISA implementation ofiParseRsrcEx() supports multiple aliases per resource strxD
multiple aliases exist for the givesrcName , AND thealiaslfExists parameter is not NULLTHEN

the VISA implementatin SHALL use one alias as the output valual@fsifExists

RECOMMENDATION 4.3. 6
A VISA implementation should not allow the colon characfsy) (in userdefined aliases.

PERMISSION 4.33
A VISA implementatiorMAY allow the colon charactefi(}) id userdefined aliases.

OBSERVATION 4.312
The intent of disallowing colons in aliases is that the VISA specification reserves that character for
definition of all future canonical resource names. If a VISA implementation atlwevsser to entex
name that could later be definad an actual resource narttesn the behavior of such an alias could
change in a way that users might not expect.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 419

OBSERVATION 4.3.13
There are valid scenarios where a VISA implementation may want to allow colons in aliases. One such
scenario is allowingne resource name itatentionallymasquerade as another. However, an
implementation that allows such behavior should take care to avoid user confusion over which resource is
actually accessed when such an alias is defined.

RULE 4.3.25

The function viPamRsrcEXSHALL returnunaliasedExpandedRsrcName in the format specified in
this document.

RULE 4.3.26
A VISA implementationSHALL return PXI INSTR resource strings from viParseRsrc that include the
function number, regardless of whether the PXI instrument has one or multiple functions.

RULE 4.3.27
A VISA implementationSHALL return USB INSTR resource strings from viParseRsrc ticitide the
interface number, regardless of whether the USB instrument has one or multiple interfaces.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 420 Section 4: VISAResource Management

4.4 Search Services

VISA provides the ability to search and locate resources regardless of where the resource is residing. To be
able to locate a reaece in a VISA system, it is essential to be able to uniquely identify the given resource
throughout the system. As described in SectionAlcBess Servicea resource string is used for uniquely
identifying a given resource in the system. In ordespiecify different variations of the resource strings to
search for, the VISA Resource Manager allows the use of a regular expression to describe them.

4.4.1 Resource Regular Expression

A regular expression is a string consisting of ordinary charactesglhas special characters. A regular
expression is used for specifying patterns to match in a given string. Given a string and a regular
expression, one can determine if the string matches the regular expression. A regular expression can also
be useds a search criterion. Given a regular expression and a list of strings, one can match the regular
expression against each string and return a list of strings that match the regular expression.

Tables 4.4.1 and 4.4.2 define the special characterktarads used in the grammar rules defined in this
section and other sections of this document.

Table 4.4.1 Special Characters

Character Description Symbol
NL/LF New Line / Line Feed "“\n"
HT Horizontal Tab "\t"
CR Carriage Return "\r"
FF FormFeed "\f
SP Blank Space .

OBSERVATION 4.4.1
The definitions of character constants do not require any specific implementation. The implementor should
follow language or industry standards as appropriate.

Table 4.4.2 Literals

Literal Definition
white_space NL, LF, HT, CR, FF, SP
digit "o","1"."o"
letter "a","b".."Z", "A","B".."Z"
hex_digit "o","1"."9", "a","b". ",

"A""B"."F"
underscore v

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 421

Table 4.4.3 Regular Expression Characters and Operators
Special Characters Meaning
and Operators
? Matches any one character.
\ Makes the character that follows it an ordinary chara

instead of special character. For example, when a
question mark follows a backslash (i.&?'), it matcheg
the ?' character instead of any one character.

[list] Matches any one character from the encldised A
hyphen can be used to match a range of characters.

[* list] Matches any character not in the encloégid A hyphen
can be used to match a range of characters.

* Matches 0 or more occurrences of the preceding
character or expression.

+ Matches 1 or more occurrences of the preceding
character or expression.

exp| exp Matches either the preceding or following expression
The or operatof matches the entire expression that
precedes or follows it and not just the character that
precedes or follows it. For exampi&I|GPIB means
(VXD|(GPIB) , notVXI(l|G)PIB.

(exp) Grouping characters or expressions.
RULE 4.4.1
The grouping operatdy in a regular expressid®HALL have the highest precedence.
RULE 4.4.2
The+ and* operators in a regular expresstBHALL have the next highest precedence after the grouping
operator.
RULE 4.4.3

The or operatoy in a regular expressidBHALL have the lowest precedence.

Table 4.4.4 Examples

Regular Expression Sample Matches

GPIB?*INSTR MatchesGPIBO::2::INSTR
GPIB1::1::1::INSTR , and
GPIB- VXI1::8::INSTR

GPIB[O - 9]*::?*INSTR MatchesGPIB0::2::INSTR and
GPIB1::1::1::INSTR but not
GPIB- VXI1::8:INSTR

GPIB[O - 9]::?*INSTR MatchesGPIB0::2:INSTR and
GPIB1::1::1::INSTR but not
GPIB12::8::INSTR

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 422 Section 4: VISAResource Management

Table 4.4.4 Examples (continued)

Regular Expression Sample Matches

GPIB["0]::?*INSTR MatchesGPIB1::1::1: INSTR but not
GPIBO0::2::INSTR or GPIB12::8::INSTR

VXI?*INSTR MatchesvX10::1:INSTR but not
GPIB- VXIO::1::INSTR

GPIB- VXI?*INSTR MatchesGPIB- VXI0::1::INSTR but not
VXI0::1::INSTR

?*VXI[0 - 9*:?*INSTR MatchesvX10::1:INSTR and
GPIB- VXIO::1::INSTR

ASRL[0- 9]*:?*INSTR MatchesASRL1:INSTR but not
VXI0::5::INSTR

ASRL1+:INSTR MatchesASRL1:INSTR and
ASRL11:INSTR but not ASRL2::INSTR .

(GPIB|VXI)?*INSTR MatchesGPIB1::5:INSTR and
VXI0::3:INSTR but NOtASRL2:INSTR .

(GPIBO|VXI0)::1:INSTR MatchesGPIBO::1:INSTR and
VXI0::1::INSTR

?¥INSTR Matches alINSTR (device) resources.

?*VXI[0 - 9I*:?*MEMACC MatchesvXx10::MEMACC and
GPIB- VXI1::MEMACC.

VXI10::7* MatchesvXI0::1:INSTR
VXI0::2::INSTR , andvXI0::MEMACC.

?* Matches all resources.

OBSERVATION 4.4.2
Because VISA interprets strings as regular expressions, notice that the string GPIB?*INSTR applies to both
GPIB and GPIBVXI resources.

4.4.2 Search Operations

viFindRsrc(sesn, expr, findList, retcnt, instrDesc)
viFindNext(findList, instrDesc)

OBSERVATION 4.4.3
For VISA, the local controller for VXI and GPIBXI interfaces will appear in the list of resources to find.
The main purpose of this is to be able to access any shared memory that the controller exports as a VXI
resource.

OBSERVATION 4.4.4

The nonrimmediate servants will also appear in the list of devices to find. For these devices, the attribute
VI_ATTR_IMMEDIATE_SERVwill be set tovI_FALSE.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management

4.4.2.1 viFindRsrc

Purpose

Page 423

(sesn, expr, findList, retcnt, instrDesc)

Query a VISA systerto locate the resources associated with a specified interface

Parameters

Name

Direction

Type

Description

sesn

IN

ViSession

Resource Manager session (should always
the Default Resource Manager for VISA
returned fronviOpenDefaultRM()).

expr

ViString

This is a regular expression followed by an
optional logical expression. The grammar f
this expression is given below.

findList

ouT

ViFindList

Returns a handle identifying this search
session. This handle will be used as an ing
in viFindNext()

retcnt

ouT

Viuint32

Number of matches.

instrDesc

ouT

ViRsrc

Returns a string identifying the location of 4

device. Strings can then be passed to
viOpen() to establish a session to the give
device.

Return Values

This isthe operational return status. It returns either
completion code or an error code as follows.

Type ViStatus

Completion Code
VI_SUCCESS

Description

Resource(s) found.

Error Codes

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

Description

The given session or objeeference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER
VI_ERROR_INV_EXPR
VI_ERROR_RSRC_NFOUND

The givensesn does not support this operation.

Invalid expression specified for search.

Specified expression does not match any devices.

Description
This operation matches the value specified irettpe parameter with the resources available for a
particular interface. On successful completion, it returns the first resource found in the list and returns a
count to indicate if there wereare resources found for the designated interface. This function also returns
a handle to a find list. This handle points to the list of resources and it must be used as an input to
viFindNext() . When this handle is no longer needed, it should be pass#&tidee()

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 424 Section 4: VISAResource Management

Table 4.4.5 Special Values fofindList ~ Parameter

Value Action Description
VI_NULL Do not return a find list handle.

Table 4.4.6 Special Values foretcnt Parameter

Value Action Description

VI_NULL Do not return the number of matches.

The search criteria specified in tegpr parameter has two paresregular expressiamver a resource

string (which is explained later), and an optional logicaresgion over attribute valueghe regular

expression is matched against the resouraggstof resources known to tH@SA Resource Managelf.

the resource string matches the regular expression, the attribute values of the resource are then matched
against the gxession over attribute valudéthe match is successful, the resource hatstheesearch

criteria and gets added to the list of resources found.

The optional attribute expression allows construction of flexible and powerful expressions with the use of
logical ANDs, ORs and NOTs. Equal (==) and unequal (!=) comparators asebdeompare attributes of
any type, and in addition, other inequality comparators (>, <, >=, <=) can be used toeatmizutes of
numeric typeOnly global attributes can be used in the attribute expression.

The syntax oéxpr is defined as follows:

Table 4.4.7 Special Characters and their Meaning

Special Character Meaning
&& Logical AND
[l Logical OR
! Logical negation (NOT)
0 Parenthesis
expr =
regularExpr ['{" attrExpr }']
attrExpr :=
attrTerm |
attrExpr '[|' attrTerm
atrTerm =
attrFactor |
attrTerm '&&' attrFactor
attrFactor :=
‘(" attrExpr)" |
"I attrFactor |
relationExpr

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 425

relationExpr :=
attributeld compareOp numValue |
attributeld equalityOp stringValue

compareOp =

== > <=
equalityOp =

‘== | ="
attributeld :=

character (character|digitjunderscore) *
numValue :=

digit * |

Cordigit T

'0x' hex_digit

'0X" hex_digit +
stringValue :=

" character* "
regularExpr is defined inSection 4.41, Resource Regular Express®n
RULE 4.4.4
The grouping operatdy in a logical expressioBHALL have the highest precedence.
RULE 4.4.5
The not operator in a logical expressioBHALL have the next highest precedence after the grouping

operator.

RULE 4.4.6
The or operatol| in a logical expressioBHALL have the lowest precedence.

Table 4.4.8 Examples

Expr Meaning
GPIB[O - 9]*::2*::?*::INSTR Find all GPIB devices that have
{VI_ATTR_GPIB_SECONDARY_ADDR > 0} secondary addresses greater than
ASRL?*INSTR{VI_ATTR_ASRL_BAUD == 9600} Find all serial ports configured at
9600 baud.
*VXI?*INSTR{VI_ATTR_MANF_ID == OxFF6 && Find all VXI instrument resources
I(VI_ATTR_VXI_LA ==0 || V_ATTR_SLOT <= whose manufacturer ID is FF6 and
0)} who are notogical address 0, slot
or external controllers.

Related Items
SeeviFindNext()

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 426 Section 4: VISAResource Management

Implementation Requirements

RULE 4.4.7
Local attributesSHALL NOT be allowed in the logical expression part ofédkpr parameter to the
viFindRsrc() operation.

RULE 4.4.8
IF the valuevi_NULL is specified in thdéindList ~ parameter ofiFindRsrc() , AND the return value is
successfulTHEN the VISA systenBHALL automatically invokeiClose() on the find list handle
rather than returning it to the application.

OBSERVATION 4.4.5
ThefindList andretCnt parameters to théFindRsrc() operation are optional. This can be used if
only the first match is important, and the number of matches is not needed.

RULE 4.4.9
A VISA implementation o¥iFindRsrc() SHALL usea casensensitive compare function when
matching resource names against the regular expression specéigd in

OBSERVATION 4.4.6
Calling viFindRsrc() with "VXI?*INSTR " will return the same resources as invoking it with
"vxi?*instr "

PERMISSION 4.4.1
A given implementation of viFindRsiMAY return strings in formats other than those defined in this
specification.

OBSERVATION 4.4.7
There are many ways that a vendor may want to return strings from viFindRsrc in an alternate format. One
example is ithe vendor has a configuration option to return aliases instead of canonical names. Another
example is if the vendor chooses to omit optional portions of the resource name.

OBSERVATION 4.4.8
All resource strings returned biFindRsrc() must be recognéd byviParseRsrc() and
viParseRsrcEx() andviOpen() . However, not all resource strings that can be parsed or opened have to
be findable. Within these guidelines, it is acceptable for the exact behavibindRsrc() to be
modifiable through an optionadéxternal configuration utility. For example, it is implementation dependent
which (if any) VISA TCPIP resources a given implementation will return frigindRsrc()

RULE 4.4.10
A VISA implementation that supports PXI INSTR resourS8efALL match and return only one resource
string per PXI INSTR resource.

RULE 4.411
VISA implementation that supports PXI INSTSHALL be capable of returning the bus/device/function
format for the string.

PERMISSION 4.42
A VISA implementation that supports PXI INSTWRAY provide configuration options to return other
resource string formats for PXI resources, not limited to those defined in this specification, as long as only
one resource string is returned per PXI resource.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 4: VISA Resource Management Page 427

4.4.2.2viFindNext (findList, instrDesc)

Purpose
Return the next resource found during a previous calFiodRsrc()

Parameters
Name Direction Type Description
findList IN ViFindList Describes a find list. This parameter must [
created byiFindRsrc()
instrDesc ouT ViRsrc Returns a string identifying the location of g
device. Strings can then be passed to
viOpen() to establish a session to the give
device.
Return Values
Type ViStatus This is the operational return status. It retwitiser a

completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Resource(s) found.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_INV_OBJECT are the samealue).

VI_ERROR_NSUP_OPER The givenfindList ~ does not support this operation
VI_ERROR_RSRC_NFOUND There are no more matches.

Description
This operation returns the next device found in the list createdFingRsrc() . The list is referenced by
the handle that was returnedWlindRsrc()

Related Items
SeeviFindRsrc()

Implementation Requirements

RULE 4.4.12
ThefindList passed t@iFindNext() SHALL have been returned biFindRsrc()

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 528 Section 5: VISA Resource Classes

Section 5 VISA Resource Classes

The following sections define various resource classes that a complete VISA system, fully compliant with
this specification, should implemenSince not all VISA implementations may implement all resource
classes for all interfaces, the following rules and recommendations specify which classes are required for

which interfaces

RULE 5.0.1
IF a VISA implementation supports the GPIB interfacé (MTF_GPIB), THEN it SHALL implement
the resource types INSTR and INTFC.

RECOMMENDATION 5.0.1
If a VISA implementation supports the GPIB interface (VI_INTF_GPIB), it should also implement the
resource type SERVANT.

RULE 5.0.2
IF a VISA implementation supports the VXI interface (VI_INTF_VXTKEN it SHALL implement the
resource types INSTR and MEMACC.

RECOMMENDATION 5.0.2
If a VISA implementation supports the VXI interface (VI_INTF_VXI), it should also implement the
resource typs BACKPLANE and SERVANT.

RULE 5.0.3
IF a VISA implementation supports the GPAKXI interface (VI_INTF_GPIB_VXI),THEN it SHALL
implement the resource types INSTR and MEMACC.

RECOMMENDATION 5.0.3
If a VISA implementation supports the GRIBXI interface VI_INTF_GPIB_VXI), it should also
implement the resource type BACKPLANE.

RULE 5.0.4
IF a VISA implementation supports the Serial interface (VI_INTF_ASHHEN it SHALL implement
the resource type INSTR.

RULE 5.0.5
IF a VISA implementation supports th&€PIP interface (VI_INTF_TCPIPYHEN it SHALL implement
the resource types INSTR and SOCKET.

RECOMMENDATION 5.0.4
If a VISA implementation supports the TCPIP interface (VI_INTF_TCPIP), it should also implement the
resource type SERVANT.

RULE 5.0.6
IF a VISA implementation supports the USB interface (VI_INTF_USBJEN it SHALL implement the
resource type INSTR.

RULE 5.0.7
IF a VISA implementation supports the PXI interfagé (NTF_PXI), THEN it SHALL implement the
resource types INSTR and MEMACC.

RECOMMENDATION 5.0. 5

If a VISA implementation supports the PXI interface (VI_INTF_PXI), it should also implement the
resource type BACKPLANE.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 529

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 530 Section 5: VISA Resource Classes

5.1 Instrument Control Resource

This section describes the resource that is provided to encapsulate the wpamations of a device

(reading, writing, triggering, and so on). A VISA Instrument Control (INSTR) Resource, like any other
resource, defines the basic operations and attributes of the VISA Resource Template. For example,
modifying the state of an attiite is done via the operatigisetAttribute() , Which is defined in the

VISA Resource Template. Although the following resource does notiBatattribute() listed in its
operations, it provides the operation because it is defined in the VISA Reseunpéaie. From this basic

set, each resource adds its specific operations and attributes that allow it to perform its dedicated task, such
as sending a string to a mess&gsed device.

5.1.1 INSTR Resource Overview

The INSTR Resource lets a controlieteract with the device associated with this resource, by providing

the controller with services to send blocks of data to the device, request blocks of data from the device,

send the device clear command to the device, trigger the device, and findaitffornron about t he de\
status. In addition, it allows the controller to access registers on devices that reside on-meppay

buses. These services are described in detail in the remainder of this section.

A Basic I/O Services

I The Read Service et controller request blocks of data from the device that is associated with this
resource. How the returned data is interpreted depends on how the device has been prégfammed
example, messages, commands, or binary encoded data. The resource rateinagbe native mode
of the interface it is associated with. It also permits implementations that provide alternate modes
supported by the interface. Setting the appropriate attribute modifies the data transmittal method and
other features, such as segtithe termination character.

I The Write Service lets a controller send blocks of data to the device associated with this resource. The
device can interpret the data as necess&wy example, messages, commands, or binary encoded data.
The resource sendkgta in the native mode of the interface it is associated with. It also permits
implementations that provide alternate modes supported by the interface. Setting the appropriate
attribute modifies the data transmittal method and other features, sucliigrgpavhether to send an
END indicator with each block of data.

I The Trigger Service provides monitoring and control access to the trigger capabilities of the device
associated with the resource. Assertion of both software and hardware triggerdad bgngsing the
viAssertTrigger() operation. (See the operation listing for more information.)

I The Status/Service Request Service allows the controller to service requests made by the other service
requesters in a system. In this role of a serviceigenyit can procure the device status information.
Applications can use théReadSTB() operation to manually obtain the status information. If the
resource cannot obtain the status information from the requester in the actual timeout period, timeout is
returned.

T The Clear Service lets a controller send the device clear command to the device it is associated with, as
specified by the interface regulations and the type of device. For a GPIB device, this amounts to
sending the IEEE 4883DC(04h) commangfor a VXI or MXI device, it amounts to sending the
Word Serial comman@lear (FFFFh) The action that the device takes depends on the interface to
which it is connected.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 531

A Formatted 1/O Services

I The Formatted I/O Services perform formatted anddvatf 1/0 for devices. A formatted write
operation writes to a buffer, while a formatted read operation reads from a buffer. Buffering improves
system performance by making it possible to transfer large blocks of data to and from devices. The
system provide separate read and write buffers that can be disabled or have their sizes modified by a
user application, via th@SetBuf() ~ operation.

The following section describes buffer maintenance and buffer flushing issues that are related to
formatted 1/O resaees. The descriptions apply to all buffered read and buffered write operations. For
example, theiPrintf() description applies equally to other buffered write operations

(ViVPrintf() andviBufWrite()). Similarly, theviScanf() description applies to othéuffered

read operations/i{VScanf() andviBufRead()).

RULE 5.1.1

All formatted write operationsviPrintf() , VIVPrintf() , andviBufWrite()) SHALL use the
same write buffer for a corresponding session.

RULE 5.1.2

All formatted read operationsi§canf() ,viVScanf() , andviBufRead()) SHALL use the same
read buffer for a corresponding session.

RULE 5.1.3
The write buffer used in the formatted buffered write operat8i&LL be unique per session.

RULE 5.1.4
The read buffer used in the formatted buffered read oper&idAdL be unique per session.

RULE 5.1.5

The write buffer used in the buffered write operat8HALL NOT be same as the read buffer used in
the read operations.

Although you can explicitlylish the buffers by making a callvd-lush() , the buffers are flushed
implicitly under some conditions. These conditions vary fowthentf() andviScanf()
operations.

Flushing a write buffer immediately sends any queued data to the device. Thbuffiér is
maintained by theiPrintf() operation. To explicitly flush the write buffer, you can make a call to
theviFlush() operation with a write flag set.

RULE 5.1.6
The write bufferSHALL be flushed automatically under the following conditions:

A When an ENBindicator character is sent.
A When the buffer is full.
A Inresponse to a call 6SetBuf() with thevl_ WRITE_BUF flag set.

RULE 5.1.7

When the write buffer is flushed automatically because the buffer is full, the write BtfferL
ensure there is more data to be sent later.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 532 Section 5: VISA Resource Classes

OBSERVATION 5.1.1
RULE 5.1.7 ensures that if the user calls viPrintf() and the buffer fillangithenthe useexplicitly
calls viFlush(), that the END indicator being sent with the explicit flush haslthté tan go with.
This is necessary because the 488.2 END indicator is noaidlataits own.

Flushing a read buffer discards the data in the read buffer. This guarantees that the next call to a
viScanf() (or related) operation reads data directbnfrthe device rather than from queued data
residing in the read buffer. The read buffer is maintained byifleanf() operation. To explicitly
flush the read buffer, you can make a call toviRtush() operation with a read flag set.

The formatted I/ouffers of a session to a given device are reset whenever that device is cleared. At
such a time, the read and write buffer must be flushed and any ongoing operation through the
read/write port must be aborted.

RULE 5.1.8
An invocation of aviClear() operation on a resourc®HALL flush the read buffer and discard the
contents of the write buffers.

A Memory I/O Services

I The HighLevel Access Service allows registevel access to devices on interfaces that support direct
memory access, such as the s, VMEbus, MXlbus, or even VXI or VME devices controlled by a
GPIB-to-VXI device. A resource exists for each interface to which the controller has access. When
dealing with memory accesses, there is a tradeoff between speed and complexity, and between
software overhead and encapsulation. The Higkiel Access Service is similar in purpose to the Low
Level Access Service. The difference between these two services is that tHeekddjhccess Service
has greater software overhead because it encapsulasesfthe code required to perform the
memory access, such as window mapping and error checking. In generdéMaigliccesses are
slower than lowlevel accesses, but they encapsulate the operations necessary to perform the access
and are considered saf

The HighLevel Access Service lets the programmer access memory on the interface bus through
simple operations such ein16() andviOutl6() . These operations encapsulate the map/unmap
and peek/poke operations found in the kbewel Access Servic&.here is no need to explicitly map
the memory to a window.

I The LowLevel Access Service, like the Hidlevel Access Service, allows registevel access to
devices on interfaces that support direct memory access, such as the VXlbus, VMEbus, MXlbus, or
VME or VXI memory through a system controlled by a GR®BVXI controller. A resource exists for
each interface of this type that the controller has locally. When dealing with memory accesses, there is
a tradeoff between speed and complexity and betwebmase overhead and encapsulation. The Low
Level Access Service is similar in purpose to the Highel Access Service. The difference between
these two services is that the Ldwvel Access Service increases access speed by removing software
overhead, butequires more programming effort by the user. To decrease the amount of overhead
involved in the memory access, the L-bevel Access Service does not return any error information in
the access operations.

Before an application can use the l-bevel Access Service on the interface bus, it must map a range
of addresses using the operatiiviapAddress() . Although the resource handles the allocation and
operation of the window, the programmer must free thel@inviaviunmapAddress() when

finished. This makes the window available for the system to reallocate.

RULE 5.1.9
IF an application performgClose() on a session with memory still mapp&tHEN viClose()
SHALL perform an implicit unmapping of the mapped window.

A Shared Memory Services

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 533

I The Shared Memory Service allows users to allocate memory on a particular device to be used
exclusively by that session. ThidMemAlloc() operation allows such an allocatiday, specifying the
size. The space in which the memory is located is that which is exported by the device to a given bus.
TheviMemFree() operation allows the user to free memory previously allocated using
viMemAlloc()

RULE 5.1.10
IF an application perfonsviClose() on a session with shared memory still allocafddEN
viClose() SHALL perform an implicit freeing up of the allocated region(s).

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 534 Section 5: VISA Resource Classes

5.1.2 INSTR Resource Attributes

Generic INSTR Resource Attributes

Symbolic Name Access Privilege| Data Type Range
VI_ATTR_INTF_NUM RO Global | ViUinti6 0 to FEEEh
VI_ATTR_INTF_TYPE RO Global | ViUinti6 VI_INTF_VXI

VI_INTF_GPIB
VI_INTF_GPIB_VXI
VI_INTF_ASRL
VI_INTF_PXI
VI_INTF_TCPIP
VI_INTF_USB
VI_ATTR_INTF_INST_NAME RO Global | ViString N/A
VI_ATTR_TMO_VALUE RW | Local Viuint32 VI_TMO_IMMEDIATE

1 to FFFFFFFEh
VI_TMO_INFINITE
VI_ATTR_TRIG_ID R/W* | Local | Vilntie VI_TRIG_SW;

VI_TRIG_TTLO to
VI_TRIG_TTL7 and

VI_TRIG_TTLS8 to

VI_TRIG_TTL11 ;
VI_TRIG_ECLO to
VI_TRIG_ ECL5;

VI_TRIG_ STARVXIO to
VI_TRIG_ STAR VXI 2;
VI_TRIG_STAR_INSTR

VI_ATTR_DMA_ALLOW_EN RW | Local | ViBoolean VI_TRUE
VI_FALSE

* The attributevI_ATTR_TRIG_ID is R/W (readable and writeable) when the corresponding session is not enabled
to receive trigger events. When the session is enabled to receive trigger events, the\attdblite TRIG_ID
is RO (read only).

