

Interchangeable

Instruments
Virtual

VPP-4.3.5:
VISA Shared Components

October 11, 2023

Revision 7.4

VPP-4.3.5 Revision History
This section is an overview of the VPP-4.3.5 specification revision history.

Revision 1.0, October 16, 2008

First draft of the VPP-4.3.5 specification, based on Section 6 of the VPP-4.3.4 specification. This specification
covers all aspects of the VISA Shared Components binaries and installation.

Revision 5.0, June 9, 2010
Added USBTMC components to shared component specification.

Revision 5.1, March 6, 2013
Added Windows 7 and Windows 8 to the list of supported operating systems.

Revision 5.4, May 14, 2014
Made changes to specify the VISA .NET shared components. Added observations to clarify the mechanism
used by the VISA Shared Components installers to register the Primary Interop Assembly. Changed the version
to 5.4 to ensure that all VISA specifications being voted on at the same time have the same version.

Revision 5.5, February 11, 2015
Made changes to clarify the behavior of the viParseRsrc/viParseRsrcEx functions. Modified the uninstallation
behavior of the VISA Shared Components and VISA.NET Shared Installer. Clarified the necessary prerequisite
software for installing VISA.NET Shared Components.

Revision 5.5, August 6, 2015
Removed Windows 2000 and added Windows 10 to the list of supported operating systems.

Revision 5.6, June 7, 2016
Removed Windows XP and Windows Vista from the list of supported operating systems.

Revision 5.7, November 3, 2016
Updated rules 4.1.22 and 4.2.23 to reverse the policy of unlocking the VXIplug&play directory to a policy of
locking the VXIplug&play directory for the VISA Shared Component installer.

Revision 7.0, October 19, 2018
Added support for Linux.

Revision 7.0, October 26, 2018
Editorial Change: Update rules that specify the creation of the “ivi” group and the permissions of the
ConflictTbl.xml.

Revision 7.3, December 19, 2022
Added Windows 11 to the list of supported operating systems.

Revision 7.4, October 11, 2023 (Draft)
Added support for .NET (6+) versions of .NET.

NOTICE

VPP-4.3.4: VISA Shared Components is authored by the IVI Foundation member companies. For a vendor
membership roster list, please visit the IVI Foundation web site at www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation through
the IVI website at https://ivifoundation.org/aboutIVIFoundation/contact_us.html .

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The IVI
Foundation and its member companies shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

Table of Contents Page v

VXIplug&play Systems Alliance VPP-4.3.5: VISA Shared Components

Table of Contents

Section 1: Introduction to the IVI Foundation ... 0

Section 2: Overview of VISA Shared Components Specification ... 1
2.1. Objectives of This Specification ... 2
2.2. Audience for This Specification .. 3
2.3. Scope and Organization of This Specification .. 4
2.4. Application of This Specification .. 5
2.5. References ... 6
2.6. Definition of Terms and Acronyms ... 7
2.7. Conventions ... 8

Section 3: VISA Shared Components ... 8
3.1. VISA infrastructure ... 10
3.2. VISA-C Plug-In Architecture Components ... 11

3.2.1. VISA Header Files .. 11
3.2.2. The VISA Router .. 11
3.2.3. The Conflict Resolution Manager ... 14
3.2.4. VISA Utilities ... 45

3.3. VISA COM Components .. 46
3.4. VISA .NET Components ... 47

3.4.1. Conflict Resolution Manager .NET API ... 47
1.1.1 Vendor VISA.NET Loading ... Error! Bookmark not defined.

3.5 VISA Shared USBTMC Device Driver... 53

Section 4: VISA Shared Components Installation and NuGet Packages ... 54
4.1. Installing VISA Shared Components On 32-Bit Windows Operating Systems .. 55
4.2. Installing VISA Shared Components On 64-Bit Windows Operating Systems .. 60
4.3. Installing VISA Shared Components On Linux Operating Systems ... 67

4.3.1. Libraries .. 68
4.3.2. Package Structure and Details ... 69
4.3.3. Supported vs Unsupported Distributions .. 72

4.4. Installing VISA .NET Framework Shared Components ... 75
4.5. The IVI VISA .NET NuGet Package .. 77

Appendix A: Implementation Files .. 79
A.1 Contents of the visaRouter.h File .. 79
A.2 Contents of the ConflictMgr.h File ... 79
A.3 Contents of the ConflictMgr.def File .. 84
A.4 Contents of the visaUtilities.h File .. 85
A.5 Contents of the visaUtilities.def File ... 85

Page A-0 Appendix A: Implementation Files

Section 1: Introduction to the IVI Foundation

The IVI Foundation is an organization whose members share a common commitment to test system developer
success through open, powerful, instrument control technology. The primary purpose of the Consortium is to
promote the development and adoption of standard specifications for programming test instrument capabilities; to
focus on the needs of the people that use and develop test systems who must take off-the-shelf instrument drivers
and build and maintain high-performance test systems; to build on existing industry standards to deliver
specifications that simplify interchanging instruments and provide for better performing and more easily
maintainable programs that use IVI drivers.

This specification was originally developed by the VXIplug&play Systems Alliance. In 2003, the VXIplug&play
Systems Alliance formally merged into the IVI Foundation. Since then, the IVI Foundation has maintained and
updated the VXIplug&play specifications.

All references to VXIplug&play Systems Alliance within this document, except contact information, are there to
preserve consistency with the original set of specifications.

Appendix A: Implementation Files Page A-1

Section 2: Overview of VISA Shared Components
Specification

This section provides a complete overview of the VISA Shared Components specification, and gives readers
general information that may be required to understand how to read, interpret, and implement individual
aspects of this specification. This section is organized as follows:

• Objectives of this specification

• Audience for this specification

• Scope and organization of this specification

• Application of this specification

• References

• Definitions of terms and acronyms

• Conventions

Page A-2 Appendix A: Implementation Files

2.1. Objectives of This Specification
The VISA Shared Components specification describes the deployment of a common set of VISA
components for developing multi-vendor software programs, including instrument drivers. There are two
sets of components which are installed separately.
 The VISA Shared Components installer, supported on selected versions of Windows and Linux,

includes the VISA infrastructure and the VISA Plug-In Architecture components provided by the IVI
Foundation. Additionally, on the supported versions of Windows, it includes the VISA COM
components.

 The VISA.NET Framework Shared Components installer is only supported on selected versions of
Windows and includes the VISA .NET Framework components provided by the IVI Foundation. The
VISA.NET Framework Shared Components installer has a dependency on the VISA Shared
Components installer.

 The VISA.NET Shared Components NuGet package is only supported on selected versions of
Windows and includes the VISA .NET (6+) components provided by the IVI Foundation. The
VISA.NET Shared Components NuGet package has a dependency on the VISA Shared Components
installer.

These installers are available from the IVI Foundation to guarantee a consistent, reliable installation.

Appendix A: Implementation Files Page A-3

2.2. Audience for This Specification
The primary audience is I/O vendors who wish to implement and install VISA-compliant I/O software.

Page A-4 Appendix A: Implementation Files

2.3. Scope and Organization of This Specification
This specification is organized in sections, with each section discussing a particular aspect of the VISA
model.

Section 1, Introduction to the IVI Foundation explains the IVI Foundation.

Section 2, Overview of VISA I/O Components and Installation Specification, provides an overview of this
specification, including the objectives, scope and organization, application, references, definition of terms
and acronyms, and conventions.

Section 3, VISA Shared Components, provides an overview of the files and required infrastructure that
make up the VISA Shared Components.

Section 4, VISA Shared Components Installers, discusses the implementation of the VISA Shared
Components installers, including the VISA.NET installers and packages.

Appendix A: Implementation Files Page A-5

2.4. Application of This Specification
This specification describes standards to be used by developers of VISA and VISA COM I/O library
software. Every release of a VISA I/O library must use installers provided by the IVI Foundation to install
shared VISA components.

It is also useful as a reference for developers and end users of VISA I/O library software, as well as
VXIplug&play and IVI instrument drivers.

Page A-6 Appendix A: Implementation Files

2.5. References
The following documents contain information that you may find helpful as you read this document:

• VPP-1, VXIplug&play Charter Document

• VPP-2, System Frameworks Specification

• VPP-3.1, Instrument Drivers Architecture and Design Specification

• VPP-3.2, Instrument Functional Body Specification

• VPP-3.3, Instrument Driver Interactive Developer Interface Specification

• VPP-3.4, Instrument Driver Programmatic Developer Interface Specification

• VPP-4.1, VISA-1 Main Specification

• VPP-4.2, The VISA Transition Library

• VPP-4.3, The VISA Library

• VPP-4.3.2, VISA Implementation Specification for Textual Languages

• VPP-4.3.3, VISA Implementation Specification for the G Language

• VPP-4.3.4, VISA Implementation Specification for COM

• VPP-4.3.6, VISA Implementation Specification for .NET

• VPP-6, Installation and Packaging Specification

• VPP-7, Soft Front Panel Specification

• VPP-9, Instrument Vendor Abbreviations

• VXI-1, VXIbus System Specification, Revision 1.4, VXIbus Consortium

• VXI-11, TCP/IP Instrument Protocol, VXIbus Consortium

Appendix A: Implementation Files Page A-7

2.6. Definition of Terms and Acronyms
The following are some commonly used terms within this document.

Note that this specification uses the terms .NET, .NET(6+), and .NET Framework in a manner consistent with
section 3.1.1, .NET Frameworks, in VPP-4.3.6, VISA Implementation Specification for
.NET.

.NET A Microsoft technology for reusable software components.

.NET(6+) .NET(6+” refers to .NET versions 6 and after. In this specification, we will only
use “.NET(6+)” when using “.NET” must be differentiated as referring to .NET
(6+) and not .NET Framework.

.NET Framework In this specification, se “.NET Framework” is only used to refer to syntax and
behavior that applies only to .NET Framework.

API Application Programmers Interface. The direct interface that an end user sees
when creating an application. The VISA API consists of the sum of all of the
operations, attributes, and events of each of the VISA Resource Classes. The
VISA COM I/O API consists of a collection of COM interfaces. The VISA COM
.NET API consists of a collection of .NET interfaces and classes.

COM Component Object Model, a Microsoft technology for reusable software
components.

Component A DLL or EXE that implements executable ANSII C, COM, or .NET code.
Executable components may be accompanied by other supporting files, such as
help files.

Instrument A device that accepts some form of stimulus to perform a designated task, test, or
measurement function. Two common forms of stimuli are message passing and
register reads and writes. Other forms include triggering or varying forms of
asynchronous control.

Instrument Driver Library of functions for controlling a specific instrument.

NuGet The package manager for .NET.

VISA Virtual Instrument Software Architecture. This is the general name given to this
document and its associated architecture. The architecture consists of two main
VISA components: the VISA Resource Manager and the VISA Instrument
Control Resources.

VISA COM VISA for COM. VISA COM is an architecture that provides VISA functionality
via a COM API.

VISA Shared
Components

A common set of VISA components for which there must be only one
implementations. That implementation is provided by the IVI Foundation, and is
described in this document.

WOW64 Windows On Windows 64, a Microsoft technology for allowing the execution of
32-bit native code programs on 64-bit operating systems.

Page A-8 Appendix A: Implementation Files

2.7. Conventions
Throughout this specification you will see the following headings on certain paragraphs. These headings
instill special meaning on these paragraphs.

Rules must be followed to ensure compatibility with the System Framework. A rule is characterized by the
use of the words SHALL and SHALL NOT in bold upper case characters. These words are not used in
this manner for any purpose other than stating rules.

Recommendations consist of advice to implementers that will affect the usability of the final device. They
are included in this standard to draw attention to particular characteristics that the authors believe to be
important to end user success.

Permissions are included to authorize specific implementations or uses of system components. A
permission is characterized by the use of the word MAY in bold upper case characters. These permissions
are granted to ensure specific System Framework components are well defined and can be tested for
compatibility and interoperability.

Observations spell out implications of rules and bring attention to things that might otherwise be
overlooked. They also give the rationale behind certain rules, so that the reader understands why the rule
must be followed.

A Note on the text of the specification: Any text that appears without heading should be considered as
description of the standard and how the architecture was intended to operate. The purpose of this text is to
give the reader a deeper understanding of the intentions of the specification including the underlying model
and specific required features. As such, the implementer of this standard should take great care to ensure
that a particular implementation does not conflict with the text of the standard.

Section 3: VISA Shared Components

The VISA shared components are a common set of VISA components for developing multivendor software
programs, including VISA I/O libraries and a variety of instrument drivers.

The components are “shared” because multiple VISA, VISA COM and VISA .NET vendor-specific
implementations share the components. Because the components are shared and the behavior of each
component is precisely described, the IVI Foundation supplies a standard implementation of each of them;
in fact, the IVI Foundation implementation of each shared component must be used wherever the
component is called for.

The VISA Shared Components installer includes the VISA global infrastructure and VISA Plug-In
Architecture components. In addition, the installer on Windows includes VISA COM components. The
VISA Shared Components are available from the IVI Foundation in the form of standard installers that
guarantee a consistent, reliable installation.

The VISA infrastructure on Windows includes the framework directory structure, registry entries, and
environment variables. The VISA infrastructure on Linux includes the framework directory structure. They
are described in the framework specific sections of this specification.

The VISA Plug-In Architecture components include shared files that allow multiple vendor-specific VISA
libraries to be installed on a single PC. In the past, the standard did not directly support this. For instance,
on 32-bit Windows operating systems, each vendor-specific VISA library had to install a file named
visa32.dll in the system directory. To avoid potential backwards compatibility issues with older versions of
VISA that follow this naming standard, the VISA Plug-In Architecture is available only on 64-bit PCs.

Appendix A: Implementation Files Page A-9

The VISA COM components include shared VISA COM functionality, including the VISA COM type
library, the associated PIA (.NET Framework only), the Global Resource Manager, and Basic Formatted
IO. These components are available for both 32-bit and 64-bit Windows PCs. They are described in VPP-
4.3.4, VISA Implementation Specification for COM.

The VISA.NET Shared Components installer includes the standard VISA .NET Framework API and shared
VISA .NET Framework functionality such as the Global Resource Manager, Formatted IO and the Conflict
Manager. This set of shared functionality is provided in a VISA .NET assembly which is available for both
32-bit and 64-bit Windows PCs. The functionality provided by the assembly is described in VPP-4.3.6,
VISA Implementation Specification for .NET.

The VISA.NET Shared Components NuGet package includes the standard VISA .NET API and shared
VISA .NET functionality such as the Global Resource Manager, Formatted IO and the Conflict Manager.
This set of shared functionality is provided in a VISA .NET assembly. The functionality provided by the
assembly is described in VPP-4.3.6, VISA Implementation Specification for .NET.

Page A-10 Appendix A: Implementation Files

3.1. VISA infrastructure

The VISA infrastructure for Windows includes the directories, HKLM\SOFTWARE registry keys and
values, and environment variables for each installed VXIplug&play framework. The VISA infrastructure
for Linux includes the directories for the Linux Framework.

The WINNT framework is installed on 32-bit Windows operating systems.

Both the WINNT and WIN64 frameworks are installed on 64-bit Windows operating systems. On 64-bit
operating systems, the WINNT framework is installed to the appropriate Windows On Windows 64
(WOW64) directories and registry keys.

The Linux Framework is installed on 64-bit Linux operating systems.

Appendix A: Implementation Files Page A-11

3.2. VISA-C Plug-In Architecture Components

3.2.1. VISA Header Files

VISA header files are included in the VISA shared component installers, because they are required by end
users for VISA development.

The VISA header files are:

 visa.h

 visatype.h

See VPP-4.3.2: VISA Implementation Specification for Textual Languages for a description of these files.
The content of each file is listed as an appendix to VPP-4.3.2.

Vendor-specific WIN64 or LINUX framework VISA installers SHALL not overwrite visa.h or
visatype.h. Vendor-specific WINNT framework VISA installers SHALL not overwrite
visatype.h, but MAY overwrite visa.h to maintain backwards compatibility with previous vendor-
specific versions of visa.h.

3.2.2. The VISA Router

The VISA Router is supported only on Windows 7 (64-bit), Windows 8 (64-bit), Windows 10 (64-bit),
Windows 11 and selected Linux distributions.

The VISA Router component includes the following files on Windows:

 visa64.dll
 visa64.lib

 visa64.def (documentation only, not installed)
 visaRouter.h (documentation only, not installed)

The VISA Router component includes the following files on Linux:

 libivivisa.so.<LibraryVersion>

On Linux, <LibraryVersion> is a string of the form X.Y.Z where X, Y, and Z are respectively the major,
minor and update versions of the library. This scheme is used by all the libraries that are installed by VISA
Shared Components for Linux, as listed in the later sections of this specification.

The VISA Router implements entry points defined by the VISA API, but only so that it can call the
corresponding entry points in vendor-specific implementations of VISA. VISA users can call the VISA
API through the VISA Router. The VISA Router routes calls to the appropriate vendor-specific VISA, and
also routes callbacks from the vendor-specific VISA to the calling program. The VISA object handles used
by the Visa Router are unique and different from the VISA object handles returned from the underlying
vendor-specific VISA libraries. The VISA Router takes care of mapping its object handles to the handles
used by each of the underlying VISA libraries.

For improved performance, when only a single vendor-specific VISA is installed, the VISA Router acts as
a simple pass-through. The object handles returned to the user are those returned from the installed vendor-
specific VISA.

Once a session is opened in the VISA Router, most of the VISA entry points simply map the VISA session
handle passed into the call to the handle of the underlying vendor-specific VISA, call the underlying VISA,
and return the results. There are a few entry points, however, where the process is more complicated
because the router needs either to call more than one underlying VISA or determine which underlying

Page A-12 Appendix A: Implementation Files

VISA to call. The behavior of these entry points is documented in the following sections. In addition,
visaRouter.h includes additional items needed by the Visa Router, also documented below.
In the entry points described below where calls are made to more than one of underlying VISA libraries,
the order in which these calls are made is as follows:

1. The “preferred” VISA, if one is defined.

2. Each installed VISA in lexical order of the VISA GUID.

3.2.2.1. viOpenDefaultRM

The first viOpenDefaultRM call in a process gets a list of the vendor-specific VISA libraries that are
installed and enabled. It loads each of these VISA libraries and returns a session handle to the user.
Subsequent calls to viOpenDefaultRM use the list of open VISA libraries generated in the first call, but
they return a new unique session handle to the user. When the last defaultRM session is closed, all of the
vendor-specific VISA libraries are unloaded if the value of the
VI_ATTR_UNLOAD_PLUGINS_IF_LAST_RM attribute is set to VI_TRUE.

3.2.2.2. viOpen

The viOpen call finds a vendor-specific VISA that can successfully parse and open the resource string
passed in. Because it is possible that more than one vendor-specific VISA can open a resource, this
function checks the enabled vendor-specific VISA libraries in the following order and returns with the first
one that succeeds:

1. The VISA that the user chose to handle devices on the interface the resource string specifies.
2. The VISA that was last used to successfully open this resource.
3. The “preferred” VISA, if one was specified.
4. Each VISA in the list of installed VISA libraries that has not already been tried.

If none of the VISA libraries can parse the resource string, a VI_ERROR_RSRC_NFOUND error is
returned. If at least one VISA can parse it, but none can open it, the error code from the first VISA to parse
it is returned.

3.2.2.3. viFindRsrc/viFindNext

The following algorithm generates the list of resources returned:

1. Create an empty master list of resources to be returned.
2. Call viFindRsrc/viFindNext on each underlying VISA in turn, starting with the preferred VISA if

there is one.
3. For each resource found:

a. Remember the viFindRsrc/viFindNext name.
b. Call viParseRsrcEx and remember the canonical name returned.
c. Call the conflict manager and remember whether the resource is on a “chosen” interface.

(There is no distinction between user chosen and resource manager chosen.)
d. Compare the canonical name with the canonical names already in the master list.
e. If the canonical name does not exit in the master list, add the resource to the master list.
f. If the current resource is on a chosen interface, replace the matching element in the master list

with this one.
4. Return the names returned by the underlying viFindRsrc/viFindNext calls to the user.

3.2.2.4. viParseRsrc/viParseRsrcEx

The following algorithm is used to parse a resource:

Appendix A: Implementation Files Page A-13

1. Call viParseRsrc/viParseRsrcEx on each underlying VISA starting with the preferred VISA if
there is one. Continue until a VISA implementation returns success or there are no more VISA
implementations left.

2. If there was a successful parse in step 1, remember the parse result. If none of the VISA libraries
succeed, return the status code returned by the first VISA called.

3. Use the parse result from step 2 to query the conflict manager to find if there is a chosen VISA for
this resource. (There is no distinction between user chosen and resource manager chosen.)

4. If there is a chosen VISA for this resource and it hasn’t been already called in step 1, call
viParseRsrc/viParseRsrcEx on that VISA.

5. If the call succeeds, return the parse result obtained from the chosen VISA. Otherwise, return the
parse result remembered in step 2.

3.2.2.5. viGetAttribute

The behavior of viGetAttribute depends on the type of object it is being called on.

For objects returned from viOpen or event objects, if the attribute being requested is a multivendor VISA
attribute defined in visaRouter.h (VI_ATTR_UNDERLYING_VISA_SESSION,
VI_ATTR_MULTI_MANF_NAME, VI_ATTR_MULTI_SPEC_VERSION,
VI_ATTR_MULTI_MANF_ID, or VI_ATTR_MULTI_IMPL_VERSION), the appropriate result and/or
status code is returned. For any other attribute, the viGetAttribute of the underlying VISA is called and the
result is returned.

For objects returned from viOpenDefaultRM or viFindRsrc, if the attribute being requested is defined in
visaRouter.h as above, the appropriate result and/or status code is returned. This algorithm also
applies for the attribute VI_ATTR_UNLOAD_PLUGINS_IF_LAST_RM for sessions returned by
viOpenDefaultRM. Otherwise, viGetAttribute is called on each underlying VISA, and the results are
retuned from the first VISA to succeed. If none of the VISA calls succeed, VI_ERROR_NSUP_ATTR is
returned.

3.2.2.6. viSetAttribute

The behavior of viSetAttribute depends on the type of object it is being called on.

For objects returned from viOpen or event objects, if the attribute being set is a multivendor VISA attribute
defined in visaRouter.h (VI_ATTR_UNDERLYING_VISA_SESSION,
VI_ATTR_MULTI_MANF_NAME, VI_ATTR_MULTI_SPEC_VERSION,
VI_ATTR_MULTI_MANF_ID, or VI_ATTR_MULTI_IMPL_VERSION), the appropriate result and/or
status code is returned. For any other attribute, the viSetAttribute of the underlying VISA is called and the
result is returned.

For objects returned from viOpenDefaultRM or viFindRsrc, if the attribute being set is defined in
visaRouter.h as above, the appropriate result and/or status code is returned. Otherwise, the attribute is
set on each underlying VISA. If one or more of the underlying VISA libraries returns a status value greater
or equal to VI_SUCCESS, the status returned to the user is the status returned by the first underlying VISA
that returned a successful status code. If none of the underlying VISA libraries return a successful status
code, the unsuccessful status code of the first underlying VISA called is returned.

For viSetAttribute, the VI_ATTR_UNLOAD_PLUGINS_IF_LAST_RM attribute (which applies only to
viOpenDefaultRM) is handled differently. The state of the attribute is saved in the VISA Router, and each
of the underlying VISA libraries is called with this attribute as well, and the status returned from the
underlying VISA libraries is ignored. The status returned to the user will be VI_SUCCESS.

Page A-14 Appendix A: Implementation Files

3.2.2.7. visaRouter.h Additions

visaRouter.h defines the following router-specific attributes:

Symbolic Name Access
Privilege

Data Type Default Value

VI_ATTR_UNDERLYING_VISA_SESSION RO Local ViSession N/A

VI_ATTR_MULTI_SPEC_VERSION RO Global ViVersion N/A

VI_ATTR_MULTI_MANF_NAME RO Global ViString IVI Foundation

VI_ATTR_MULTI_MANF_ID RO Global ViUInt16 0x3FFF

VI_ATTR_MULTI_IMPL_VERSION RO Global ViVersion N/A

VI_ATTR_UNLOAD_PLUGINS_IF_LAST_RM RW Global ViBoolean VI_FALSE

3.2.3. The Conflict Resolution Manager

The Conflict Resolution Manager is supported on WINNT, WIN64 and LINUX frameworks.

In cases where more than one vendor-specific VISA library can connect to an interface, the conflict
resolution manager provides information regarding available vendor-specific VISA libraries and user
preferences.

RULE 3.2.1
VISA vendors SHALL use the IVI Foundation implementation of the conflict resolution manager and
SHALL NOT create or use a vendor-specific version.

OBSERVATION 3.2.1
VISA vendors may want to include various capabilities for manipulating the VISA conflict resolution
process using the Conflict Resolution Manager. The purpose of describing the API details of the Conflict
Resolution Manager in this document is to document it so that vendors can use it correctly.

3.2.3.2. How Conflict Resolution Works

Conflict Resolution

When multiple VISA libraries are present on a system, some method of determining which VISA library
shall be used is required. The Conflict Resolution Manager follows the algorithm outlined below to
provide information regarding available vendor-specific VISA libraries and user preferences. The
algorithm takes into account previous results in combination with user-defined preferences. The algorithms
in this section use the information the conflict resolution manager provides, but the implementation of these
algorithms is in the VISA Router, VISA .NET Global Resource Manager and the VISA-COM Global
Resource Manager. (The diagrams reflect COM details at points, but the general logic applies to all three.)

Appendix A: Implementation Files Page A-15

Page A-16 Appendix A: Implementation Files

Success Cache Generation

 A portion of the conflict resolution algorithm requires a listing of which VISA libraries previously opened

the desired resource. This listing is known to the VISA Conflict Resolution Manager as the success cache,
and it is generated using the algorithm below.

Appendix A: Implementation Files Page A-17

Conflict Detection

The conflict detection subroutine outlined below is used when determining which VISA library to use for a
specified resource. The goal of this subroutine is to determine whether any libraries can open the given
resource and ensuring that the VISA library used previously to open that resource is used.

Page A-18 Appendix A: Implementation Files

Dynamic Resolution

 The Dynamic Resolution Subroutine is used when the resource has not been previously opened or if the

VISA library previously used has failed. This subroutine finds a VISA library that can open the resource if
one exists, and note that entry in the settings cache.

Appendix A: Implementation Files Page A-19

3.2.3.3. Supported Enumerations for the Conflict Manager functions

RULE 3.2.2
Each function described in section 3.2.3 that accepts a conflictHandlerType parameter SHALL
accept one of the following values:

VISACM_HANDLER_NOT_CHOSEN (0)
VISACM_HANDLER_CHOSEN_BY_RSRC_MGR (1)
VISACM_HANDLER_CHOSEN_BY_USER (2)

RULE 3.2.3
Each function described in section 3.2.3 that accepts a flushBehavior parameter SHALL accept one of
the following values:

VISACM_FLUSH_OVERWRITE_ALWAYS (0)
VISACM_FLUSH_WRITE_IF_UNCHANGED (1)
VISACM_FLUSH_WRITE_OR_RELOAD (2)

RULE 3.2.4
Each function described in section 3.2.3 that accepts an apiType parameter SHALL accept one of the
following values:

VISACM_API_C_AND_COM (0)
VISACM_API_DOTNET (1)

RULE 3.2.5
For each function in this section that takes an apiType parameter, there SHALL be a corresponding
legacy function without that parameter and without ‘2’ in the function name. Each legacy function SHALL
call the corresponding new function with the apiType parameter set to VISACM_API_C_AND_COM.

3.2.3.4. VISACM_ClearEntireTable()

Purpose
 Clear all cached settings stored by the Conflict Manager.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The Conflict Manager’s settings have been
successfully cleared.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_ALLOC Insufficient system resources to make the change to the
Conflict Manager settings.

Page A-20 Appendix A: Implementation Files

Description
 This function clears all settings currently cached by the Conflict Manager. After this function is called,

there will be no preferred VISA, no disabled VISA libraries, and no record of any instruments having been
accessed by a VISA library.

3.2.3.5. VISACM_ClearResourceHandlersFromTable2(apiType)

Purpose
 Deletes all records corresponding to the given API type of resources that were previously attempted to be

opened by a VISA library.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API
corresponding to the records to be deleted.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The records of all previous resource opening attempts
for the given API type were deleted by the Conflict
Manager.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 This function clears all records of any attempted opens for the given API type by any VISA library on

resources. Following this call, all resources will be treated as never opened for the given API type upon the
next open attempt.

Appendix A: Implementation Files Page A-21

3.2.3.6. VISACM_Close()

Purpose
 Signals to the Conflict Manager that the caller is finished with Conflict Manager actions.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The Conflict Manager handled the close operation
successfully.

Error Codes Description

VI_ERROR_CLOSING_FAILED The Conflict Manager failed to successfully close.
This can occur if the Conflict Manager has not been
correctly initialized, or if writing settings to file failed.

Description
 This function should be called when the client process is finished using the Conflict Manager. Calling this

function ensures that new settings are stored and that cleanup occurs properly.

Page A-22 Appendix A: Implementation Files

3.2.3.7. VISACM_CreateHandler2(apiType, interfaceType, interfaceNumber, sessionType,
guid_SRM, conflictHandlerType, comments)

Purpose
 Creates a record of an open attempt by a VISA library on a resource for the given API type.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API
supported by the calling VISA library.

interfaceType IN ViUInt16 The target resource’s interface type. This is
identical to the VI_ATTR_INTF_TYPE
specified by the VISA specification.

interfaceNumber IN ViUInt16 The target resource’s interface number.
This is identical to the
VI_ATTR_INTF_NUM specified by the
VISA specification.

sessionType IN ViConstString The type of resource being opened. For
example, GPIB has both INSTR and
BACKPLANE resources. This parameter
would hold that type.

guid_SRM IN ViConstString The GUID of the calling VISA library. The
GUID should be passed in the format
XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX.

conflictHandlerType IN ViInt16 An enumeration signaling whether the
setting is a user-specified setting, a Conflict
Manager defined success, or a failure.

comments IN ViConstString Any extra comments regarding this setting.
Passing NULL signals that no comments
should be kept.

Appendix A: Implementation Files Page A-23

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The desired setting was added to the Conflict
Manager’s stored settings.

Error Codes Description

VI_ERROR_ALLOC Insufficient system resources to make the change to the
Conflict Manager settings.

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_INV_RSRC_NAME The GUID string passed by the user was not a valid
GUID string.

VI_ERROR_INV_SETUP The current Conflict Manager settings are
incompatible with the desired setting. For example,
the new record’s VISA is a disabled VISA which
cannot have any stored records.

VI_ERROR_USER_BUF A buffer passed by the user was not a valid buffer.

VI_ERROR_INV_PARAMETER An invalid apiType or conflictHandlerType parameter
value was passed in by the user.

Description
 This call is used to create new records in the Conflict Manager’s settings cache. For end users, the main

use would be to specify a specific VISA for a given resource for the given API type. When a setting is
user-specified (as opposed to Conflict Manager specified), it is never overridden, even if the open attempt
fails.

 Any new setting created by this function must conform to any settings already made. For example, a

record may not be created for a disabled VISA.

Page A-24 Appendix A: Implementation Files

3.2.3.8. VISACM_DeleteHandler2(apiType, interfaceType, interfaceNumber, sessionType,
guid_SRM)

Purpose
 Deletes a setting corresponding to both a specific VISA library and a specific resource for the given API

type.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API
corresponding to the record to be deleted.

interfaceType IN ViUInt16 The target resource’s interface type. This is
identical to the VI_ATTR_INTF_TYPE
specified by the VISA specification.

interfaceNumber IN ViUInt16 The target resource’s interface number.
This is identical to the
VI_ATTR_INTF_NUM specified by the
VISA specification.

sessionType IN ViConstString The type of resource being opened. For
example, GPIB has both INSTR and
BACKPLANE resources. This parameter
would hold that type.

guid_SRM IN ViConstString The GUID of the calling VISA library. The
GUID should be passed in the format
XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX.

Appendix A: Implementation Files Page A-25

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The record either does not exist or was successfully
cleared.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_INV_RSRC_NAME The GUID string passed by the user was not a valid
GUID string.

VI_ERROR_INV_SETUP The current Conflict Manager settings are
incompatible with the desired setting. For example,
the new record’s VISA is a disabled VISA which
cannot have any stored records.

VI_ERROR_USER_BUF A buffer passed by the user was not a valid buffer.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 This function is called when a setting needs to be deleted. Much like the above

VISACM_CreateHandler2() function, the function should be used by external applications to manipulate
user-specified resource settings.