MessageBased INSTR Resource Attributes

Symbolic Name Access Privilege| Data Type Range
VI_ATTR_FILE_APPEND_EN RW Local ViBoolean VI_TRUE
VI_FALSE
VI_ATTR_IO_PROT R/W | Local ViUlnt16 VI_PROT_NORMAL
VI_PROT_FDC

VI_PROT_HS488
VI_PROT _4882_STRS
VI_PROT_USBTMC_VENDOR

VI_ATTR_RD_BUF_OPER_MODE R/W | Local | ViUlnti6 VI_FLUSH_ON_ACCESS

VI_FLUSH_DISABLE
VI_ATTR_RD_BUF_SIZE RO Local | ViUint32 N/A
VI_ATTR_SEND_END_EN R/W | Local | ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_SUPPRESS_END_EN R/W | Local | ViBoolean VI_TRUE

VI_FALSE

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 535

(continues)

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 536 Section 5: VISA Resource Classes

MessageBased INSTR Resourcéttributes (Continued)

Symbolic Name Access Privilege Data Type Range
VI_ATTR_TERMCHAR RW | Local Viuint8 0 to FEh
VI_ATTR_TERMCHAR_EN R/W | Local | ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_WR_BUF_OPER_MODE R/W | Local Viuint16 VI_FLUSH_ON_ACCESS

VI_FLUSH_WHEN_FULL
VI_ATTR_WR_BUF_SIZE RO Local Viuint32 N/A

GPIB and GPIB-VXI Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_GPIB_PRIMARY_ADDR RO Global | ViUInt16 0to 30
VI_ATTR_GPIB_SECONDRY_ADDR RO Global Viuint16 0to 31,vI_ NO_SEC_ADDR
VI_ATTR_GPIB_READDREN R/W | Local ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_GPIB_UNADDREN R/W | Local ViBoolean VI_TRUE
VI_FALSE
VI_ATTR_GPIB_REN_STATE RO Global | Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN
VXl and GPIB-VXI Specific INSTR Resource Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_MAINFRAME_LA RO Global Vilnt16 0 to 255
VI_UNKNOWN_LA
VI_ATTR_MEM_BASE32 RO Global N/A
ViUint32
VI_ATTR_MEM_BASE_64 RO Global | ViBusAddress64 N/A
VI_ATTR_MEM_SIZE_32 RO Global N/A
ViUint32
VI_ATTR_MEM_SIZE_64 RO Global | ViBusSize64 N/A
VI_ATTR_MEM_SPACE RO Global | ViUint16 VI_A16_SPACE
VI_A24 SPACE
VI_A32_SPACE
VI_A64_SPACE
VI_ATTR_VXI_LA RO Global Vilnt16 0to 511
VI_ATTR_CMDR_LA RO Global | Vilnt1l6 0 to 255
VI_UNKNOWN_LA
VI_ATTR_IMMEDIATE_SERV RO Global viBoolean VI_TRUE
VI_FALSE
VI_ATTR_FDC_CHNL R/W | Local Viulnt16 Oto7
VI_ATTR_FDC_GEN_SIGNAL_EN R/W | Local ViBoolean VI_TRUE
VI_FALSE

(continues)

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 537

VXI and GPIB -VXI Specific INSTR ResourceAttributes (Continued)

Symbolic Name Access Privilege Data Type Range
VI_ATTR_FDC_MODE R/W | Local Viulnt16 VI_FDC_NORMAL
VI_FDC_STREAM
VI_ATTR_FDC_USE_PAIR R/W | Local ViBoolean VI_TRUE
VI_FALSE
VI_ATTR_SRC_BYTE_ORDER R/W | Local Viulnt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN
VI_ATTR_DEST BYTE_ORDER | R/W | Local Viulnt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN
VI_ATTR_WIN_BYTE_ORDER R/W* | Local Viulnt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN
VI_ATTR_SRC_ACCESS_PRIV RW | Local Viuint16 VI_DATA_NPRIV
VI_DATA_PRIV

VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV
VI_D64_2EVME
VI_D64_SST160
VI_D64_SST267
VI_D64_SST320

VI_ATTR_DEST ACCESS_ PRIV | R/W | Local | ViUint1e VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV
VI_D64_2EVME
VI_D64_SST160
VI_D64_SST267
VI_D64_SST320

VI_ATTR_WIN_ACCESS_PRIV RW* | Local | ViUint16 VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_ATTR_VXI_DEV_CLASS RO | Global | Viuint16 VI_VXI_CLASS_MEMORY
VI_VXI_CLASS_EXTENDED
VI_VXI_CLASS_MESSAGE

VI_VXI_CLASS_REGISTER
VI_VXI_CLASS_OTHER

VI_ATTR_VXI_TRIG_SUPPORT RO Global | ViUInt32 N/A

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 538

Section 5: VISA Resource Classes

For VISA 2.2, the attributegl ATTR_WIN_BYTE_ORDERand VI_ATTR_WIN_ACCESS_PRIVare R/W
(readable and writeable) when the corresponding session is not mapperR_WIN_ACCESS ==
VI_NMAPPED. When the session is mapped, these attributes are RO (read only).

GPIB-VXI Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_INTF_PARENT_NUM RO Global Viuint16 0 to FFFFh
ASRL Specific INSTR Resource Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_ASRL_AVAIL_NUM RO | Global | ViUInt32 0 to FFFFFFFFh
VI_ATTR_ASRL_BAUD R/W | Global | ViuInt32 0 to FFFFFFFFh
VI_ATTR_ASRL_DATA BITS R/W | Global | ViUint16 5to0 8
VI_ATTR_ASRL_PARITY R/W | Global | ViUint16 VI_ASRL_PAR_NONE
VI_ASRL_PAR_ODD
VI_ASRL_PAR_EVEN
VI_ASRL_PAR_MARK
VI_ASRL_PAR_SPACE
VI_ATTR_ASRL_STOP_BITS R/W Global Viuint16 VI_ASRL_STOP_ONE
VI_ASRL_STOP_ONES5
VI_ASRL_STOP_TWO
VI_ATTR_ASRL_FLOW_CWRL R/W | Global | ViUint16 VI_ASRL_FLOW_NONE
VI_ASRL_FLOW_XON_XOFH
VI_ASRL_FLOW_RTS_CTS
VI_ASRL_FLOW_DTR_DSR
VI_ATTR_ASRL_END_IN R/W | Local Viulnt16 VI_ASRL_END_NONE
VI_ASRL_END_LAST_BIT
VI_ASRL_END_TERMCHAR
VI_ATTR_ASRL_END_OUT R/W | Local Viulnt16 VI_ASRL_END_NONE
VI_ASRL_END_LAST_BIT
VI_ASRL_END_TERMCHAR
VI_ASRL_END_BREAK
VI_ATTR_ASRL_CTS_STAE RO Global | Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN
VI_ATTR_ASRL_DCD_STAE RO Global | Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN
VI_ATTR_ASRL_DSR_STAE RO Global | Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN
VI_ATTR_ASRL_DTR_STAE R/W | Global | Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN
VI_ATTR_ASRL_RI_STATE RO Global | Vilnt16 VI_STATE_ASSERTED

VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VPP-4.3: The VISA Library

VXIplug&play Systems Alliance

Section 5: VISA Resource Classes

Page 539

VI_ATTR_ASRL_RTS_STAE R/W | Global | Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN
(continues)
ARSL Specific INSTR Resource Attributes (Continued)

Symbolic Name Access Privilege Data Type Range
VI_ATTR_ASRL_REPLACECHAR R/W | Local Viuint8 0to FFh
VI_ATTR_ASRL_XON_CHR R/W | Local Viuint8 0to FFh
VI_ATTR_ASRL_XOFF_CHR RW | Local Viuint8 0to FFh

TCPIP Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_TCPIP_ADDR RO Global | ViString N/A
VI_ATTR_TCPIP_HOSTNAME RO Global ViString N/A
VI_ATTR_TCPIP_DEVICE_NAME RO Global | ViString N/A
VI_ATTR_TCPIP_IS_HIS LIP RO Global ViBoolean VI_TRUE, VI_FALSE

VXI and GPIB -VXI and USB Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_4882_COMPLIANT RO Global | ViBoolean VI_TRUE
VI_FALSE
VXI and GPIB -VXI and USB and PXI Specific INSTRResource Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_MANF_ID RO Global | ViUlnt16 0 to FEFFh
VI_ATTR_MODEL_CODE RO Global ViUint16 0 to FFFFh
VI_ATTR_MANF_NAME RO Global ViString N/A
VI_ATTR_MODEL_NAME RO Global | ViString N/A
USB Specific INSTR Resource Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_USB_SERIAL_NUM RO Global | ViString N/A
VI_ATTR_USB_INTFC_NUWM RO Global | Vilnt16 0to 254
VI_ATTR_USB_MAX_INTR SIZE RW |Local | ViUint1e 0 to FFFFh
VI_ATTR_USB_PROTOCOL RO Global | Vilnt16 0 to 255

VXIplug&play Systems Alliance

VPP-4.3: The VISA Library

Page 540 Section 5: VISA Resource Classes

VXI and GPIB -VXI and PXI Specific INSTR Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_SLOT RO Global | Vilnt16 0tol8
VI_UNKNOWN_SLOT
VI_ATTR_SRC_INCREMENT R/W | Local Vilnt32 Oto1l
VI_ATTR_DEST_INCREMENT RW | Local Vilnt32 Oto1l
VI_ATTR_WIN_ACCESS RO Local ViUint16 VI_NMAPPED

VI_USE_OPERS
VI_DEREF_ADDR

VI_ATTR_WIN_BASE_ADDR32 RO | Local | ViBusAddress N/A
VI_ATTR_WIN_BASE_ADDR_64 RO | Local | ViBusAddress64 N/A
VI_ATTR_WIN_SIZE 32 RO | Local | ViBusSize N/A
VI_ATTR_WIN_SIZE_64 RO | Local | ViBusSize64 N/A

PXI Specific INSTR Resource Attributes

Symbolic Name AccessPrivilege Data Type Range
VI_ATTR_PXI_BUS_NUM RO Global | ViUInt16 0to 255
VI_ATTR_PXI_DEV_NUM RO Global | ViUiInt16 0to 31
VI_ATTR_PXI_FUNC_NUM RO Global | ViUInt16 0to7
VI_ATTR_PXI_SLOTPATH RO Global | ViString N/A
VI_ATTR_PXI_SLOT_LBUS_LEFT RO Global | Vilnt16 0to 32767

VI_UNKNOWN_SLOT

VI_ATTR_PXI_SLOT_LBUS_RIGHT RO Global | Vilnt16 0to 32767
VI_UNKNOWN_SLOT

VI_ATTR_PXI_TRIG_BUS RO Global | Vilnt16 0to 32767
VI_UNKNOWN_TRIG

VI_ATTR_PXI_STAR_TRIG_BUS RO Global | Vilnt16 0 to 32767
VI_UNKNOWN_TRIG

VI_ATTR_PXI_STAR_TRIG_LINE RO Global | Vilnt16 0 to 32767
VI_UNKNOWN_TRIG

VI_ATTR_PXI_MEM_TYPE_BAR RO Global | ViUInt16 VI_PXI_ADDR_MEM

(wherenis0,1,2,345) VI_PXI_ADDR_IO,
VI_PXI_ADDR_NONE

(continues)

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes

PXI Specific INSTR Resource Attributes (Continued)

Page 541

Symbolic Name Access Privilege| Data Type Range
VI_ATTR_PXI_MEM_BASE BAR RO Global | ViBusAddre N/A
(wherenis0,1,2,345) ss
VI_ATTR_PXI_MEM_BASE BARh_32 RO Global | Viuint32 N/A
(wherenis0,1,2,345)

VI_ATTR_PXI_MEM_BASE BAR_64 RO Global | ViBusAddres N/A

(wherenis0,1,2,345) s64

VI_ATTR_PXI_MEM_SIZE_BAR_32 RO Global | ViUInt32 N/A

(wherenis0,1,2,345)

VI_ATTR_PXI_MEM_SIZE_BAR _64 RO Global | ViBusSize6 N/A

(wheren is0,1,2,3,45) 4

VI_ATTR_PXI_CHASSIS RO Global | Vilnt16 1to 32767
VI_UNKNOWN_CHASSIS

VI_ATTR_PXI_IS_EXPRE SS RO Global | ViBoolean VI_TRUE, VI_FALSE

VI_ATTR_PXI_SLOT_LWIDTH RO Global | Vilnt16 1,4,8

VI_ATTR_PXI_MAX_LWIDTH RO Global | Vilnt16 1,4,8

VI_ATTR_PXI_ACTUAL_LWIDTH RO Global | Vilnt16 1,4,8

VI_ATTR_PXI_DSTAR_BUS RO Global | Vilnt16 0to 32767
VI_UNKNOWN_TRIG

VI_ATTR_PXI_DSTAR_SET RO Global | Vilnt16 0to 32767
VI_UNKNOWN_TRIG

VI_ATTR_PXI_ALLOW_WRTE_COMBINE RW Local | ViBoolean VI_TRUE, VI_FALSE

HiSLIP Specific INSTR Resource Attributes
Symbolic Name Access Privilege | Data Type Range
VI_ATTR_TCPIP_HISLIP OVERLAP | R/W | Local | ViBoolean VI_TRUE, VI_FALSE
EN
VI_ATTR_TCPIP_HISLIP VERSION | RO Local | ViVersion N/A
VI_ATTR_TCPIP_HISLIP MAX_MES | R/W | Local | ViUInt32 Ohi fffffffth

SAGE KB

VXIplug&play Systems Alliance

VPP-4.3: The VISA Library

Page 542

Attribute Descriptions

Generic INSTR Resource Attributes
VI_ATTR_INTF_TYPE
VI_ATTR_INTF_NUM
VI_ATTR_INTF_INST_NAME

VI_ATTR_TMO_VALUE

VI_ATTR_TRIG_ID

VI_ATTR_DMA_ALLOW_EN

MessageBased INSTR Resource Attributes

VI_ATTR_FILE_APPEND_EN

VI_ATTR_IO_PROT

VI_ATTR_RD_BUF_OPER_MODE

VI_ATTR_RD_BUF_SIZE

VI_ATTR_SEND_END_EN

VI_ATTR_SUPPRESS_END_EN

VPP-4.3: The VISA Library

Section 5: VISA Resource Classes

Interface type of the givesession.
Board number for the given interface.
Humanreadable text describing the given interface.

Minimum timeout value to use, in milliseconds. A timeout
value ofvl_TMO_IMMEDIATEmeans that ogrations should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

Identifier for the current triggering mechanism.

This attribute specifies whether 1/0 acces$enikl use

DMA (VI_TRUE) or Programmed I/O|_FALSE). In

some implementations, this attribute may have global
effects even though it is documented to be a local attribute.
Since this affects performance and not functionality, that
behavior is acceptable.

This attribute specifies whetheiReadToFile() will
overwrite (truncate) or append when opening a file.

Specifies which protocol to use. In VXI systems, for example,
you canchoose between normal word serial or fast data
channel (FDC). In GPIB, you can choose between normal and
high-speed (HS488) data transfers. In ASRL and TCPIP
systems, you can choose between normal anegs#488

transfers, in which case thiAssertTrigger () and
viReadSTB() operations send 488dfined strings.

Determines the operational mode of the read buffer. When the
operational mode is set Y0_FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls tiFlush().

If the operational mode is setW FLUSH_ON_ACCESSthe
buffer is flushed every timeaScanf() operation
completes.

This attribute specifies the size of the formatted 1/O read
buffer. The user can modify this value by calling
viSetBuf()

Whether to assert END during the transfer of the last byte of
the buffer.

Whether to suppress the END indicator termination. If this
attribute is set t&I_TRUE, the END indicator does not
terminate read operations. If this attribute is s&titGALSE,
the END indicator terminates read operations.

VXIplug&play Systems Alliance

Section 5: VISA Resource Classes

VI_ATTR_TERMCHAR

VI_ATTR_TERMCHAR_EN

VI_ATTR_WR_BUF_OPER_MODE

VI_ATTR_WR_BUF_SIZE

Page 543

Termination character. When the termination character is read
andVI_ATTR_TERMCHAR_EM enabledluring a read
operation, the read operation terminates.

Flag that determines whether the read operation should
terminate when a termination character is received.

Determines the operational mode of the writéfér. When
the operational mode is setWo FLUSH_WHEN_FULL
(default), the buffer is flushed when an END indicator is
written to the buffer, or when the buffer fills up.

If the operational mode is setW FLUSH_ON_ACCESSthe
write buffer is flushedinder the same conditions, and also
every time aviPrintf() operation completes.

This attribute specifies the size of the formatted 1/0 write
buffer. The user can modify this value by calling
viSetBuf()

GPIB and GPIB-VXI Specific INSTR Resource Attributes

VI_ATTR_GPIB_PRIMARY_ADDR

VI_ATTR_GPIB_SECONDARY_ADDR

VI_ATTR_GPIB_READDR_EN

VI_ATTR_GPIB_UNADDR_EN

VI_ATTR_GPIB_REN_STATE

Primary address of the GPIB device used by the given session.

Secondary address of the GPIB device used by the given
session.

This attribute specifiewhether to use repeat addressing
before each read or write operation.

This attribute specifies whether to unaddress the device (UNT
and UNL) after each read or write operation.

This attribute returns the gent state of the GPIB REN
interface line.

VXI and GPIB -VXI Specific INSTR Resource Attributes

VI_ATTR_MAINFRAME_LA

VI_ATTR_MEM_BASE_64
VI_ATTR_MEM_BASE32

VXIplug&play Systems Alliance

This is the logical address of a given device in the mainframe,
usually the device with the lowest logical address. Other
possible valug include the logical address of the ot
controller or of the pareride extender. Often, these are all
the same value. The purpose of this attribute is to provide a
unique ID for each mainframe. A VISA manufacturer can
choose any of these valuesitInust be consistent across
mainframes. If this value is not known, the attribute value

returned isvl_ UNKNOWN_LA

Base address of the device in VXIbus memory address space.
This base address is applicable to A2A32or A64 address
space.

VPP-4.3: The VISA Library

Page 544

VI_ATTR_MEM_SIZE_64

VI_ATTR_MEM_SIZE 32

VI_ATTR_MEM_SPACE

VI_ATTR_VXI_LA

VI_ATTR_CMDR_LA

VI_ATTR_IMMEDIATE_SERV

VI_ATTR_FDC_CHNL

VI_ATTR_FDC_SIGNAL_GEN_EN

VI_ATTR_FDC_MODE

VI_ATTR_FDC_USE_PAIR

VI_ATTR_SRC_BYTE_ORDER

VI_ATTR_DEST_BYTE_ORDER

VI_ATTR_WIN_BYTE_ORDER

VI_ATTR_SRC_ACCESS_PRIV

VI_ATTR_DEST_ACCESS_PRIV

VPP-4.3: The VISA Library

Section 5: VISA Resource Classes

Size of memory requested by the device in VXIbus address
space.

VXIbus address space used by the device.fotetypes are
A16 only, A16/A24, A16/A32or A16/A64memory address
space.

Logical address of the VXI or VME device used by the given
session. For a VME device, the logical address is actually a
pseudeaddress in the range 256 to 511.

Logical address of the commander of YA€l device used by
the given session.

Specifies whether the given device is an immediate servant of
the controller running VISA.

This attribute determines which FDC channel will be used to
transfer the buffer.

Setting this attribute tvl_TRUE lets the servant send a signal
when control of the FDC channel is passed back to the
commander. This action frees the commander from having to
poll the FDC header while engaging in an FDC transfer.

This attribute determines which FDC mode to use (Normal
mode or Stream mode).

If set toVI_TRUE, a channel pair will be used for transferring
data. Otherwise, only one channel will be used.

This attribute specifies the byte order to be used in-leghl
access operations, suchvéls XX() andviMoveln XX() ,
when reading from the source.

This attribute specifies the byte order to be used in-leghl
access operationgjch asviOut XX() andviMoveOut XX() ,
when writing to the destination.

This attribute specifies the byte order to be used inléwe|
access operations, suchviddapAddress (), viPeek XX() and
viPoke XX(), when accessing the mapped domw.

This attribute specifies the address modifier to be used in
high-level access operations, suctviis XX() and
viMoveln XX() , when reading from the source.

This attribute specifies the address modifier to be used in

high-level access operations, suchvezut XX() and
viMoveOut XX() , when writing to the destination.

VXIplug&play Systems Alliance

Section 5: VISA Resource Classes

VI_ATTR_WIN_ACCESS_PRIV

VI_ATTR_VXI_DEV_CLASS

VI_ATTR_VXI_TRIG_SUPPORT

GPIB-VXI Specific INSTR Resource Attributes

VI_ATTR_INTF_PARENT_NUM

ASRL Specific INSTR Resource Attributes

VI_ATTR_ASRL_AVAIL_NUM

VI_ATTR_ASRL_BAUD

VI_ATTR_ASRL_DATA BITS

VI_ATTR_ASRL_PARITY

VI_ATTR_ASRL_STOP_BITS

VXIplug&play Systems Alliance

Page 545

This attribute specifies the address modifier to be used in low
level access operations, such/gapAddress (),

viPeek XX() andviPoke XX(), when accessing the mapped
window.

This attribute represents the \A4kfined device class to
which the resource belongs, either message based
(VI_VXI_CLASS_MESSAGH, register based
(VI_VXI_CLASS_REGISTER), extended
(VI_VXI_CLASS_EXTENDED, or memory
(VI_VXI_CLASS_MEMORY. VME devices are usually either
register based or belong to a miscellaneoasscl
(VI_VXI_CLASS_OTHER).

This attribute shows which VXI trigger lines this
implementation support3his is a bit vector. Bits-G
correspond to VI_TRIG_TTLO to VI_TRIG_TTL7. Bits B3
correspond to VI_TRIG_ECLO to VI_TRIG_ECLBIts 14
25 correspond to VI_TRIG_STAR_SLOT1 to
VI_TRIG_STAR_SLOT12. Bit 27 corresponds to
VI_TRIG_PANEL_IN and bit 28 corresponds to
VI_TRIG_PANEL_OUT. Bits 2931 correspond to
VI_TRIG_STAR_VXIO to VI_TRIG_STAR_VXI2. VXI
does notuse VI_TRIG_TTL8to VI_T&_TTL11

Board number of the GPIB board to which the GRIBI is
attached.

This attribute shows the number of bytesitable in the
global receive buffer.

This is the baud rate of the interface. It is represented as an
unsigned 3it integer so that any baud rate can be used, but
it usually requires a commonly used rate such as 300, 1200,
2400, or 960 baud.

This is the number of data bits contained in each frame (from
5 to 8). The data bits for each frame are located in the
low-order bits of every byte stored in memory.

This is the parity used with every frame transmitted and
receivedVI_ASRL_PAR_MARKmMeans that the parity bit exists
and is always 1VI_ASRL_PAR_SPACHmMeans that the parity
bit exists and is always 0.

This is the number of stop bitised to indicate the end of a

frame. The valu®&I_ASRL_STOP_ONES&ndicates oneand
onehalf (1.5) stop bits.

VPP-4.3: The VISA Library

Page 546 Section 5: VISA Resource Classes

VI_ATTR_ASRL_FLOW_CNTRL If this attribute is set tvI ATTR_ASRL_FLOW_NONEhe
transfer mechanism does not use flow control, and buffers on
both sides of the connection are assumed to be large enough to
hold all data transferred.

If this attribute is set t&¥I_ ATTR_ASRL_FLOW_XON_XOFF
the transfer mechanism uses ¥@NandXOFFcharacters to
perform flow control. The transfer mechanism contiopsut
flow by sendingKOFFwhen the receive buffer is nearly full,
and it controls the output flow by suspending transmission
whenXOFFis received.

If this attribute is set t&¥I ATTR_ASRL_FLOW_RTS_CTShe
transfer mechanism uses the RTS output signdlthe CTS
input signal to perform flow control. The transfer mechanism
controls input flow by unasserting the RTS signal when the
receive buffer is nearly full, and it controls output flow by
suspending the transmission when the CTS signal is
unasserted

If this attribute is set t&¥I_ASRL_FLOW_DTR_DSRhe

transfer mechanism uses the DTR output signal and the DSR
input signal to perform flow control. The transfer mechanism
controls input flow by unasserting the DTR signal when the
receive buffer is rerly full, and it controls output flow by
suspending the transmission when the DSR signal is
unasserted.

This attribute can specify multiple flow control mechanisms
by bit-ORing multiple values together. However, certain
combinations may not be supportegall serial ports and/or
operating systems.

VI_ATTR_ASRL_END _IN This attribute indicates the method used to terminate read
operations. If it is set tgl_ASRL_END_NONEthe read will
not terminate until all of the requested data is received (or an
erroroccurs). If it is set t&/I_ASRL_END_TERMCHARhe read
will terminate as soon as the charactevlilPATTR_TERMCHAR
is received. If it is set t¥l_ASRL_END_LAST_BIT, the read
will terminate as soon as a character arrives with its last bit
set. For examp, if VI_ATTR_ASRL_DATA_BITS s set to 8,
then the read will terminate when a character arrives with the
8th bit set.

VI_ATTR_ASRL_END_OUT This attribute indicates the method used to terminate write
operations. If it is set t¥l_ASRL_END_NONEthe writewill
not append anything to the data being written. If it is set to
VI_ASRL_END_BREAKthe write will transmit a break after all
the characters for the write have been sent. If it is set to
VI_ASRL_END_LAST_BIT, the write will send all but
the last charder with the last bit clear, then transmit
the last character with the last bit set. For example, if
VI_ATTR_ASRL_DATA_BITSIs set to 8, then the write will
clear the 8th bit for all but the last character, then transmit
the last character with the 8tit bet. If it is set to

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes

VI_ATTR_ASRL_CTS_STATE

VI_ATTR_ASRL_RTS STATE

VI_ATTR_ASRL_DTR_STATE

VI_ATTR_ASRL_DSR_STATE

VI_ATTR_ASRL_DCD_STATE

VI_ATTR_ASRL_RI_STATE

VI_ATTR_ASRL_REPLACE_CHAR

VI_ATTR_ASRL_XON_CHAR

VI_ATTR_ASRL_XOFF_CHAR

TCPIP Specific INSTR Resource Attributes

VI_ATTR_TCPIP_ADDR

VI_ ATTR_TCPIP_HOSTNAME

VI_ATTR_TCPIP_DEVICE_NAME

VI_ATTR_TCPIP_IS_HISLIP

VXIplug&play Systems Alliance

Page 547

VI_ASRL_END_TERMCHARhe write will send the character in
VI_ATTR_TERMCHARfter the data being transmitted.

This attribute shows the current state of the Clear To Send
(CTS) input signal.

This attribute is used to manually assert or unassert the
Request To Send (RTS) output signal. When the
VI_ATTR_ASRL_FLOW_CNTRattribute is set to
VI_ASRL_FLOW_RTS_CTsthis attribute is ignored when
changed, but can be read to determine whetleehalckground
flow control is asserting or unasserting the signal.

This attribute is used to manually assert or unassert the Data
Terminal Ready (DTR) output signal.

This attribute shows the current statetef Data Set Ready
(DSR) input signal.

This attribute shows the current state of the Data Carrier
Detect (DCD) input signal. The DCD signal is often used by
modems to indicate the detection of a carrier (remote modem)
on the telephone line. The DCD signal is also known as
iRecei ve Leitneec tSi(ghad3 D)D. o

This attribute shows the current state of the Ring Indicator
(R input signal. The RI signal is often used by modems to
indicate that the telephone line is ringing.

This attribute specifiethe character to be used to replace
incoming characters that arrivettwvierrors (such as parity
erron.

This attribute specifies the value of the XON character used
for XON/XOFF flow control (both directions). If XON/XOFF
flow control (software handshaking) is not being used, the
value of this attribute is ignored.

This attribute specifies the value of the XOFF character used
for XON/XOFF flow control (both directions). If XON/XOFF

flow control (softwarehandshaking) is not being used, the
value of this attribute is ignored.

This is the TCPIP address of the device to which the session is
connected. This string is formatted in -chattation.

This specifies the host name of the device. If no host name is
available, this attribute returns an empty string.

This specifies the LAN device nhame used by the XYXbr
HiSLIP protocol during connection.