Page A-26 Appendix A: Implementation Files

3.2.3.9. VISACM_DeleteHandlerByGUID2(apiType, guid_SRM)

Purpose
 Delete all records corresponding to the given API type for a VISA library identified by GUID.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API
corresponding to the records to be deleted.

guid_SRM IN ViConstString The GUID of the VISA library to remove.
The GUID should be passed in the format
XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS All records for the specified VISA were successfully
removed.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_INV_RSRC_NAME The GUID string passed by the user was not a valid
GUID string.

VI_ERROR_USER_BUF A buffer passed by the user was not a valid buffer.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 This function deletes all records corresponding to the given API type for a specified VISA library. This

function is designed for use when a VISA library is removed from the system.

Appendix A: Implementation Files Page A-27

3.2.3.10. VISACM_DeleteResourceByIndex2(apiType, resourceIndex)

Purpose
 Delete all records corresponding to the given API type for a resource specified by index.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API
corresponding to the records to be deleted.

resourceIndex IN ViInt32 The index of the resource to remove

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS All records for the specified resource were successfully
removed.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_RSRC_NFOUND The index provided was outside the bounds of the
Conflict Manager’s records.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 This function deletes a resource from the Conflict Manager’s cache. The index used by this function

corresponds to the index used by VISACM_QueryResource2().

Page A-28 Appendix A: Implementation Files

3.2.3.11. VISACM_FindChosenHandler2(apiType, interfaceType, interfaceNumber,
sessionType, guid_SRM[], conflictHandlerType)

Purpose
 Find the VISA library selected by the Conflict Manager for the given API type to open the specified

resource.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API to
be supported by the desired handler library.

interfaceType IN ViUInt16 The target resource’s interface type. This is
identical to the VI_ATTR_INTF_TYPE
specified by the VISA specification.

interfaceNumber IN ViUInt16 The target resource’s interface number.
This is identical to the
VI_ATTR_INTF_NUM specified by the
VISA specification.

sessionType IN ViConstString The type of resource being opened. For
example, GPIB has both INSTR and
BACKPLANE resources. This parameter
would hold that type.

guid_SRM OUT ViChar[] The GUID of the selected VISA library.

conflictHandlerType OUT ViPInt16 An enum representing whether the resource
was chosen by the Conflict Manager or
specified by the user

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The Conflict Manager successfully supplied the VISA
library for the given API type to be used for opening
the resource.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_RSRC_NFOUND No library was found for the given API type that was
previously selected to open this resource.

VI_ERROR_USER_BUF A buffer passed by the user was not valid.

VI_ERROR_INV_PARAMETER An invalid apiType or conflictHandlerType parameter
value was passed in by the user.

Appendix A: Implementation Files Page A-29

Description
 This function is used to determine which installed VISA library for the given API type will be used to open

the supplied resource. If no VISA library has previously opened the device for the given API type, and no
user setting has been supplied, an error is returned.

3.2.3.12. VISACM_FlushConflictFile(flushBehavior, fileOnDiskWasNewer)

Purpose
 Flush any new settings made to the Conflict Manager settings file on disk.

Parameters

Name In/Out Type Description

flushBehavior IN ViInt16 An enum specifying how the Conflict
Manager should react if the settings file has
been edited by another process.

fileOnDiskWasNewer OUT ViPBoolean A Boolean signaling whether the file on the
disk is newer than the one loaded by the
client process.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The settings were successfully flushed to the settings
file on disk.

Error Codes Description

VI_ERROR_FILE_ACCESS The Conflict Manager failed to write to the settings
file. This is likely due to invalid permissions.

VI_ERROR_INV_MODE The value passed for the behavior was invalid.

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_WARN_NULL_OBJECT Either no settings had been changed in memory, or the
settings file was not overwritten based on the specified
behavior.

Description
 This function flushes any changes made to Conflict Manager settings to the settings file on disk. The

flushBehavior parameter determines what actions the function takes if the file on disk has been updated by
another process. If the settings are dirty but could not be flushed because the
VISACM_FLUSH_WRITE_IF_UNCHANGED behavior was specified and the file on disk was newer, the
settings remain dirty and the function returns VI_WARN_NULL_OBJECT.

Page A-30 Appendix A: Implementation Files

3.2.3.13. VISACM_GetConflictTableFilename(filename)

Purpose
 Get the name of the Conflict Manager settings file.

Parameters

Name In/Out Type Description

filename OUT ViChar[] The path and name of the Conflict Manager
settings file.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The settings file information was successfully returned.

Error Codes Description

VI_ERROR_FILE_ACCESS The Conflict Manager could not access the required
path.

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_INV_SETUP The path required by the Conflict Manager does not
exist.

VI_ERROR_USER_BUF A buffer passed by the user was not valid.

Description
 Get the name of the file where the Conflict Manager settings will be kept. This file does not necessarily

need to exist.

Appendix A: Implementation Files Page A-31

3.2.3.14. VISACM_GetIsDirty(isDirty)

Purpose
 Get whether any Conflict Manager settings have been changed since the last flush of the settings to disk.

Parameters

Name In/Out Type Description

isDirty OUT ViPBoolean The variable specifying whether the settings
in memory have been written to disk.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The status of the settings in memory has been
successfully returned.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_USER_BUF The output variable pointer passed to the function was
invalid.

Description
 This function returns whether the settings in memory have changed since the last write to disk.

3.2.3.15. VISACM_GetInstalledVisa2(apiType, index, vendorID, guid_SRM[], visaPathLocation[],
visaFriendlyName[], comments[])

Purpose
 Get information about an installed VISA library for the given API type based on a supplied index.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API
corresponding to the VISA library.

index IN ViInt32 The index determining which VISA
library’s information gets returned.

vendorID OUT ViPUInt16 The vendor ID number of the VISA
library’s vendor.

Page A-32 Appendix A: Implementation Files

guid_SRM OUT ViChar[] The GUID associated with the VISA
library.

visaPathLocation OUT ViChar[] The location of the vendor-specific VISA
implementation.

visaFriendlyName OUT ViChar[] The friendly name of the VISA library,
determined by the vendor.

comments OUT ViChar[] Any comments regarding the specified
VISA library.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The information for the VISA library at the given
index was successfully returned.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_RSRC_NFOUND A VISA library corresponding to the given index could
not be found. This could be due to an out-of-range
index or corruption of the VISA information in the
registry.

VI_ERROR_USER_BUF A buffer passed by the user was not valid.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 This function returns information for a vendor-specific VISA implementation based on a given index.

While most of the data returned by this function is mainly for informational use, the GUID can be used by
other functions to determine what resources a vendor-specific VISA library is currently set to access. The
GUID is also used by the VISA COM Global Resource Manager to create instances of the Vendor Specific
VISA COM resource manager class. For VISA C, the visaPathLocation value is the absolute path on disk
to the vendor specific VISA C Library that can be loaded by the VISA C Router. For VISA .NET, the
visaPathLocation value is the Assembly Qualified Name of the resource manager class in the vendor
specific VISA .NET assembly that can be instantiated by the VISA .NET Global Resource Manager
described in VPP-4.3.6, VISA Implementation Specification for .NET.

Appendix A: Implementation Files Page A-33

3.2.3.16. VISACM_GetInstalledVisaCount2(apiType, numberOfVisas)

Purpose
 Get the total number of vendor-specific VISA libraries installed on the system that support the given API

type.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API.

numberOfVisas OUT ViPInt32 The number of VISA libraries installed on
the system that support the given API type.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The number of VISA libraries on the system that
support the given API type was successfully returned.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_RSRC_NFOUND No installed VISA libraries that support the given API
type were found.

VI_ERROR_USER_BUF The output variable passed to the function was invalid.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 This functions returns the total number of vendor-specific VISA libraries that support the specified API

type installed on the system. The value returned by this can be used to iterate through the installed VISA
libraries using the VISACM_GetInstalledVisa2() function.

Page A-34 Appendix A: Implementation Files

3.2.3.17. VISACM_GetResourceCount2(apiType, numberRsrcs)

Purpose
 Gets the number of resources with settings stored by the Conflict Manager.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API for
which to query the number of resources.

numberRsrcs OUT ViPInt32 The number of resources with settings
stored in the Conflict Manager.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The number of resources stored by the Conflict
Manager corresponding to the specified API type was
successfully returned.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize() has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_USER_BUF The output variable passed to the function was invalid.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 This function gets the number of resources with settings corresponding to the specified API type stored by

the Conflict Manager. The value returned by this function can be used to iterate through resource records
using VISACM_QueryResource2().

Appendix A: Implementation Files Page A-35

3.2.3.18. VISACM_GetStoreConflictsOnly(storeConflicts)

Purpose
 Returns whether the Conflict Manager is storing settings only for resources with multiple VISA libraries

able to parse the resource string.

Parameters

Name In/Out Type Description

storeConflicts OUT ViBoolean A variable representing whether the
Conflict Manager is storing only resources
with multiple VISA libraries finding the
resource.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The setting was successfully returned by the function.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_USER_BUF The output variable passed to the function was invalid.

Description
 This function returns whether the Conflict Manager is storing settings only for resources with multiple

VISA libraries able to parse the resource string. If this setting is false, then the Conflict Manager stores
settings for all resources, even when no conflicts exist.

Page A-36 Appendix A: Implementation Files

3.2.3.19. VISACM_GetVisaEnabled2(apiType, guid_SRM, enabled)

Purpose
 Returns whether a specific VISA library is enabled or disabled.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API
supported by the given VISA library.

guid_SRM IN ViConstString The GUID identifying the VISA for which
to retrieve its enabled status.

Enabled OUT ViPBoolean The variable specifying whether the VISA
is enabled or disabled for the specified API
type

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The enabled status for the VISA was returned
successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_INV_RSRC_NAME The GUID supplied to the function was invalid. GUID
values should be in XXXXXXXX-XXXX-XXXX-
XXXX-XXXXXXXXXXXX format.

VI_ERROR_USER_BUF The output variable passed to the function was invalid.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 The function returns whether a given VISA is enabled for the given API type. A VISA that is disabled will

not be used by the Conflict Manager for records corresponding to the given API type and may not have any
other settings associated with it.

Appendix A: Implementation Files Page A-37

3.2.3.20. VISACM_GetVisaPreferred2(apiType, guid_SRM[])

Purpose
 Get the GUID for the preferred VISA library for the specified API type.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API.

guid_SRM OUT ViChar[] The GUID of the preferred VISA library for
the given API type on the system. The
ViChar array should be at least 36
characters long.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The GUID for the preferred VISA library for the given
API type was returned successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_RSRC_NFOUND No preferred VISA is specified to handle the given
API type on the system.

VI_ERROR_USER_BUF The output variable passed to the function was invalid.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 This function returns the GUID of the preferred VISA library for the specified API type. If no VISA

library has been specified as preferred for that API type, an error is returned.

Page A-38 Appendix A: Implementation Files

3.2.3.21. VISACM_Initialize()

Purpose
 Initialize the Conflict Manager library for use by the client application.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The Conflict Manager library was initialized
successfully.

Error Codes Description

VI_ERROR_ALLOC The Conflict Manager failed to initialize.

Description
 This function initializes the Conflict Manager library for use by a client application. This function must be

called before any other function for the Conflict Manager to be used.

3.2.3.22. VISACM_QueryResource2(apiType, resourceIndex, interfaceType, interfaceNumber,
sessionType[], numHandlers)

Purpose
 Queries the properties of a resource stored in the Conflict Manager settings cache based on a provided

index and the given API type.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API to
query.

resourceIndex IN ViInt32 The index of the resource for which to
retrieve information.

interfaceType OUT ViPUInt16 The target resource’s interface type. This is
identical to the VI_ATTR_INTF_TYPE
specified by the VISA specification.

interfaceNumber OUT ViPUInt16 The target resource’s interface number.
This is identical to the
VI_ATTR_INTF_NUM specified by the
VISA specification.

sessionType OUT ViChar[] The type of resource being opened. For
example, GPIB has both INSTR and
BACKPLANE resources. This parameter
would hold that type.

numHandlers OUT ViPInt16 The number of records stored for the
specified resource.

Appendix A: Implementation Files Page A-39

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The information for the specified resource was
returned successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_RSRC_NFOUND A resource corresponding to the given index and API
type could not be found. This is most likely due to an
out-of-range index.

VI_ERROR_SYSTEM_ERROR The function failed to access the Conflict Manager
settings successfully.

VI_ERROR_USER_BUF A buffer passed by the user was not valid.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 This function queries the properties of the resources corresponding to the given index and API type. This

function is mainly meant to be used to iterate through resource stored by the Conflict Manager.
VISACM_QueryResourceHandler2() can be used to iterate through the handler records for each resource
for the given API type .

Page A-40 Appendix A: Implementation Files

3.2.3.23. VISACM_QueryResourceHandler2(apiType, resourceIndex, handlerIndex,
guid_SRM[],conflictHandlerType, comments[])

Purpose
 Query a record for how a given VISA library is set to handle a specific resource for the given API type.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API to
query.

resourceIndex IN ViInt32 The index corresponding to the resource.

handlerIndex IN ViInt32 A provided index corresponding to which
VISA library record should be returned.

guid_SRM OUT ViChar[] The GUID of the VISA library specified by
this record

conflictHandlerType OUT ViPInt16 An enum representing whether this VISA
library set by the user to handle this
resource, chosen by the Conflict Manager
to handle this resource, or set to not handle
the resource.

comments OUT ViChar[] A character string containing any comments
stored with the record.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The information from the record was returned
successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_RSRC_NFOUND Either the resource index or the handler index was
invalid.

VI_ERROR_SYSTEM_ERROR The function failed to access the Conflict Manager
settings successfully.

VI_ERROR_USER_BUF A buffer passed by the user was not valid.

VI_ERROR_INV_PARAMETER An invalid apiType or conflictHandlerType parameter
value was passed in by the user.

Appendix A: Implementation Files Page A-41

Description
 This function queries how a specific VISA library is set to handle a given resource for the given API type.

A VISA library can either be chosen by the user, chosen by the Conflict Manger, or set to not handle a
given resource. Using VISACM_QueryResource2() in tandem with this function can provide a complete
picture of the Conflict Manager’s configuration.

3.2.3.24. VISACM_ReloadFile()

Purpose
 Reload settings from the Conflict Manager’s settings file.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The settings were successfully loaded from the
Conflict Manager’s settings file on disk.

Error Codes Description

VI_ERROR_ALLOC The settings failed to load due to a failed allocation.

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

Description
 This function reloads the settings from the Conflict Manager’s settings file. If the file cannot be read, the

settings revert to the default settings.

3.2.3.25. VISACM_SetStoreConflictsOnly(storeConflicts)

Purpose
 Sets whether the Conflict Manager should store only conflicts in the table.

Parameters

Name In/Out Type Description

storeConflicts IN ViBoolean Determines whether the Conflict Manager
will store only conflicted entries or all
entries.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Page A-42 Appendix A: Implementation Files

Completion Code Description

VI_SUCCESS The setting was set successfully.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

Description
 This function sets whether the Conflict Manager stores only conflicts in the table or the results of all

resource openings. Saving all of the results from opening results in a larger table, but prevents the VISA
Router from repeating the conflict arbitration algorithm on every open.

Appendix A: Implementation Files Page A-43

3.2.3.26. VISACM_SetVisaEnabled2(apiType, guid_SRM, enabled)

Purpose
 Enables or disables a specified VISA library.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API for
which to enable or disable the specified
VISA library.

guid_SRM IN ViConstString The GUID of the VISA library to enable or
disable. The GUID should be provided in
XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX format.

enabled IN ViBoolean Specifies whether the VISA library should
be enabled or disabled.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The VISA library was successfully disabled.

Error Codes Description

VI_ERROR_ALLOC The Conflict Manager could not allocate needed
memory for the new setting.

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_INV_RSRC_NAME The specified GUID was not valid.

VI_ERROR_USER_BUF A buffer passed by the user was not valid.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 Enables or disables a specified VISA library for the specified API type. A disabled VISA library will have

all of its records corresponding to the specified API type deleted from the conflict table and will not be
used when opening any resources for that API type. When reenabling a VISA library, the user may want to
clear the entire table to repopulate the table with settings using the reenabled VISA library.

Page A-44 Appendix A: Implementation Files

3.2.3.27. VISACM_SetVisaPreferred2(apiType, guid_SRM)

Purpose
 Sets a VISA library as the preferred VISA library for the given API type.

Parameters

Name In/Out Type Description

apiType IN ViInt16 An enum specifying the type of the API for
which to set the given preferred library.

guid_SRM IN ViConstString The GUID corresponding to the VISA
library to set as preferred.