Specifies whether this resource uses the HiSLIP pratocol

VPP-4.3: The VISA Library

Page 548 Section 5: VISA Resource Classes

VXI, GPIB -VXI, and USB Specific INSTR Resource Attributes

VI_ATTR_4882_COMPLIANT Specifies whether the device is 488.2 compliant.

VXI, GPIB-VXI, USB, and PXI Specific INSTR Resource Attributes

VI_ATTR_MANF_ID Manufacturer identification number of the deviEer PXI, if
Subsystem ID and Subsystem Vendor ID are defined for the
device, then this attribute value is the Subsystem Vendor ID,
or else this attribute value is tiRCI Vendor ID.

VI_ATTR_MODEL_CODE Model code for the devic&or PXI, If Subsystem ID and
Subsystem Vendor ID are defined for the device, then this
attribute value is the Subsystem ki else this attribute value
is the PCI Device ID.

VI_ATTR_MANF_NAME This string attribute is the
this attribute should be used for display purposes only and not
for programmatic decisions, as the value can be different
between VISA implementations and/or revisions.

VI_ATTR_MODEL_NAME This string attribute is the model name of the device. The
value of this attribute should be used for display purposes only
and not for programmatic decisions, as the value can be
different between VISA implementations and/or revisions.

USB Specific INSTR Resurce Attributes

VI_ATTR_USB_SERIAL_NUM This string attribute is the serial number of the USB
instrument. The value of this attribute should be used for
display purposes only and not for programmatic decisions.

VI_ATTR_USB_INTFC_NWM Specifies the USEnhterface number of this device to which
this session is connected.

VI_ATTR_USB_MAX_INTR SIZE Specifies the maximum number of bytes that this USB device
will send on the interrupt IN pipe. The default value is the
same as the maximum packet size of tierrupt IN pipe.

VI_ATTR_USB_PROTOCOL Specifies the USB protocol number.
VXI, GPIB-VXI, and PXI Specific INSTR Resource Attributes

VI_ATTR_SLOT Physical slot location of the device. If the slot number is not
known,VI_UNKNOWN_SLOIB returned.

VI_ATTR_SRC_INCREMENT This is used in theiMoveln XX() operation to specify how
much the source offset is to be incremented after every
transfer. The default value of this attribute is 1 (that is, the
source address will be incremented by 1 after eackfegn
and theviMoveln XX() operation moves from consecutive
elements. If this attribute is set to 0, tlioveln XX()

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

ma n u

Section 5: VISA Resource Classes

VI_ATTR_DEST_INCREMENT

VI_ATTR_WIN_ACCESS

VI_ATTR_WIN_BASE_ADDR_64
VI_ATTR_WIN_BASE_ADDR32

VI_ATTR_WIN_SIZE 64
VI_ATTR_WIN_SIZE 32

VXIplug&play Systems Alliance

Page 549

operation will always read from the same element, essentially
treating the source as a FIFO register.

This is ugd in theviMoveOut XX() operation to specify how
much the destination offset is to be incremented after every
transfer. The default value of this attribute is 1 (that is, the
destination address will be incremented by 1 after each
transfer), and theiMove Out XX() operation moves into
consecutive elements. If this attribute is set to 0, the

viMoveOut XX() operation will always write to the same
element, essentially treating the destination as a FIFO register.

Modes in which the current witow may be accessed: not
currently mapped, through operatiofBeek XX() and

viPoke XX() only, or through operations and/or by directly
dereferencing the address parameter as a pointer.

Base address of theterface bus to which this window is
mapped.

Size of the region mapped to this window.

VPP-4.3: The VISA Library

Page 550

PXI Specific INSTR Resource Attributes

VI_ATTR_PXI_BUS_NUM
VI_ATTR_PXI_DEV_NUM
VI_ATTR_PXI_FUNC_NUM

VI_ATTR_PXI_SLOTPATH

VI_ATTR_PXI_S LOT_LBUS_LEFT

VI_ATTR_PXI_SLOT_LBUS_RIGHT

VI_ATTR_PXI_TRIG_BUS
VI_ATTR_PXI_STAR_TRIG_BUS

VI_ATTR_PXI_STAR_TRIG_LINE
VI_ATTR_PX|_MEM_TYPE_BAR

VI_ATTR_PXI_MEM_BASE_BAR_32
VI_ATTR_PXI_MEM_BASE_BAR_64

VI_ATTR_PXI_MEM_SIZE_BAR_32
VI_ATTR_PXI_MEM_SIZE_BARn_64
VI_ATTR_PXI_CHASSIS
VI_ATTR_PXI_IS_EXPRESS
VI_ATTR_PXI_SLOT_LWIDTH

VI_ATTR_PXI_MAX_LWIDTH
VI_ATTR_PX|_ACTUAL_LWIDTH
VI_ATTR_PX|_DSTAR_BUS
VI_ATTR_PX|_DSTAR_SET

VI_ATTR_PX|_ALLOW_WRITE_COMBINE

VPP-4.3: The VISA Library

Section 5: VISA Resource Classes

PCI bus number of this device.
PCI devicenumber of this device.

PCI function number of the device. All devices have a function O.
Multifunction devices will also support other function numbers.

Slot path of this device. PXI slot paths are a sequencdudsa
representing the PCI device number and function number of a PCI
module and each parent PCI bridge that routes the module to the
host PCI bridge. The string format of the attribute value is
devicel[.functionl][,device2[.function2]][,...].

Slot number or special feature connected to the local bus left lines
of this device.

Slot number or special feature connected to the local bus right lines
of this device.

Number of the triggebus connected to this device in the chassis.

Number of the star trigger bus connected to this device in the
chassis.

PXI_STAR line connected to this device.

Memory type (memorynapped or I/O mapped) used by the device
in the specified BAR.

Memory base address assigned to the specified BAR for this
device.

Size ofthe memory assigned to the specified BAR for this device.
Chassis number in which this device is located.
Specifies whether this device is PXI Express.

Specifies the link width used by tkt in which this device is
located.

Specifies the maximum link width that this device can use.
Specifies the negotiated link width that this device is using.
Number of the DSTAR busoonected to this device in the chassis.
Specifies the set of PXI_DSTAR lines connected to this device

Specifies whether the implementation shoatigmptto combine
bus write transfers into a largeansfer before bursting over the
PClbus.

VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 551

HiSLIP Specific INSTR Resource Attributes

VI_ATTR_TCPIP_HISLIP _OVERLAP EN Thi s enables Hi SLIP 60verl apd mod
the mode suggested by the instrument on HiSLIP connection.
If disabledt he connection uses 06Synchro
and recover from interrupted errors. If enabled, the
connection uses O60Overl appedd mode
responses. If changed, VISA will do a Device Clear
operation to change the mode.

VI_ATTR_TCPIP_HISLIP _VERSION This is the HiSLIP protocol version used for a particular
HiSLIP connetion. Currently, HiSLIP version 1.0 would
return a ViVersion value of @0100000.

VI_ATTR_TCPIP_HISLIP_MAX_MESSAGEKB This is the maximum HiSLIP messageesVISA
will accept from a HiSLIP system in units of kilobytes (1024
bytes). Defaults to 1024 (a 1 MB maximum message size).

RULE 5.1.11
All INSTR resource implementatiof@HALL support the attributegl_ ATTR_INTF_TYPE,

VI_ATTR_INTF_INST_NAME, VI_ATTR_TMO_VALUEVI_ATTR_INTF_NUM, VI_ATTR_TRIG_ID , and
VI_ATTR_DMA_ALLOW _E.

RULE 5.1.12
An INSTR resource implementation for a GPIB, GRIRI, VXI, ASRL, TCPIP, or USB systerSHALL
support the attributeél ATTR_IO_PROT, VI_ATTR_SEND_END_ENVI_ATTR_SUPPRESS_END_EN
VI_ATTR_TERMCHARVI_ATTR_TERM_CHAR_EN/I_ATTR_RD_BUF_OPER_MODE
VI_ATTR_WR_BUF_OPER_MODENdVI_ATTR_FILE_APPEND_EN

RULE 5.1.13
An INSTR resource implementation for a GPIB or GRIRI systemSHALL support the attributes
VI_ATTR_GPIB_PRIMARY_ADDRVI_ATTR_GPIB_SECONDARY_ADDRI_ATTR_GPIB_READDR_EN
VI_ATTR_GPIB_UNADDR_ENandVI_ATTR_GPIB_REN_STATE

RULE 5.1.14
An INSTR resource implementation for a VXI or GPMXI systemSHALL support the attributes
VI_ATTR_FDC_CHNL VI_ATTR_FDC_MODEVI_ATTR_MEM_BASEVI_ATTR_MEM_SIZE,
VI_ATTR_MEM_SPACEVI ATTR_SLOT, VI ATTR_VXI_LA ,VI_ATTR_CMDR_LA
VI_ATTR_WIN_BASE_ADDRVI_ATTR_WIN_SIZE, VI_ ATTR_MAINFRAME_LA
VI_ATTR_FDC_USE_PAIR VI_ATTR_FDC_GEN_SIGNAL_ENVI_ATTR_SRC_INCREMENT
VI_ATTR_DEST_INCREMENTVI_ATTR_WIN_ACCESS$VI_ATTR_IMMEDIATE_SERV,
VI_ATTR_SRC_BYTE_ORDER/I_ATTR_DEST_BYTE_ORDER/I_ATTR_WIN_BYTE_ORDER
VI_ATTR_SRC_ACCESS_PRIYVI_ATTR_DEST_ACCESS_PRIVVI_ATTR_WIN_ACCESS_PRIV
VI_ATTR_VXI_DEV_CLASS, and VI_ATTR_VXI_TRIG_SUPPORT.

RULE 5.1.15
An INSTR resource implementation for an ASRL sys@HALL support the attributes
VI_ATTR_ASRL_BAUDVI_ATTR_ASRL_DATA_BITS, VI_ATTR_ASRL_PARITY,
VI_ATTR_ASRL_STOP_BITS, VI ATTR_ASRL_FLOW _CNTRLVI_ATTR_ASRL_END IN,
VI_ATTR_ASRL _END OUTVI_ATTR_ASRL REPLACE_CHAR/I_ATTR_ASRL XON_CHARand
VI_ATTR_ASRL_XOFF _CHAR

RULE 5.1.16

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 552 Section 5: VISA Resource Classes

An INSTR resource implementation for a TCPIP sys&H#ALL support the attributes
VI_ATTR_TCPIP_ADDR VI_ATTR_TCPIP_HOSTNAMEVI_ATTR_TCPIP_IS_HISLIP ,and
VI_ATTR_TCPIP_DEVICE_NAME

RULE 5.1.17
An INSTRresource implementation fortiSLIP TCPIPsystemSHALL support the attributes
VI_ATTR_TCPIP_PORT, VI_ATTR_TCPIP_NODELAY, VI_ATTR_TCPIP_KEEPALIVE,

VI_ATTR_TCPIP_HISLIP_OVERLAP_EN, VI_ATTR_TCPIP_HISLIP_VERSION, and
VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB.

RULE 5.1.18
For each INSTR session, the attributeATTR_TRIG_ID SHALL be R/W (readable and writeable) when
the corresponding session is not enabled for sensing triggersHwadleEvent() for trigger events).

RULE 5.1.19
For each INSTR session, the attributeATTR_TRIG_ID SHALL be RO (read only and not writeable)
when the corresponding session is enabled for sensing triggeviEfaleEvent() for trigger events).

RULE 5.1.20
IF a GPIB or GPIBVXI INSTR resouce does not have an associated GPIB secondary adbisN, the
call toviGetAttribute() SHALL return the completion codd_SUCCESSand the value of the

attribute returne®HALL beVI_NO_SEC_ADDR.

RULE 5.1.21
IF a GPIB or GPIBVXI INSTR resource does not support HS488 data tran&b), the attribute is
VI_ATTR_IO_PROT, AND the attribute state MI_PROT_HS488, THEN the call toviSetAttribute()
SHALL return the completion codd_WARN_NSUP_ATTR_STATE

OBSERVATION 5.12
RULE 5.2.8 allows the HS488 protocol as an optional attribute range value for GPIB and
GPIB-VXI INSTR resources.

PERMISSION 5.1.1
IF the attributevi_ATTR_IMMEDIATE_SERVfor a given VXI or GPIBVXI INSTR is VI_FALSE, THEN
calls toviRead() ,viRe adAsync() ,viWrite() , viwriteAsync() , ViAssertTrigger() ,
viReadSTB() , andviClear() on sessions to the given INSTR resouvb&Y return
VI_ERROR_NSUP_OPER

PERMISSION 5.1.2

IF the range value of 0 is passedit®etAttribute() for VI_ATTR_SRC_INCREMENTDr
VI_ATTR_DEST_INCREMENJTHEN viSetAttribute() MAY returnVI_ERROR_NSUP_ATTR_STATE
RULE 5.1.22

IF a GPIB or GPIBVXI INSTR resource does not support turning off device readdresship, the
attribute isvl_ATTR_GPIB_READDR_ENAND the attribute state iI_FALSE, THEN the call to
viSetAttribute() SHALL return the completion codd_WARN_NSUP_ATTR_STATE

OBSERVATION 5.1.3
RULE 5.120allows disabling unnecessary device readdressing using an optional attribute range value for
GPIB and GPIBVXI resources.

RULE 5.1.23
An INSTR resource implementation for a VXI or GPMXI systemSHALL support the attribute state
VI_BIG_ENDIAN for the attribute&I ATTR_SRC_BYTE_ORDER/I_ATTR_DEST BYTE_ORDERand
VI_ATTR_WIN_BYTE_ORDER

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 553

PERMISSION 5.1.3

IF the range valuefo/l_LITTLE_ENDIAN is passed teiSetAttribute() for
VI_ATTR_SRC_BYTE_ORDER/I ATTR_DEST_BYTE_ORDEROrVI_ATTR_WIN_BYTE_ORDERTHEN
viSetAttribute() MAY returnVl_ERROR_NSUP_ATTR_STATE

OBSERVATION 5.1.4
As an example o¥1_BIG_ENDIAN andVI_LITTLE_ENDI ANformats, assume that the data 0x12 is at VXI
address 0, Ox34 is at address 1, 0x56 at 2, and 0x78 at 3bi&Zess at address 0 using
VI_BIG_ENDIAN format would return 0x12345678; the same access WsingTTLE_ENDIAN format
would return 0x7856342L Notice that the setting of the attribute values has no relation to and no effect on
the native byte order of the local machine.

RULE 5.1.24
An INSTR resource implementation for a VXI or GPMEXI systemSHALL support the attribute state
VI_DATA_PRIV for the attributes/I ATTR_SRC_ACCESS_PRIYVI_ATTR_DEST_ACCESS_PRIVand
VI_ATTR_WIN_ACCESS_PRIV

PERMISSION 5.1.4

IF any range value other th&h DATA_ PRIV is passed t@iSetAttribute() for
VI_ATTR_SRC_ACCESS_PRIYVI_ATTR_DEST_ACCESS_PRIVorVI_ATTR_WIN_ACCESS_ PRIV
THEN viSetAttribute() MAY returnVl_ERROR_NSUP_ATTR_STATE

OBSERVATION 5.1.5
Other access privilege enumeration values may require hardware support that is not implemented. For
example, th&/I_D64_SST* values are only supported on \£XI4.0.compliant controllers.

RULE 5.1.25
IF a VISA system implements the INSTR resource for a VXI systéEN it SHALL implement the
MEMACC resource for a VXI system.

RULE 5.1.26
IF a VISA system implements the INSTRsoairce for a GPIB/XI system, THEN it SHALL implement
the MEMACC resource for a GP{BXI system.

RULE 5.1.27
For VISA 2.2, the attributegl ATTR_WIN_ACCESS_PRIVandVI_ATTR_WIN_BYTE_ORDERre R/W
(readable and writeable) when the corresponding sessimm mapped\{l_ATTR_WIN_ACCESS ==
VI_NMAPPED.

RULE 5.1.28
For VISA 2.2, the attributegl ATTR_WIN_ACCESS_PRIVandVl_ATTR_WIN_BYTE_ORDERure RO
(readonly) when the corresponding session is mappéd\T TR_WIN_ACCESS != VI_NMAPPED).

RULE 5.1.29
An INSTR resource implementation for a TCPIP sys@&tALL use VXIF11 protocoffor INSTR resource
descriptors containing device nanstarting withd v x i 6, 066ignpsithéd , or

RULE 5.1.30
An INSTR resource implementation for a TCPIP sys&HALL use HiSLIP protocol for INSTR resource
descriptors containing devicenansee$ ar t i ng .wi th &éhislipo

RULE 5.1.31

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 554 Section 5: VISA Resource Classes

IF an INSTR resource descriptor contains no device rfamsig the protocol choiG&HEN viOpen()
SHALL attempt a VX411 connection firstAND IF the VXI-11 attempt connection fail§HEN viOpen()
SHALL attempt a HiSLIP connection.

PERMISSION 5.1.5
IF an INSTR resource descriptor contains no device rfanseng the protocol choicEHEN a VISA
implementatiorMAY permit configuration outside the VISA API to try a HiSLIP connection first.

RULE 5.1.32
IF an INSTR resource implementation does not support DMA trangfhii3, the attribute is
VI_ATTR_DMA_ALLOW_EMND the attribute state il TRUE, THEN the call to
vi SetAttribute() SHALL return the completion codd_ WARN_NSUP_ATTR_STATE

RULE 5.1.33
An INSTR resource implementation for a PXI syst8RALL use the plugn mechanism defined in the
IVI-6.3 specification for detecting and accessing PXI devices.

RULE 5.1.34
IF a PXI INSTR resource does not support write combiniigp the attribute is
VI_ATTR_PXI_ALLOW_WRITE_COMBINEAND the attribute state l_TRUE, THEN the call to
viSetAttribute() SHALL return the completion codd_WARN_NSUP_ATTR_STATE

OBSERVATION 5.16
It is valid for a PXI INSTR session to have b®hATTR_PXI_ALLOW_WRITE_COMBINEand
VI_ATTR_DMA_ALLOW_ENMet to VI_TRUE. In this case, write combining is enabled for the
viMoveOul) functions, whereas DMA is enabled for the viMoygliunctions.

RULE 5.1.35
An INSTR resource implementation for a USB sys®ifALL use the protocol defined in the USB Test
and Measurement class (USBTMC) specification or a USBTMC subclass specification.

RULE 5.1.36
An INSTR resource implementation for a USB sys@®HALL support the value of VI_TRUE for the
attributeVI_ATTR_TERMCHAR_ENeven if the USB interface does not indicate support for TermChar in its
capabilities bits.

OBSERVATION 5.1.7
A given VISA implementation of an INSTR resource for a USB system cawsehmow to implement
termination character support if the device does not support it natively. Two possible valid options are for
the VISA implementation to request 1 byte at a time from the device, or for the VISA implementation to
request larger blocksf data and buffer the data internally.

RULE 5.1.37
An INSTR resource implementation for a VXI or GPMXI or USB systenSHALL support the attributes
VI_ATTR_MANF_ID, VI_ATTR_MODEL_CODE/I_ATTR_MANF_NAMEVI_ATTR_MODEL_NAMEand
VI_ATTR_4882_COMPLIANT.

RULE 5.1.38
An INSTR resource implementation for a USB sys@iHALL support the attributes
VI_ATTR_USB_SERIAL_NUMVI_ATTR_USB_INTFC_NUMVI_ATTR_USB_MAX_INTR_SIZE, and
VI_ATTR_USB_PROTOCQL

RULE 5.1.39

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 555

For each INSTR session, the attributeATTR_USB_MAC_INTR_SIZE SHALL be R/W (readable and
writeable) when the corresponding session is not enabled for sensing USB interrupts (via
viEnableEvent() for USB interrupt events).

RULE 5.140
For each INSTR session, the attributeATTR_USB_MAX_INTR_SIZE SHALL beRO (read only and not
writeable) when the corresponding session is enabled for sensing USB interrugiBnabigeEvent()
for USB interrupt events).

OBSERVATION 5.1.8
In a previous version of the VISA specification, the I/O protocol value hamesvivekeORMALVI_FDC,
VI_HS488, andVI_ASRL488. The new names ax PROT_NORMALVI_PROT_FDG VI_PROT_HS488,
andVI_PROT_4882_STRS. ltis the intent of this specification that the numeric values for these names
must be consistent for backward compatibility.

RULE 5.141
IF a framework is 64it, THEN the values of the attributé4 ATTR_MEM_SIZEand
VI_ATTR_MEM_SIZE_64 SHALL be identical.

RULE 5.1.42
IF a framework is 3bit, THEN the values of the attributé4 ATTR_MEM_BASEnNnd
VI_ATTR_MEM_BASE_32SHALL beidentical.

RULE 5.143
IF a framework is 64it, THEN the values of the attributé4 ATTR_MEM_BASEnNnd
VI_ATTR_MEM_BASE_64SHALL be identical.

RULE 5.1.44
IF a framework is 3bit, THEN the values of the attributé4 ATTR_MEM_SIZEand
VI_ATTR_MEM_SIZE 32 SHALL be identical.

RULE 5.1.45
IF a framework is 3bit, THEN the values of the attributé4 ATTR_WIN_BASE_ADDRand
VI_ATTR_WIN_BASE_ADDR_32SHALL be identical.

RULE 5.1.46
IF a framework is 6bit, THEN the values of the attributes \WTTR_WIN_BASE_ADDRNd
VI_ATTR_WIN_BASE_ADDR_64SHALL be identical.

RULE 5.147
IF a framework is 32bit, THEN the values of the attributéd ATTR_WIN_SIZE and
VI_ATTR_WIN_SIZE_32 SHALL be identical.

RULE 5.1.48
IF a framework is 64it, THEN the values of the attributéd ATTR_WIN_SIZE and
VI_ATTR_WIN_SIZE_64 SHALL be identical.

RULE 5.1.49
IF a usercallsviGetAttribute() with the attributevi_ ATTR_MEM_BASE_32and the valuevould not fit in a
32-bit integer (meaning the value is greater than OXFFFFFAFHEN the implementatioSHALL return
VI_ERROR_NSUP_OFFSET
OBSERVATION 5.1.9
When the VXI memory base fits in a-B& integer, callingriGetAttribute() with the attributes
VI_ATT R_MEM_BASE_32andVI_ATTR_MEM_BASE64 return the same status and value.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 556 Section 5: VISA Resource Classes

RULE 5.1.50
IF a framework is 32bit, THEN the values of the attribut&d ATTR_PXI_MEM_BASE_BAR and
VI_ATTR_PXI_MEM_BASE_BAR_32 SHALL be identical.

RULE 5.151
IF a framework is 64it, THEN the values of the attributéd ATTR_PXI_MEM_BASE_BAR and
VI_ATTR_PXI_MEM_BASE_BAR_64 SHALL be identical.

RULE 5.1.52
IF a user callsiGetAttribute() with the attributevi_ ATTR_PXI_MEM_BASE_BAR_32 and the value
would not fit in a 32bit integer (meaning the value is greater than OXFFFFFAHEN the
implementatiorSHALL returnVI_ERROR_NSUP_OFFSET

OBSERVATION 5.1.10

When the PXI memory base fits in a-BR integer, callingiGetAttribute() with the attributes
VI_ATTR_PXI_MEM_BASE_BAR_32 andVI_ATTR_PX|_MEM_BASE_BAR_64 return the same status
and value.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 557

5.1.3 INSTR Resource Events
This resource defines the following events for communication with applications.
VI_EVENT_SERVICE_REQ

Description
Notification that aservice request was received from the device.

Event Attribute
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_SERVICE_REQ

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_VXI_SIGP

Description
Notification that a VXlbus signal or VXIbus interrupt was received from the device.

Event Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_VXI_SIGP
VI_ATTR_SIGP_STATUS_ID RO Viulnt16 0 to FFFFh

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_SIGP_STATUS ID The 16bit Status/ID value retrieved during the IACK cycle or
from the Signal register.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 558 Section 5: VISA Resource Classes

VI_EVENT_TRIG

Description
Notification that a trigger interrupt was received from the device. For VISA, the only triggers that can be
sensed are VXI hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_TRIG
VI_ATTR_RECV_TRIG_ID RO Vilnt16 VI_TRIG_TTLO to

VI_TRIG_TTL7 ;

VI_TRIG_ECLO to
VI_TRIG_ ECLS5;

VI_TRIG_STAR_INSTR

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.
VI_ATTR_RECV_TRIG_ID The identifier of the triggering mechanism on which the
specified trigger event was received.
VI_EVENT_IO_COMPLETION

Description
Notification that an asynchronous operation has completed.

Event Attributes
Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_|0_COMPLETION
VI_ATTR_STATUS RO ViStatus N/A
VI_ATTR_JOB_ID RO ViJobld N/A
VI_ATTR_BUFFER RO ViBuf N/A
VI_ATTR_RET_COUNT RO ViBus Size *
VI_ATTR_OPER_NAME RO ViString N/A
VI_ATTR_RET_COUNT_32 RO Viuint32 0 to FEFEFEFFh
VI_ATTR_RET_COUNT_64* RO Viuint64 0 to FFFFFFFFFFFFFFFFh

* The data type is defined in the appropriate VPPx4r&8mework specification.

** Definedonly for frameworkdhatare 64bit native.

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS This field contains the return code of the asynchronous I/O
operation that has completed.

VPP-4.3: The VISA Library VXIplug&play §stems Alliance

Section 5: VISA Resource Classes

VI_ATTR_JOB_ID

VI_ATTR_BUFFER

VI_ATTR_RET_COUNT

VI_ATTR_RET_COUNT_32
VI_ATTR_RET_COUNT_64

VI_ATTR_OPER_NAME

Page 559

This field contains the job ID of the asynchronous operation
that has completed.

This field contains the address of a buffer that was used in an
asynchronous operation.

This field contains the actual number of elements that were
asynchronously transferred.

The name of the operation generating the event.

For more information oRl_ATTR_OPER_NAMESee its definition in Section 3.7.2\8, EVENT_EXCEPTION

VI_EVENT_VXI_VME_INTR

Description

Notification that a VXlbus interrupt was received from the device.

Event Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_VXI_VME_INTR
VI_ATTR_INTR_STATUS_ID RO Viuint32 0 to FFEEFEEEN
VI_ATTR_RECV_INTR_LEVEL RO Vilnt16 1to 7,VI_UNKNOWN_LEVEL

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE

VI_ATTR_INTR_STATUS_ID

VI_ATTR_RECV_INTR_LEVEL

VXIplug&play Systems Alliance

Unique logical identifier of the event.

This attribute value is the 3&t status/ID retrieveduring the
IACK cycle.

This attribute value is the VXI interrupt level on which the
interrupt was received

VPP-4.3: The VISA Library

Page 560 Section 5: VISA Resource Classes

VI_EVENT_USB_INTR

Description
Notification that a vendespecific USB interrupt was received from the device.

Event Attributes
Symbolic Name Access Data Type Range
Privilege
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_USB_INTR
VI_ATTR_USB_RECV_INTR_SIZE RO Viuint16 0 to FFFFh
VI_ATTR_USB_RECV_INTR_DATA RO ViBuf N/A
VI_ATTR_STATUS RO ViStatus N/A
Event Attribute Descriptions
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.
VI_ATTR_USB_RECV_INTR_SIZE Specifies the size of the data that was received from the USB

interruptIN pipe. This value will never be larger than the
sessi 0n OvEATVRaUSB BAX INfTR_SIZE.