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI_SUCCESS The VISA library was successfully set as the preferred
VISA library.

Error Codes Description

VI_ERROR_INV_OBJECT The Conflict Manager Library has not been properly
initialized. Ensure that VISACM_Initialize () has been
called before attempting to configure Conflict Manager
Settings.

VI_ERROR_INV_RSRC_NAME The specified GUID was not valid.

VI_ERROR_INV_SETUP The VISA library specified to be preferred is disabled
for the given API type. This is not a valid setup and
returns an error instead of making this setting.

VI_ERROR_USER_BUF A buffer passed by the user was not valid.

VI_ERROR_INV_PARAMETER An invalid apiType parameter value was passed in by
the user.

Description
 This function sets a VISA library as the preferred VISA library for the specified API type. As the preferred

VISA library, this library is used to open all resources on the system for the given API type, unless that
resource has a user-specified preference for that API type.

Appendix A: Implementation Files Page A-45

3.2.4. VISA Utilities

The VISA Utilities component is supported on the WIN64 and LINUX frameworks.

The VISA Utilities component provides support to the VISA Router for mapping the VISA object handles
of the underlying vendor-specific VISA object handles to the VISA object handles that are presented to the
user. Named visaUtilities.dll on Windows and libivivisa-
utilities.so.<LibraryVersion> on Linux, this component exports a number of entry points, most of
which are used internally by the VISA router and are not documented in this specification.

Only the getUserVi() entry point is documented here because, given a vendor-specific VISA object handle,
it returns the user-visible VISA object handle. This is useful for vendor-provided utilities that deal with
vendor-specific object handles, but need to display the user-visible object handles returned from the VISA
Router.

3.2.4.1. getUserVi (underlyingVi, underlyingManfId)

Purpose
 Map a vendor-specific VISA object handle to the user-visible VISA object handle used by the VISA

Router.
Parameters

Name In/Out Type Description

underlyingVi IN const ViSession A vendor-specific VISA object handle.

underlyingManfId IN const ViUInt16 The VI_ATTR_RSRC_MANF_ID value
for this vendor-specific VISA.

Return Values

Type ViSession This is the user-visible VISA object handle that
corresponds to the underlying vendor-specific VISA
object handle that was passed in.

If 0 is passed in as the underlyingVi, the value returned is 0. If there is no corresponding user-visible VISA
object handle, the value returned is that of the underlying VI.

Description

This function is useful for vendor-provided utilities that deal with vendor-specific object handles, but which
need to display the objecthandle that the VISA Router has presented to the user. The VISA Router hides
the vendor-specific handle from the user, so a vendor utility that presents objectinformation to the user
needs a way to convert the hidden vendor-specific objecthandle to the user-visible objecthandle that has
meaning to the user.

Note that both the vendor-specific VISA objecthandle and the vendor Manufacturer ID are required to
determine the user-visible VISA objecthandle. This is because the vendor-specific VISA objecthandle may
not be unique.

Page A-46 Appendix A: Implementation Files

3.3. VISA COM Components

Table 3.3.1 shows a list of files included in the VISA Shared Components. See VPP-4.3.4, VISA
Implementation Specification for COM, for details of these components.

Component Name

32-
Bit

64-
Bit

Description

GlobMgr.dll

X X The Global Resource Manager (GRM) COM
Component and the VISA COM I/O type
library.

BasFrmIO.dll X X A standard implementation of the VISA
COM IFormattedIO488 interface.

Ivi.Visa.Interop.dll
Ivi.Visa.Interop.xml

X X The primary interop assembly (PIA) for the
VISA COM I/O type library, along with the
PIA intellisense help file.

Ivi.Visa.Interop.config

Policy.X.X.Ivi.Visa.
 Interop.xml

X The policy file that forwards calls from
previous versions of the VISA COM PIA to
the current version. X.X may stand for any
previous version that is forwarded to the
current PIA. There may be multiple policy
files, one for each major.minor version that
is forwarded.

IviPiaRegistration.bat X X A batch program that can be run by users to
make sure that all of the IVI PIAs are
properly registered in the Global Assembly
Cache (GAC).

Table 3.3.1

Appendix A: Implementation Files Page A-47

3.4. VISA .NET Components
Table 3.3.2 shows a list of files included in the VISA .NET Shared Components installer. See VPP-4.3.6,
VISA Implementation Specification for .NET, for additional details of the functionality provided by this
component.

Component Name

Any
CPU

Description

Ivi.Visa.dll X The VISA .NET Shared Assembly that provides the
implementation of the GlobalResourceManager
class and an implementation of the
IMessageBasedFormattedIO interface defined in
the VPP 4.3.6 specification. In addition, this
assembly also provides the implementation of the
ConflictManager class defined in this specification.

Table 3.4.1

3.4.1. Conflict Resolution Manager .NET API

The VISA .NET Shared Components provide a .NET API for the Conflict Resolution Manager. This API
consists of several enumerations and classes that .NET clients can use to access the Conflict Resolution
Manager. The methods available in these classes correspond to the C API functions that are described in
section 3.2.3.

RULE 3.4.1
VISA .NET Shared Components SHALL provide the only implementation of the Conflict Resolution
Manager .NET API.

3.4.1.2. Enumerations

Conflict Manager .NET API defines the following enumerations. All enumerations are defined in the
Ivi.Visa.ConflictManager namespace.

 ApiType
 FlushBehavior
 HandlerType

3.4.1.2.1 ApiType

Definition
 public enum ApiType
 {
 CAndCom = 0,
 DotNet = 1
 }

OBSERVATION 3.4.1

The ApiType enumeration consists of all the VISA API Types that are supported by this version of the Conflict
Manager API functions. This enumeration corresponds to the defined values for the apiType parameter used in the
Conflict Manager C API functions described in section 3.2.3.

Page A-48 Appendix A: Implementation Files

3.4.1.2.2 FlushBehavior

Definition
 public enum FlushBehavior
 {
 OverwriteAlways = 0,
 WriteIfFileOnDiskUnchanged = 1,
 WriteOrReload = 2
 }

OBSERVATION 3.4.2

The FlushBehavior enumeration specifies the behavior of the ConflictManager FlushConflictFile()
method when it saves the Conflict Manager settings to the file on disk. This enumeration corresponds to the
flushBehavior parameter of the VISACM_FlushConflictFile() function described in section 3.2.3. The values are
described in the following table.

Value Description

OverwriteAlways Save the conflict file even if there are changes to the file on
disk since it was read.

WriteIfFileOnDiskUnchanged Save only if there are no changes to the file on disk since it
was read.

WriteOrReload Save only if there are no changes to the file on disk was read.
If the file on disk is newer, FlushConflictFile will
discard the local changes and reload the file from disk.

3.4.1.2.3. HandlerType

Definition
 public enum HandlerType
 {
 NotChosen = 0,
 ChosenByResourceManager = 1,
 ChosenByUser = 2
 }

OBSERVATION 3.4.3

The HandlerType enumeration represents the possible status settings of the VisaImplementation in a Conflict
Manager record with respect to the HardwareInterface with which the handler is associated. This enumeration
corresponds to the conflictHandlerType parameter used in the Conflict Manager C API functions described in
section 3.2.3. The values are described in the following table.

Value Description

NotChosen The VisaImplementation is not the chosen handler for
the HardwareInterface.

ChosenByResourceManager The VisaImplementation is the chosen handler for the
HardwareInterface and it was chosen by a Resource
Manager.

ChosenByUser The VisaImplementation is the chosen handler for the
HardwareInterface and it was chosen by a user.

Appendix A: Implementation Files Page A-49

3.4.1.3. Exceptions

Accessing the ConflictManager .NET API methods and properties throw various standard .NET exceptions to
indicate error conditions.

3.4.1.4. Classes

The Conflict Manager .NET API defines the following classes. All classes are defined in the
Ivi.Visa.ConflictManager namespace.

 HardwareInterface
 VisaImplementation
 ConflictManager

3.4.1.4.1. HardwareInterface

Description

The HardwareInterface class consolidates information related to hardware interfaces. Type specifies the
hardware interface type (GPIB, ASRL, etc.). Number specifies the board number within the interface type.
ResourceClass specifies the resource class for this session (INSTR, INTFC, etc.).

Definition

 public sealed class HardwareInterface : IEquatable<HardwareInterface>
 {
 public Int16 Number { get; private set; }
 public String ResourceClass { get; private set; }
 public Int32 Type { get; private set; }
 public HardwareInterface(Int32 type, Int16 number, String resourceClass)
 {…}

 public static Boolean operator ==(HardwareInterface intf1, HardwareInterface
intf2) {…}
 public static Boolean operator !=(HardwareInterface intf1, HardwareInterface
intf2) {…}
 public override Boolean Equals(object o) {…}
 public Boolean Equals(HardwareInterface other) {…}
 }

Corresponding C API Features

The HardwareInterface class has several .NET properties that correspond to parameters to functions in the C
API. The following table shows property-parameter equivalence for this class.

Property Name C API Parameter Name
Number interfaceNumber

ResourceClass sessionType

Type interfaceType

There is no corresponding C API function for the constructor or the equality methods. The only job of the
constructor is to create an instance of the object and set the values of the related properties.

Page A-50 Appendix A: Implementation Files

3.4.1.4.2. VisaImplementation

Description

The VisaImplementation class consolidates information related to VISA implementations that are installed on
the system. HandlerId specifies the GUID that identifies the VISA implementation for the given API type.
ResourceManufacturerId specifies the ID number of the vendor of this implementation. (These numbers are
defined in the VPP-9 specification.). Location specifies the location of the DLL or class that contains the
implementation. If the ApiType is CAndCom, this is the full path for the resource manager DLL. If the ApiType
is DotNet, this is the assembly qualified name for the VISA implementation's resource manager class.
FriendlyName specifies a descriptive name for the implementation. Comments specifies additional information
about the implementation. ApiType represents the type of API supported by the implementation. Enabled
specifies whether a resource manager will ever load or instantiate this VISA implementation.

Definition

 public sealed class VisaImplementation : IEquatable<VisaImplementation>
 {
 public ApiType ApiType { get; private set; }
 public String Comments { get; private set; }
 public Boolean Enabled { get; set; }
 public String FriendlyName { get; private set; }
 public Guid HandlerId { get; private set; }
 public String Location { get; private set; }
 public Int32 ResourceManufacturerId { get; private set; }

 public VisaImplementation(
 Guid handlerId,
 Int32 resourceManufacturerId,
 String location,
 String friendlyName,
 String comments,
 ApiType apiType) {…}
 public static Boolean operator ==(VisaImplementation visa1, VisaImplementation
visa2) {…}
 public static Boolean operator !=(VisaImplementation visa1, VisaImplementation
visa2) {…}
 public override Boolean Equals(object o) {…}
 public Boolean Equals(VisaImplementation other) {…}
 }

Corresponding C API Features

The VisaImplementation class has several .NET properties that correspond to parameters to the functions in the
C API. The following table shows property-parameter equivalence for this class.

Property Name C API Parameter Name
ApiType apiType

Comments comments (VISACM_GetInstalledVisa2())

Enabled enabled

FriendlyName visaFriendlyName

HandlerId guid_SRM

Location visaPathLocation

ResourceManufacturerId vendorID

Appendix A: Implementation Files Page A-51

There is no corresponding C API function for the constructor or equality methods. The only job of the constructor is
to create an instance of the object and set the values of the related properties.

3.4.1.4.3. ConflictManager

Description

The ConflictManager class provides the primary .NET API for the Conflict Resolution Manager. The methods in
this class correspond to one or more of the C API functions described in section 3.2.3. The ConflictFilePath
property is the path to the file on disk that is used by the Conflict Manager to store the settings. The IsDirty
property indicates whether there have been any changes to the in-memory copy of the settings since the settings
were last saved or initially loaded. The StoreConflictsOnly property specifies whether the Conflict Manager
will only store records when there is a conflict.

Definition

 public sealed class ConflictManager : IDisposable
 {
 public Boolean StoreConflictsOnly { get; set; }
 public String ConflictFilePath { get; }
 public Boolean IsDirty { get; }

 public ConflictManager() {…}
 ~ConflictManager() {…}
 public void Dispose() {…}

 public void ClearTable(){…}
 public void CreateHandler(HardwareInterface intf,
 VisaImplementation visa,
 HandlerType type) {…}
 public void CreateHandler(HardwareInterface intf,
 VisaImplementation visa,
 HandlerType type,
 String comments) {…}
 public void FlushConflictFile(FlushBehavior behavior) {…}
 public void FlushConflictFile(FlushBehavior behavior,
 out Boolean fileOnDiskWasNewer) {…}
 public VisaImplementation GetChosenHandler(ApiType apiType,
 HardwareInterface intf) {…}
 public VisaImplementation GetChosenHandler(ApiType apiType,
 HardwareInterface intf,
 out HandlerType handlerType) {…}
 public List<VisaImplementation> GetHandlers(ApiType apiType,
 HardwareInterface intf) {…}
 public List<VisaImplementation> GetInstalledVisas(ApiType apiType) {…}
 public List<HardwareInterface> GetInterfaces(ApiType apiType) {…}
 public VisaImplementation GetPreferredVisa(ApiType apiType) {…}
 public void ReloadFile() {…}
 public void RemoveHandler(HardwareInterface intf, VisaImplementation visa) {…}
 public void RemoveHandlers(ApiType apiType) {…}
 public void RemoveHandlers(ApiType apiType, HardwareInterface intf) {…}
 public void RemoveHandlers(VisaImplementation visa) {…}
 public void SetPreferredVisa(VisaImplementation visa) {…}
 }

Page A-52 Appendix A: Implementation Files

Corresponding C API Features

The ConflictManager class has several .NET properties that correspond to parameters to functions in the C API.
The following table shows property-parameter equivalence for this class.

Property Name C API Parameter Name
StoreConflictsOnly storeConflicts

ConflictFilePath filename

IsDirty isDirty

The ConflictManager class has several methods that correspond to one or more functions in the C API. following
table shows method-function equivalence for hardware interfaces.

Method Name C API Function Name
Constructor VISACM_Initialize()

Dispose VISACM_Close()

ClearTable() VISACM_ClearEntireTable()

CreateHandler(HardwareInterface,
VisaImplementation,
HandlerType)

VISACM_CreateHandler2()

CreateHandler(HardwareInterface,
VisaImplementation,
HandlerType, String)

VISACM_CreateHandler2()

FlushConflictFile(FlushBehavior) VISACM_FlushConflictFile()

FlushConflictFile(FlushBehavior, out
Boolean)

VISACM_FlushConflictFile()

GetChosenHandler(ApiType,
HardwareInterface)

VISACM_FindChosenHandler2()

GetChosenHandler(ApiType,
HardwareInterface, out HandlerType)

VISACM_FindChosenHandler2()

GetHandlers(ApiType,
HardwareInterface)

VISACM_GetResourceCount2()
Followed by (per resource)
VISACM_QueryResource2()
Followed by (per handler)
VISACM_QueryResourceHandler2()

GetInstalledVisas(ApiType) VISACM_GetInstalledVisaCount2()
Followed by (per VISA)
VISACM_GetInstalledVisa2()
VISACM_GetVisaEnabled2()

GetInterfaces(ApiType) VISACM_GetResourceCount2()
Followed by (per resource)
VISACM_QueryResource2()

GetPreferredVisa(ApiType) VISACM_GetVisaPreferred2()

ReloadFile() VISACM_ReloadFile()

RemoveHandler(HardwareInterface,
VisaImplementation)

VISACM_DeleteHandler2()

RemoveHandlers(ApiType) VISACM_ClearResourceHandlersFromTable2()

RemoveHandlers(ApiType,
HardwareInterface)

VISACM_DeleteResourceByIndex2()

RemoveHandlers(VisaImplementation) VISACM_DeleteHandlerByGUID2()

SetPreferredVisa(VisaImplementation) VISACM_SetVisaPreferred2()

Appendix A: Implementation Files Page A-53

3.5 VISA Shared USBTMC Device Driver

Table 3.5.1 shows a list of files included in the VISA Shared Components for Windows. See IVI 6.2 , VISA
Interoperability Requirement for USBTMC Specification,for details of this component.

Component Name

32-
Bit

64-
Bit

Description

ausbtmc.sys

X X The signed kernel binary containing the
USBTMC driver logic.

ausbtmc.cat X X The catalog file containing the digital
signature for the kernel driver.

ausbtmc.inf

X X The setup information file detailing
installation behavior for the kernel driver.