VI_ATTR_USB_RECV_INTR_DATA Specifies the actual data that was received from the USB
interruptIN pipe. Querying this attribute copies the contents

of the data to the userodés buffer.

sufficiently large enough to taall of the data

VI_ATTR_STATUS Specifies the status of the read operation from the USB
interruptIN pipe. If the device sent more data than the user
specified invVI_ATTR_USB_MAX_INTR_SIZE, then this
attribute value will contain the status code
VI_WARN_QUEUE_OVERFLOW

VI_EVENT_PXI_INTR

Description
Notification that a PCI Interrupt was received from the device.

Event Attribute
Access
Symbolic Name Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_PXI_INTR
VI_ATTR_PXI_RECV_INTR_SEQ RO Vilnt16 N/A
VI_ATTR_PXI_RECV_INTR_DATA RO Vilint32 N/A

VPP-4.3: The VISA Library VXIplug&play §stems Alliance

Section 5: VISA Resource Classes Page 561

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_PXI_RECV_INTR_SEQ Specifiesthe index of the interrupt sequence ttatected the
interrupt condition

VI_ATTR_PXI_RECV_INTR_DATA Specifieshe first PXI/PCI register that was read in the
successful interrupt detection sequence

RULE 5.1.53
All INSTR resource implementatiof@HALL support the generation of the events
VI_EVENT_IO_COMPLETIONMINdVI_EVENT_EXCEPTION

RULE 5.1.54
An INSTR resource implementation for a GPIB, GRIRI, VXI, TCPIP, or USB systenSHALL support
the generation of the evevit EVENT_SERVICE_REQ

RULE 5.1.55
An INSTR resource implementation for a VXI syst&HALL support the generation of the events
VI_EVENT_VXI_SIGP , VI_EVENT_TRIG, andVI_EVENT_VXI_VME_INTR.

RULE 5.1.56
An INSTR resource implementation for a PXI syst8RALL support the generation of the eve
VI_EVENT_PXI_INTR .

RULE 5.1.57
On some operating systems, it may be a requirement to handle PXI interrupts in the OS kernel
environment. VISA implementations on such operating sysg&i#sl L provide a mechanism for
performing devicespecific operations the kernel in response to an interrupt. The PXI Module
Description File Specification specifies a VISA Registration Descriptor for this purpose. This mechanism
allows the event to be delivered to the instrument driver software in the application erantance the
PXI interrupt has been safely removed in the OS kernel environment.

To implement the above rule, a VISA implementation could implement the following behavior.
1. The user, integrator, or instrument driver developer registers information feomatiule description
file with the VISA implementation. The information about the device registered includes a description
of these operations:
a. How to detect whether the device is asserting a PXI interrupt (Operation DETECT).
b. How to stop the device from serting its PXI interrupt line. (Operation QUIESCE).
2. When the user enables events from the device, the VISA implementation reads the device description
to find descriptions of the above operations.
3. Upon receiving an interrupt, the VISA implementation uS&sservices combined with the DETECT
operation on each device to determine which device is interrupting.
The VISA implementation uses the QUIESCE operation on the interrupting device.
The VISA implementation delivers thé EVENT_PXI_INTR to each session enablit interrupts to
that device.

ok

OBSERVATION 5.1.11
In any implementation, the VISA client code must ensure that the device is enabled to drive the interrupt
line again after handling the condition that caused the interrupt.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 562 Section 5: VISA Resource Classes

RULE 5.1.58
IF a session is enabled far EVENT_VXI_SIGP , AND a VXI interrupt or signal is detected with the value
FDxx (wherexx s the logical address associated with the given ses3ibiEN the VISA systenSHALL
generate &|_EVENT_VXI_SIGP in addition to &/ EVENT_SERVICE_REQ

RULE 5.1.59
IF a session is enabled far EVENT_VXI_VME_INTR, AND a VXI interrupt is detected with the value
FDxx (wherexx s the logical address associated with the given ses3ibiEN the VISA systenSHALL
geneate avl_EVENT_VXI_VME_INTR in addition to a/I_EVENT_SERVICE_REQ

RULE 5.1.60
An INSTR resource implementation for a VXI or GPMEXI systemSHALL return the error
VI_ERROR_INV_EVENTwhen a user tries to enalMé EVENT_SERVICE_REQor VME devices or VXI
register based devices.

RULE 5.1.61
An INSTR resource implementation for a USB sys®iFALL return the errowl_ERROR_INV_EVENT
when a user tries to enable EVENT_SERVICE_REQor USBTMC baseclass (nom88) devices.

RULE 5.1.62
An INSTR resource implementation for a USB sys®ifALL return the errowl_ERROR_INV_EVENT
when a user tries to enable EVENT_SERVICE_RECor a USB488 device that does not have an interrupt
IN pipe.

RULE 5.1.63
An INSTR resource implementation for a USB sys®fALL support the generation of the event
VI_EVENT_USB_INTR.

RULE 5.1.64
An INSTR resource implementation for a USB sys®ifALL return the errovl_ERROR_INV_EVENT
when a user tries to enable EVENT_USB INTR for a USBTMC device (baselass or USB488) that does
not have an interrupt IN pipe.

RULE 5.1.65
An INSTR resource implementation for a USB sys®ifALL generate/I_ EVENT_USB_INTRonly when
the interrupt header contains a vendpecific notificatioras defined by the USBTMC specification.

OBSERVATION 5.1.12
A USB488 service request notification will not caWseEVENT_USB_INTRto be generated.

RULE 5.1.66
IF a framework is 3it, THEN the values of the attributé4 ATTR_RET_COUNTand
VI_ATTR_RET_COUNT_32SHALL be identical.

RULE 5.1.67
IF a framework is 6bit, THEN the values of the attributé8 ATTR_RET_COUNTand
VI_ATTR_RET_COUNT_64SHALL be identical.

RULE 5.1.68
IF a framework is 3it, THEN the attributevVl ATTR_RET_COUNT_64SHALL NOT be defined.

OBSERVATION 5.1.13
A user on a 3dit framework cannot transfer more data than would fit in-hiB&ize.

VPP-4.3: The VISA Library VXIplug&play §stems Alliance

Section 5: VISA Resource Classes Page 563

5.1.4 INSTR Resource Operations

viRead(vi, buf, count, retCount)

viReadAsync(vi, buf, count, jobld)

viReadToFile(vi, fleName, count, retCount)

viWrite(vi, buf, count, retCount)

viWriteAsync(vi, buf, count, jobld)

viWriteFromFile(vi, fileName, count, retCount)

ViAssertTrigger(vi, protocol)

VviReadSTB(vi, status)

viClear(vi)

viSetBuf(vi, mask, size)

ViFlush(vi, mask)

ViPrintf(vi, writeFmt, argl, arg2, ...)

ViVPrintf(vi, wr iteFmt, params)

ViSPrintf(vi, buf, writeFmt, argl, arg2, ...)

ViVSPrintf(vi, buf, writeFmt, params)

viBufWrite(vi, buf, count, retCount)

viScanf(vi, readFmt, arg1, arg2, ...)

viVScanf(vi, readFmt, params)

viSScanf(vi, buf, readFmt, argl, arg2, ...)

viVSSca nf(vi, buf, readFmt, params)

viBufRead(vi, buf, count, retCount)

viQueryf(vi, writeFmt, readFmt, argl, arg2, ...)

viVQueryf(vi, writetFmt, readFmt, params)

viln8(vi, space, offset, val8)

viln16(vi, space, offset, vall6)

viln32(vi, space, offset, val32)

viln64(vi, space, offset, val64)

viOut8(vi, space, offset, val8)

viOut16(vi, space, offset, vall6)

viOut32(vi, space, offset, val32)

viOut64(vi, space, offset, val64)

viMoveln8(vi, space, offset, length, buf8)

viMoveln16(vi, space, offset, length, buf16)

viMoveln32(vi, space, offset, length, buf32)

viMoveln64(vi, space, offset, length, buf64)

viMoveOut8(vi, space, offset, length, buf8)

viMoveOut16(vi, space, offset, length, buf16)

viMoveOut32(vi, space, offset, length, buf32)

viMoveOut64(vi, space, offset, length, buf64)

viMoveln8EXx(vi, space, offset64, length, buf8)

viMoveln16Ex(vi, space, offset64, length, bufl6)

viMoveln32Ex(vi, space, offset64, length, buf32)

viMoveln64Ex(vi, space, offset64, length, buf64)

viMoveOUut8Ex(vi, space, offset64, length, buf8)

viMoveOut16Ex(vi, space, offset64, length, bufl16)

viMoveOut32EXx(vi, space, offset64, length, buf32)

viMoveOut64Ex(vi, space, offset64, length, buf64)

viMove(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth,
length)

viMoveAsync(vi, srcS pace, srcOffset, srcWidth, destSpace, destOffset,
destWidth, length, jobld)

viMoveEx(vi, srcSpace, srcOffset64, srcWidth, destSpace, destOffset64,
destWidth, length)

viMoveAsyncEXx(vi, srcSpace, srcOffset64, srcWidth, destSpace, destOffset64,
destWidth, length, jobld)

viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested, address)

viMapAddressEx(vi, mapSpace, mapBase64, mapSize, access, suggested, address)

viUnmapAddress(vi)

viPeek8(vi, addr, val8)

viPeek16(vi, addr, vall6)

viPeek32(vi, addr, val 32)

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 564 Section 5: VISA Resource Classes

viPeek64(vi, addr, val64)

viPoke8(vi, addr, val8)

viPokel16(vi, addr, vall6)

viPoke32(vi, addr, val32)

viPoke64(vi, addr, val64)

viMemAlloc(vi, size, offset)

viMemFree(vi, offset)

viMemAllocEx(vi, size, offset64)

viMemFreeEXx(vi, offset64)

viGpibControlR ~ EN(vi, mode)

viVxiCommandQuery(vi, mode, cmd, response)

viUsbControlOut(vi, bmRequestType, bRequest, wValue, windex, wLength, buf)

viUshControlin(vi, bmRequestType, bRequest, wValue, windex, wLength, buf,
retCnt)

RULE 5.1.69
An INSTR resource implementati for a GPIB systerBHALL support the operationdRead() ,
viReadAsync() , viReadToFile() , Viwrite() , viwriteAsync() , ViWriteFromFile() ,
viAssertTrigger() ,ViReadSTB() ,viClear() ,viSetBuf() ,viFlush() , viPrintf() ,
ViVPrintf() ,viScanf() ,viVScanf() ,viQueryf() ,viVQueryf() , VviSPrintf() , VIVSPrintf() ,
viBufWrite() ,ViSScanf() ,viVSScanf() ,viBufRead() , andviGpibControlREN()

RULE 5.1.70
An INSTR resource implementation for a GP¥XI or VXI systemSHALL support the operations
viRead() ,viReadAsync() ,viReadToFile() , ViWrite() , ViWriteAsync() ,
viwriteFromFile(),viAssertTrigger() ,ViReadSTB() ,viClear() ,viSetBuf() ,viFlush() ,
ViPrintf() , VIVPrintf() ,viScanf() ,viVScanf() ,viQueryf() ,viVQueryf() ,viln8() ,
viln16() ,viln32() ,viln64() ,viOut8() ,viOutl6() ,viOut32() ,viOuté4() ,viMoveln8()
viMoveln16() ,viMoveln32() ,viMoveln64() ,viMoveOut8() ,viMoveOutl6() ,viMoveOut32()
viMoveOut64() , viMoveln8Ex() ,viMovelnl6Ex() ,viMoveln32Ex() ,viMoveln64Ex()
viMoveOUut8Ex() , viMoveOutl6Ex() ,viMoveOut32Ex () , viMoveOut64Ex() ,viMoveAsync()
viMapAddress() ,viMoveAsyncEx() ,viMapAddressEx() ,viUnmapAddress() ,viPeek8() ,
viPeek16() ,viPeek32() ,viPeek64() ,viPoke8() ,viPokel6() ,viPoke32() ,viPoke64() ,
viMemAlloc() ,viMemFree() ,viMemAllocEx() ,viMemFreeEx() , viSPrintf() , VIVSPrintf() ,
viBufWrite() ,viSScanf() ,viVSScanf() ,viBufRead() , andvivxiCommandQuery().

RULE 5.1.71
An INSTR resource implementation for an ASRL sys@HALL support the operationgRead()
viReadAsync() ,viReadToFile() ViWwrite() , viwri teAsync() |, viwriteFromFile() ,
viAssertTrigger() ,ViReadSTB() , viClear() ,viSetBuf() ,viFlush() , viPrintf() ,
ViVPrintf() ,viScanf() ,viVScanf() ,viQueryf() ,viVQueryf() ,VviSPrintf() , VIVSPrintf() ,
viBufWrite() ,viSScanf() ,viVSScanf() ,andviBufRead()

RULE 5.1.72
An INSTR resource implementation for a TCPIP sys&fALL support the operationdRead()
viReadAsync() , viReadToFile() , ViWrite() , viWriteAsync() , ViWriteFromFile() ,
viAssertTrigger() , ViReadSTB() , viClear() ,viSetBuf() ,viFlush() , viPrintf() ,
ViVPrintf() ,viScanf() ,viVScanf() ,viQueryf() ,viVQueryf() , VviSPrintf() ,
ViVSPrintf() , ViBufWrite() ,ViSScanf() ,vivSScanf() , andviBufRead()

RULE 5.1.73

An INSTR resource implementation for a HiSLIP TCPIP sysgtALL support the operation
viGpibCont rolREN()

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 565

RULE 5.1.74
An INSTR resource implementation for a USB sys@®HALL support the operationdRead() ,
viReadAsync() , viReadToFile() , ViWrite() , viwriteAsync() , ViWriteFromFile() ,
viAssertTrigger() , ViReadSTB() , viClear() ,viSetBuf() ,viFlush() , viPrintf() ,
ViVPrintf() ,viScanf() ,viVScanf() ,viQueryf() ,viVQueryf() , VviSPrintf() ,
ViVSPrintf() , ViBufWrite() ,ViSScanf() ,viVSScanf() ,viBufRead() , viGpibControlREN() ,
viUsbControlOut() , andviUsbControlin()

RULE 5.1.75

An INSTR resource implementati for a PXI system SHALL support the operations
viAssertTrigger 0, viln8() ,viln16() ,viln32() ,viln64() ,viOut8() ,viOutl6()
viOut32() , viOut64() ,viMoveln8() ,viMovelnl6() ,viMoveln32() ,viMoveln64()
viMoveOut8() ,viMoveOutl6() ,viMoveOut32() ,viMoveOut64() ,viMoveln8EXx()
viMoveln16Ex() ,viMoveln32Ex() ,viMoveln64Ex() ,viMoveOut8Ex() ,viMoveOutl6Ex() ,
viMoveOut32Ex() ,viMoveOut64Ex() ,viMove() ,viMoveAsync() ,viMoveEx() ,
viMoveAsyncEx() ,viMapAddress() ,viMapAddressEx() ,viUnmapAddress() ,viPeek8()

viPeek16() ,viPeek32() ,viPeek64() ,viPoke8() ,viPokel6() ,viPoke32() ,and viPoke64()

5.1.5 Differences between VX111 and HiSLIP TCPIP INSTR Systems
While a HiSLIP system provides many \ELll-like capabilities, it differs in severagéspects.

I n particul ar, operations are sent to the Hi SLI P
unlike VXI-11, where each operation is blocks until a Ml device handshake return. HiSLIP does

utilize TCP/IP to send operations, whidbes guarantee that HiSLIP messages are delivered in order

and not lost, but this does not guarantee that the HiSLIP device has finished, or even started, the

requested operation aftevigvrite() call, for example.

HiSLIP systemslso provide services for exclusive and shared locks held in the HifgviPe while
VXI-11 only supports exclusive locks held in the VXl device.

HiSLIP detects and correat$ Interrupted errordyut can also be operated in an overlapped mode
where nterrupted errors are ignored but responses are sent as quickly as possible from the HiSLIP
system.

Like VXI-11, HiISLIP systems suppastibinstrument addressing

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 566 Section 5: VISA Resource Classes

5.2 Memory Access Resource

The Memory Access (MEMACC) Resource encapsulates the address space of a memory mapped bus such
as the VXlbus. A VISA Memory Access Resource, like any other resource, starts with the basic operations
and attributes of the VISA Resource Template. For exammbelifying the state of an attribute is done via

the operatiowiSetAttribute() , Which is defined in the VISA Resource Template. Although the

following resource does not haviSetAttribute() listed in its operations, it provides the operation

because it is defined in the VISA Resource Template. From this basic set, each resource adds its specific
operations and attributes that allow it to perform its dedicated task, such as reading eoregigieg to a

memory location.

5.2.1 MEMACC Resource Overview

The MEMACC Resource lets a controller interact with the interface associated with this resource. It does
this by providing the controller with services to access arbitrary registersnaomnpaddresses on memery
mapped buses. These services are described in detail in the remainder of this section.

A Memory /O Services

I The HighLevel Access Service allows registevel access to the interfaces that support direct
memory access, suchk the VXIbus, VMEbus, MXIbus, or even VME or VXI memory through a
system controlled by a GPi#®-VXI controller. A resource exists for each interface to which the
controller has access. When dealing with memory accesses, there is a tradeoff betweerdspeed a
complexity, and between software overhead and encapsulation. ThédlighAccess Service is
similar in purpose to the Loevel Access Service. The difference between these two services is that
the HighLevel Access Service has greater software owathiecause it encapsulates most of the code
required to perform the memory access, such as window mapping and error checking. In general, high
level accesses are slower thandewel accesses, but they encapsulate the operations necessary to
perform the acess and are considered safer.

The HighLevel Access Service lets the programmer access memory on the interface bus through
simple operations such ein16() andviOutl6() . These operations encapsulate the map/unmap
and peek/poke operations found in tioev-Level Access Service. There is no need to explicitly map
the memory to a window.

T The LowLevel Access Service, like the Hidlevel Access Service, allows registevel access to the
interfaces that support direct memory access, such as the VXIdius, MXIbus, or VME or VXI
memory through a system controlled by a GIdB/XI controller. A resource exists for each interface
of this type that the controller has locally. When dealing with memory accesses, there is a tradeoff
between speed and corapity and between software overhead and encapsulation. ThédesVv
Access Service is similar in purpose to the Higlvel Access Service. The difference between these
two services is that the Lolevel Access Service increases access speed by remoftingrso
overhead, but requires more programming effort by the user. To decrease the amount of overhead
involved in the memory access, the L-bevel Access Service does not return any error information in
the access operations.

Before an application can use the L-devel Access Service on the interface bus, it must map a range
of addresses using the operatiiviapAddress() . Although the resource handles the allocation and
operation of the window, the programmer must free thel@inviaviunmapAddress() when

finished. This makes the window available for the system to reallocate.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 567

RULE 5.2.1
IF an application performg@Close() on a session to a MEMACC resource with memory still mapped,
THEN viClose() SHALL perform an implicit unmaping of the mapped window.

PERMISSION 5.2.1

A VISA implementation that supports the PXI MEMACC resouvb&Y limit accesses to that resource to
permit only accesses to memory allocatedimemAlloc()

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 568 Section 5: VISA Resource Classes

5.2.2 MEMACC Resource Attributes

Generic MEMACC Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_INTF_NUM RO | Global | ViUintl6 0 to FFFFh
VI_ATTR_INTF_TYPE RO Global | ViUlnt16 VI_INTF_VXI

VI_INTF_GPIB_VXI

VI_INTF_PXI
VI_ATTR_INTF_INST_NAME RO Global | ViString N/A
VI_ATTR_TMO_VALUE R/W | Local Viuint32 VI_TMO_IMMEDIATE

1 to FFFFFFFEhQ

VI_TMO_INFINITE
VI_ATTR_DMA_ALLOW_EN R/W | Local ViBoolean VI_TRUE

VI_FALSE

VXI, GPIB-VXI, and PXI Specific MEMACC Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_SRC_INCREMENT RW | Local Vilnt32 Oto1l
VI_ATTR_DEST_INCREMENT R/W | Local Vilnt32 Oto 1
VI_ATTR_WIN_ACCESS RO Local Viuint16 VI_NMAPPED

VI_USE_OPERS
VI_DEREF_ADDR

VI_ATTR_WIN_BASE_ADDR32 RO | Local | ViBusAddress N/A
VI_ATTR_WIN_BASE_ADDR_64 RO | Local | ViBusAddress64 N/A
VI_ATTR_WIN_SIZE_32 RO | Local | ViBusSize N/A
VI_ATTR_WIN_SIZE_64 RO | Local | ViBusSize64 N/A

VXI and GPIB -VXI Specific MEMACC Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_VXI_LA RO Global Vilnt16 0 to 255
VI_ATTR_SRC_BYTE_ORDER R/W | Local Viulnt16 VI_BIG_ENDIAN

VI_LITTLE_ENDIAN
VI_ATTR_DEST_BYTE_ORDER R/W | Local Viulnt16 VI_BIG_ENDIAN

VI_LITTLE_ENDIAN
VI_ATTR_WIN_BYTE_ORDER R/W* | Local Viulnt16 VI_BIG_ENDIAN

VI_LITTLE_ENDIAN

(continues)

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 569

VXI and GPIB -VXI Specific MEMACC Resource Attributes (Continued)

Symbolic Name Access Privilege Data Type Range
VI_ATTR_SRC_ACCESS_PRIV R/W | Local Viulnt16 VI_DATA_NPRIV
VI_DATA_PRIV

VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV
VI_D64 2EVME
VI_D64_SST160
VI_D64_SST267
VI_D64_SST320

VI_ATTR_DEST_ACCESS_PRIV RW | Local | ViUintie VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64 PRIV
VI_D64 2EVME
VI_D64_SST160
VI_D64_SST267
VI_D64_SST320

VI_ATTR_WIN_ACCESS_PRIV R/W* | Local | ViUint16 VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV

* For VISA 2.2, the attributegl_ ATTR_WIN_BYTE_ORDERNdVI_ATTR_WIN_ACCESS_PRIVare R/W (readable
and writeable) when the corresponding session is not magpedrTR_WIN_ACCESS == VI_NMAPPED.
When the session is mapped, these attributes are RO (read only

GPIB-VXI Specific MEMACC Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_INTF_PARENT_NUM RO | Global | Viuintl6 0 to FEFFh
VI_ATTR_GPIB_PRIMARY_ADDR RO Global | ViUInt16 0to 30
VI_ATTR_GPIB_SECONDRY_ADDR RO Global | ViUInt16 Oto 31,

VI_NO_SEC_ADDR

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 570

Attribute Descriptions

Generic MEMACC Resource Attributes
VI_ATTR_INTF_TYPE
VI_ATTR_INTF_NUM

VI_ATTR_TMO_VALUE

VI_ATTR_INTF_INST_NAME

VI_ATTR_DMA_ALLOW_EN

Section 5: VISA Resource Classes

Interface type of the given session.
Board number for the given interface.

Minimum timeout value to use, in milliseconds. A timeout
value ofvl_TMO_IMMEDIATEmeans that operations should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

Humanreadablgext describing the given interface.

This attribute specifies whether 1/0 accesses should use
DMA (VI_TRUE) or Programmed I/O|_FALSE). In

some implementations, this attribute may have global
effects even though it is documented®a local attribute.
Since this affects performance and not functionality, that
behavior is acceptable.

VXI, GPIB-VXI, and PXI SpecificMEMACC Resource Attributes

VI_ATTR_SRC_INCREMENT

VI_ATTR_DEST_INCREMENT

VI_ATTR_WIN_ACCESS

VI_ATTR_WIN_BASE_ADDR_64
VI_ATTR_WIN_BASE_ADDR32

VPP-4.3: The VISA Library

This is used in theiMoveln XX() operation to specify how
much thesource offset is to be incremented after every
transfer. The default value of this attribute is 1 (that is, the
source address will be incremented by 1 after each transfer),
and theviMoveln XX() operation moves from consecutive
elements. If this attributis set to 0, th@iMoveln XX()

operation will always read from the same element, essentially
treating the source as a FIFO register.

This is used in theiMoveOut XX() operation to specify how
much the destination offset is to ber@mented after every
transfer. The default value of this attribute is 1 (that is, the
destination address will be incremented by 1 after each
transfer), and theiMoveOut XX() operation moves into
consecutive elements. If this attribute is set to 0, the

viM oveOut XX() operation will always write to the same
element, essentially treating the destination as a FIFO register.

Modes in which the current window may be accessed. The
valid modes are as follows:
1 not currently mapped;
1 through the oprationsviPeek XX() andviPoke XX()
only;
1 through operations and/or by directly dereferencing the
address parameter as a pointer.

Base address of the interface bus to which this window is
mapped.

VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 571

VI_ATTR_WIN_SIZE 64
VI_ATTR_WIN_SIZE _32 Size of the region mapped to this window.

VXI and GPIB -VXI Specific MEMACC Resource Attributes
VI_ATTR_VXI_LA Logical address of the local controller.

VI_ATTR_SRC_BYTE_ORDER This attribute specifies the byte orderbe used in higievel
access operations, suchvils XX() andviMoveln XX() ,
when reading from the source.

VI_ATTR_DEST_BYTE_ORDER This attribute specifies the byte order to be used in-kegél
access operations, suchvi@ut XX() andviMoveOut XX() ,
when writing to the destination.

VI_ATTR_WIN_BYTE_ORDER This attribute specifies the byte order to be used inléwel
access operations, suchviddapAddress () , viPeek XX()
andviPoke XX() , when accessing the mapped window.

VI_ATTR_SRC_ACCESS PRIV This atribute specifies the address modifier to be used in
high-level access operations, suchvitis XX() and
viMoveln XX() , when reading from the source.

VI_ATTR_DEST_ACCESS_PRIV This attribute specifies the address modifier to be used in
high-level access operations, suchvgzut XX() and
viMoveOut XX() , when writing to the destination.

VI_ATTR_WIN_ACCESS_ PRIV This attribute specifies the address modifier to be used in low
level acess operations, suchwdlgapAddress () ,
viPeek XX() andviPoke XX() , when accessing the mapped

window.
GPIB-VXI Specific MEMACC Attributes
VI_ATTR_INTF_PARENT_NUM Board number of the GPIB board to which the GBI is
attached.
VI_ATTR_GPIB_PRIMARY_ADR Primary address of the GPMNBXI controller used by the given
session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary address of the GPV&XI controller used by the
given session.