Table 3.5.1

On Linux, the IVI Foundation has contributed changes to the existing USBTMC driver provided with the
Linux kernel so that it will support IVI Foundation needs. For details, refer to Appendix A, Linux Specific
Information, in IVI-6.2: VISA Interoperability Requirements for USBTMC Specification.

Page A-54 Appendix A: Implementation Files

Section 4: VISA Shared Components Installation and
NuGet Packages

Section 3 described the components required for a complete VISA .NET and VISA COM I/O
implementation. This section covers the details of the installation and gives detailed requirements of the
components’ implementation.

There are two VISA Shared Components installers for Windows, one for 32-bit Windows operating
systems, and one for 64-bit Windows operating systems. Due to the variation in package management
technologies used in supported Linux distributions, there are multiple sets of VISA Shared Components
installers that support Linux. Each set typically supports one or more Linux distributions. The Windows 32-
bit installer installs 32-bit components only. The details about the components installed by this installer are
in section 4.1. The Windows 64-bit installer installs both 32-bit and 64-bit components, with 32-bit
components installed so that they can be run using Microsoft’s Windows on Windows 64 (WOW64)
technology. The details about the components installed by this installer are in section 4.2. The Linux
installers install 64-bit components only. The details about the components installed by these installers are
in section 4.3.

For .NET Framework, there are two VISA .NET Shared Components global installers, one for 32-bit
Windows operating systems and one for 64-bit operating systems. These installers are global because each
version of the installer may only be installed once on a system, in a standard VISA location. Once
installed, any program on the system that uses that version of VISA.NET will access the executable from
that standard location. Section 4.4 describes the VISA .NET Shared Components global installers in more
detail.

For .NET (6+) the VISA.NET Shared Component assembly may be acquired via NuGet and subsequently
deployed with an application in the bin directory. The VISA.NET Shared Component assembly requires
that the appropriate VISA Shared Components are installed on the system.

Appendix A: Implementation Files Page A-55

4.1. Installing VISA Shared Components On 32-Bit Windows Operating
Systems

TERMS
The following terms are used in this section.

 <SYSTEM32DIR> is the Windows system directory for executables. The default is
C:\Windows\System32, but this may be changed when Windows is installed.

 <PROGRAMFILES> is the Windows Program Files directory. The default is C:\Program Files, but
this may be changed when Windows is installed.

 <ALLUSERSAPPDATA> is the Windows directory where data that is accessible to all users is stored
(as opposed to data that is accessible to the current user).

 <VXIPNPPATH> is the target directory for the VISA components on 32-bit systems.

 <VISADATAPATH> is the directory used for VISA data files, and the conflict resolution table in
particular.

RULE 4.1.1
The VISA Shared Components installer for Windows 7 (32-bit), Windows 8 (32-bit), and Windows 10 (32-
bit) SHALL be named VISA Shared Components and SHALL have its own entry in the Windows
Add/Remove Programs list.

RULE 4.1.2
Every 32-bit vendor-specific VISA installer released after June 1, 2009 SHALL use the VISA Shared
Components installer to install shared VISA COM or VISA Plug-In Architecture files, or to create standard
VISA directories, registry keys and values, or environment variables, and SHALL NOT install the
components or create standard VISA directories, registry keys and values, or environment variables as part
of the vendor-specific installer.

RULE 4.1.3
The value of <VXIPNPPATH>:.

 IF the registry key HKLM\SOFTWARE\VXIPNP_Alliance\VXIPNP\CurrentVersion exists and
contains the value VXIPNPPATH, and this value designates a directory that exists, and the directory or
any of the subdirectories contain any files, THEN the value of <VXIPNPPATH> SHALL be the value
of the this key’s VXIPNPPATH string value.

 OTHERWISE, the default value of <VXIPNPPATH> SHALL be <PROGRAMFILES>\IVI
Foundation\VISA AND the VISA Shared Components installer SHALL allow the user to change the
value of <VXIPNPPATH>.

OBSERVATION 4.1.1
The above rules regarding the VISA Shared Components installer dictate that it detect existing VISA
components and other VXIplug&play components such as instrument drivers. If the VXIplug&play
registry keys point to a VXIplug&play root directory, and that directory exists, but no files exist in the
hierarchy to which they point, it is acceptable for the VISA Shared Components installer to allow the user
to change the 32-bit VISA base directory. In this case, the VISA Shared Components installer changes the
VXIplug&play registry keys and the environment variables if necessary, but it leaves the old, empty
directory hierarchy alone (that is, it does not remove it).

Page A-56 Appendix A: Implementation Files

RULE 4.1.4
The value of <VISADATAPATH> SHALL be <ALLUSERSAPPDATA>\IVI Foundation\VISA.

RULE 4.1.5
The VISA Shared Components installer SHALL create any of the following directories that do not already
exist:

 <VXIPNPPATH>

 <VXIPNPPATH>\VisaCom

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies

 <VXIPNPPATH>\WinNT

 <VXIPNPPATH>\WinNT\Bin

 <VXIPNPPATH>\WinNT\include

 <VXIPNPPATH>\WinNT\lib

 <VXIPNPPATH>\WinNT\lib\bc

 <VXIPNPPATH>\WinNT\lib\msc

 <VXIPNPPATH>\WinNT\lib_x64

 <VXIPNPPATH>\WinNT\lib_x64\msc

 <VISADATAPATH>

RULE 4.1.6
The VISA Shared Components installer SHALL install the following files, unless newer versions of the
files are already installed:

 <SYSTEM32DIR>\visaConfMgr.dll (32-bit executable)

 <VXIPNPPATH>\VisaCom\GlobMgr.dll (32-bit executable)

 <VXIPNPPATH>\VisaCom\BasFrmIO.dll (32-bit executable)

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies\Ivi.Visa.Interop.dll (32-bit executable)

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies\Ivi.Visa.Interop.xml

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies\Ivi.Visa.Interop.config

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies\Policy.1.0.Ivi.Visa.Interop.dll (32-bit
executable, one for each major/minor previous version that must be redirected to the current version of
Ivi.Visa.Interop.dll. X.X stand for the previous major/minor versions being redirected.)

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies\IviPiaRegistration.bat

 <VXIPNPPATH>\WinNT\include\visa.h

 <VXIPNPPATH>\WinNT\include\visatype.h

 <VXIPNPPATH>\WinNT\lib_x64\msc\visa64.lib

 ausbtmc.cat (location determined by Windows during driver installation process)

 ausbtmc.inf (location determined by Windows during driver installation process)

Appendix A: Implementation Files Page A-57

 ausbtmc.sys (32-bit kernel driver file, location determined by Windows during driver installation

process)

RULE 4.1.7
The VISA Shared Components installer SHALL NOT replace an existing conflict resolution table file.

RULE 4.1.8
The VISA Shared Components installer SHALL create registry keys and values for GlobMgr.dll and
BasFrmIO.dll as if regsvr32 was run on them. It SHALL NOT self register these components.

OBSERVATION 4.1.2
Note that the registry keys and values that are created by self-registering 32-bit COM type libraries on a 32-
bit operating system are different than the registry keys and values created by self-registering the same 32-
bit type library on a 64-bit system. These changes are more extensive than just relocating keys to the
WOW64 registry hive—the number of subkeys actually is different. If the 32-bit installer creates registry
keys and values that match the self-registration keys and values on a 32-bit operating system, they will not
match the self-registration keys and values on a 64-bit operating system, and vice versa. This is one reason
why the 32-bit installer installs only on 32-bit operating systems.

RULE 4.1.9
The VISA Shared Components installer SHALL create registry keys and values for
Ivi.Visa.Interop.dll, the Primary Interop Assembly (PIA), as if the 32-bit version of regasm was
run on it. It SHALL NOT run regasm from within the installer. The resulting keys and values created
SHALL be equivalent to running the following command:

 regasm <PIA>

OBSERVATION 4.1.3

Prior to version 5.4, this specification did not specify the exact regasm command that would be equivalent
to the registration done by the VISA Shared Components installer. However, the installers compliant to
those versions of this specification register the PIA in a manner that is equivalent to running the following
command:

 regasm <PIA> /codebase

 While this doesn’t cause any problem on 32-bit Operating Systems supported by the 32-bit versions of this
installer, there are problems on 64-bit Operating Systems supported by the 64-bit versions of this installer.
See OBSERVATION 4.2.5 for more details. To be consistent, the 32-bit installer will also use the
command without the /codebase option.

RULE 4.1.10
The VISA Shared Components installer SHALL create the following additional registry keys and values
under HKLM\SOFTWARE:
 VXIPNP_Alliance

 VXIPNP_Alliance\IVIVISACOM

 VXIPNP_Alliance\IVIVISACOM\CurrentVersion

o Value: InstallerVersion—The version of the VISA Shared Components installer.

o Value: Version—The product version of GlobMgr.dll

 VXIPNP_Alliance\VXIPNP

Page A-58 Appendix A: Implementation Files

 VXIPNP_Alliance\VXIPNP\CurrentVersion

o Value: FRAMEWORK_PATH—<VXIPNPPATH>\WinNT

o Value: VXIPNPPATH—<VXIPNPPATH>

Note that there no default values for any of the above keys.

RULE 4.1.11
The VISA Shared Components installer SHALL install on Windows 7 32-bit, Windows 8 32-bit, and
Windows 10 32-bit. Service Pack requirements may vary by version of the installer and are documented on
the IVI web site for each version of the installer. The VISA Shared Components installer SHALL NOT
install on any 64-bit Windows operating system.

RULE 4.1.12
The VISA Shared Components installer SHALL require that Internet Explorer 5.01 or higher already be
installed.

PERMISSION 4.1.1
Vendors that include the VISA Shared Components installer in their distributions MAY place additional
restrictions on the number of operating systems, service packs, or versions of Internet Explorer with which
their distributions are compatible.

RULE 4.1.13
The VISA Shared Components installer SHALL install 64-bit VISA shared components, directories,
registry keys, and environment variables, as necessary to enable development of 64-bit VISA and VISA
COM applications.

RULE 4.1.14
The VISA Shared Components installer SHALL NOT include the .NET framework installer and SHALL
NOT require that the .NET framework already be installed.

RULE 4.1.15
The VISA Shared Components installer SHALL create the VXIPNPPATH environment variable with a
value of <VXIPNPPATH>.

RULE 4.1.16
The VISA Shared Components installer SHALL require that the user has administrative privileges.

RULE 4.1.17
The VISA Shared Components installer SHALL require the user to accept the IVI Foundation license.

RULE 4.1.18
The VISA Shared Components installer SHALL provide command line options to:

Appendix A: Implementation Files Page A-59

 Run silently (/q)

 msiexec.exe /i <PathToMSI> /q

 Set VXIPNPPATH

 msiexec.exe /i <PathToMSI> VXIPNPPATHDIR=<CustomVXIPNPPath>

 Repair the installation (/f)

 msiexec.exe /f <PathToMSI>

RULE 4.1.19
The VISA Shared Components uninstaller SHALL search for the following dependent software:

 Vendor Specific Resource Managers

 IVI Shared Components

 VISA.NET Shared Components

IF dependent software is found, the uninstaller SHALL present a warning dialog to the user AND the
dialog’s default response SHALL be Cancel.

OBSERVATION 4.1.4
Even if dependent software is detected, a user still will be allowed to override the default and uninstall the
VISA Shared Components. This is important for corner cases such as downgrading and cleaning up
systems where some other component’s uninstallation failed.

RULE 4.1.20
The VISA Shared Components uninstaller SHALL detect, after removing the files it installed, whether any
remaining files or nonempty folders remain. IF no files remain, THEN the VISA Shared Components
uninstaller SHALL remove the entire VXIplug&play directory structure, registry keys, and environment
variable.

OBSERVATION 4.1.5
If the VISA Shared Components uninstaller detects remaining files, it leaves the VXIplug&play directory
structure, registry keys, and environment variable intact. This is a “leak,” but it is unavoidable.

RULE 4.1.21
On Windows 7 32-bit and higher, the VISA Shared Components installer, if invoked in dialog mode
without admin privileges, SHALL prompt for elevation. If the installer is invoked in silent mode without
admin privileges, a failure condition exists and the installer SHALL abort.

RULE 4.1.22
In releases of the VISA Shared Components installer prior to January 1, 2018, the installer sets the
attributes of the VXIplug&play directory to allow modification without admin privileges. In releases after
January 1, 2018, the installer SHALL set the attributes of the VXIplug&play directory to require admin
privileges for modification. The installer SHALL do this in the case where the directory already exists and
in the case where the installer is creating the directory.

RULE 4.1.23
The USBTMC kernel binary (ausbtmc.sys) and its associated files (ausbtmc.cat, ausbtmc.inf) SHALL be
installed using the DIFx package provided by Microsoft. Please visit MSDN for more details regarding
DIFx and device driver installation in general.

Page A-60 Appendix A: Implementation Files

4.2. Installing VISA Shared Components On 64-Bit Windows Operating
Systems

TERMS
The following terms are used in this section.

 <SYSTEM32DIR> is the Windows system directory for 64-bit executables. The default is
C:\Windows\System32, but this may be changed when Windows is installed.

 <SYSWOW64DIR> is the Windows system directory for 32-bit executables. The default is
C:\Windows\SysWOW64, but this may be changed when Windows is installed.

 <PROGRAMFILES> is the Windows Program Files directory. The default is C:\Program Files, but
this may be changed when Windows is installed.

 <PROGRAMFILESx86> is the Windows Program Files (x86) directory. The default is C:\Program
Files (x86), but this may be changed when Windows is installed.

 <ALLUSERSAPPDATA> is the Windows directory where application data that is accessible to all
users is stored (as opposed to data that is accessible to the current user).

 <VXIPNPPATH> is the target directory for the 32-bit VISA components.

 <VXIPNPPATH64> is the target directory for the 64-bit VISA components.

 <VISADATAPATH> is the directory used for VISA data files, and the conflict resolution table in
particular.

RULE 4.2.1
The VISA Shared Components installer for 64-bit versions of the Windows operating system SHALL be
named VISA Shared Components 64-Bit and SHALL have its own entry in the Windows Add/Remove
Programs list.

RULE 4.2.2
Every 64-bit vendor-specific VISA installer SHALL use the VISA Shared Components 64-bit installer to
install shared VISA COM or VISA Plug-In Architecture files, and to create standard VISA directories,
registry keys and values, or environment variables, and SHALL NOT install the components or create
standard VISA directories, registry keys and values, or environment variables as part of the vendor-specific
installer.

RULE 4.2.3
The VISA Shared Components 64-Bit installer SHALL install both the 32-bit VISA shared components,
directories, registry keys, and environment variables, and the 64-bit VISA shared components, directories,
registry keys, and environment variables.

OBSERVATION 4.2.1
The above rule serves several purposes. First, it eliminates problems that the 32-bit installer would have
registering 32-bit type libraries on both 32-bit and 64-bit operating systems. Second, it minimizes potential
issues with interactions between the 32-bit and 64-bit installers on 64-bit operating systems. Third, it
supports cross-developing 32-bit and 64-bit executables on 64-bit operating systems.

Appendix A: Implementation Files Page A-61

RULE 4.2.4
The value of <VXIPNPPATH64>:.

 IF the registry key HKLM\SOFTWARE\VXIPNP_Alliance\VXIPNP\CurrentVersion exists and
contains the value VXIPNPPATH, and this value designates a directory that exists, and the directory
and all subdirectories do not contain any files, THEN the value of <VXIPNPPATH64> SHALL be
the value of the this key’s VXIPNPPATH string value.

 OTHERWISE, the default value of <VXIPNPPATH64> SHALL be <PROGRAMFILES>\IVI
Foundation\VISA, AND the VISA Shared Components installer SHALL allow the user to change the
value of <VXIPNPPATH64>.

RULE 4.2.5
The value of <VXIPNPPATH>:.

 IF the registry key HKLM\SOFTWARE\Wow6432Node\VXIPNP_Alliance\VXIPNP\CurrentVersion
exists and contains the value VXIPNPPATH, and this value designates a directory that exists, and the
directory and all subdirectories do not contain any files, THEN the value of <VXIPNPPATH>
SHALL be the value of the this key’s VXIPNPPATH string value.

 OTHERWISE, the default value of <VXIPNPPATH> SHALL be < PROGRAMFILESx86>\IVI
Foundation\VISA, AND the VISA Shared Components installer SHALL allow the user to change the
value of <VXIPNPPATH>.

OBSERVATION 4.2.2
The above rules dictate that the 64-bit installer detect existing VISA components and other VXIplug&play
components such as instrument drivers.

 If the 32-bit VXIplug&play registry keys point to a 32-bit VXIplug&play root directory, and that
directory exists, but no files exist in the hierarchy to which they point, it is acceptable for the VISA
Shared Components installer to allow the user to change the 32-bit VISA base directory. In this case,
the VISA Shared Components installer changes the 32-bit VXIplug&play registry keys and the
environment variable if necessary, but it leaves the old, empty 32-bit directory hierarchy alone (that is,
it does not remove it).

 If the 64-bit VXIplug&play registry keys point to a 64-bit VXIplug&play root directory, and that
directory exists, but no files exist in the hierarchy to which they point, it is acceptable for the VISA
Shared Components installer to allow the user to change the 64-bit VISA base directory. In this case,
the VISA Shared Components installer changes the 64-bit VXIplug&play registry keys and the
environment variable if necessary, but it leaves the old, empty 64-bit directory hierarchy alone (that is,
it does not remove it).

RULE 4.2.6
The VISA Shared Components 64-Bit installer SHALL install 64-bit executables to 64-bit directories and
32-bit executables to the appropriate WOW64 directory. If the user specifies a directory that would result
in 32-bit shared components being installed in a 64-bit only directory, the installer SHALL redirect the
path to the corresponding WOW64 32-bit directory.

RULE 4.2.7
The value of <VISADATAPATH> SHALL be <ALLUSERSAPPDATA>\IVI Foundation\VISA.

OBSERVATION 4.2.3
<VISADATAPATH> is the same for both 32-bit and 64-bit components.

Page A-62 Appendix A: Implementation Files

RULE 4.2.8
The VISA Shared Components 64-Bit installer SHALL create any of the following directories that do not
already exist:

 <VXIPNPPATH>

 <VXIPNPPATH>\VisaCom

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies

 <VXIPNPPATH>\WinNT

 <VXIPNPPATH>\WinNT\Bin

 <VXIPNPPATH>\WinNT\include

 <VXIPNPPATH>\WinNT\lib

 <VXIPNPPATH>\WinNT\lib\bc

 <VXIPNPPATH>\WinNT\lib\msc

 <VXIPNPPATH>\WinNT\lib_x64

 <VXIPNPPATH>\WinNT\lib_x64\msc

 <VXIPNPPATH64>

 <VXIPNPPATH64>\VisaCom64

 <VXIPNPPATH64>\VisaCom64\Primary Interop Assemblies

 <VXIPNPPATH64>\Win64

 <VXIPNPPATH64>\Win64\Bin

 <VXIPNPPATH64>\Win64\include

 <VXIPNPPATH64>\Win64\lib_x64

 <VXIPNPPATH64>\Win64\lib_x64\msc

 <VISADATAPATH>

RULE 4.2.9
The VISA Shared Components 64-Bit installer SHALL install the following files, unless newer versions of
the files are already installed:

 <SYSWOW64DIR>\visaConfMgr.dll (32-bit executable)

 <VXIPNPPATH>\VisaCom\GlobMgr.dll (32-bit executable)

 <VXIPNPPATH>\VisaCom\BasFrmIO.dll (32-bit executable)

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies\Ivi.Visa.Interop.dll (32-bit executable)

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies\Ivi.Visa.Interop.xml

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies\Ivi.Visa.Interop.config

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies\Policy.X.X.Ivi.Visa.Interop.dll (32-bit
executable, one for each major/minor previous version that needs to be redirected to the current version
of Ivi.Visa.Interop.dll. X.X stand for the previous major/minor versions being redirected.)

 <VXIPNPPATH>\VisaCom\Primary Interop Assemblies\IviPiaRegistration.bat

 <VXIPNPPATH>\WinNT\include\visa.h

Appendix A: Implementation Files Page A-63

 <VXIPNPPATH>\WinNT\include\visatype.h

 <VXIPNPPATH>\WinNT\lib_x64\msc\visa64.lib

 <SYSTEM32DIR>\visa64.dll (64-bit executable)

 <SYSTEM32DIR>\visaConfMgr.dll (64-bit executable)

 <SYSTEM32DIR>\visaUtilities.dll (64-bit executable)

 <VXIPNPPATH64>\VisaCom64\GlobMgr.dll (64-bit executable)

 <VXIPNPPATH64>\VisaCom64\BasFrmIO.dll (64-bit executable)

 <VXIPNPPATH64>\VisaCom64\Primary Interop Assemblies\Ivi.Visa.Interop.dll (64-bit executable)

 <VXIPNPPATH64>\VisaCom64\Primary Interop Assemblies\Ivi.Visa.Interop.xml

 <VXIPNPPATH64>\VisaCom64\Primary Interop Assemblies\Ivi.Visa.Interop.config (Needed only if
a policy file also is being installed.)

 <VXIPNPPATH64>\VisaCom64\Primary Interop Assemblies\IviPiaRegistration64.bat

 <VXIPNPPATH>\VisaCom64\Primary Interop Assemblies\Policy.X.X.Ivi.Visa.Interop.dll (64-bit
executable, one for each major/minor previous version that needs to be redirected to the current version
of Ivi.Visa.Interop.dll. X.X stand for the previous major/minor versions being redirected.)

 <VXIPNPPATH>\Win64\include\visa.h

 <VXIPNPPATH>\Win64\include\visatype.h

 <VXIPNPPATH>\Win64\lib_x64\msc\visa64.lib

 ausbtmc.cat (location determined by Windows during driver installation process)

 ausbtmc.inf (location determined by Windows during driver installation process)

 ausbtmc.sys (64-bit kernel driver file, location determined by Windows during driver installation
process)

RULE 4.2.10
The VISA Shared Components installer SHALL NOT replace an existing conflict resolution table file.

RULE 4.2.11
The VISA Shared Components 64-Bit installer SHALL first create registry entries for the 32-bit and 64-bit
versions of GlobMgr.dll and BasFrmIO.dll as if the 32-bit version of regsvr32 was run on the
32-bit versions and then the 64-bit version of regsvr32 was run on the 64-bit versions. It SHALL NOT
self-register these components.

OBSERVATION 4.2.4
Note that the registry entries created by self-registering 32-bit COM type libraries on a 32-bit operating
system are different than the registry entries created by self-registering the same 32-bit type library on a 64-
bit system. These changes are more extensive than just relocating keys to the WOW64 registry hive—the
number of subkeys is actually different. If the 32-bit installer creates registry entries that match the self-
registration entries on a 32-bit operating system, they will not match the self-registration entries on a 64-bit
operating system, and vice versa. This is one reason why the 64-bit installer installs only on 64-bit
operating systems.

Page A-64 Appendix A: Implementation Files

RULE 4.2.12
The VISA Shared Components 64-Bit installer SHALL first create registry entries for the 32-bit and 64-bit
versions of Ivi.Visa.Interop.dll, the Primary Interop Assembly (PIA), as if the 32-bit version of
regasm was run on the 32-bit version, and then the 64-bit version of regasm was run on the 64-bit version.
It SHALL NOT run regasm from within the installer. The resulting keys and values created SHALL be
equivalent to running the following command, once for 32-bit and then for 64-bit:

 regasm <PIA>

OBSERVATION 4.2.5

Prior to version 5.4, this specification did not specify the exact regasm command that would be equivalent
to the registration done by the VISA Shared Components installer. However, the installers compliant to
those versions of this specification register the PIA in a manner that is equivalent to running the following
command, once for 32-bit and then for 64-bit:

 regasm <PIA> /codebase

Regasm with the /codebase option adds the PrimaryInteropAssemblyCodeBase registry value to the
COM type library registry key and the CodeBase registry value to subkeys of the CLSID\<GUID> key for
classes defined in the type library. The issue is with the type library PIA codebase value, however. This
registry value is the physical PIA file path of a PIA for the COM type library. In the case of the VISA
shared components, the value prior to 2014 was the location of the 32-bit version of the PIA. This worked
for both 32-bit and 64-bit development in Visual Studio 2005 and 2008. However, this prevents 64-bit
development in Visual Studio 2010, 2012, and 2013 because these versions of Visual Studio require
references to a PIA of the same bitness as the current project type.

As a result, the type library PrimaryInteropAssemblyCodeBase registry value will no longer be added
to VISA shared component type library keys with the release of version 5.4 of the VISA Shared
Components. Without this key, all versions of Visual Studio resolve references to the PIA by using the
GAC. This means that the reference is automatically resolved with the correct bitness of PIA from the
GAC. However, the PIA IntelliSense help files are not installed to the GAC, with the resulting downside
that this help is not available to developers in Visual Studio IntelliSense. In addition, the CodeBase
registry value to subkeys of the CLSID\<GUID> key for classes defined in the type library will also be
omitted. The net effect is that the VISA Shared Components now register the PIA with the corresponding
COM type library and COM classes in a manner that is equivalent to running the following command:

 regasm <PIA>

RULE 4.2.13
The VISA Shared Components 64-Bit installer SHALL create the following additional registry keys and
values under HKLM\SOFTWARE:

 VXIPNP_Alliance

 VXIPNP_Alliance\IVIVISACOM

 VXIPNP_Alliance\IVIVISACOM\CurrentVersion

o Value: InstallerVersion—The version of the VISA Shared Components installer.

o Value: Version—The product version of GlobMgr.dll

 VXIPNP_Alliance\VXIPNP

 VXIPNP_Alliance\VXIPNP\CurrentVersion

o Value: FRAMEWORK_PATH—<VXIPNPPATH64>\Win64

o Value: VXIPNPPATH—<VXIPNPPATH64>

Appendix A: Implementation Files Page A-65

The VISA Shared Components 64-Bit installer SHALL create the following additional registry keys and
values under HKLM\SOFTWARE\Wow6432Node:

 VXIPNP_Alliance

 VXIPNP_Alliance\IVIVISACOM

 VXIPNP_Alliance\IVIVISACOM\CurrentVersion

o Value: InstallerVersion—The version of the VISA Shared Components installer.

o Value: Version—The product version of GlobMgr.dll

 VXIPNP_Alliance\VXIPNP

 VXIPNP_Alliance\VXIPNP\CurrentVersion

o Value: FRAMEWORK_PATH—<VXIPNPPATH>\WinNT

o Value: VXIPNPPATH—<VXIPNPPATH>

RULE 4.2.14
The VISA Shared Components 64-Bit installer SHALL install on Windows 7 64-bit, Windows 8 64-bit,
Windows 10 64-bit, and Windows 11. Service Pack requirements may vary by version of the installer, and
are documented on the IVI web site for each version of the installer. The VISA Shared Components 64-Bit
installer SHALL NOT install on any 32-bit Windows operating system.

PERMISSION 4.2.1
Vendors that include the VISA Shared Components 64-Bit installer in their distributions MAY place
additional restrictions on the number of operating systems, service packs, or versions of Internet Explorer
with which their distributions are compatible.

RULE 4.2.15
The VISA Shared Components 64-Bit installer SHALL NOT include the .NET framework installer and
SHALL NOT require that the .NET framework already be installed.

RULE 4.2.16
The VISA Shared Components 64-Bit installer SHALL create the VXIPNPPATH environment variable
with a value of <VXIPNPPATH> and the VXIPNPPATH64 environment variable with a value of
<VXIPNPPATH64>.

RULE 4.2.17
The VISA Shared Components 64-Bit installer SHALL require that the user has administrative privileges.

RULE 4.2.18
The VISA Shared Components 64-Bit installer SHALL require the user to accept the IVI Foundation
license.

RULE 4.2.19
The VISA Shared Components 64-Bit installer SHALL provide command line options to:

Page A-66 Appendix A: Implementation Files

 Run silently (/q)

 msiexec.exe /i <PathTo64-BitMSI> /q

 Set VXIPNPPATH64 and VXIPNPPATH

 msiexec.exe /i <PathTo64-BitMSI> VXIPNPPATH64DIR=<Custom64-
BitVXIPNPPath> VXIPNPPATHDIR=<CustomVXIPNPPath>

 Repair the installation (/f)

 msiexec.exe /f <PathTo64-BitMSI>

RULE 4.2.20
The VISA Shared Components 64-Bit uninstaller SHALL search for the following dependent software:

 Vendor Specific Resource Managers

 IVI Shared Components

 VISA.NET Shared Components

IF dependent software is found, the uninstaller SHALL present a warning dialog to the user, AND the
dialog’s default response SHALL be Cancel.

OBSERVATION 4.2.6
Even if dependent software is detected, a user still will be allowed to override the default and uninstall the
VISA Shared Components. This is important for corner cases such as downgrading and cleaning up
systems where some other component’s uninstallation failed.

RULE 4.2.21
The VISA Shared Components 64-Bit uninstaller SHALL detect, after removing the files it installed,
whether any remaining files or non-empty folders remain. IF no files remain, THEN the VISA COM
uninstaller SHALL remove the entire VXIplug&play directory structure and registry keys.

OBSERVATION 4.2.7
If the VISA Shared Components 64-Bit uninstaller detects remaining files, it leaves the VXIplug&play
directory structure and registry keys intact. This is a “leak,” but it is unavoidable.

RULE 4.2.22
If the VISA Shared Components 64-Bit installer is invoked in dialog mode without admin privileges, it
SHALL prompt for elevation. If the installer is invoked in silent mode without admin privileges, a failure
condition exists, and the installer SHALL abort.

RULE 4.2.23
In releases of the VISA Shared Components installer prior to January 1, 2018, the installer sets the
attributes of the VXIplug&play directory to allow modification without admin privileges. In releases after
January 1, 2018, the installer SHALL set the attributes of the VXIplug&play directory to require admin
privileges for modification. The installer SHALL do this in the case where the directory already exists and
in the case where the installer is creating the directory.

RULE 4.2.24
The USBTMC 64-bit kernel binary (ausbtmc.sys) and its associated files (ausbtmc.cat, ausbtmc.inf)
SHALL be installed using the DIFx package provided by Microsoft. Please visit MSDN for more details
regarding DIFx and device driver installation in general.

Appendix A: Implementation Files Page A-67

4.3. Installing VISA Shared Components On Linux Operating Systems
TERMS

The following terms are used in this section.

 <SYSTEMLIBDIR> is the target directory for the libraries installed by the VISA Shared Components.
This is a distribution-designated directory for user-accessible 64-bit libraries on the Linux distributions
being supported.

 <SYSTEMINCLUDEDIR> is the target directory for the headers installed by the VISA Shared
Components. This is a distribution-designated directory for standard include files.

 <VISADATAPATH> is the directory used for VISA data files, and the conflict resolution table in
particular.

 <VISAREGPATH> is the directory where vendors install static configuration files to register their
VISA implementations with the VISA Router.

 <PXIPLUGINREGPATH> is the directory where vendors install static configuration files to register
their PXI plugins with VISA implementations.

 SONAME is a string that is embedded in each library (shared object) used in Linux Operating Systems
that indicates the “logical name” describing the functionality of the object. The SONAME is often used
to provide version backwards-compatibility information.

 ABI (application binary interface) is an interface between two program modules; often, one of these
modules is a library or operating system facility, and the other is a program that is being run by a user.

 ABI Compatibility is a term that denotes whether a given version of a library (shared object) is able to
replace an older version of the library at runtime such that it is fully compatible in terms of the
interface it provides to other libraries and applications that were built against the older version of the
library.

RULE 4.3.1
The VISA Shared Components for Linux SHALL only support 64-bit versions of Linux Operating
Systems. In addition, the libraries installed by the Shared Components for Linux SHALL only support 64-
bit VISA applications. Specific distributions supported by a given version of the VISA Shared
Components for Linux are listed on the IVI Foundation web site.

PERMISSION 4.3.1
It is possible for a 64-bit Linux system to run 32-bit applications. A vendor MAY provide 32-bit VISA
library and/or PXI plugin on a 64-bit Linux system, but doing so is outside the scope of this specification,
and interoperatibility between vendors is not guaranteed.

OBSERVATION 4.3.1
<SYSTEMINCLUDEDIR> is typically /usr/include on all the Linux Distributions the VISA Shared
Components support.

Some example values for <SYSTEMLIBDIR> are provided below. This table is not intended to be
exhaustive, nor should it be consulted as the sole authority on library locations. Subsequent rules define
paths to directories where vendors register their VISA implementations and PXI plugins. Such directories
are defined relative to the <SYSTEMLIBDIR> . Vendors should be aware that the location of the library
directory may vary not only from distribution to distribution, but from one version of a distribution to a
different version of that same distribution.