PERMISSION 5.22

IF the range value of 0 is passedit®etAttribute() for VI_ATT R_SRC_INCREMEN®r

VI_ATTR_DEST_INCREMENJTTHEN viSetAttribute() MAY returnVl_ ERROR_NSUP_ATTR_STATE
PERMISSION 5.23

IF the range value of|_LITTLE_ENDIAN is passed teiSetAttribute() for

VI_ATTR_SRC_BYTE_ORDER/I ATTR_DEST BYTE_ORDEROrVI_ATTR_WIN_BYTE_ORDERTHEN

viSetAttribute() MAY returnVl_ERROR_NSUP_ATTR_STATE

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 572 Section 5: VISA Resource Classes

PERMISSION 5.24

IF any range value other thamh DATA PRIV is passed toiSetAttribute() for
VI_ATTR_SRC_ACCESS_PRIYVI_ATTR_DEST_ACCESS_PRIVorVI_ATTR_WIN_ACCESS_PRIV
THEN viSetAttribute() MAY returnVl_ERROR_NSUP_ATTR_STATE

RULE 5.2.2

All MEMACC resource implementatioSHALL support the attributeégl ATTR_INTF_TYPE,
VI_ATTR_INTF_INST_NAME, VI_ATTR_TMO_VALUEVI_ATTR_INTF_NUM, and
VI_ATTR_DMA_ALLOW_EN

RULE 5.2.3
A MEMACC resource implementation for a VXI or GRNBXI systemSHALL support the attributes
VI_ATTR_WIN_BASE_ADDRVI_ATTR_WIN_SIZE, VI_ATTR_WIN_ACCESS$VI_ATTR_SRC_INCREMEN]T
VI_ATTR_DEST_INCREMEN]VI_ATTR_SRC_BYTE_ORDER/|_ ATTR_DEST_BYTE_ORDER
VI_ATTR_WIN_BYTE_ORDER/I ATTR_SRC_ACCESS_PRIYVI_ATTR_DEST_ACCESS_PRIVand
VI_ATTR_WIN_ACCESS_PRIV

RULE 5.24
A MEMACC resource implementation for a PXI syst8tHALL support the attributes
VI_ATTR_WIN_BASE_ADDRVI_ATTR_WIN_SIZE, VI_ATTR_WIN_ACCESSVI _ATTR_SRC_INCREMEN]
andVl_ATTR_DEST_INCREMENT

RULE 5.25
IF a MEMACC resource implementation does not support DMA trangiB, the attribute is
VI_ATTR_DMA_ALLOW_EMND the attribute state iI_TRUE, THEN the call toviSetAttribute()
SHALL returnthe completion codgl_WARN_NSUP_ATTR_STATE

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section5:; VISA Resource Classes Page 573
5.2.3 MEMACC Resource Events
This resource defines the following event for communication with applications.
VI_EVENT_IO_COMPLETION
Description
Notification that an asynchronous operation has completed.
Event Attributes
Symbolic Nane Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_IO_COMPLETION
VI_ATTR_STATUS RO ViStatus N/A
VI_ATTR_JOB_ID RO ViJobld N/A
VI_ATTR_BUFFER RO ViBuf N/A
VI_ATTR_RET_COUNT RO ViBusSize *
VI_ATTR_OPER_NAME RO ViString N/A
VI_ATTR_RET_COUNT_32 RO Viuint32 0 to FEFFFFFFh
VI_ATTR_RET_COUNT_64* RO Viuint64 0 to FFFFFFFFFFFFFFFFh
* The data type is defined in the appropriate VPP 4.3.x framework specification.
*x Definedonly for frameworkghatare 64bit native.

Event Attribute Descriptions

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_STATUS This field contains the return code of the asynchronous 1/0O
operation that has completed.

VI_ATTR_JOB_ID This field contains the job ID of the asynchronopgration

that has completed.

VI_ATTR_BUFFER This field contains the address of a buffer that was used in an
asynchronous operation.

VI_ATTR_RET_COUNT This field contains the actual number of elements that were
VI_ATTR_RET_COUNT_32 asynchronously traferred.

VI_ATTR_RET_COUNT_64

VI_ATTR_OPER_NAME The name of the operation generating the event.

For more information olI_ATTR_OPER_NAMEsee its definition in Section 3.7.2\8, EVENT_EXCEPTION

RULE 5.2.6

All MEMACC resource implementatiorS8HALL sugport the generation of the events

VI_EVENT_IO_COMPLETIONandVI_EVENT_EXCEPTION

VXIplug&play Systems Alliance

VPP-4.3: TheVISA Library

Page 574 Section 5: VISA Resource Classes

5.2.4 MEMACC Resource Operations

viln8(vi, space, offset, val8)

viln16(vi, space, offset, vall6)

viln32(vi, space, offset, val32)

viln64(vi, space, offset, val64)

viOut8(vi, space, offset, val8)

viOutl6(vi, space, offset, vall6)

viOut32(vi, space, offset, val32)

viOut64(vi, space, offset, val64)

viMoveln8(vi, space, offset, length, buf8)

viMoveln16(vi, space, offset, | ength, bufl6)

viMoveln32(vi, space, offset, length, buf32)

viMoveln64(vi, space, offset, length, buf64)

viMoveOut8(vi, space, offset, length, buf8)

viMoveOut16(vi, space, offset, length, buf16)

viMoveOut32(vi, space, offset, length, buf32)

viMoveOut64(vi, space, offset, length, buf64)

viMoveln8Ex(vi, space, offset64, length, buf8)

viMoveln16Ex(vi, space, offset64, length, bufl6)

viMoveln32Ex(vi, space, offset64, length, buf32)

viMoveln64EXx(vi, space, offset64, length, buf64)

viMoveOut8Ex(vi, space, offset64, length, buf8)

viMoveOut16Ex(vi, space, offset64, length, bufl16)

viMoveOut32Ex(vi, space, offset64, length, buf32)

viMoveOut64Ex(vi, space, offset64, length, buf64)

viMove(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth,
length)

viMoveAsync(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset,
destWidth, length, jobld)

viMoveEXx(vi, srcSpace, srcOffset64, srcWidth, destSpace, destOffset64,
destWidth, length)

viMoveAsyncEx(vi, srcSpace, srcOffset64, srcWidth, destSpace, destOf fset64,
destWidth, length, jobld)

viMapAddress(vi, mapSpace, mapBase, mapSize, access, suggested, address)

viMapAddressEx(vi, mapSpace, mapBase64, mapSize, access, suggested, address)

viUnmapAddress(vi)

viPeek8(vi, addr, val8)

viPeek16(vi, addr, vall6)

ViP eek32(vi, addr, val32)

viPeek64(vi, addr, val64)

viPoke8(vi, addr, val8)

viPokel6(vi, addr, vall6)

viPoke32(vi, addr, val32)

viPoke64(vi, addr, val64)

viMemAlloc(vi, size, offset)

viMemFree(vi, offset)

viMemAllocEx(vi, size, offset64)

viMemFreeEx(vi, offset64)

RULE 5.2.7
All MEMACC resource implementatioS8HALL support the operationdin8() , viln16() ,
viln32() ,viln64() ,viOut8() ,viOutl6() ,viOut32() ,viOut64() ,viMoveln8() ,
viMoveln16() ,viMoveln32() ,viMoveln64() ,viMoveOut8() ,viMoveOutl6() ,viMoveOut32() |,
viMoveOut64() , viMoveln8Ex() ,viMovelnl6Ex() ,viMoveln32Ex() ,viMoveln64Ex()
viMoveOUut8Ex() , viMoveOutl6Ex() ,viMoveOut32Ex() ,viMoveOut64Ex() ,viMove() ,
viMoveAsync() , viMoveEx() ,viMoveAsync() ,viMapAddress() ,viMapAddressex() ,
viUnmapAdd ress() , viPeek8() ,viPeekl1l6() ,viPeek32() ,viPeek64() ,viPoke8() |,
viPokel16() ,viPoke32() , and viPoke64()

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 575

RULE 5.2.8
A MEMACC resource implementation for a PXI syst&tdALL support the operationdMemAlloc()
viMemFree() , viMemAllocEx() , andviMemFreeEx()

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 576 INTFC Overview Section 5: GPIB Bus Interface Resource

5.3 GPIB Bus Interface Resource

This section describes the resource that is provided to encapsulate the operations and properties of a raw
GPIB interface (reading, writing, triggering, and so on). A VISA GPIB Bus Interface (INTFC) Resource,
like any other resource, defines the basic afyens and attributes of the VISA Resource Template. For

example, modifying the state of an attribute is done via the operéSiemttribute() , Which is
defined in the VISA Resource Template. Although the following resource does not have
viSetAttribute() listed in its operations, it provides the operation because it is defined in the VISA

Resource Template. From this basic set, each resource adds its specific operations and attributes that allow
it to perform its dedicated task

5.3.1 INTFC Resource Overiew

The INTFC Resource lets a controller interact with any devices connected to the board associated with this
resource. Services are provided to send blocks of data onto the bus, request blocks of data from the bus,
trigger devices on the bus, and deniscellaneous commands to any or all devices. In addition, the

controller can directly query and manipulate specific lines on the bus, and also pass control to other devices
with controller capability. These services are described in detail in thengenaif this section. The Basic

I/O and Formatted 1/O services are also described in the INSTR Resource Overview in section 5.1.1.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5:VISA Resource Classes

5.3.2 INTFC Resource Attributes

Generic INTFC Resource Attributes

Page 577

Symbolic Name Access Privilege Data Type Range
VI_ATTR_INTF_NUM RO Global | Viuintie 0 to FFFFh
VI_ATTR_INTF_TYPE RO Global | ViUint16 VI_INTF_GPIB
VI_ATTR_INTF_INST_NAME RO Global ViString N/A
VI_ATTR_SEND_END_EN R/W | Local ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_TERMCHAR R/W Local ViUInt8 0 to FFh
VI_ATTR_TERMCHAR_EN R/W | Local ViBoolean VI_TRUE
VI_FALSE
VI_ATTR_TMO_VALUE RW | Local Viuint32 VI_TMO_IMMEDIATE
1 to FFFFFFFEh
VI_TMO_INFINITE
VI_ATTR_DEV_STATUS BTE RW Global ViUInt8 0 to FFh
VI_ATTR_WR_BUF_OPER_MODE RW | Local Viuint16 VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL
VI_ATTR_DMA_ALLOW_EN RW | Local ViBoolean VI_TRUE
VI_FALSE
VI_ATTR_RD_BUF_OPER_MODE RW | Local Viuint16 VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE
VI_ATTR_FILE_APPEND_EN RW | Local ViBoolean VI_TRUE
VI_FALSE
VI_ATTR_RD_BUF_SIZE RO Local Viuint32 N/A
VI_ATTR_WR_BUF_SIZE RO Local Viuint32 N/A
GPIB Specific INTFC Resource Attributes
Symbolic Name Access Privilege | Data Type Range
VI_ATTR_GPIB_PRIMARY_ADDR RW Global Viuint16 0to 30
VI_ATTR_GPIB_SECONDRY_ADDR RW Global Viuint16 0to 31,vI_ NO_SEC_ADDR
VI_ATTR_GPIB_REN_STATE RO | Global Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN
VI_ATTR_GPIB_ATN_STATE RO | Global Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VXIplug&play Systems Alliance

(continues)

VPP-4.3: TheVISA Library

Page 578

Section 5: VISA Resource Classes

GPIB Specific INTFC Resource Attributes (Continued)

Symbolic Name

Access Privilege | Data Type Range

VI_ATTR_GPIB_NDAC_STATE

RO

Global Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VI_ATTR_GPIB_SRQ_STATE RO | Global Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN
VI_ATTR_GPIB_CIC_STATE RO | Global ViBoolean VI_TRUE
VI_FALSE
VI_ATTR_GPIB_SYS_CNTRL_STATE | RW | Global ViBoolean VI_TRUE
VI_FALSE
VI_ATTR_GPIB_HS488_CBL_LEN RW | Global Vilnt16 1 to 15,
VI_GPIB_HS488_DISABLED,
VI_GPIB_HS488 NIMPL
VI_ATTR_GPIB_ADDR_STATE RO | Global Vilnt16 VI_GPIB_UNADDRESSED

VI_GPIB_TALKER
VI_GPIB_LISTENER

Generic INTFC Resource Attributes
VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE
VI_ATTR_INTF_INST_NAME

VI_ATTR_SEND_END_EN

VI_ATTR_TERMCHAR

VI_ATTR_TERMCHAR_EN

VI_ATTR_TMO_VALUE

VI_ATTR_DEV_STATUS BYTE

VPP-4.3: The VISA Library

Board number for the given interface.
Interface type of the given session.
Humanreadable text describing the given interface.

Whether to assert END during the transfer of the last byte of
the buffer.

Termination character. When the termination character is read
andVI_ATTR_TERMCHAR_EM enabled during a read
operation, the read operation terminates.

Flag that determines whether the read operatiauld
terminate when a termination character is received.

Minimum timeout value to use, in milliseconds. A timeout
value ofvl_TMO_IMMEDIATEmeans that operations should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

This attribute specifies the 488yle status byte of the local
controller associated with thigssion.

If this attribute is written and bit 6 (0x40) is set, this device or

controller will assert a service request (SRQ) if it is defined
for this interface.

VXIplug&play Systems Alliance

Section 5:VISA Resource Classes

VI_ATTR_WR_BUF_OPER_MODE

VI_ATTR_DMA_ALLOW_EN

VI_ATTR_RD_BUF_OPER_MODE

VI_ATTR_FILE_APPEND_EN

GPIB Specific INTFC Attributes

VI_ATTR_GPIB_PRIMARY_ADDR

VI_ATTR_GPIB_SECONDARY_ADDR

VI_ATTR_GPIB_REN_STATE

VI_ATTR_GPIB_ATN_STATE

VI_ATTR_GPIB_NDAC_STATE

VI_ATTR_GPIB_SRQ_STATE

VI_ATTR_GPIB_CIC_STATE

VI_ATTR_GPIB_SYS_CNTRL_STATE

VXIplug&play Systems Alliance

Page 579

Determines the operational mode of the write buffer. When
the operational mode is setWo FLUSH_WHEN_FULL
(default), the buffer is flushed when an END indicasor
written to the buffer, or when the buffer fills up.

If the operational mode is setW FLUSH_ON_ACCESSthe
write buffer is flushed under the same conditions, and also
every time aviPrintf() operation completes.

This attribue specifies whether I/O accesses should use DMA
(VI_TRUE) or Programmed I/OM_FALSE). In some
implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this
affects performance and not functidity, that behavior is
acceptable.

Determines the operational mode of the read buffer. When the
operational mode is set¥_FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls tdFlush()

If the operationemode is set t&I_FLUSH_ON_ACCESSthe
buffer is flushed every timedScanf() operation
completes.

This attribute specifies whetheéiReadToFile() will
overwrite (truncate) or append when opening a file.

Primary address of the local GPIB controller used by the
givensession.

Secondary address of the local GPIB controller used by the
given session.

This attribute returnthe current state of the GPIB REN
(Remote ENable) interface line.

This attribute shows the current state of the GPIB ATN
(ATtentioN) interface line.

This attribute shows the current state of the GPIB NDAC
(Not Data ACcepted) interface line.

This attribute shows the current state of the GPIB SRQ
(Service ReQuest) interface line.

This attribute shows whether the specified GPIB interface is
currently CIC (contrdér in charge).

This attribute shows whether the specified GPIB interface is
currently the system controller. In some implementations, this
attribute may be modified only through a configuration utility.
On these systems,ighattribute is read only (RO).

VPP-4.3: TheVISA Library

Page 580 Section 5:; VISA Resource Classes

VI_ATTR_GPIB_HS488 CBL_LEN This attribute specifies the total number of meters of GPIB
cable used in the specified GPIB interface. If HS488 is not
implemented, querying this attribute should return the value
VI_GPIB_HS488 NIMPL. On these systems, trying to set this
attribute value will return the error
VI_ERROR_NSUP_ATTR_STATE

VI_ATTR_GPIB_ADDR_STATE This attribute shows whether the specified GPIB interface is
currently addressed to talk or listen, or is not addressed.

RULE 5.3.1
All INTFC resource implementatiorB8HALL support the attributegl_ ATTR_INTF_NUM,
VI_ATTR_INTF_TYPE, VI_ATTR_INTF_INST_NAME, VI_ATTR_SEND_END_ENVI_ATTR_TERMCHAR
VI_ATTR_TERMCHAR_EN/I_ATTR_TMO_VALUEVI _ATTR_DEV_STATUS_BYTE
VI_ATTR_WR_BUF_G®ER_MODE/I_ATTR_DMA_ALLOW_EN/I_ATTR_RD_BUF_OPER_MOD&nd
VI_ATTR_FILE_APPEND_EN

RULE 5.3.2
An INTFC resource implementation for a GPIB syst8HALL support the attributes
VI_ATTR_GPIB_PRIMARY ADDRVI_ATTR_GPIB_SECONDRY_ADDRVI_ATTR_GPIB_REN_STATE,
VI_ATTR_GPIB_ATN_STATE, VI_ATTR_GPIB_NDAC_STATE, VI_ATTR_GPIB_SRQ_STATE,
VI_ATTR_GPIB_CIC_STATE, VI_ ATTR_GPIB_SYS_CNTRL_STATE VI_ATTR_GPIB_HS488 CBL_LEN,
andVI_ATTR_GPIB_ADDR_STATE

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 581

5.3.3 INTFC Resource Events
VI_EVENT_GPIB_CIC

Description
Notification that the GPIB controller has gained or lost CIC (controller in charge) status.

Event Attribute
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_GPIB_CIC
VI_ATTR_GPIB_RECV_CIC_STATE RO ViBoolean VI_TRUE
VI_FALSE
Event Attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.
VI_EVENT_GPIB_TALK
Description
Notification thatthe GPIB controller has been addressed to talk.
Event Attribute
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_GPIB_TALK
Event Attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.
VI_EVENT_GPIB_LISTEN
Description
Notification that the GPIB controller has been addressed to listen.
Event Attribute
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_GPIB_LISTEN

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 582 Section 5: VISA Resource Classes

VI_EVENT_CLEAR

Description
Notification that the local controller has been sent a device clear message.

Event Attribute
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_CLEAR

Event Attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.
VI_EVENT_TRIG

Description
Notification that a trigger interrupt was received from the interface.

Event Attributes
Symbolic Name AccessPrivilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_TRIG
VI_ATTR_RECV_TRIG_ID RO Vilnt16 VI_TRIG_SW

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_RECV_TRIG_ID The identifier of thdriggering mechanism on which the
specified trigger event was received.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 583
VI_EVENT_IO_COMPLETION
Description
Notification that an asynchronous operation has completed.
Event Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_IO_COMPLETION
VI_ATTR_STATUS RO ViStatus N/A
VI_ATTR_JOB_ID RO ViJobld N/A
VI_ATTR_BUFFER RO ViBuf N/A
VI_ATTR_RET_COUNT RO ViBusSize *
VI_ATTR_OPER_NAME RO ViString N/A
VI_ATTR_RET_COUNT_32 RO Viuint32 0 to EFFFEEFEh
VI_ATTR_RET_COUNT_64* RO Viuint64 0 to FFFFFFFFFFFFFFFFh
* The data type is defined in the appropriate VPPx4r8mework specification.
* Definedonly for frameworkgshatare 64bit native.

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE

VI_ATTR_STATUS

VI_ATTR_JOB_ID

VI_ATTR_BUFFER

VI_ATTR_RET_COUNT

VI_ATTR_RET_COUNT_32
VI_ATTR_RET_COUNT 64

VI_ATTR_OPER_NAME

Uniquelogical identifier of the event.

This field contains the return code of the asynchronous 1/O
operation that has completed.

This field contains the job ID of the asynchronous operation

that has completed.

This field contains the address of a buffer that was used in an

asynchronous operation.

This field contains the actual number of elements that were
asynchronously transferred.

The name of the operation generating the event.

For more information oNI_ATTR_OPER_NAMESee its definition in Section 3.7.2\8, EVENT_EXCEPTION

RULE 5.3.3

All INTFC resource implementatior8HALL support the generation of the evevitsEVENT_GPIB_CIC,
VI_EVENT_GPIB_TALK, VI_EVENT_GPIB_LISTEN, VI_EVENT_CLEAR VI_EVENT_TRIG,
VI_EVENT_SERVICE_REQandVI_EVENT_IO_COMPLETION

VXIplug&play Systems Alliance

VPP-4.3: TheVISA Library

Page 584 Section 5: VISA Resource Classes

5.3.4 INTFC Resourceélperations

viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobld)
viReadToFile(vi, fleName, count, retCount)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobld)
viWriteFromFile(vi, fileName, count, retCount)
viAssertTrigger (vi, protocol)
viSetBuf(vi, mask, size)

ViFlush(vi, mask)

ViPrintf(vi, writeFmt, argl, arg2, ...)
ViVPrintf(vi, writeFmt, params)

ViSPrintf(vi, buf, writeFmt, argl, arg2, ...)
ViVSPrintf(vi, buf, writeFmt, params)
viBufWrite(vi, buf, count, retCount)
viScanf(vi, readFmt, argl, arg2, ...)
viVScanf(vi, readFmt, params)

viSScanf(vi, buf, readFmt, argl, arg2, ...)
viVSScanf(vi, buf, readFmt, params)
viBufRead(vi, buf, count, retCount)
viGpibControlREN(vi, mode)
viGpibControlATN (vi, mode)
viGpibPassControl (vi, primAddr, secAddr)

viGpibCommand(vi, buf, count, retCount)
viGpibSendIFC(vi)

RULE 5.3.4
All INTFC resource implementatior®HALL support the operationdRead() |, viReadAsync()
viReadToFile() , ViWrite() , viwriteAsync() , ViWriteFromFile() , ViAssertTrigger() ,

viSetBuf() , viFlush() , viPrintf() , VIVPrintf() , VISPrintf() , VIVSPrintf() ,
viBufWrite() ,viScanf() ,viVScanf() ,viSScanf() ,viVSScanf() ,viBufRead() |,
viGpibControlREN() , ViGpibControlATN () , viGpibPassControl() , ViGpibCommand(), and
viGpibSendIFC()

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5; VXI Mainframe Backplane Resource BACKPLANEOverview Page 585

5.4 Mainframe Backplane Resource

The Mainframe Backplane (BACKPLANE) Resource encapsulates thedefitiedand PXtdefined
operations and properties of the backplane in a VX#sXI system. A VISA Mainframe Backplane
Resource, like any other resource, starts with the basic operations and attributes of the VISA Resource
Template. For example, modifying the state of an attribute is done via the opeigtiatribute() ,
which is defined in the VISA Resource Template. Although the following resource does not have
viSetAttribute() listed in its operations, it provides the operation because it is defined in the VISA
Resource Template. From this basic set, each resourcésdpscific operations and attributes that allow

it to perform its dedicated task.

5.4.1 BACKPLANE Resource Overview

The BACKPLANE Resource lets a controller query and manipulate specific lines on a specific mainframe

in a given VXlor PXI system.Services are provided to map, unmap, assert, and receive hardware triggers,

and also to assert various utility and interrupt signals. This includes advanced functionality that may not be
available in all i mpl eme nt a ervicesase described ih dletaiviretmed or s 6 c o
remainder of this section.

A VXI system with an embedded CPU with one mainframe will always have exactly one BACKPLANE
resource. Valid examples of resource strings for this are VXI10::0::BACKPLANE and VXI::BACKPLANE.
A multi-chassis VXI system may provide only one BACKPLANE resource total, but the recommended
way is to provide one BACKPLANE resource per chassis, with the resource string address corresponding
to the attribute/I_ATTR_MAINFRAME_LA If a multi-chassis VXIsystem provides only one BACKPLANE
resource, it is assumed to control the backplane resources in all chassis.

A PXI system will contain one BACKPLANE resource for each configured chassis, with the resource
string address corresponding to the attridtiteATTR_PXI_CHASSIS

RULE 5.4.1
A VXI or GPIB-VXI implementation that supports the BACKPLANE resoust¢ALL provide at least
one BACKPLANE resource per VXI or GPIBXI| system.

RECOMMENDATION 5.4.1
A VXI or GPIB-VXI implementation should provide one BACKPINE resource per VXI chassis.

OBSERVATION 5.4.1
Some VXI or GPIBVXI implementations view all chassis in a VXI system as one entity. In these
configurations, separate BACKPLANE resources are not possible.

RULE 5.4.2
A PXI implementatiorSHALL provide oneBACKPLANE resource per configured PXI chassis.

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 586 Section 5: VISA Resource Classes

5.4.2 BACKPLANE Resource Attributes

Generic BACKPLANE Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_INTF_NUM RO | Global | ViUint16 0 to FFFFh
VI_ATTR_INTF_TYPE RO Global | ViUint16 VI_INTF_VXI

VI_INTF_GPIB_VXI

VI_INTF_PXI
VI_ATTR_INTF_INST_NAME RO Global | ViString N/A
VI_ATTR_TMO_VALUE R/W | Local Viuint32 VI_TMO_IMMEDIATE

1 to FFFFFFFEh
VI_TMO_INFINITE

VI_ATTR_TRIG_ID RW* | Local | Vilnt1e VI_TRIG_TTLO to
VI_TRIG_TTL7 and
VI_TRIG_TTLS8 to
VI_TRIG_TTL11 ;
VI_TRIG_ECLO to
VI_TRIG_ECLS5;
VI_TRIG_STAR_SLOT1
to
VI_TRIG_STAR_SLOT12;
VI_TRIG_STAR_VXIO to

VI_TRIG_STAR_VXI2

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 587
VXI and GPIB -VXI Specific BACKPLANE Resource Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_MAINFRAME_LA RO Global Vilnt16 0to 255

VI_UNKNOWN_LA

VI_ATTR_VXI_VME_SYSFAIL_STATE | RO | Global | Vilnti6

VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VI_ATTR_VXI_VME_INTR_STATUS RO Global | ViUlnt16 N/A
VI_ATTR_VXI_TRIG_STATUS RO Global | ViUlnt32 N/A
VI_ATTR_VXI_TRIG_SUPPORT RO Global | ViUInt32 N/A
PXI Specific BACKPLANE Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_MANF_NAME RO Global | ViString N/A
VI_ATTR_MODEL_NAME RO Global | ViString N/A
VI_ATTR_PXI_CHASSIS RO Global | Vilntl6 1to 32767
VI_ATTR_PXI_TRIG_BUS RW | Local Vilnt16 -1,1t0 3
VI_ATTR_PXI_ SRC TRIG_BUS RW | Local Vilnt16 -1,1t0 3
VI_ATTR_PXI_ DEST_TRIG_BUS RW | Local Vilnt16 -1,1t03

Generic BACKPLANE Resource Attributes

VI_ATTR_INTF_NUM

VI_ATTR_INTF_TYPE

VI_ATTR_INTF_INST_NAME

Board number for the given interface.
Interface type of the given session.

Humanreadable text describing the given interface.

VI_ATTR_TMO_VALUE

VI_ATTR_TRIG_ID

Minimum timeout value to use, in milliseconds. A timeout
value ofvl_TMO_IMMEDIATEmeans that operations should
never wait for the device to respond. A timeouteeaof
VI_TMO_INFINITE disables the timeout mechanism.

Identifier for the current triggering mechanism.

VXI and GPIB -VXI Specific BACKPLANE Resource Attributes

VI_ATTR_MAINFRAME_LA

VXIplug&play Systems Alliance

This is the logical address of a given device in the mainframe,
usually the device with the lowest logical address. Other
possible values include the logical address of theGslot
controller or of the parertide extender. Often, these are all
the same vale. The purpose of this attribute is to provide a
unique ID for each mainframe. A VISA manufacturer can
choose any of these values, but must be consistent across

VPP-4.3: TheVISA Library

Page 588

VI_ATTR_VXI_VME_SYSFAIL_STATE

VI_ATTR_VXI_VME_INTR_STATUS

VI_ATTR_VXI_TRIG_STATUS

VI_ATTR_VXI_TRIG_SUPPORT

PXI Specific BACKPLANE Resource Attributes
VI_ATTR_MANF_NAME
VI_ATTR_MODEL_NAME

VI_ATTR_PXI_CHASSIS

VI_ATTR_PXI_TRIG_BUS

VI_ATTR_PXI_ SRC TRIG_BUS

VI_ATTR_PXI_ DEST TRIG_BUS

RULE 5.4.3

Section 5: VISA Resource Classes

mainframes. If this value is not known, the attribute value
returned isvl_UNKNOWN_LA

This attribute shows the current state of the VXI/VME
SYSFAIL (SYStem FAILure) backplane line.

This attribute shows the current state of the VXI/VME
interrupt lines. This is a bit vector with bitss0corresponding
to interrupt lines 7.

This attribute shows the current state of the VXI trigger lines.
This is a bit vectarBits 0-7 correspond to VI_TRIG_TTLO to
VI_TRIG_TTL7. Bits 813 correspond to VI_TRIG_ECLO to
VI_TRIG_ECLS Bits 14-25 correspond to
VI_TRIG_STAR_SLOT1 to VI_TRIG_STAR_SLOT1®&it

27 corresponds to VI_TRIG_PANEL _IN and bit 28
corresponds to VI_TRIG_PANEL_OUBits 2931

correspond to VI_TRIG_STAR_VXIO to
VI_TRIG_STAR_VXI2. VXI does not use VI_TRIG_TTL8

to VI_TRIG_TTL1L

This attribute shows which VXI trigger lines this implementation
supportsThis is a bit vector. Bits-J correspond to
VI_TRIG_TTLO to VI_TRIG_TTL7.Bits 813 correspond to
VI_TRIG_ECLO to VI_TRIG_ECLS5. Bits 145 corespond
to VI_TRIG_STAR_SLOT1 to VI_TRIG_STAR_SLOT12.
Bit 27 corresponds to VI_TRIG_PANEL_IN and bit 28
corresponds to VI_TRIG_PANEL_OUT. Bits 21
correspond to VI_TRIG_STAR_VXIO to
VI_TRIG_STAR_VXI2. VXI does not use VI_TRIG_TTL8
to VI_TRIG_TTL11L

This string attribute is thehassignanufacturer name.
This string attribute is thenodel name of the chassis.
Specifies the PXI chassis number of thésource.

Specifies thesegment to use icalls toviAssertTrigger.

Specifies the segment to use to qualify trigSrcalis to
viMapTrigger.

Specifies the segment to use to quatifgDestin calls to
viMapTrigger.

All BACKPLANE resource implementatiorSHALL support the attributegl ATTR_INTF_NUM,
VI_ATTR_INTF_TYPE, VI_ATTR_INTF_INST_NAME, VI ATTR_TRIG_ID , andVl_ATTR_TMO_VALUE

RULE 5.44

VPP-4.3: The VISA Library

VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 589

A BACKPLANE resource implementation for a VXI or GRNBXI systemSHALL support the attributes,
VI_ATTR_VXI_VME_SYSFAIL_STATE, VI_ATTR_VXI_VME_INTR_STATUS
VI_ATTR_VXI_TRIG_STATUS, VI_ATTR_MAINFRAME_LAandVI_ATTR_VXI_TRIG_SUPPORT.

RULE 5.45

A BACKPLANE resource implementation for a PXI syst&idALL support the attributes,
VI_ATTR_MANF_NAME, VI_ATTR_MODEL_NAME, VI_ATTR_PXI_CHASSIS,
VI_ATTR_PXI_TRIG_BUS, VI_ATTR_PX|_SRC_TRIG_BUS, and VI_ATTR_PX|_DEST_TRIG_BUS.

RULE 5.4.6
A BACKPLANE resource implementation for a PXI syst&iHALL use theTrigger Manager interface for
the backplane agefined in thePXI-9 specification forreserving and mappinggger resources

RULE 5.4.7

A BACKPLANE resource implementation for a PXI sgstSHALL read pxisys.ini and pxiesys.ini to
detect trigger bus resources.

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 590 Section 5: VISA Resource Classes

5.4.3 BACKPLANE Resource Events
VI_EVENT_TRIG
Description

Notificationthat a trigger interrupt was received from the backplane. For VISA, the only triggers that can
be sensed are VXI hardware triggers on the assertion edge (SYNC and ON trigger protocols only).

Event Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_TRIG
VI_ATTR_RECV_TRIG_ID RO Vilnt16 VI_TRIG_TTLO to

VI_TRIG_TTL7 ;
VI_TRIG_ECLO to
VI_TRIG_ ECLS5;

VI_TRIG_ STAR_SLOT1to
VI_TRIG_ STAR_SLOT12

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE Unique logicalidentifier of the event.

VI_ATTR_RECV_TRIG_ID The identifier of the triggering mechanism on which the
specified trigger event was received.

VI_EVENT_VXI_VME_SYSFAIL

Description
Notification that the VXI/VME SYSFAIL* line has been asserted.

Event Attri bute

Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_VXI_VME_SYSFAIL

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes

VI_EVENT_VX|_VME_SYSRESET

Description

Page 591

Notification that the VXI/VME SYSRESET* line has been asserted.

Event Attribute
Access Privilege Data Type Range
Symbolic Name
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_VXI|_VME_SYSRESET
Event Attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier ofhe event.

RULE 5.4.8

A BACKPLANE resource implementation for a VXI syst&@HALL support the generation of the events
VI_EVENT_VXI_VME_SYSFAIL, VI_EVENT_VXI_VME_SYSRESETandVI_EVENT_TRIG.

VXIplug&play Systems Alliance

VPP-4.3: TheVISA Library

Page 592 Section 5: VISA Resource Classes

5.4.4 BACKPLANE Resource Operations

viAssertTrigger(vi, p rotocol)
viAssertUtilSignal(vi, line)
viAssertintrSignal(vi, mode, statusiD)

viMapTrigger(vi, trigSrc, trigDest, mode)
viunmapTrigger(vi, trigSrc, trigDest)
viPxiReserveTriggers(vi, cnt, trigBuses, trigLines, failurelndex)

RULE 5.4.9
All VXI and GPIBVXI BACKPLANE resource implementatiol®HALL support the operations
viAssertTrigger() , ViAssertULtilSignal() , ViAssertIntrSignal() , ViMapTrigger() ,
viunmapTrigger()

RULE 5.4.10

All PXI BACKPLANE resource implementatiorBHALL support the operationgAssertTrigger()

viMapTrigger() , viUnmapTrigger() ,and viPxiReserveTriggers 0 .

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 593

5.5 Servant DeviceSide Resource

The Servant (SERVANT) Resource encapsulates the operations and properties of the capabilities of a
device and a deviceds view of the system in which i
resource, starts with the basic operations and attslmitéhe VISA Resource Template. For example,

modifying the state of an attribute is done via the operat®stAttribute() , Which is defined in the

VISA Resource Template. Although the following resource does notuiBatattribute() listed in its

operdions, it provides the operation because it is defined in the VISA Resource Template. From this basic

set, each resource adds its specific operations and attributes that allow it to perform its dedicated task.

5.5.1 SERVANT Resource Overview

The SERVANTResource exposes the devaide functionality of the device associated with this resource.
Services are provided to receive blocks of data from a commander and respond with blocks of data in
return, setting a 488tyle status byte, and receiving devidear and trigger events. These services are
described in detail in the remainder of this section. The Basic I/O and Formatted I/O services are also
described in the INSTR Resource Overview in section 5.1.1.

The SERVANT resource is a class for advancssgtsiwho want to write firmware code that exports device
functionality across multiple interfaces. Most VISA users will not need this level of functionality and
should not use the SERVANT resource in their applications.

A VISA user of the TCPIP SERVANT seurce should be aware that each VISA session corresponds to a

unique socket connection. If the user opens only one SERVANT session, this precludes multiple clients
from accessing the device.

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 594 Section 5: VISA Resource Classes

5.5.2 SERVANT Resource Attributes

Generic SERVANT Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_INTF_NUM RO Global Viuint16 0 to FFFFh
VI_ATTR_INTF_TYPE RO Global | ViUinti6 VI_INTF_VXI

VI_INTF_GPIB

VI_INTF_TCPIP
VI_ATTR_INTF_INST_NAME RO Global ViString N/A
VI_ATTR_SEND_END_EN R/W | Local ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_TERMCHAR R/W Local ViuiInt8 0 to FFh
VI_ATTR_TERMCHAR_EN RW | Local ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_TMO_VALUE RW | Local Viuint32 VI_TMO_IMMEDIATE

1 to FFFFFFFEh

VI_TMO_INFINITE
VI_ATTR_DEV_STATUS_K'TE RW | Global | ViUint8 0 to FFh
VI_ATTR_WR_BUF_OPER_MODE RW | Local Viuint16 VI_FLUSH_ON_ACCESS

VI_FLUSH_WHEN_FULL
VI_ATTR_DMA_ALLOW_EN RW | Local ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_RD_BUF_OPER_MODE RW | Local Viuint16 VI_FLUSH_ON_ACCESS

VI_FLUSH_DISABLE
VI_ATTR_FILE_APPEND_EN RW Local ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_RD_BUF_SIZE RO Local Viuint32 N/A
VI_ATTR_WR_BUF_SIZE RO Local Viuint32 N/A

GPIB Specific SERVANT Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_GPIB_PRIMARY_ADDR R/W Global Viuint16 0to 30
VI_ATTR_GPIB_SECONDRY_ADDR R/W | Global | ViUint16 0 to 31,

VI_NO_SEC_ADDR
VI_ATTR_GPIB_REN_STATE RO Global | Vilnt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN
VI_ATTR_GPIB_ADDR_STATE RO Global | Vilnt16 VI_GPIB_UNADDRESSED
VI_GPIP_TALKER
VI_GPIB_LISTENER

VPP-4.3: The VISA Library

VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 595

VXI Specific SERVANT Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_VXI_LA RO Global Vilnt16 0Oto 511
VI_ATTR_CMDR_LA RO Global | Vilnt16 0to 255

VI_UNKNOWN_LA

TCPIP Specific SERVANT Resource Attributes

Symbolic Name Access Privilege Data Type Range
VI_ATTR_TCPIP_DEVICE_NAME RO Global | Vistring N/A

Generic SERVANT Resource Attributes

VI_ATTR_INTF_NUM Board number for the given interface.
VI_ATTR_INTF_TYPE Interface type of the given session.
VI_ATTR_INTF_INST_NAME Humanreadable text describing the given interface.
VI_ATTR_SEND_END_EN Whether to assertNID during the transfer of the last byte of

the buffer.
VI_ATTR_TERMCHAR Termination character. When the termination character is read

andVI_ATTR_TERMCHAR_EM enabled during a read
operation, the read operation terminates.

VI_ATTR_TERMCHAR_EN Flag thatdetermines whether the read operation should
terminate when a termination character is received.

VI_ATTR_TMO_VALUE Minimum timeout value to use, in milliseconds. A timeout
value ofvl_TMO_IMMEDIATEmeans that operations should
never wait for the devicetrespond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

VI_ATTR_DEV_STATUS BYTE This attribute specifies the 4&8yle status byte of the local
controller associated with this session.

VI_ATTR_WR_BUF_OPER_MODE Determines the operational mode of the write buffer. When
the operational mode is setWo FLUSH_WHEN_FULL
(default), the buffer is flushed when an END indicator is
written to the buffer, or when the buffer fills up.

If the operational mode is set¥ FLUSH_ON_ACCESSthe
write buffer is flushed under the same conditions, and also
every time aviPrintf() operation completes.

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 596

VI_ATTR_DMA_ALLOW_EN

VI_ATTR_RD_BUF_OPER_MODE

VI_ATTR_FILE_APPEND_EN

GPIB Specific SERVANT Resource Attributes

VI_ATTR_GPIB_PRIMARY_ADDR

VI_ATTR_GPIB_SECONDARY_ADDR

VI_ATTR_GPIB_REN_STATE

VI_ATTR_GPIB_ADDR_STATE

VXI Specific SERVANT Resource Attributes

VI_ATTR_VXI_LA

VI_ATTR_CMDR_LA

VI_ATTR_TCPIP_DEVICE_NAME

RULE 5.5.1

Section 5: VISA Resource Classes

This attribute specifies whether 1/0 accesses should use DMA
(VI_TRUE) or Programmed I/OM_FALSE). Insome
implementations, this attribute may have global effects even
though it is documented to be a local attribute. Since this
affects performance and not functionality, that behavior is
acceptable.

Determines the operational medf the read buffer. When the
operational mode is setY¥d FLUSH_DISABLE (default), the
buffer is flushed only on explicit calls tdFlush()

If the operational mode is setW FLUSH_ON_ACCESSthe
buffer is flushed every timedScanf() operation
completes.

This attribute specifies whetheiReadToFile() will
overwrite (truncate) or append when opening a file.

Primary address of the local GPIB controlleed by the
givensession.

Secondary address of the local GPIB controller used by the
given session.

This attribute returns the current state of the GPIB REN
(Remote ENable) interface line.

This attribute showswhether the specified GPIB interface is
currently addressed to talk to listen, or to not addressed.

Logical address of the VXI or VME device used by the given
sessionFor a VME device, the logical address is actually a
pseudeaddress in the range 256 to 511.

Logical address of the commander of the VXI device used by
the given session.

This specifies the LAN device name usedtte VXI-11
protocol during connection.

All SERVANT resource implementatioi®HALL support the attributegl ATTR_INTF_NUM,
VI_ATTR_INTF_TYPE, VI_ATTR_INTF_INST _NAME, VI_ ATTR_SEND_END_ENVI_ATTR_TERMCHAR
VI_ATTR_TERMCHAR_EN/I ATTR_TMO_VALUEVI ATTR_WR_BUF_OPER_MOPE
VI_ATTR_RD_BUF_OPER_MOD¥I_ATTR_DEV_STATUS_BYTEVI_ATTR_DMA_ALLOW_ENand

VI_ATTR_FILE_APPEND_EN

VPP-4.3: The VISA Library

VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 597

RULE 5.5.2
A SERVANT resource implementation for a GPIB syst8eRALL support the attributes
VI_ATTR_GPIB_PRIMARY_ADDRVI_ATTR_GPIB_SECONDARY_ADDRI_ATTR_GPIB_REN_STATE,
and VI_ATTR_GPIB_ADDR_STATE

RULE 5.5.3
A SERVANT resource implementation for a VXI syst&HALL support the attributegl ATTR_VXI_LA
andVI_ATTR_CMDR_LA

RULE 5.5.4
IF a SERVANT resource implementation does not support DMA trangfaii, the attribute is
VI_ATTR_DMA_ALLOW_EMND the attribute state iI_TRUE, THEN the call toviSetAttribute()
SHALL return the completion codd_ WARN_NSUP_ATTR_STATE

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 598

Section 5: VISA Resource Classes

5.5.3 SERVANT Resource Events

VI_EVENT_CLEAR

Description

Notification that the local controller has been sent a device clear message.

Event Attribute
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_CLEAR

Event Attribute Description

VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_IO_COMPLETION

Description

Notification that an asynchronous operatias completed.

Event Attributes
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_IO_COMPLETION
VI_ATTR_STATUS RO ViStatus N/A
VI_ATTR_JOB_ID RO ViJobld N/A
VI_ATTR_BUFFER RO ViBuf N/A
VI_ATTR_RET_COUNT RO ViBusSize *
VI_ATTR_OPER_NAME RO ViString N/A
VI_ATTR_RET_COUNT 32 RO Viuint32 0 to FEEFEEEFh
VI_ATTR_RET_COUNT_64* RO Viuint64 0 to FFFFFFFFFFFFFFFFh
* The data type is defined in the appropriate VPP 4.3.x framework specification.
*x Definedonly for frameworkghatare 64bit native.

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE

VI_ATTR_STATUS

VI_ATTR_JOB_ID

VI_ATTR_BUFFER

VI_ATTR_RET_COUNT
VI_ATTR_RET_COUNT_32

VPP-4.3: The VISA Library

Unique logical identifier of the event.

This field contains the return code of the asynchronous 1/0O
operation that has completed.

This field contains the job ID of the asynchronous operation
that has completed.

This field contains the address of a buffer that was used in an
asynchronous operation.

This field contains the actual nuntb® elements that were
asynchronously transferred.

VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 599

VI_ATTR_RET_COUNT_64

VI_ATTR_OPER_NAME The name of the operation generating the event.
For more information oWl_ATTR_OPER_NAMESee its definition in Section 3.7.2\8, EVENT_EXEPTION
VI_EVENT_GPIB_TALK

Description
Notification that the GPIB controller has been addressed to talk.

Event Attribute
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_GPIB_TALK

Event Attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.
VI_EVENT_GPIB_LISTEN

Description
Notification that the GPIB controller has been addressed to listen.

Event Attribute
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_GPIB_LISTEN

Event Attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.
VI_EVENT_TRIG

Description
Notification that the local controller has been triggered.

Event Attributes
Symbolic Name AccessPrivilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_TRIG
VI_ATTR_RECV_TRIG_ID RO Vilnt16 VI_TRIG_SW

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_RECV_TRIG_ID The identifier of thdriggering mechanism on which the
specified trigger event was received.

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 5100 Section 5: VISA Resource Classes

VI_EVENT_VX|_VME_SYSRESET

Description
Notification that the VXI/VME SYSRESET?* line has been asserted.

Event Attribute
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_VXI|_VME_SYSRESET

Event Attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_EVENT_TCPIP_CONNECT

Description
Notification that a TCP/IP connection has been made.

Event Attribute
Symbolic Name Access Privilege Data Type Range
VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_TCPIP_CONNECT
VI_ATTR_RECV_TCPIP_ADDR RO ViString N/A

Event Attribute Description
VI_ATTR_EVENT_TYPE Unique logical identifier of the event.

VI_ATTR_RECV_TCPIP_ADDR This is the TCP/IP address of the device from which the
session received a connection.

RULE 5.5.5
All SERVANT resource implementatio@HALL support the eventgl EVENT_|IO_COMPLETION
VI_EVENT_TRIG, andVI_EVENT_CLEAR

RULE 5.5.6
A SERVANT resource implementation for a GPIB syst8RHALL support the events
VI_EVENT_GPIB_TALK andVI_EVENT_GPIB_LISTEN.

RULE 5.5.7
A SERVANT resource implementation for a VXI syst&HALL support the event
VI_EVENT_VXI_VME_SYSRESET

RULE 5.5.8

A SERVANT resource implementation for a TCPIP sys&ALL support the event
VI_EVENT_TCPIP_CONNECT

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes Page 5101

5.5.4 SERVANT Resource Operations

viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobld)
viReadToFile(vi, fleName, count, retCount)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobld)
viWriteFromFile(vi, fileName, count, retCount)
viSetBuf(vi, mask, size)

ViFlush(vi, mask)

viBufRead(vi, buf, count, retCount)
viScanf(vi, readFmt, argl, arg2, ...)
viVScanf(vi, readFmt, params)

ViPrintf(vi, writeFmt, argl, arg2, ...)
ViVPrintf(vi, writeFmt, params

viBufWrite(vi, buf, count, retCount)
viSScanf(vi, buf, readFmt ,argl, arg2, ..))
viVSScanf(vi, buf, readFmt, params)
ViSPrintf(vi, buf, writeFmt, argl, arg2, ...)
ViVSPrintf(vi, buf, writeFmt, params)

viAssertIntrSignal(vi, mode, statusiD)
viAssertUtilSignal(vi, line)

RULE 5.5.9
All SERVANT resource implementatio@HALL support the operationdRead() , viReadAsync()
viwrite() , viWriteAsync() ,viSetBuf() , viBufRead(), viScanf() , viPrintf() , VIVPrintf() ,

viFlush() ,viBufWrite() ,ViSScanf() ,viVSScanf() , viSPrintf() , VIVSPrintf() ,
viReadToFile() , andviwWriteFromFile()

RULE 5.5.10
A SERVANT resource implementation for a VXI syst&HALL support the operations
viAssertIntrSignal andviAssertUtilSignal 0 .

RULE 5.5.11

A SERVANT resource implementation for a TCPIP sys&fALL use the VX411 protocol

VXIplug&play Systems Alliance VPP-4.3: TheVISA Library

Page 5102 SOCKET Overview Section 5: TCP/IP Socket Resource

5.6 TCP/IP Socket Resource

The TCP/IP Socket (SOCKET) Resource encapsulates the operations and properties of the capabilities of a
raw network socket connection using TCP/IP. A VISA Socket Resource, likalzryresource, starts

with the basic operations and attributes of the VISA Resource Template. For example, modifying the state
of an attribute is done via the operatigBetAttribute() , which is defined in the VISA Resource

Template. Although the followinresource does not haviSetAttribute() listed in its operations, it

provides the operation because it is defined in the VISA Resource Template. From this basic set, each
resource adds its specific operations and attributes that allow it to perforditated task.

5.6.1 SOCKET Resource Overview

The SOCKET Resource exposes the capability of a raw network socket connection over TCP/IP. This
ususally means Ethernet but the protocol is not restricted to that physical interface. Services are provided to
send and receive blocks of data. If the device is capable of communicating withsg8 grings, an

attribute setting also allows sending software triggers, querying-at{g8status byte, and sending a

device clear message. These services aregideddn detail in the remainder of this section. The Basic I/O

and Formatted 1/O services are also described in the INSTR Resource Overview in section 5.1.1.

5.6.2 SOCKET Resource Attributes

Generic SOCKET Resource Attributes

Symbolic Name AccessPrivilege Data Type Range
VI_ATTR_INTF_NUM RO Global | ViUInt16 0 to FFFFh
VI_ATTR_INTF_TYPE RO Global | ViUinti6 VI_INTF_TCPIP
VI_ATTR_INTF_INST_NAME RO Global | ViString N/A
VI_ATTR_SEND_END_EN R/W | Local ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_TERMCHAR R/W | Local Viuint8 0 to FFh
VI_ATTR_TERMCHAR_EN R/W | Local ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_TMO_VALUE R/W Local Viulnt32 VI_TMO_IMMEDIATE

1 to FFFFFFFE
VI_TMO_INFINITE

VI_ATTR_WR_BUF_OPER_MODE R/W | Local | ViUlnt16 VI_FLUSH_ON_ACCESS

VI_FLUSH_WHEN_FULL
VI_ATTR_DMA_ALLOW_EN R/W | Local | ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_RD_BUF_OPER_MODE R/W | Local | ViUint16 VI_FLUSH_ON_ACCESS

VI_FLUSH_DISABLE
VI_ATTR_FILE_APPEND_EN R/W | Local | ViBoolean VI_TRUE

VI_FALSE
VI_ATTR_IO_PROT R/W | Local | ViUlnt16 VI_PROT_NORMAL

VI_PROT_4882_STRS
VI_ATTR_RD_BUF_SIZE RO | Local | Viuint32 N/A
VI_ATTR_WR_BUF_SIZE RO |Local | Viuint32 N/A

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes

TCPIP Specific SOCKET Resource Attributes

Page 5103

Symbolic Name Access Privilege Data Type Range
VI_ATTR_TCPIP_ADDR RO Global | ViString N/A
VI_ATTR_TCPIP_HOSTNAME RO Global ViString N/A
VI_ATTR_TCPIP_PORT RO Global Viulntl6 0 to FFFFh
VI_ATTR_TCPIP_NODELAY R/W Local ViBoolean VI_TRUE, VI_FALSE
VI_ATTR_TCPIP_KEEPALIVE R/W Local ViBoolean VI_TRUE, VI_FALSE

Generic SERVANT Resource Attributes

VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE
VI_ATTR_INTF_INST_NAME

VI_ATTR_SEND_END_EN

VI_ATTR_TERMCHAR

VI_ATTR_TERMCHAR_EN

VI_ATTR_TMO_VALUE

VI_ATTR_WR_BUF_OPER_MODE

VI_ATTR_DMA_ALLOW_EN

VXIplug&play Systems Alliance

Board number for the given interface.
Interface type of the given session.
Humanreadable text describing the given interface.

Whether to assert END during the transfer of the last byte of
the buffer.

Termination character. When the termination character is read
andVI_ATTR_TERMCHAR_ENé erabled during a read
operation, the read operation terminates.

Flag that determines whether the read operation should
terminate when a termination character is received.

Minimum timeout value to use, in millisecondstimeout
value ofVvl_TMO_IMMEDIATE means that operations should
never wait for the device to respond. A timeout value of
VI_TMO_INFINITE disables the timeout mechanism.

Determines the operational mode of the write buffer. When
the operational mode is set¥ FLUSH_WHEN_FULL
(default), the buffer is flushed when an END indicator is
written to the buffer, or when the buffer fills up.

If the operational mode is set¥ FLUSH_ON_ACCESSthe
write buffer is flushed under the sam@nditions, and also
every time aviPrintf() operation completes.

This attribute specifies whether 1/0 accesses should use DMA
(VI_TRUE) or Programmed I/OM_FALSE). In some
implementations, this attribute may have global effegtn
though it is documented to be a loadtribute. Since this

affects performance and not functionality, that behavior is
acceptable.

VPP-4.3: TheVISA Library

Page 5104 Section 5: VISA Resource Classes

VI_ATTR_RD_BUF_OPER_MODE Determines the operational mode of the read buffer. When the
operational mode is set ¥d_FL USH_DISABLE (default),the

buffer is flushed only on explicit calls téFlush()

If the operational mode is setW FLUSH_ON_ACCESSthe
buffer is flushed every timedScanf() operation
completes.

VI_ATTR_FILE_APPEND_EN This attribute specifiewhetherviReadToFile() will
overwrite (truncate) or append when opening a file.

VI_ATTR_IO_PROT Specifies which protocol to use.
TCPIP Specific SOCKET Resource Attributes

VI_ATTR_TCPIP_ADDR This is the TCPIP address of the device to which the session is
connected. This string is formatted in dot notation.

VI_ATTR_TCPIP_HOSTNAME This specifies the host name of the device. If no host name is
available, this attribute returns an empty string.

VI_ATTR_TCPIP_PORT This specifies the port number for a givEGPIP address. For
a TCPIP SOCKET resource, this is a required part of the
address string.

VI_ATTR_TCPIP_NODELAY The Nagle algorithm is disabled when this attribute is enabled
(and vice versa). The Nagle algorithm improves network
performancebp uf f er i ng @ s e ridedpacleat a unt i
can be sent. This attribute is enabled by default in VISA to
verify that synchronous writes get flushed immediately.

VI_ATTR_TCPIP_KEEPALIVE An application can request that a TCP/IP provider enable the
useoffi k eelpi ved packets on TCP conne:q
this attribute. I f a connection i

ali ves, 0 W~hERRORICONNILOSE cetlrmed to
current and subsequent I/O calls on the session.

RULE 5.6.1
All SOCKET resoure implementationSHALL support the attributegl ATTR_INTF_NUM,
VI_ATTR_INTF_TYPE, VI_ATTR_INTF_INST_NAME, VI_ATTR_SEND_END_ENVI_ATTR_TERMCHAR
VI_ATTR_TERMCHAR_EN/I_ATTR_TMO_VALUEVI_ATTR_WR_BUF_OPER_MODE
VI_ATTR_RD_BUF_OPER_MODREI_ATTR_DMA_ALLOWEN, andVI_ATTR_FILE_APPEND_EN

RULE 5.6.2
A SOCKET resource implementation for a TCPIP sys&HA\LL support the attributes
VI_ATTR_TCPIP_ADDR VI_ATTR_TCPIP_HOSTNAMEVI _ATTR_TCPIP_PORT,
VI_ATTR_TCPIP_NODELAY, andVI_ATTR_TCPIP_KEEPALIVE.