Page A-68 Appendix A: Implementation Files

Linux Distribution Family 64-Bit Library Path

Fedora/OpenSUSE /usr/lib64/

Debian /usr/lib/x86_64-linux-gnu/

Table 4.3.1

RULE 4.3.2
The value of <VISADATAPATH> SHALL be /var/lib/ivivisa/.

RULE 4.3.3
The value of <VISAREGPATH> SHALL be <SYSTEMLIBDIR>/ivivisa/implementations.d/.

RULE 4.3.4
The value of <PXIPLUGINREGPATH> SHALL be <SYSTEMLIBDIR>/ivivisa/pxiplugins.d/.

4.3.1. Libraries

This section details the library components that provide the VISA Shared Components functionality
described earlier in this specification.

RULE 4.3.5
The VISA Router functionality SHALL be provided as a shared library with its SONAME set to
‘libivivisa.so.0’. The trailing 0 indicates that this library has an ABI version of 0.

RULE 4.3.6
The VISA Conflict Manager functionality SHALL be provided as a shared library with its SONAME set to
‘libivivisa-confmgr.so.0’. The trailing 0 indicates that this library has an ABI version of 0.

RULE 4.3.7
The VISA Utilities functionality SHALL be provided as a shared library with its SONAME set to
‘libivivisa-utilities.so.0’. The trailing 0 indicates that this library has an ABI version of 0.

RULE 4.3.8
Subsequent releases of the VISA Shared Components SHALL not change the SONAME of any of these
libraries as long as the ABI compatibility is maintained. If a new version a library is not ABI compatible
with its preceding version, the trailing number in the SONAME SHALL be incremented.

Appendix A: Implementation Files Page A-69

4.3.2. Package Structure and Details

The VISA Shared Components for Linux is provided as a set of packages that install several directories,
files, and symbolic links that collectively ensure that VISA implementations from multiple vendors can
coexist and inter-operate as expected.

Figure 4.3.1 shows the packages that make up the VISA Shared Components on Linux and their
relationships with each other. If a package “A” requires or depends on a package “B”, package “B” must
be installed before package “A” can be installed. Similarly, if package “A” recommends package “B”, then
package “B” is automatically selected for install by package management systems when package “A” is
selected to be installed, but the user has the option to deselect package “B” from being installed using
command line flags or utilities provided by the package management systems.

Relationship Legend:
Depends/Requires :
Recommends :

Figure 4.3.1

RULE 4.3.9
Package management systems that are used on some Linux operating systems that are supported by the
VISA Shared Components do not support a relationship of “recommends” between packages. On such
distributions, any such relationship shown in the figure above SHALL be converted to
“Depends/Requires”.

RULE 4.3.10
The ‘visa-shared’ package SHALL be a meta-package with no payload. It is provided to make it easy for
customers or vendor software to conveniently install all of the VISA Shared Components packages without
referring to each one separately.

RULE 4.3.11
The ‘libivivisa0’ package SHALL install the following directories (if they do not already exist), files and
symbolic links with owner/permissions listed in the table 4.3.2.

Name Type Owner:Group:Permission

<SYSTEMLIBDIR>/ivivisa Directory root:root:755

<VISAREGPATH> Directory root:root:755

<PXIPLUGINREGPATH> Directory root:root:755

visa-shared

libivivisa0 libivivisa0-devel

libivivisa-confmgr0 libivivisa-utilities0

Page A-70 Appendix A: Implementation Files

<SYSTEMLIBDIR>/libivivisa.so.<LibraryVersion> File root:root:755

<SYSTEMLIBDIR>/libivivisa.so.0 Symbolic Link root:root:777

Table 4.3.2

RULE 4.3.12
<SYSTEMLIBDIR>/libivivisa.so.0 SHALL be a symbolic link to libivivisa.so.<LibraryVersion>.

RULE 4.3.13
The ‘libivivisa-confmgr0‘ package SHALL install the following directories (if they do not already exist),
files and symbolic links with owner/permissions listed in the table 4.3.3.

Name Type Owner:Group:Permission

<SYSTEMLIBDIR>/libivivisa-
confmgr.so.<LibraryVersion> File

root:root:755

<SYSTEMLIBDIR>/libivivisa-confmgr.so.0 Symbolic Link root:root:777

<VISADATAPATH> Directory root:root:755

<VISADATAPATH>/ConflictTbl.xml File root:root:666

Table 4.3.3

OBSERVATION 4.3.2
The ConflictTbl.xml file has a special read/write permission for all users. The VISA Router, using the
Conflict Manager API, may write data to this file during its operation. Therefore, this special permission
allows all users to be able to execute an application that uses the VISA Router. This also allows all users to
execute vendor-supplied utility programs that can modify the Conflict Manager settings stored in this
document.

System administrators may change the permission of this file to implement a stricter security model with
the understanding that doing so may prevent some users from successfully running any application that
uses the VISA Router until they acquire permissions to write to this file. If multiple implementations of
VISA are installed, changing the permissions affects all implementations.

RULE 4.3.14
While the libivivisa-confmgr0 package installs the ConflictTbl.xml, it SHALL not upgrade an existing
version of the ConflictTbl.xml. This is to ensure that the user settings persist when the VISA Shared
Components are upgraded. If the package management technology supports leaking a file on uninstall, this
package SHALL leave behind the ConflictTbl.xml on the system on uninstall.

RULE 4.3.15
<SYSTEMLIBDIR>/libivivisa-confmgr.so.0 SHALL be a symbolic link to libivivisa-
confmgr.so.<LibraryVersion>.

RULE 4.3.16
The ‘libivivisa-utilities0’ package SHALL install the following files and symbolic links with
owner/permissions listed in the table 4.3.4.

Appendix A: Implementation Files Page A-71

Name Type Owner:Group:Permission

<SYSTEMLIBDIR>/libivivisa-
utilities.so.<LibraryVersion> File

root:root:755

<SYSTEMLIBDIR>/libivivisa-utilities.so.0 Symbolic Link root:root:777

Table 4.3.4

RULE 4.3.17
<SYSTEMLIBDIR>/libivivisa-utilities.so.0 SHALL be a symbolic link to libivivisa-
utilities.so.<LibraryVersion>.

RULE 4.3.18
The ‘libivivisa0-devel’ package SHALL install the following folders and files with owner/permissions
listed in the table 4.3.5.

Name Type Owner:Group:Permission

<SYSTEMINCLUDEDIR>/visa.h File root:root:644

<SYSTEMINCLUDEDIR>/visatype.h File root:root:644

<SYSTEMLIBDIR>/libivivisa.so Symbolic Link root:root:777

<SYSTEMLIBDIR>/libivivisa-confmgr.so Symbolic Link root:root:777

<SYSTEMLIBDIR>/libivivisa-utilities.so Symbolic Link root:root:777

Table 4.3.5

RULE 4.3.19
<SYSTEMLIBDIR>/libivivisa.so SHALL be a symbolic link to libivivisa.so. <LibraryVersion>.

RULE 4.3.20
<SYSTEMLIBDIR>/libivivisa-confmgr.so SHALL be a symbolic link to libivivisa-
confmgr.so.<LibraryVersion>.

RULE 4.3.21
<SYSTEMLIBDIR>/libivivisa-utilities.so SHALL be a symbolic link to libivivisa-
utilities.so.<LibraryVersion>.

RULE 4.3.22
Each package that installs a library SHALL call ‘ldconfig’ as part of its post-install and post-uninstall
scripts.

RULE 4.3.23
The vendor VISA registration SHALL be done using a text configuration file named <visa-guid>.ini. The
name of the file corresponds to the GUID associated with the VISA implementation, as described in
Section 8.3.3 WIN64 Framework, RULE 8.16, in VPP6: Installation and Packaging Specification.

Page A-72 Appendix A: Implementation Files

RULE 4.3.24
The vendor registration ini content SHALL be in the following format with a single section and several
key-value pairs. All the specified keys must be present in the registration ini. There is one file per vendor
implementation.

[DEFAULT]
VendorID=<Vendor ID>
FriendlyName="<User friendly name>"
Location="<Vendor library path>"
Comments="<Comments>"

 <Vendor ID> is an unsigned short integer that corresponds to the vendor’s assigned vendor ID.
Vendor IDs are specified in VPP-9: Instrument Vendor Abbreviations.

 <User friendly name> is the name of the vendor’s VISA library to possibly be displayed to end
users.

 <Vendor library path> is the absolute path on disk to the vendor’s VISA library.
 <Comments> is any comments about the vendor’s VISA library.

RECOMMENDATION 4.3.1

The <User friendly name> should include the name of the VISA implementation vendor so that it is visible
to users.

4.3.3. Supported vs Unsupported Distributions

Unlike Windows, Linux has an extensive variety of distributions that are in use in the industry. It is
impractical for the VISA Shared Components to support each such distribution. The VISA Shared
Components for Linux support a specific set of distributions. The exact list of supported distributions that
each version of the Shared Components supports is available on Shared Components page of the IVI
Foundation website.

RULE 4.3.25

The VISA Shared Components for Linux SHALL be provided as a set of packages that can be installed on
each supported distribution using the native package management technology available on that distribution.

PERMISSION 4.3.2

On distributions supported by the VISA Shared Components, a vendor package MAY create a dependency
on VISA Shared Component packages. Also, vendors MAY distribute the VISA Shared Components
packages without having any of their package depend on any of VISA Shared Components packages.

OBSERVATION 4.3.3

The above PERMISSION allows vendors to distribute their VISA implementations that support a wider set
of distributions than what the VISA Shared Components support.

RECOMMENDATION 4.3.1

Vendors should distribute the VISA Shared Components packages along with the vendor packages through
same package distribution mechanism they are using. In addition, if the package management technology
supports a “recommends” relationship between packages, the vendors should add a “recommendation”

Appendix A: Implementation Files Page A-73

from the package that installs vendor VISA implementation or PXI plugin implementation to the VISA
Shared Components packages if a “requires/depends” is not added.

RECOMMENDATION 4.3.2

If a vendor’s package depends on or recommends the VISA Shared Components, it should also specify the
minimum version of the VISA Shared Components.

PERMISSION 4.3.3

There are several Linux distributions where VISA Shared Components for Linux is not supported. The
vendors MAY support such distribution with their VISA packages.

RULE 4.3.26

Vendor packages SHALL NOT install any files that are normally installed by the VISA Shared
Components, unless they are part of a vendor-compiled VISA Shared Components package.

RULE 4.3.27

Vendor-built VISA Shared Components packages SHALL be compiled from IVI Foundation source.

OBSERVATION 4.3.4

A vendor may build VISA Shared Components from the IVI Foundation VISA Shared Component source
if an IVI-supported VISA Shared Component package does not exist for the target distribution. In such
cases, the vendor is expected to contribute the package to the IVI Foundation as a supported VISA Shared
Component package as soon as the vendor is ready to distribute the package. The IVI Foundation may not
publicize the package until a second vendor is ready to distribute it also.

RECOMMENDATION 4.3.3

Vendor packages should install copies of VISA headers in vendor-specific folders inside
<SYSTEMINCLUDEDIR>.

RULE 4.3.28

Vendor packages SHALL NOT install anywhere on the system any file with the same name as any of the
libraries installed by the VISA Shared components.

PERMISSION 4.3.4

A vendor package MAY create any folder that is specified in Table 4.3.2 if they aren’t already present, if it
wishes to install a vendor VISA registration file or a PXI plugin registration file. This is important for
distributions that are supported by VISA Shared Components because the vendor packages may not depend
on the VISA Shared Components and the customer may choose to not install the VISA Shared
Components. This is also important on distributions that aren’t supported by VISA Shared Components as
this allows the vendor packages to have uniform installation logic.

Page A-74 Appendix A: Implementation Files

RULE 4.3.29

If a vendor package creates any folders that are normally created by the VISA Shared Components, the
created folder SHALL have owner, group and permissions specified in this specification.

Appendix A: Implementation Files Page A-75

4.4. Installing VISA .NET Framework Shared Components
TERMS

The following terms are used in this section.

 <GAC> is the Windows system directory for the Global Assembly Cache.

 <VXIPNPPATH> is the target directory for the 32-bit VISA components. See sections 4.1 and 4.2 for
the default value and relevant constraints.

 <VXIPNPPATH64> is the target directory for the 64-bit VISA components. See section 4.2 for the
default value and relevant constraints.

PREREQUISITES

The following software must be installed before the VISA.NET Shared Components are installed.
 .NET Framework 2.0 or higher. VISA.NET is based on this version of the .NET Framework. The

.NET Framework Client Profile is not sufficient to meet this condition.
 VISA Shared Components. VISA.NET is installed under base directories created by the VISA Shared

Components. The VISA Shared Components installer also includes the Conflict Resolution Manager
which is required by the VISA.NET Global Resource Manager.

RULE 4.4.1

The VISA.NET Shared Components installer SHALL require that the prerequisites are installed before
making any modifications to the install PC.

OBSERVATION 4.4.1

The VISA.NET Shared Components installer does not install the .NET Framework 2.0 (or higher) or the
VISA Shared Components.

VISA.NET Assembly Name and Location

The VISA.NET Shared Components install a single .NET assembly that includes all of the common API,
the standard implementation of IMessageBasedFormattedIO, and the VISA.NET Global Resource
Manager (GRM). The installer may also include policy files that redirect references to previous versions of
the VISA.NET assembly to the current version.

RULE 4.4.2

The 32-bit version of the VISA.NET Shared Components installer SHALL support the exact set of
Operating Systems that are supported by the 32-bit version of the VISA Shared Components installer, as
described in RULE 4.1.11.

RULE 4.4.3

The 64-bit version of the VISA.NET Shared Components installer SHALL support the exact set of
Operating Systems that are supported by the 64-bit version of the VISA Shared Components installer, as
described in RULE 4.2.14.

RULE 4.4.4

On 32-bit and 64-bit Windows operating systems, the VISA.NET Shared Components installer SHALL
create the directory “<VXIPNPPATH>\Microsoft.NET\Framework32\<FrameworkVersion>\VISA.NET
Shared Components <version>\”, where <version> is the version of the VISA.NET Shared Components
installer. This directory is known as the version-specific 32-bit VISA.NET install directory.

Page A-76 Appendix A: Implementation Files

RULE 4.4.5

On 64-bit Windows operating systems, the VISA.NET Shared Components installer SHALL create the
directory “<VXIPNPPATH64>\Microsoft.NET\Framework64\<FrameworkVersion>\VISA.NET Shared
Components <version>\”, where <version> is the version of the VISA.NET Shared Components installer.
This directory is known as the version-specific 64-bit VISA.NET install directory.

RULE 4.4.6

The VISA.NET assembly SHALL be named Ivi.Visa.dll. The format of the product, file, and assembly
versions of this assembly SHALL be <MajorVersion>.<MinorVersion>.<Build>.0 (e.g. <Revision> is
always 0).

RULE 4.4.7

On 32-bit and 64-bit Windows operating systems, the VISA.NET Shared Components installer SHALL
install the Ivi.Visa.dll assembly into the version-specific 32-bit VISA.NET install directory.

RULE 4.4.8

On 64-bit Windows operating systems, the VISA.NET Shared Components installer SHALL install the
Ivi.Visa.dll assembly into the version-specific 64-bit VISA.NET install directory.

RULE 4.4.9

Policy file names SHALL conform to Microsoft conventions. The VISA.NET Shared Components
installer SHALL install any related Policy files into the version-specific VISA.NET install directory.

RULE 4.4.10

The VISA.NET Shared Components installer SHALL install the VISA.NET assembly and any related
policy files into the Global Assembly Cache (GAC).

VISA.NET Shared Components Installer Version

RULE 4.4.11

The major and minor fields of the VISA.NET Shared Components installer version SHALL be identical to
the major and minor fields of the version of the VISA.NET assembly.

Uninstalling the VISA.NET Shared Components

RULE 4.4.12

The VISA.NET Shared Components uninstaller SHALL search for the following dependent software:
 Vendor Specific Resource Managers

IF dependent software is found, the uninstaller SHALL present a warning dialog to the user AND the
dialog’s default response SHALL be Cancel.

OBSERVATION 4.4.2

Even if dependent software is detected, a user still will be allowed to override the default and uninstall the
VISA.NET Shared Components. This is important for corner cases such as downgrading and cleaning up
systems where some other component’s uninstallation failed.