RULE 5.6.3
IF a SOCKET resource implementation does not support DMA trangfsi3,the attribute is
VI_ATTR_DMA_ALLOW_EMND the attribute state is VI_ TRUEHEN the call toviSetAttribute()

SHALL return the completion codd_WARN_NSUP_ATTR_STATE

OBSERVATION 5.6.1
Since most SOCKET implementations use Ethernet, and Ethernet services do not usually support DMA,
trying to enable DMA on a SOCKET resource will most likely reNMriWARN_NSUP_ATTR_STATE

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 5: VISA Resource Classes

5.6.3 SOCKET Resource Events

VI_EVENT_IO_COMPLETION

Description

Notification that an asynchronous operation has completed.

Page 5105

Event Attributes
Symbolic Name Access Privilege Data Type Range

VI_ATTR_EVENT_TYPE RO ViEventType VI_EVENT_IO_COMPLETION
VI_ATTR_STATUS RO ViStatus N/A
VI_ATTR_JOB_ID RO ViJobld N/A
VI_ATTR_BUFFER RO ViBuf N/A
VI_ATTR_RET_COUNT RO Vi BusSize *
VI_ATTR_OPER_NAME RO ViString N/A
VI_ATTR_RET_COUNT_32 RO Viuint32 0 to FFFFFFFFh
VI_ATTR_RET_COUNT_64* RO Vilint64 0 to FFFFFFFFFFFFFFFFh

* The data type is defined in the appropriate VMPRx framework specification.

* Definedonly for frameworkgshatare 64bit native.

Event Attribute Descriptions
VI_ATTR_EVENT_TYPE

VI_ATTR_STATUS

VI_ATTR_JOB_ID

VI_ATTR_BUFFER

VI_ATTR_RET_COUNT

VI_ATTR_RET_COUNT_32
VI_ATTR_RET_COUNT_64

VI_ATTR_OPER_NAME

Unique logical identifier of the event.

This field contains the return code of the asynchronous 1/0O
operation that has completed.

This field contains the job ID of the asynchronous operation

that has completed.

This field contains the address of a buffer that was used in an

asynchronous operation.

Thisfield contains the actual number of elements that were
asynchronously transferred.

The name of the operation generating the event.

For more information oWI_ATTR_OPER_NAMEsee its definitionn Section 3.7.2.3yl_EVENT_EXCEPTION

RULE 5.6.4

All SOCKET resource implementatioS8HALL support the eventl_EVENT_IO_COMPLETION

VXIplug&play Systems Alliance

VPP-4.3: TheVISA Library

Page 5106 Section 5: VISA Resource Classes

5.6.4 SOCKET Resource Operations

viRead(vi, buf, count, retCount)
viReadAsync(vi, buf, count, jobld)
viReadToFile(vi, flename, count, retCount)
viWrite(vi, buf, count, retCount)
viWriteAsync(vi, buf, count, jobld)
viWriteFromFile(vi, filename, count, retCount)
ViAssertTrigger(vi, protocol)
VviReadSTB(vi, status)

viClear(vi)

viSetBuf(vi, mask, size)

ViFlush(vi, mask)

viBufRead(vi, buf, count, retCount)
viScanf(vi, readFmt, argl, arg2, ...)
viVScanf(vi, readFmt, params)
viPrintf(vi, writeFmt, argl, arg2, ...)
ViVPrintf(vi, writeFmt, params)
viBufWrite(vi, buf, count, retCount)
viSScanf(vi, buf, readFmt, argl, arg2, ...)
viVSScanf(vi, buf, readFmt, params)
ViSPrintf(vi, buf, writeFmt, arg1, arg2, ...)
ViVSPrintf(vi, buf, writeFmt, params)

RULE 5.6.5
All SOCKET resource implementatiorf@HALL support the operationsRead() , viReadAsync()
viReadToFile () , viwrite() , viwriteAsync() , ViWriteFromFile () , viAssertTrigger() ,
viReadSTB() ,viClear() ,viSetBuf() ,viFlush() ,viBufRead() ,viScanf() , viPrintf() ,
ViVPrintf() , ViBufWrite() ,viSScanf() ,viVSScanf() , viSPrintf() , andviVSPrintf()

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 61

Section 6 VISA Resourcespecific Operations

This section describes in detail the operations that are specific to the VISA resources listed in the previous
sections. Under thRelated Itemsection, each operation includes a list of the resources to which it

belongs. For operations that apply to mibv@n one resource but have slightly different behavior for

different resources, any resowsgecific information will be listed separately at the end of each operation.

These operations are grouped by the type of service they provide. The typescekséisted below, have
already been introduced in the previous sections.

Basic I/O Services

Formatted 1/0O Services

)l

|l

1 Memory I/O Services

1 Shared Memory Services
)l

Interface Specific Services

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 62 Section 6: VISA Resour&pecific Operations

6.1 Basic I/O Services

6.1.1 viRead (vi, buf, count, retCount)

Purpose
Read data from device synchronously.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
buf ouT ViBuf Represents the location of a buffer to recei
data from device.
count IN Viuint32 Number ofbytes to be read.
retCount ouT Vilint32 Represents the location of an integer that w
be set to the number of bytes actually
transferred.
Return Values
Type ViStatus This is the operational return status. It returns eithe;

completion code or aarror code as follows.

Completion Codes Description
VI_SUCCESS The operation completed successfully and the END
indicator was received (for interfaces that have ENI
indicators).
VI_SUCCESS_TERM_CHAR The specified termination character was read.
VI_SUCCESS_MAX_CNT The number of bytes read is equatoont .

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_INV_OBJECT are the same Va|ue)_

VI_ERROR_NSUP_OPER The givervi does not support this operation.

VI_ERROR_RSRC_LOCKED Specified operation could not be performed becaus
the resource identified by has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

(continues)

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 63

Error Codes Description

VI_ERROR_OUTP_PROT_VIOL Device reported aautput protocol error during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to start read operation because setup is inv
(due to attributes being set to an inconsistent state

VI_ERROR_NCIC The interface associated with the giwénis not
currently the controller in charge.

VI_ERROR_NLISTENERS No listeners condition is detected (botRFDand
NDACare deasserted).

VI_ERROR_ASRL_PARITY A parity error occurred during transfer.

VI_ERROR_ASRLFRAMING A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN An overrun error occurred during transfer. A charad

was not read from the hardware before the next
character arrived.

VI_ERROR_IO An unknown 1/O error occurred during transfer.
VI_ERROR_CONN_LOST The 1/0 connection for the given session has been
Description

The synchronous read operation synchronously transfers data. The data read is to be stored in the buffer
represented byuf . This operation returns only when the star terminates. Only one synchronous read
operation can occur at any one time.

Table 6.1.1 Special Values foretCount Parameter

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Related Items
See the INSTR resource description. Alsod@gite()

Implementation Requirements

OBSERVATION 6.1.1
A viRead() operation can complete successfully if one or more of the following conditions were met:
a) END indicator receivedd) Termination character reac). Number of bytes read is equaldmunt .
It is possible to have one, two, or all three of these conditions satisfied at the same time.

RULE 6.1.1
IF an END indicator is receivedND VI_ATTR_SUPPRESS_END_EI VI_FALSE, THEN viRead()
SHALL returnVI_SUCCESS regardless of whether the termination character is received or the number of
bytes read is equal tmunt .

RULE 6.1.2
IF no END indicator is receive@®ND the termination character is re@#d\D VI_ATTR_TERMCHAR_EIé
VI_TRUE, THEN viRead() SHALL returnvl_SUCCESS_TERM_CHARegardless of whether the number
of bytes read is equal tmunt .

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 64 Section 6: VISA Resour&pecific Operations

RULE 6.1.3
IF no END indicator is receive@®ND no termination character is read&\D the number of bytes read is
equal tocount , THEN viRead() SHALL returnVl_SUCCESS_MAX_CNT

OBSERVATION 6.1.2
If you passvl_NULL as theretCount parameter to theiRead() operation, the number of bytes
transferred will not be returned. This may be useful if it is important to know only whethgretation
succeeded or failed.

RULE 6.1.4
IF VI_ATTR_SUPPRESS_END_EI$ VI_TRUE, THEN viRead() SHALL NOT returnvi_SUCCESS

RULE 6.1.5
IF VI_ATTR_TERMCHAR_Ei$ VI_FALSE, THEN viRead() SHALL NOT return
VI_SUCCESS_TERM_CHAR

RULE 6.1.6
IF vi is a session to an ASRL INSTR resousBID VI_ATTR_ASRL_END_INisVI_ASRL_END_NONE
THEN viRead() SHALL NOT returnvi_SUCCESS

RULE 6.1.7
IF vi is a session to an ASRL INSTR resousBID VI_ATTR_ASRL_END_INis
VI_ASRL_END_TERMCHARHEN viRead() SHALL treat the value stored W¥i_ATTR_TERMCHARS an
END indicator, regardless of the valuewwsf ATTR_TERMCHAR_EN

OBSERVATION 6.1.3
RULES 6.1.4 and 6.1.6 state conditions under whiRbad() will not terminate because of an END
condition. The operation castill complete successfully due to a termination character or reading the
maximum number of bytes requested.

OBSERVATION 6.1.4
RULE 6.1.5 states a condition under whidRead() will not terminate because of reading a termination
character. The operatiaan still complete successfully due to reading the maximum number of bytes
requested.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 65

6.1.2 viReadAsync (vi, buf, count, jobld)

Purpose
Read data from device asynchronously.

Parameters
Name Direction Type Description

vi IN ViSession Unique logicalidentifier to a session.

buf ouT ViBuf Represents the location of a buffer to recei
data from device.

count IN Viuint32 Number of bytes to be read.

jobld ouT ViJobld Represents the location of a variable that
will be set to the job identifier dhis
asynchronous read operation.

Return Values

Type ViStatus This is the operational return status. It returns eithe
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous read operation successfgligued.

VI_SUCCESS_SYNC Read operation performed synchronously.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
V|_ERROR_|NV_OBJECT are the same Va|ue)_

VI_ERROR_RSRC_LOCKED Specified operation could not be performed becaus
the resource identified by has been locked for this
kind of access.

VI_ERROR_QUEUE_ERROR Unable to queue read operation.

VI_ERROR_IN_PROGRESS Unable to start a new asynchronous operation whilg
anotherasynchronous operation is in progress.

Description
The asynchronous read operation asynchronously transfers data. The data read is to be stored in the buffer
represented byuf . This operation normally returns before the transfer terminates. An |/QIEtom
event will be posted when the transfer is actually completed.

The operation returrjsbld , which you can use with eitheiTerminate() to abort the operation or
with an 1/O Completion event to identify which asynchronous read operation completed.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 66 Section 6: VISA Resour&pecific Operations

Table 6.1.2 Special Values fojobld Parameter

Value Action Description

VI_NULL Do not return a job identifier.

Related Items
See the INSTR resource description. AlsodRead() , viTerminate() , vViwrite() , and
viWriteAsync()

Implementation Requirements

RULE 6.1.8
IF the output parametgsbld is notVI_NULL, THEN the value ifjobld SHALL be valid before
viReadAsync() begins the data transfer.

OBSERVATION 6.1.5
Since an asynchronous I/O request could complete befowRislAsync() operaton returns, and the
I/O completion event can be distinguished based on the job identifier, an application must be made aware
of the job identifier before the first moment that the I/O completion event could possibly occur. Setting the
output parametgob Id before the data transfer even begins ensures that an application can always match
thejobld parameter with thgl_ATTR_JOB_ID attribute of the I1/O completion event.

OBSERVATION 6.1.6
If you passvI_NULL as theobld parameter to theiReadAsync() operdion, nojobld will be
returned. This option may be useful if only one asynchronous operation will be pending at a given time.

OBSERVATION 6.1.7
If multiple jobs are queued at the same time on the same session, an application cajohide ttoe
distingush the jobs, as they are unique within a session.

PERMISSION 6.1.1
TheviReadAsync() operationMAY be implemented synchronously, which could be done by using the
viRead() operation.

RULE 6.1.9
IF theviReadAsync() operation is implemented synchronougiyD a given invocation of the operation
is valid, THEN the operatiorBHALL returnVI_SUCCESS_SYNCAND all status informatioiSHALL be
returned in &/I_EVENT_IO_COMPLETION

OBSERVATION 6.1.8
The intent of PERMISSI® 6.1.1 and RULE 6.1.9 is that an application can use the asynchronous
operations transparently, even if the ievel driver used for a given VISA implementation supports only
synchronous data transfers.

RULE 6.1.10

The status codes returned in tHeAT TR_STATUSfield of aVI_EVENT_IO_COMPLETIONevent resulting
from a call toviReadAsync() SHALL be the same codes as those listedifesad()

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 67

OBSERVATION 6.1.9
The status codeél_ERROR_RSRC_LOCKEEan be returned either immediately or from the
VI_EVENT_10_COMPLETIONevent.

OBSERVATION 6.1.10
The contents of the output buffer pointed toof are not guaranteed to be valid until the
VI_EVENT_IO0_COMPLETIONevent occurs.

RULE 6.1.11
For each successful call tdReadAsync() , thereSHALL be one ad only one
VI_EVENT_IO_COMPLETIONevent occurrence.

RULE 6.1.12
IF thejobld parameter returned fromiReadAsync() is passed t@iTerminate() ,AND a
VI_EVENT_IO_COMPLETIONevent has not yet occurred for the specifigdd , THEN the
viTerminate() operaton SHALL raise avI_EVENT_IO_COMPLETIONevent on the giveni , AND the
VI_ATTR_STATUSfield of that evenSHALL be set tovl ERROR_ABORT

RULE 6.1.13
IF the output parametgobld is notVl_NULL AND the return status frowiReadAsync() is
successfulTHEN the value inobld SHALL NOT beVI_NULL.

OBSERVATION 6.1.11
The valueVvI_NULL is a reserved jobld and has a special meanin énminate()

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 68

6.1.3 viReadToFile

Purpose

Section 6: VISA Resour&pecific Operations

(vi, fleName, count, retCount)

Read data synchronously, and store the transfelatzdin a file.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
fileName IN ViConstString Name of file to which data will be written.
count IN Viuint32 Number of bytes to be read.
retCount ouT Viuint32 Number of bytes actually transferred.

Return Values

Type ViStatus

This is the operational return status. It returns eithe|
completion code or an error code as follows.

Completion Codes

Description

VI_SUCCESS

The operation completesliccessfully and the END
indicator was received (for interfaces that have ENI
indicators).

VI_SUCCESS_TERM_CHAR

The specified termination character was read.

VI_SUCCESS_MAX_CNT

The number of bytes read is equattunt .

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (bo
are the same value).

VI_ERROR_NSUP_OPER

The givervi does not support this operation.

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed becaus
the resource identified byi has been locked for this
kind of access.

VI_ERROR_TMO

Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL

Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL

Violation of raw read protocol occurred during
transfer.

VI_ERROR_OUTP_PROT_VIOL

Device reported an output protocol error during
transfer.

VPP-4.3: The VISA Library

(continues)

VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations

Page 69

Error Codes

Description

VI_ERROR_BERR

Bus error occurreduring transfer.

VI_ERROR_INV_SETUP

Unable to start read operation because setup is inv
(due to attributes being set to an inconsistent state

VI_ERROR_NCIC

The interface associated with the giwenis not
currently the controller in charge.

VI_ERROR_NLISTENERS

No listeners condition is detected (b&tRFDand
NDACare deasserted).

VI_ERROR_ASRL_PARITY

A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING

A framing error occurred during transfer.

VI_ERROR_ASRL_OVERRUN

An overrun eror occurred during transfer. A charact
was not read from the hardware before the next
character arrived.

VI_ERROR_IO

An unknown /O error occurred during transfer.

VI_ERROR_FILE_ACCESS

An error occurred while trying to open the specified
file. Possible reasons include an invalid path or lac
access rights.

VI_ERROR_FILE_IO

An error occurred while accessing the specified file

VI_ERROR_CONN_LOST

The I/O connection for the given session has been

Description
This read operation synamously transfers data. The file specified in fileName is opened in binary write
only mode. If the value ofl_ATTR_FILE_APPEND_ENis VI_FALSE, any existing contents are destroyed;
otherwise, the file contents are preserved. The data read is writtenfilet This operation returns only

when the transfer terminates.

This operation is useful for storing raw data to be processed later.

Table 6.1.3

Special Values foretCount

Parameter

Value

Action Description

VI_NULL

Do not return the number biytes transferred.

VXIplug&play Systems Alliance

VPP-4.3: The VISA Library

Page 610 Section 6: VISA Resour&pecific Operations

Related Items
See the INSTR resource description. AlsovdRead() andviwriteFromFile().

Implementation Requirements

RULE 6.1.14
The operatioviReadToFile() SHALL open the file specified by fleName in binary mode.

OBSERVATION 6.1.12
If a VISA implementation uses the ANSI C file operations, the mode useikésdToFile() should be
Awbo or fAabo dep&nAdIRFYE_ APREND ENe val ue of

RULE 6.1.15

The operatiowviReadToFile() SHALL return the success codels SUCCESS
VI_SUCCESS_MAX_CNTandVI_SUCCESS_TERM_CHABder the same conditions\aRead()

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 611

6.1.4 viwWrite (vi, buf, count, retCount)

Purpose
Write data to device synchronously.

Parameters
Name Direction Type Description
vi IN ViSession Unique logicalidentifier to a session.
buf IN ViBuf Represents the location of a data block to &
sent to device.
count IN Viuint32 Specifies number of bytes to be written.
retCount ouT Viuint32 Represents the location of an integer that W
be set to the number bfjtes actually
transferred.
Return Values
Type ViStatus This is the operational return status. It returns eithe

completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Transfer completed.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_INV_OBJECT are the same value).

VI_ERROR_NSUP_OPER The givervi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed becaus

the resource identified by has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_INP_PROT_VIOL Device reported an input protocol error during trans

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_INV_SETUP Unable to art write operation because setup is invg

(due to attributes being set to an inconsistent state

VI_ERROR_NCIC The interface associated with the giwenis not
currently the controller in charge.

(continues)

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Section 6: VISA Resour&pecific Operations

Page 612
Error Codes Description
VI_ERROR_NLISTENERS No Listeners condition is detected (botRFDand
NDACare deasserted).
VI_ERROR_IO An unknown I/O error occurred during transfer.
VI_ERROR_CONN_LOST The 1/0 connection for the given session has been
Description

The write operation synchronously transfers data. The data to be written is in the buffer repredaufted by
This operation returns only when the transfer terminates. Only one synchronous write operation can occur

at any one time.

Table 6.1.4 Special Values foretCount Parameter

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Related Items
See the INSTR resource description. AlsodRead()

Implementation Requirements

OBSERVATION 6.1.13
If you passvI_NULL as theretCount parameter to theiwrite() operation, the number of bytes

transferred will not be returned. This may be useful if it is important to know only whether the operation
succeeded or failed.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 613

6.1.5 viwriteAsync (vi, buf, count, jobld)

Purpose
Write data to device asynchronously.

Parameters
Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

buf IN ViBuf Represents the location of a data block to &
sent to device.

count IN Viuint32 Specifiesnumber of bytes to be written.

jobld ouT ViJobld Represents the location of a variable that
will be set to the job identifier of this
asynchronous write operation.

Return Values

Type ViStatus This is the operational return status. It returns eithe
completion code or an error code as follows.

Completion Codes Description

VI_SUCCESS Asynchronous write operation successfully queued

VI_SUCCESS_SYNC Write operation performed synchronously.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
V|_ERROR_|NV_OBJECT are the same Va|ue)_

VI_ERROR_RSRC_LOCKED Specified operation could not be performed becaus
the resource identified by has been locked for this
kind of access.

VI_ERROR_QUEUHEERROR Unable to queue write operation.

VI_ERROR_IN_PROGRESS Unable to start a new asynchronous operation whilg
another asynchronous operation is in progress.

Description
The write operation asynchronously transfers data. The data to be written is in the buffer represented by
buf . This operation normally returns before the transfer terminates. An I/O Completion event will be
posted when the transfer is actually completed.

The operation returrjsbld , which you can use with eitheiTerminate() to abort the operation or
with an 1/O Completion event to identify which asynchronous write operation completed.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 614 Section 6: VISA Resour&pecific Operations

Table 6.1.5 Special Values fojobld Parameter

Value Action Description

VI_NULL Do not return a job identifier.

Related Items
See the INSTR resource description. AlsodRead() , viTerminate() , ViReadAsync() ,and
ViWrite()

Implementation Requirements

RULE 6.1.16
IF the output parametggbld is notVI_NULL, THEN the value irjobld SHALL be valid before
viWriteAsync() begins the data transfer.

OBSERVATION 6.1.14
Since an asynchronous 1/O request could complete befomtiteAsync() operation returns, and the
I/O completion event can be distingueshbased on the job identifier, an application must be made aware
of the job identifier before the first moment that the I/O completion event could possibly occur. Setting the
output parametgobld before the data transfer even begins ensures that doagigpl can always match
thejobld parameter with th&l_ ATTR_JOB_ID attribute of the I1/O completion event.

OBSERVATION 6.1.15
If you passvl_NULL as thgobld parameter to theiwriteAsync() operation, ngobld will be
returned. This option may be usefiubnly one asynchronous operation will be pending at a given time.

OBSERVATION 6.1.16
If multiple jobs are queued at the same time on the same session, an application cajohide ttre
distinguish the jobs, as they are unique within a session.

PERMISSION 6.1.2
The viwriteAsync() operationMAY be implemented synchronously, which could be done by using the
viWrite() operation.

RULE 6.1.17
IF theviWriteAsync() operation is implemented synchronougWyD a given invocation of the
operation is validTHEN the operatiofSBHALL returnvVl_SUCCESS_SYNCAND all status information
SHALL be returned in &_EVENT_IO_COMPLETION

OBSERVATION 6.1.17
The intent of PERMISSION 6.1.2 and RULE 6.1.14 is that an application can use the asynchronous
operations transpamdy, even if the lowlevel driver used for a given VISA implementation supports only
synchronous data transfers.

RULE 6.1.18

The status codes returned in tHeATTR_STATUSfield of aVI_EVENT_IO_COMPLETIONevent resulting
from a call toviwriteAsync() SHALL be the same codes as those listediftrite()

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 615

OBSERVATION 6.1.18
The status codeél_ERROR_RSRC_LOCKEEan be returned either immediately or from the
VI_EVENT_10_COMPLETIONevent.

RULE 6.1.19
For each successful call ¥WriteAsync() , thereSHALL be one and only one
VI_EVENT_I0_COMPLETIONevent occurrence.

RULE 6.1.20
IF thejobld parameter returned fromiwriteAsync() is passed teiTerminate() ,AND a
VI_EVENT_IO_COMPLETIONevent has not yet occurred for the speciftgdd , THEN the
viTermina te() operationSHALL raise avI_EVENT_IO_COMPLETIONevent on the giveni , AND the
VI_ATTR_STATUSfield of that evenSHALL be set to/I_ERROR_ABORT

RULE 6.1.21

IF the output parameter jobld is nait NULL AND the return status fromiwriteAsync() is swceessful,
THEN the value irjobld SHALL NOT beVI_NULL.

OBSERVATION 6.1.19
The valueVi_NULL is a reserved jobld and has a special meaning éminate().

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 616

6.1.6 viWriteFromFile

Purpose

Section 6: VISA Resour&pecific Operations

(vi, fileName, count, retCount)

Take data from a file and writeout synchronously.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
fileName IN ViConstString Name of file from which data will be read.
count IN Viuint32 Number of bytes to be written.
retCount ouT Viuint32 Number of bytes actually transferred.

Return Values

Type ViStatus

This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Transfer completed.
Error Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both af
the same value).

VI_ERROR_NSUP_OPER

The givervi does not support this operation.

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because th
resource identified byi has been locked for this kind of
access.

VI_ERROR_TMO

Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL

Violation of raw write protocol occurred duringahsfer.

VI_ERROR_RAW_RD_PROT _VIOL

Violation of raw read protocol occurred during transfer.

VI_ERROR_INP_PROT_VIOL

Device reported an input protocol error during transfer.

VI_ERROR_BERR

Bus error occurred during transfer.

VPP-4.3: The VISA Library

(continue$

VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 617

Error Codes Description

VI_ERROR_NCIC The interface associated with the giwénis not currently
the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (botRFDandNDAC
are deasserted).

VI_ERROR_IO An unknown I/O error occurred duririgansfer.

VI_ERROR_FILE_ACCESS An error occurred while trying to open the specified file.
Possible reasons include an invalid path or lack of acce
rights.

VI_ERROR_FILE_IO An error occurred while accessing the specified file.

VI_ERROR_CONN_LOST Thel/O connection for the given session has been lost.

Description

This write operation synchronously transfers data. The file specified in fileName is opened in binary read
only mode, and the data (up to eofdfile or the number of bytes specified inut) is read. The data is

then written to the device. This operation returns only when the transfer terminates.

This operation is useful for sending data that was already processed and/or formatted.

Table 6.1.6 Special Values foretCount Parameter

Value Action Description

VI_NULL Do not return the number of bytes transferred.

Related Items
See the INSTR resource description. Also\sgérite() andviReadToFile()

Implementation Requirements

RULE 6.1.22
The operatiowiwriteFromFile() SHALL open the file specified bjleName in binary mode.

OBSERVATION 6.1.20
If a VISA implementation uses the ANSI C file operations, the mode useitvayeFromFile()
should be Arbo.

OBSERVATION 6.1.21
If you passVl_NULL as theretCount parameter to theiWriteFromFile() operation, the number of
bytes transferred will not be returned. This may be useful if it is important to know only whether the
operation succeeded or failed.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 618 Section 6: VISA Resour&pecific Operations

6.1.7 viAssertTrigger (vi, protocol)

Purpose
Assert software or hardwategger.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to session.
protocol IN Vilint16 Trigger protocol to use during assertion.

Valid values areVl_TRIG_PROT_DEFAULT,
VI_TRIG_PROT_ON VI_TRIG_PROT_OFF,
VI_TRIG_PROT_SYNG
VI_TRIG_PROT_RESERVEand
VI_TRIG_PROT_UNRESERVE

Return Value

Type ViStatus This is the operational return status. It returns eithel
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Thespecified trigger was successfully asserted to t
device.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_NSUP_OPER The givenvi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed becaus

the resource identified by has been locked for this
kind of access.

VI_ERROR_INV_PROT The protocol specified is invalid.

VI_ERROR_TMO Timeoutexpired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during trang

VI_ERROR_INP_PROT_VIOL Device reported an input@iocol error during transfe

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.

(continued)

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 619

Error Codes Description

VI_ERROR_NCIC The interface associated with the giwénis not
currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (botRFDand
NDACare deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (
to attributes being set to an inconsiststate).

VI_ERROR_CONN_LOST The I/O connection for the given session has been

VI_ERROR_LINE_NRESERVED An attempt was made to use a line that was not
reserved.

Description
This operation will source a software or hardware trigger dependent on the interface type. For a GPIB
device, the device is addressed to listen, and then the GETRommand is sent. For a VXI device, if
VI_ATTR_TRIG_ID isVI_TRIG_SW, then the device iesat the Word Seridalrigger command; for any
other values of the attribute, a hardware trigger is sent on the line corresponding to the value of that
attribute. For a session to a Serial device or TCP/IP sock&tAfTR_IO_PROT is
VI_PROT 4882 STRS,thedevi ce i s &TRG1O ;t hod hsetrrwiirsge , i t hi s operati
session to a USB instrument, this function sends the TRIGGER message ID on @ Bufkpe.

For GPIB, ASRL, USB, and VXI software triggefd, TRIG_PROT_DEFAULTis the aly valid protocol.
For VXI hardware triggers/l_TRIG_PROT_DEFAULTiIs equivalent to/I_TRIG_PROT_SYNC

For a PXI resourcejAssertTrigger() will reserve a trigger line for assertion, or release such a
reservation. Instrument drivers should u@essertT rigger() to ensure that they have ownership of a
trigger line before performing any operation that could drive a signal onto that trigger lingrotteol
parameter can be eithél TRIG_PROT_RESERVBOr VI_TRIG_PROT_UNRESERVEWhich reserve a
trigger line and release the reservation, respectively.

Related Items
See the INSTR resource description.

Implementation Requirements

RULE 6.1.23
For compatibility withearlier versions of thispecificationVl_TRIG_PROT_DEFAULTSHALL be equal to
VI_NULL.

RULE 6.1.24
IF the attributevi_ATTR_IO_PROT is set tovl_PROT_NORMAIfor a session to an ASRL INSTR or TCPIP
SOCKET resourceTHEN the operatiowiAssertTrigger() SHALL returnVI_ERROR_INV_SETUP

RULE 6.1.25
An INSTR resource implementation whssertTrigge r() fora USB SystenSHALL return the error
VI_ERROR_INV_SETUPfor a USBTMC base&lass (nom88) device.

RULE 6.1.26
An INSTR resource implementation whAssertTrigger() for a USB Systen$SHALL return the error
VI_ERROR_INV_SETUPfor a USBTMC 488&class deice that does not implement the optional trigger
message ID.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 620 Section 6: VISA Resour&pecific Operations

6.1.8 viReadSTB (vi, status)

Purpose
Read a status byte of the service request.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to the session.
status ouT Viuint16 Service request status byte.

Return Values

Type ViStatus This is the operational return status. It returns eithe!
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Operation completesuccessfully.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_INV_OBJECT are the same value).

VI_ERROR_NSUP_OPER The givervi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed becaus

the resource identified by has been locked for this
kind of access.

VI_ERROR_SRQ_NOCCURRED Service request has not been received for the sess

VI_ERROR_TMO Timeout expired before operation comptete

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the giweénis not
currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (botRFDand
NDACare deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (g
to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for the given session has been

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 621

Description
This operation reads a service request status from a service requester (the-lresshgdevice). For
example, on the IEEE 488.2 interface, the message is read by polling devices; for other types of interfaces,
a message is sent in response to a sergggest to retrieve status information. For a session to a Serial
device or TCP/IP socket, fi_ATTR_IO_PROT is VI_PROT_4882_STRS, the device is sent the string

f*'STB?\n0, and then the devicebds status bithestatiss r ead;

information is only one byte long, the most significant byte is returned with the zero value. If the service
requester does not respond in the actual timeout paficBRROR_TMGAs returned. For a session to a
USB instrument, this functioreads theREAD_STATUS_BYTEommand on the control pipe.

Related Items
See the INSTR resource description.

Implementation Requirements

RULE 6.1.27
IF the attributevi_ATTR_IO_PROT is set tovl_PROT_NORMAIfor a session to an ASRL INSTR or TCPIP
SOCKET resourceTHEN the operatiowiReadSTB() SHALL returnVi_ERROR_INV_SETUP

RULE 6.1.28
An INSTR resource implementation wReadSTB() for a USB Systen$SHALL return the error
VI_ERROR_INV_SETUPfor a USBTMC baselass (nord88) device.

RULE 6.1.29
IF the interface associated with the USB INSTR session has previously sent a service request notification,
THEN viReadSTB() SHALL use the status byte from that notification rather than sending a new
READ_STATUS_BYTEequest on the control pipe.

PERMISSION 6.1.3
Since the operatioviReadSTB() for USB INSTR must retain knowledge of service request notifications,
a vendoMAY implement either a queue of status bytes from previous notifications ore ciagped
status byte, where each received status byte-3Réd into the single cached status byte.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

(

Page 622 Section 6: VISA Resour&pecific Operations

6.1.9 viClear (vi)

Purpose
Clear a device.

Parameters

Name Direction Type Description

vi IN ViSession Unique logical identifier to a session.

Return Values

Type ViStatus This is the operational return status. It returns eithe
completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Operation completed successfully.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_INV_OBJECT are the same value).

VI_ERROR_NSUP_OPER The givervi does not support this operation.
VI_ERROR_RSRC_LOCKED Specified operation could not be performed becaus

the resource identified by has been locked for this
kind of access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol occurred during
transfer.

VI_ERROR_BERR Bus error occurred during transfer.

VI_ERROR_NCIC The interface associated with the giweénis not
currently the controller in charge.

VI_ERROR_NLISTENERS No Listeners condition is detected (botRFDand
NDACare deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (
to attributes being set to an inconsistent state).

VI_ERROR_CONN_LOST The I/O connection for thgiven session has been lo

Description

This operation performs an IEEE 48&tyle clear of the deviceForVXI INSTR sessions/ISA must use
the Word Serial Clear commandérorGPIB INSTR sessions/ISA must usehe Selected Device Clear
command. FoSerialINSTR sessions, VISA must flugbiscard) thd/O output buffer, send a break, and
thenflush (discard) thd/O inputbuffer. For TCP/IP SOCKET sessions, VISA must flush (discard) the 1/0
buffers. For USB INSTR sessions, VISA must sethe INITIATE_CLEAR and

CHECK_CLEAR_STATUS commands on the control pipe.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISA Resour@pecific Operations Page 623

Related Items
See the INSTR resource description.

Implementation Requirements

OBSERVATION 6.1.22
An invocation of theviClear() ~ operations on an INSTR Resource will discard the read and write buffers
used by the formatted I/O services for that session.

PERMISSION 6.1.4
An implementation of theiClear() operation for a Serial INSTR resource or a TCP/IP SOCKET
resourceMAY alsosed t he*Clstnoi hg fihe devi ce. This is allowed
with earlier VISA specifications that required this behavior.

OBSERVATION 6.1.23
TheviClear() operation will no longer return an error for a Serial INSTR resource or dACP/
SOCKET resource when the attribiie ATTR_IO_PROT is set tovl_PROT_NORMAL

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 624 Section 6: VISA Resour@pecific Operations

6.2 Formatted I/O Services

6.2.1 viSetBuf (vi, mask, size)

Purpose
Set the size for the formatted I/O and/or serial communication buffer(s).

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
mask IN Viuint16 Specifies the type of buffer.
size IN Viuint32 The size to be set for the specified buffer(s

Return Values

Type ViStatus This is the operational return statltseturns either a
completion code or an error code as follows.

Completion Codes Description
VI_SUCCESS Buffer size set successfully.
VI_WARN_NSUP_BUF The specified buffer is not supported.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_INV_OBJECT are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed becaus

the resource identified by has been locked for this
kind of access.

VI_ERROR_ALLOC The system could not allocate the buffer(s) of the
specifiedsize because of insufficient system
resources.

VI_ERROR_INV_MASK The system cannot set the buffer for the gimesk.

Description

This operation changes the buffer size of the read and/t lwffer for formatted I/O and/or serial
communication. Thenask parameter specifies which buffer to set the size of.nfdmk parameter can
specify multiple buffers by biORing any of the following values together.

Flag Interpretation
VI_READ_BUF Formatted 1/O read buffer.
VI_WRITE_BUF Formatted I/O write buffer.
VI_IO_IN_BUF I/0 communication receive buffer.
VI_IO_OUT_BUF 1/0 communication transmit buffer.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISAResourceSpecific Operations Page 625

For backward compatibilityyl_IO_IN_BUF is the same a¢l_ASRL_IN_BUF, andVI_IO_OUT_BUF is the
same a¥I_ASRL_OUT_BUF

Related Items
See the INSTR resource description. AlsodE®sh()

Implementation Requirements

RULE 6.2.1
AcalltovisetBuf) SHALLf |l ush the sessionds related buffer (s)
for output buffers flush to device).

RULE 6.2.2
The systerallocated buffer(s) for a given sessiBHALL be freed by the system on session termination.

OBSERVATION 6.2.1
Thesize of the buffer(s) can have effects on the transfer performance for formatted I/O andéwelow
communication.

RULE 6.2.3
IF an ASRL INSTR or TCPIP INSTR or TCPIP SOCKET resource does not support setting the size of the
I/0 receive bufferTHEN a all toviSetBuf() with theVI_IO_IN_BUF maskSHALL return
VI_WARN_NSUP_BUF

RULE 6.2.4
IF an ASRL INSTR or TCPIP INSTR or TCPIP SOCKET resource does not support setting the size of the
I/0 transmit bufferTHEN a call toviSetBuf() ~ with theVI_I0_OUT_BUF maskSHALL return
VI_WARN_NSUP_BUF

OBSERVATION 6.2.2
Since not all serial drivers support ustefined buffer sizes, it is possible that a specific implementation of
VISA may not be able to control this feature. If an application requires a spedféic siae for
performance reasons, but a specific implementation of VISA cannot guarantee that size, then it is
recommended to use some form of handshaking to prevent overflow conditions.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 626 Section 6: VISA Resour@pecific Operations

6.2.2 viFlush (vi, mask)

Purpose
Manually flush the specified Iffers associated with formatted 1/O operations and/or serial communication.

Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
mask IN Viuint16 Specifies the action to be taken with flushin
the buffer.
Return Values
Type ViStatus This is the operational return status. It returns eithel

completion code or an error code as follows.

Completion Code Description
VI_SUCCESS Buffers flushed successfully.

Error Codes Description
VI_ERROR_INV_SESSION The given session or object reference is invalid (bo
VI_ERROR_INV_OBJECT are the same value).

VI_ERROR_RSRC_LOCKED Specified operation could not be performed becaus

the resource identified by has been locked for this
kind of access.

VI_ERROR_IO Could not perform read/write operation because of
error.

VI_ERROR_TMO The read/write operation was aborted because time
expired while operation was in progress.

VI_ERROR_INV_MASK The specifiednask does not specify a valid flush

operation on read/write resource.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISAResourceSpecific Operations Page 627

Description
The value ofnask can be one of the following flags:

Flag Interpretation

VI_READ_BUF Discard the read buffer contents and if data was
present in the read buffer and no ENMidicator was
present, read from the device until encountering an
END indicator (which causes the loss of data). This|
action resynchronizes the nesscanf() call to read
a <TERMINATED RESPONSE MESSAGE>.
(Refer to the IEEE 488.2 standard.)

VI_READ_BUF_DISCARD Discard the read buffer contents (does not perform
anyl/O to the device).

VI_WRITE_BUF Flush the write buffer by writing all buffered data to
the device.

VI_WRITE_BUF_DISCARD Discard the write buffer contents (does not perform
any 1/O to the device).

VI_IO_IN_BUF Discards the receive buffer contents (same as
VI_IO_IN_BUF_DISCARD).

VI_IO_IN_BUF_DISCARD Discard the receive buffer contents (does not perfo
anyl/O to the device).

VI_IO_OUT_BUF Flush the transmit buffer by writing all buffered datg
the device.

VI_IO_OUT_BUF_DISCARD Discard the transmit buffer contents (does not perfd

any /0 to the device).

It is possible to combine any of these read flags and write flags for different buffers by ORing the flags.
However, combining two flags for the same buffer in the same calfitesh() is illegal.

Notice that when using formatted 1/O operations wiedal device, a flush of the formatted 1/O buffers
also causes the corresponding serial communication buffers to be flushed. For examplejriatifr(y
with VI_ WRITE_BUF also flushes th¥l 10 _OUT_BUF.

For backward compatibilityyl_I0_IN_BUF is thesame a¥I_ASRL_IN_BUF, VI_IO_IN_BUF_DISCARD
is the same agl_ASRL_IN_BUF_DISCARD, VI_I0_OUT_BUF is the same ag¢l_ASRL_OUT_BUF, and
VI_IO_OUT_BUF_DISCARDis the same agl_ASRL_OUT_BUF_DISCARD.

Related Items
See the INSTR resource description. Alsed8etBuf()

Implementation Requirements
RULE 6.2.5

IF viFlush() is invoked on an empty buffeFHEN the VISA systenSHALL NOT perform any actions
on the buffer.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 628

6.2.3 viPrintf (vi, writeFmt, argl, arg2,...)

Section 6: VISA Resour@pecific Operations

Purpose
Convert, format, and send the parametegd, arg2, ...to the device as specified by the format string.
Parameters
Name Direction Type Description
vi IN ViSession Unique logical identifier to a session.
writeFmt IN ViString String describing théormat for arguments.
argl, arg2 IN N/A Parameters format string is applied to.

Return Values

Type ViStatus

This is the operational return status. It returns eithe
completion code or an error code as follows.

Completion Code

Description

VI_SUCCESS

Parameters were successfully formatted.

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (bo
are the same value).

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed becaus
the resource identified by has been locked for this
kind of access.

VI_ERROR_[O

Could not perform write operation because of 1/O
error.

VI_ERROR_TMO

Timeout expired before write operation completed.

VI_ERROR_INV_FMT

A format specifier in thevriteFmt string is invalid.

VI_ERROR_NSUP_FMT

A format specifier in thevriteFmt string is not
supported.

VI_ERROR_ALLOC

The system could not allocate a formatted 1/O buffe
because of insufficient systemsources.

Description

This operation sends data to a device as specified by the format string. Before sending the data, the
operation formats tharg characters in the parameter list as specified imtheFmt string. The

viwrite() operation performghe actual lowlevel I/O to the device. As a result, you should not use the

VviWrite() andviPrintf()

operations in the same session.

ThewriteFmt string can include regular character sequences, special formatting characters, and special
format specifiers. The regular characters (including white spaces) are written to the device unchanged. The
special charVc{(bas ks b asarcBatadta. fTHe domnatdpedifier sequence consists
of 60%6 (percent) f

VPP-4.3: The VISA Library

ol l owed by an optional

VXIplug&play Systems Alliance

mo d i

fi

er

(

Section 6: VISAResourceSpecific Operations Page 629

Special Formatting Characters

Special formatting character sequences send special characters. The followitigtsatbie special
characters and describes what they send to the device.

Formatting Character Character Sent to Device
\n Sends the ASCII LF character. The END identifier will also be
automatically sent.
\r Sends an ASCII CR character.
\t Sends aASCII TAB character.
\### Sends the ASCII character specified by the octal value.
\" Sends the ASCII doublguote (") character.
\\ Sends a backslasl) ¢haracter.

Format Specifiers

The format specifiers convert the next parameter in the sequermeliag to the modifier and format
code, after which, the formatted data is written to the specified device. The format specifier takes the
following syntax:

%[modifiersformat code

whereformat codespecifies the data type in which the argument is represented. Modifiers are optional
codes that describe the target data.

I n the following tables, a 6d6 fiotegergb6ddépdéi d ef éo06, t
6X6), wrilfded same %d only. Similarly, an Offldéa f or mat
(6f6, 6ed, O6E6, 6b6gb, 6G6H), unless specified as %f o

Every conversion command starts with the % character and ends with a conversion character (format code).
Between the % character and the format code, the following modifiers can appear in the sequence:

ANSI C Standard Modifiers

Modifier Supported with Description
Format Code
An integer d, f, s format codes | This specifies the minimum field width of the convert
specifying argument. If an argument is shorter thanfiblkel width,
field width it will be padded on the left (or on the right if thitag
is present).
Special case:

For the @H, @Q, and @B flags, tfeld width

includes the #H, #!, and #B strings, respectively,
A * may be present in lieu of a field width modifier, in
which case an extraxg is used. Thigarg must be an
integer representing tHield width

(continues)

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 630 Section 6: VISA Resour@pecific Operations

Modifier Supported with Description
Format Code
An integer d, f, s format codes | Theprecisionstring consists of a string of decimal
specifying digits. A . (decimal point) must prefix th@ecision
precision string. Theprecisionstring specifies the following:

a. The minimum number of digits mppear for the
@1, @H, @Q, and @B flags and the i, 0, u, X, ar
X format codes.

b. Theexactnumber of digits after the decimal point
case of f format codes.

¢. The maximum numbers of characters for the strin
(s) specifier.

d. Maximumnumber ofsignificant digits for g format
code.

An asterisk (*) may be present in lieu opeecision

modifier, in which case an extaag is used. Thisrg

must be an integer representing pinecisionof a

numeric field.
An argument The argument length modifiers specify one of the
length following:
modifier. h (d, b, B format a. The h modifier promotes thegument to a short or
h, LI, L, z, codes) unsigned short, depending on the format code tyj
and Z are I (d, f, b, B format b. The | modifier promotes the argument to a long o
legal values. | codes) unsigned long.
(zand Z are L (f format code) c. Thell modifier promotes the argument to a long
not ANSI C z, Z (b, B format long or unsigned long long
standard o
flags.) codes) d. The L modifier promotes the arment to a long
double parameter.
e. The z modifier promotes the argument to an arra
floats.
f. The Z modifier promotes the argument to an arra
of doubles.

VPP-4.3: The VISA Library VXIplug&play Systems Alliance

Section 6: VISAResourceSpecific Operations

Enhanced Modifiers to ANSI C Standards

Page 631

Modifier Supported with Description
Format Code
A c ommal| %d (plus variants) The corresponding argument is interpreted as a refer
followed by an| and %f only to the first element of an array of siaeThe firstn
integern, elements of this list are printedtime format specified
wheren by the format code.
represents the An asterisk (6*06) may baeg
array size. which case an extraxg is used. Thigarg must be an
integer representing the array size of the given type.
@1 %d (plus variants) Converts taan IEEE 488.2 defined NR1 compatible
and %f only number, which is an integer without any decimal poiri
(for example, 123).
@2 %d (plus variants) Converts to an IEEE 488.2 defined NR2 compatible
and %f only number. The NR2 number has at least one digit after
decimal point (for example, 123.45).
@3 %d (plus variants) Converts to an IEEE 488.2 defined NR3 compatible
and %f only number. An NR3 number is a floating point number
represented in an exponential form (for example,
1.2345E67).
@H %d (plus variants) Converts to an IEEE 488.2 defined <HEXADECIMAL
and %fonly NUMERIC RESPONSE DATA>. The number is
represented in a baseXd form. Only capital letters
should represent numbers. The number is of form
"HHXXX.," whereXXX. is a hexadecimal number (for
example#HAF35B).
@Q %d (plus variants) Converts to an IEEE 488.2 defined <OCTAL
and %f only NUMERIC RESPONSE DATA>. The number is
represented in a base of eight form. The number is 0
form "#QYYY.," whereYYY. is an octal number (for
example, #Q71234).
@B %d (plus variants) Converts to an IEEE 488.2 defined <BINARY
and %f only NUMERIC RESPONSE DATA>. The number is
represented in a base two form. The number is of the
form "#BZZZ.," whereZZZ. is a binary number (for
example, #8011101001).

The followingare the allowed format coadaracters. A format specifier sequence should include one and

only one format code.

VXIplug&play Systems Alliance

VPP-4.3: The VISA Library

Page 632

Section 6: VISA Resour@pecific Operations

Standard ANSI C Format Codes

% Send the ASCII percent (%) character.
c Argument type: A character to be sent.
d Argument type: An iteger.
Modifier Interpretation

Default functionality

Print an integer in NR1 format (an integer without a decimal poin

@2 or @3 The integer is converted into a floating point number and output
the correct format.
field width Minimum field width of the output number. Any of the six

IEEE 488.2 modifiers can also be specified witid width

Length modifier |

arg is a long integer.

Length modifier Il

arg is along long integer

Length modifier h

arg is a short integer.

, array size arg points to an array of integers (or long or short integers,
depending on the length modifier) of size array size. The elemer
this array are separated by array sitfecommas and output in the
specified format.

f Argument type:A floating point number.
Modifier Interpretation

Default functionality

Print a floating point number in NR2 format (a number with at leg
one digit after the decimal point).

@1 Print an integer in NR1 formathe number is truncated.

@3 Print a floating point number in NR3 format (scientific notation).
Precisioncan also be specified.

field width Minimum field width of the output number. Any of the six

IEEE 488.2 modifiers can also be specified withd width

Length modifier |

arg isa double float.

Length modifier L

arg is a long double.

, array size arg points to an array of floats (or doubles or long doubles),
depending on the length modifier) of size array size. The elemer
this array are separated by array $iZecommas iad output in the
specified format.

S Argument type: A reference to a NUkterminated string that is sent to the device without
change.

VPP-4.3: The VISA Library

VXIplug&play Systems Alliance

Section 6: VISAResourceSpecific Operations Page 633

Enhanced Format Codes

b Argument type: A location of a block of data.

Flag or Modifier Interpretation

Defaultfunctionality The data block is sent as an IEEE 488.2 <DEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>. A count (long intege
mustappear as a flag that specifies the number of elements (by
default, bytes) in the block. field widthor precisionmodifier is not
allowed with this format code.

* (asterisk) An asterisk may be present instead of the count. In such a case,
args are used, the first of which is a long integer specifying the
count of the number of elements in the data block. The secgni
a reference to the data block. The size of an element is determir
the optional length modifier (see below), default being byte width

Length modifier h The data block is assumed to be an array of unsigned short inte
(16 bits). The countorresponds to the number of words rather thg
bytes. The data is swapped and padded into standard IEEE 488
format, if native computer representation is different.

Length modifier | The data block is assumed to be an array of unsigned long integ
The coun corresponds to the number of longwords (32 bits). Eac
longword data is swapped and padded into standard IEEE 488.2
format, if native computer representation is different.

Length modifier Il The data block is assumed to be an array of unsigned long long
integers. The count corresponds to the number of longlongwords
bits). Each longlongword data is swapped and padded into stand
IEEE 488.2 format, if native computer representation is different

Length modifier z The data block is assumed to be amayaof floats. The count
corresponds to the number of floating point numbers (32 bits). T
numbers are represented in IEEE 754 format, if native computer|
representation is different.

Length modifier Z The data block is assumed to be an array of doublescount
corresponds to the number of double floats (64 bits). The numbe
will be represented in IEEE 754 format, if native computer
representation is different.

B Argument type: A location of a block of data. The functionality is simildr, Except the data
block is sent as an IEEE 488.2 <INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE
DATA>. This format involves sending an ASCII LF character with the Bilicator set after the
last byte of the block.

VXIplug&play Systems Alliance VPP-4.3: The VISA Library

Page 634

Section 6: VISA Resour@pecific Operations

y Argument type: A location of a block ofriary data.

Flags or Modifiers

Interpretation

Default functionality

The data block is sent as raw binary data. A count (long intege
mustappear as a flag that specifies the number of elements (by
default, bytes) in the block. field widthor precisian modifier is
not allowed with this format code.

* (asterisk)

An asterisk may be present instead of the count. In such a cas
args are used, the first of which is a long integer specifying the
count of the number of elements in the data block. The setzgnd
is a reference to the data block. The size of an element is
determined by the optional length modifier (see below), default
being byte width.

Length modifier h

The data block is an array of unsigned short integers (16 bits).
countcorresponds to the number of words rather than bytes. If
optional ilol 6 byte order mo
endian formg otherwise, the data is sent in standard IEEE 488.
format. Data will be byte swapped and padded as appropriate i
native computer representation is different.

Length modifier |

The data block is an array of unsigned long integers (32 bits). 1
countcorresponds to the number of longwords rather than byte
the optional A!ol 0 byte orde
little endian format; otherwise, the data is sent in standard IEEE
488.2 format. Data will be byte swapped and padded aspipgte

if native computer representation is different

Length modifier I

The data block is an array of unsigned long long integers (64 b
The countorresponds to the number of longlongwords rather ti
bytes. I f t he o modifier is présenfi theodata
sent in little endian format; otherwise, the data is sent in standg
IEEE 488.2 format. Data will be byte swapped and padded as
appropriate if native computer representation is different.

Byte order modifier !ob

Data is gnt in standard IEEE 488.2 (big endian) format. This is
default behavior if neither

Byte order modifier ol

Data is sent in little endian format.

OBSERVATION 6.2.3

The END indicator is not appended when (s part ofa binary data block, as with %b or %B.

BNF Format for viPrintf()

The following is the BNF format for théPrintf() writeFmt string:

<print_fmt>
<slashed_special>
<oct_esc>
<ascii_char>

<conversion>

VPP-4.3: The VISA Library

{<slashed_special> | <conversion> | <ascii_char3}*

“\n" WMWY | <oct_esc> |\

"\"<oct_digit> [<oct_digit> [<oct_digit>]]

ASCII characters (other than backslaghgercent (%), and NULL).

<fmt_cod_d> | <fmt_cod_f> | <fmt_cod_c> | <fmt_cod_b> |
<fmt_cod_B> | <imt_cod_s> | <fmt_cod_e> | <fmt_cod_y> | "%%"

VXIplug&play Systems Alliance

Section 6: VISAResourceSpecific Operations Page 635

<fmt_cod_d>

<fmt_cod_f>

<fmt_cod_e>

<fmt_cod_b>
<fmt_cod_B>
<fmt_cod_c>
<fmt_cod_s>
<fmt_cod_y>
<swap_mod>
<numeric_mod>
<just_mod>
<field_width>
<precision>

<array_size>

Related Items

"%" [<numeric_mod>] [<field width>]
['." <precision>] [","<array_size>] ["I'fi | ['h@] "d

"%" [<numeric_mod>] [<field_width>]
[*." <precision>] [',"<array_size>] [I" |'L"] "f"

"%" [<numeric_mod>] [<field_width>]

[." <precision>] [","<array_size>] ["I"|'L"] "e"

"%" <array_size>["h"|"I"fi | |["z8]"Z"] "b"

"%" <array_size>["h"|"I1 #"E"l|"@"]"B"

nopc

"%" [<just_mod>] [<field_width>] ["."<precision>] "s"
"%" <array_size> [<swap_mod>]["h"["]" #@"y'l O
"lob" | "lol"

]t rer @2t | @3 | "eH" | "eQ” | "@B"
<positive_integer> | "*"

<positive_integer> | "*"

<positive_integer> | "*"

See the INSTR resource description. Also8eerintf()

Implementation Requirements

RULE 6.2.6

ThereSHALL be a ondo-one correspondence between % format conversiommgngarameters, except
under the following circumstances:

1. Ifa*is present for théield widthmodifier, then anothearg parameter isised. This parameter is an

integer.

2. Ifa*is present for therecisionmodifier, then anothearg parameter is used. This parameter is an

integer.

3. Ifa*is present for tharray_sizein the %b, %B, or %y conversion, then another parameter is
used. This parameter is a long integer.

4. Ifa*is present for tharray_sizein the %d or %f conversion, then anothey parameter is used.
This parameter is an integer.

VXIplug&play Systems Alliance

VPP-4.3: The VISA Library