Appendix A: Implementation Files Page A-77

4.5. The IVI VISA .NET NuGet Package

This section describes the VISA.NET NuGet package provided by the IVI Foundation. The IVI
VISA.NET assembly includes:

 The IVI VISA interfaces per VPP 4.3.6

 The standard implementation of IMessageBasedFormattedIO

 The VISA.NET Global Resource Manager (GRM)

PREREQUISITES

The following software must be installed before the VISA.NET assembly will work:
 .NET 6.0 or higher.
 VISA Shared Components. The VISA Shared Components installer includes the VISA-C Conflict

Resolution Manager which is required by the VISA.NET Global Resource Manager.

RULE 4.5.1 IVI VISA.NET Assembly Name and Version

The VISA.NET assembly SHALL be named Ivi.Visa.dll. The format of the product, file, and assembly
versions of this assembly SHALL be <MajorVersion>.<MinorVersion>.<Build>.0 (e.g. <Revision> is
always 0).

The assembly version SHALL follow semver 2.0, where the IVI Build field corresponds to the semver
Patch field. See VPP-4.3.6 17.3.2, Vendor VISA.NET Loading for details on how Major and Minor are
managed.,

RULE 4.5.2 NuGet Package Name and Version

The VISA.NET NuGet package SHALL be named Ivi.Visa. The major and minor fields of the VISA.NET
Shared Components NuGet package version SHALL be identical to the major and minor fields of the
version of the VISA.NET assembly.

RULE 4.5.3 NuGet Package Fields

The IVI VISA.NET NuGet package SHALL have the following nuget fields:

 id: ivi.visa

 description: IVI Foundation VISA.NET Shared Components

 authors: IVI Foundation

 projectUrl: https://ivifoundation.org

 license: contains a reference to the IVI EULA contained in the package

RULE 4.5.4 NuGet Package Tags

The IVI VISA.NET NuGet package SHALL have the following nuget tags:

 Tag indicating IVI compliance: IVI-Generation-2023-Conformant

 Tag indicating component type: IVI-VISA-SharedComponents

 Tag indicating provider: IVI-Foundation

Page A-78 Appendix A: Implementation Files

 Tag generically indicating IVI: IVI

 Tag generically indicating VISA: VISA

There are additional NuGet settings and configurations that are beyond the scope of this specification (including
icon and readme). These choices are made by the IVI Shared Components developers and validated by the IVI
Shared Components Management working group.

Appendix A: Implementation Files Page A-79

Appendix A: Implementation Files

A.1 Contents of the visaRouter.h File

/**
Distributed by IVI Foundation Inc.

Do not modify the contents of this file.

Title : visaRouter.h
Date : 08-12-2008
Purpose : Define VISA attributes that apply to the VISA router.

***/

#ifndef __VISAROUTER_HEADER__
#define __VISAROUTER_HEADER__

#define VI_ATTR_UNLOAD_PLUGINS_IF_LAST_RM (0x3FFF018CUL) // ViBoolean
#define VI_ATTR_UNDERLYING_VISA_SESSION (0x3FFFA000UL) // ViSession
#define VI_ATTR_MULTI_SPEC_VERSION (0x3FFFA001UL) // ViVersion
#define VI_ATTR_MULTI_MANF_NAME (0x3FFFA002UL) // ViString
#define VI_ATTR_MULTI_MANF_ID (0x3FFFA003UL) // ViUInt16
#define VI_ATTR_MULTI_IMPL_VERSION (0x3FFFA004UL) // ViVersion

#endif // __VISAROUTER_HEADER__

A.2 Contents of the ConflictMgr.h File

/*---*/
/* Distributed by IVI Foundation Inc. */
/* Do not modify the contents of this file. */
/*---*/
/* */
/* Title : visaConflictMgr.h */
/* Date : 06-19-2014 */
/* Purpose : Include file for the VISA Conflict Resolution Manager */
/* */
/*---*/

#ifndef VISACM_CON_MGR
#define VISACM_CON_MGR

#include "visatype.h"

/* these enumerations are for conflict handler types */
#define VISACM_HANDLER_NOT_CHOSEN 0
#define VISACM_HANDLER_CHOSEN_BY_RSRC_MGR 1
#define VISACM_HANDLER_CHOSEN_BY_USER 2

/* these enumerations are for api types */
#define VISACM_API_C_AND_COM 0
#define VISACM_API_DOTNET 1

Page A-80 Appendix A: Implementation Files

/* these enumerations are for FlushConflictFile */
#define VISACM_FLUSH_OVERWRITE_ALWAYS 0
#define VISACM_FLUSH_WRITE_IF_UNCHANGED 1
#define VISACM_FLUSH_WRITE_OR_RELOAD 2

#define VISACM_STRING_SIZE 256
#define VISACM_GUID_STRING_SIZE 39 /* 32 hex digits + 4
dashes + null term char + surrounding braces */

#if defined(__cplusplus) || defined(__cplusplus__)
extern "C" {
#endif

/* Initialize the DLL for use */
ViStatus _VI_FUNC VISACM_Initialize();

/* Close the DLL after use */
ViStatus _VI_FUNC VISACM_Close();

/* toggle conflict storage */
ViStatus _VI_FUNC VISACM_SetStoreConflictsOnly(ViBoolean storeConflicts); /* in */

/* get storage setting */
ViStatus _VI_FUNC VISACM_GetStoreConflictsOnly(ViPBoolean storeConflicts); /* out */

/* get conflict table filename */
ViStatus _VI_FUNC VISACM_GetConflictTableFilename(ViChar filename[]); /* out */

/* get number of conflict table entries */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_GetResourceCount(ViPInt32 numberRsrcs); /* out */

/* get number of conflict table entries */
ViStatus _VI_FUNC VISACM_GetResourceCount2(
 ViInt16 apiType, /* in */
 ViPInt32 numberRsrcs); /* out */

/* clear all of the resource handlers from the table */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_ClearResourceHandlersFromTable();

/* clear all of the resource handlers from the table */
ViStatus _VI_FUNC VISACM_ClearResourceHandlersFromTable2(ViInt16 apiType); /* in */

/* create a new handler in conflict table */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_CreateHandler(
 ViUInt16 interfaceType, /* in */
 ViUInt16 interfaceNumber, /* in */
 ViConstString sessionType, /* in */
 ViConstString guid_SRM, /* in */
 ViInt16 conflictHandlerType, /* in */
 ViConstString comments); /* in */

/* create a new handler in conflict table */
ViStatus _VI_FUNC VISACM_CreateHandler2(
 ViInt16 apiType, /* in */
 ViUInt16 interfaceType, /* in */
 ViUInt16 interfaceNumber, /* in */
 ViConstString sessionType, /* in */
 ViConstString guid_SRM, /* in */
 ViInt16 conflictHandlerType, /* in */
 ViConstString comments); /* in */

Appendix A: Implementation Files Page A-81

/* delete a handler by specifying ALL identifying attributes */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_DeleteHandler(
 ViUInt16 interfaceType, /* in */
 ViUInt16 interfaceNumber, /* in */
 ViConstString sessionType, /* in */
 ViConstString guid_SRM); /* in */

/* delete a handler by specifying ALL identifying attributes */
ViStatus _VI_FUNC VISACM_DeleteHandler2(
 ViInt16 apiType, /* in */
 ViUInt16 interfaceType, /* in */
 ViUInt16 interfaceNumber, /* in */
 ViConstString sessionType, /* in */
 ViConstString guid_SRM); /* in */

/* delete all handlers for a specific GUID (for use when VISA fails to load) */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_DeleteHandlerByGUID(ViConstString guid_SRM); /* in */

/* delete all handlers for a specific GUID (for use when VISA fails to load) */
ViStatus _VI_FUNC VISACM_DeleteHandlerByGUID2(
 ViInt16 apiType, /* in */
 ViConstString guid_SRM); /* in */

/* delete handler by index */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_DeleteResourceByIndex(ViInt32 resourceIndex); /* in */

/* delete handler by index */
ViStatus _VI_FUNC VISACM_DeleteResourceByIndex2(
 ViInt16 apiType, /* in */
 ViInt32 resourceIndex); /* in */

/* find a handler for a interface number, type, and session type */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_FindChosenHandler(
 ViUInt16 interfaceType, /* in */
 ViUInt16 interfaceNumber, /* in */
 ViConstString sessionType, /* in */
 ViChar guid_SRM[], /* out */
 ViPInt16 conflictHandlerType); /* out */

/* find a handler for a interface number, type, and session type */
ViStatus _VI_FUNC VISACM_FindChosenHandler2(
 ViInt16 apiType, /* in */
 ViUInt16 interfaceType, /* in */
 ViUInt16 interfaceNumber, /* in */
 ViConstString sessionType, /* in */
 ViChar guid_SRM[], /* out */
 ViPInt16 conflictHandlerType); /* out */

/* get conflict table entry, mainly used to iterate through all entries */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_QueryResource(
 ViInt32 resourceIndex, /* in */
 ViPUInt16 interfaceType, /* out */
 ViPUInt16 interfaceNumber, /* out */
 ViChar sessionType[], /* out */
 ViPInt16 numHandlers); /* out */

/* get conflict table entry, mainly used to iterate through all entries */

Page A-82 Appendix A: Implementation Files

ViStatus _VI_FUNC VISACM_QueryResource2(
 ViInt16 apiType, /* in */
 ViInt32 resourceIndex, /* in */
 ViPUInt16 interfaceType, /* out */
 ViPUInt16 interfaceNumber, /* out */
 ViChar sessionType[], /* out */
 ViPInt16 numHandlers); /* out */

/* get a handler for a specific interface and session type */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_QueryResourceHandler(
 ViInt32 resourceIndex, /* in */
 ViInt32 handlerIndex, /* in */
 ViChar guid_SRM[], /* out */
 ViPInt16 conflictHandlerType, /* out */
 ViChar comments[]); /* out */

/* get a handler for a specific interface and session type */
ViStatus _VI_FUNC VISACM_QueryResourceHandler2(
 ViInt16 apiType, /* in */
 ViInt32 resourceIndex, /* in */
 ViInt32 handlerIndex, /* in */
 ViChar guid_SRM[], /* out */
 ViPInt16 conflictHandlerType, /* out */
 ViChar comments[]); /* out */

/* get preferred VISA GUID and name */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_GetVisaPreferred(ViChar guid_SRM[]); /* out */

/* get preferred VISA GUID and name */
ViStatus _VI_FUNC VISACM_GetVisaPreferred2(
 ViInt16 apiType, /* in */
 ViChar guid_SRM[]); /* out */

/* set preferred VISA */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_SetVisaPreferred(ViConstString guid_SRM); /* in */

/* set preferred VISA */
ViStatus _VI_FUNC VISACM_SetVisaPreferred2(
 ViInt16 apiType, /* in */
 ViConstString guid_SRM); /* in */

/* get the number of VISA libraries installed and registered on the system */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_GetInstalledVisaCount(ViPInt32 numberOfVisas); /* out */

/* get the number of VISA libraries installed and registered on the system */
ViStatus _VI_FUNC VISACM_GetInstalledVisaCount2(
 ViInt16 apiType, /* in */
 ViPInt32 numberOfVisas); /* out */

/* get installed VISA by index */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_GetInstalledVisa(
 ViInt32 index, /* in */
 ViPUInt16 vendorID, /* out */
 ViChar guid_SRM[], /* out */
 ViChar visaPathLocation[], /* out */
 ViChar visaFriendlyName[], /* out */
 ViChar comments[]); /* out */

Appendix A: Implementation Files Page A-83

/* get installed VISA by index */
ViStatus _VI_FUNC VISACM_GetInstalledVisa2(
 ViInt16 apiType, /* in */
 ViInt32 index, /* in */
 ViPUInt16 vendorID, /* out */
 ViChar guid_SRM[], /* out */
 ViChar visaPathLocation[], /* out */
 ViChar visaFriendlyName[], /* out */
 ViChar comments[]); /* out */

/* get if a VISA is enabled */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_GetVisaEnabled(
 ViConstString guid_SRM, /* in */
 ViPBoolean enabled); /* out */

/* get if a VISA is enabled */
ViStatus _VI_FUNC VISACM_GetVisaEnabled2(
 ViInt16 apiType, /* in */
 ViConstString guid_SRM, /* in */
 ViPBoolean enabled); /* out */

/* set whether a VISA is enabled or disabled */
/* OBSOLETE, apiType = 0 */
ViStatus _VI_FUNC VISACM_SetVisaEnabled(
 ViConstString guid_SRM, /* in */
 ViBoolean enabled); /* in */

/* set whether a VISA is enabled or disabled */
ViStatus _VI_FUNC VISACM_SetVisaEnabled2(
 ViInt16 apiType, /* in */
 ViConstString guid_SRM, /* in */
 ViBoolean enabled); /* in */

/* flush the table in memory to file */
ViStatus _VI_FUNC VISACM_FlushConflictFile(
 ViInt16 behavior, /* in */
 ViPBoolean fileOnDiskWasNewer); /* out */

/* get whether any changes have been made to the table since load */
ViStatus _VI_FUNC VISACM_GetIsDirty(ViPBoolean isDirty); /* out */

/* reload the file from disk regardless of any changes in memory */
ViStatus _VI_FUNC VISACM_ReloadFile();

/* reset the table to no handlers, no preferred VISA, and no disabled VISAs */
ViStatus _VI_FUNC VISACM_ClearEntireTable();

#if defined(__cplusplus) || defined(__cplusplus__)
} /* extern "C" brace */
#endif

#endif /* endif for VISACM_CON_MGR macro */

Page A-84 Appendix A: Implementation Files

A.3 Contents of the ConflictMgr.def File

EXPORTS
 VISACM_GetConflictTableFilename @1
 VISACM_SetStoreConflictsOnly @14
 VISACM_GetStoreConflictsOnly @15
 VISACM_FlushConflictFile @17
 VISACM_Initialize @18
 VISACM_Close @19
 VISACM_GetIsDirty @20
 VISACM_ReloadFile @23
 VISACM_ClearEntireTable @24

; New functions added to support API Type parameter
 VISACM_CreateHandler2 @25
 VISACM_DeleteHandler2 @26
 VISACM_DeleteHandlerByGUID2 @27
 VISACM_DeleteResourceByIndex2 @28
 VISACM_FindChosenHandler2 @29
 VISACM_QueryResource2 @30
 VISACM_QueryResourceHandler2 @31
 VISACM_ClearResourceHandlersFromTable2 @32
 VISACM_GetVisaPreferred2 @33
 VISACM_SetVisaPreferred2 @34
 VISACM_GetInstalledVisa2 @35
 VISACM_GetResourceCount2 @36
 VISACM_GetInstalledVisaCount2 @37
 VISACM_SetVisaEnabled2 @38
 VISACM_GetVisaEnabled2 @39

; Obsolete functions, exported for backwards compatibility
 VISACM_CreateHandler @2
 VISACM_DeleteHandler @3
 VISACM_DeleteHandlerByGUID @4
 VISACM_DeleteResourceByIndex @5
 VISACM_FindChosenHandler @6
 VISACM_QueryResource @7
 VISACM_QueryResourceHandler @8
 VISACM_ClearResourceHandlersFromTable @9
 VISACM_GetVisaPreferred @10
 VISACM_SetVisaPreferred @11
 VISACM_GetInstalledVisa @12
 VISACM_GetResourceCount @13
 VISACM_GetInstalledVisaCount @16
 VISACM_SetVisaEnabled @21
 VISACM_GetVisaEnabled @22

Appendix A: Implementation Files Page A-85

A.4 Contents of the visaUtilities.h File

/**
Distributed by IVI Foundation Inc.

Do not modify the contents of this file.

Title : visaUtilities.h
Date : 08-12-2008
Purpose : Define a function to obtain the user 'vi' from the internal 'vi'.
 This can be used to convert the 'vi' is used internally by a
 vendor VISA to the 'vi' that user sees which was returned by the
 VISA router.

***/

#if !defined(VISAUTILITIES_H)
#define VISAUTILITIES_H

#if defined(__cplusplus) || defined(__cplusplus__)
 extern "C" {
#endif

ViSession _VI_FUNC getUserVi(const ViSession underlyingVi, const ViUInt16
underlyingManfId);

#if defined(__cplusplus) || defined(__cplusplus__)
 }
#endif

#endif // VISAUTILITIES_H

A.5 Contents of the visaUtilities.def File

LIBRARY "visaUtilities"

EXPORTS
; Functions used internally by the VISA router
 viTableAdd @128
 viTableRemove @129
 viTableLookup @130
 viTableGetSessionCount @131
 viTableAddToUserViMap @132
 viTableRemoveFromUserViMap @133

; Functions that can be called externally
 getUserVi @144

