| ,-
IVI FOUNDATION

Getting Started
with
IVI Drivers

Your Guide to Using IVI with
Visual C++

Version 1.2

© Copyright IVI Foundation, 2015
All rights reserved

The VI Foundation has full copyright privileges of all versions of the IVI Getting
Started Guide. For persons wishing to reference portions of the guide in their own
written work, standard copyright protection and usage applies. This includes
providing a reference to the guide within the written work. Likewise, it needs to be
apparent what content was taken from the guide. A recommended method in
which to do this is by using a different font in italics to signify the copyrighted
material.

Chapter 1

Chapter 2

Contents

INtrodUCHioN.....ccc e ———— 5
PUMPOSE ...t eneeas 5
Why Use an InstrumentDriver? ... 5
WY IVI? ettt e ens 6
Why USe an IVIDIIVEI?coouiiiiiiie et 8
FIavors Of IVIDIIVETScoouiiiiieiiee et 9
Shared COMPONENTSooiiiiie e 9
Downloadand Install IVIDIIVErScccooiiiiii e 9
Familiarizing Yourselfwiththe Driver...........cccooiiiiiiiiicee e 10
EXAMPIES .. 10
Using IVIWithVisual CH+ ... 13
The ENVIFONMENT ..o e 13
Example ReqUIremMents.ooi i 13
Downloadand Installthe Driver ... 13
USINGIVI-COMIN CH et 13
Create a New Project and Import the Driver Type Libraries 13
IMport COMTypeLibraries ..o 14
INItIANIZE COM ..o e e 15
Create an Instance of the DIriver ... 15
Initialize the INStrUMENt............coi i 15
Configure the INStrument ... 15
Setthe TriggerDelay ... 16
Setthe Reading Timeout/Displaythe Reading..........c.cocoiiiniiinininennn 16
Error CheCKINGoovieeiieiere e 16
ClosSethe SEeSSIONcocueiiiiiiie e 16
VIEWThE RESUIS......oeiiiieieeee e 16

Complete SOUrce COode ..ot 17

Buildand Runthe Application.............coooiiiiiiiiii e 18
Using IVI-CinVisual CH+ ..o 18
Create aNew Projectand Import the Driver Type Libraries 18
Include Driver HEAdercooviiieiieiieeeeeeeee e 19
Declare Variables...........ccvoiioiiiiieseee e 19
Define Error CheCking........coveiiiiiieiiiieeie e 20
Initialize the INStrUMENt...........coi i 20
Configure the INStrumentcccoiiiiiiii e 21
Setthe Triggerand TriggerDelayccccoiiiiieiiiieniiiicee e 21
Setthe Reading Timeout/Displaythe Reading...........cccooevrieiiiinninnnen. 21
CloSEthE SESSION ... e 21
VIEWThERESUIS......ooiiiiieiie e 21
Complete SOUrce COAEooiiiiieieee e 21
Buildand Runthe Application.............coooi i 22

Chapter 1
Introduction

Purpose

Welcome to Getting Started with IVI Drivers: Your Guide to Using IVI with
Visual C++. This guide introduces key concepts about VI drivers and shows you
how to create a short program to perform a measurement. The guide is part of the
IVIFoundation’s series of guides, Getting Started with IVI Drivers.

Getting Started with IVI Drivers is intended for individuals who write and run
programsto controltest-and-measurementinstruments. Each guidefocusesona
different programming environment. As you develop test programs, you face
decisions abouthowyoucommunicate withtheinstruments. Some ofyourchoices
include Direct /O, VXIplugé&play drivers, or IVI drivers. If you are new to using IVI
drivers or just want a quick refresher on the basics, Getting Started with IVI
Driverscanhelp.

Getting Started with IVI Drivers shows that IVI drivers can be straightforward,
easy-to-use tools. VI drivers provide a number of advantages that can save time
and money during development, while improving performance as well. Whether
you are starting a new program or making improvements to an existing one, you
should consider the use of IV drivers to develop your test programs.

So considerthis the “hello, instrument” guide for [Vl drivers. If you recall, the “hello
world” program, which originally appearedin Programming in C: A Tutorial, simply
prints out “hello, world.” The “hello, instrument” program performs a simple
measurementonasimulatedinstrumentandreturnsthe result. We think you'llfind
that far more useful.

Why UseanlInstrumentDriver?
Tounderstand the benefits of VI drivers, we need to start by defining instrument
drivers in generaland describing why they are useful. Aninstrumentdriveris a set
of software routines that controls a programmable instrument. Each routine
correspondsto a programmatic operation, such as configuring, writing to, reading
from, andtriggering the instrument. Instrumentdrivers simplify instrument control
and reduce test program development time by eliminating the need to learn the
programming protocol for each instrument.

Startinginthe 1970s, programmers used device-dependentcommands for
computercontrolofinstruments. Butlack of standardizationmeanteventwodigital
multimeters from the same manufacturer might not use the same commands. In
the early 1990s a group of instrument manufacturers developed Standard

Why IVI?

Commands for Programmable Instrumentation (SCPI). This defined set of
commands for controlling instruments uses ASCII characters, providing some
basic standardization and consistency to the commands used to control
instruments. For example, when you want to measure a DC voltage, the
standard SCPl command is “MEASURE : VOLTAGE : DC?".

In 1993, the VXIplugé&play Systems Alliance created specifications forinstrument
drivers called VXlplug&playdrivers. Unlike SCPI, VXIplug&play drivers do not
specify how to control specificinstruments; instead, they specify some common
aspects of an instrument driver. By using a driver, you can access the instrument
by calling a subroutine in your programming language instead of having to format
and send an ASCl| string as you do with SCPI. With ASCII, you have to create and
send the instrument the syntax “MEASURE : VOLTAGE : DC?”, thenread back a
string, and build itinto a variable. With a driveryou can merely call a function called
MeasureDCVoltage() and passit a variable to return the measured voltage.

Although you still need to be syntactically correctin your calls to the instrument
driver, making calls to a subroutine in your programming language is less error
prone. Ifyou have been programming to instruments withouta driver, thenyou are
probably alltoofamiliarwith huntingaround the programming guide tofind theright
SCPI command and exact syntax. You also have to deal with an I/O library to
format and send the strings, and then build the response string into a variable.

The VXIplug&playdrivers do not provide acommon programming interface. That
means programming a Keithley DMM using VXlplug&play still differs from
programming a Keysight DMM. Forexample, the instrumentdriver interface for
one may be ke2000_read while anothermay be ag34401_getorsomething
even farther afield. Withoutconsistency acrossinstruments manufactured by
different vendors, many programmers still spentalotoftimelearning each
individualdriver.

Tocarry VXlplugé&play drivers a step (or two) further, in 1998 a group of end users,
instrumentvendors, software vendors, system suppliers,and systemintegrators
joined together to form a consortium called the Interchangeable Virtual Instruments
(IV1) Foundation. If you look at the membership, it’s clear that many of the
foundation members are competitors. But all agreed on the need to promote
specifications for programmingtestinstruments thatprovide better performance,
reduce the cost of program developmentand maintenance, and simplify
interchangeability.

Forexample, forany|VIdriverdevelopedforaDMM, the measurementcommand
is viDmmMeasurement.Read, regardless of the vendor. Once you learn how to

program the commands specified by IVIfor the instrument class, you can use any
vendor’sinstrumentand notneed to relearn the commands. Also commands that
are common to all drivers, such as Initialize and Close, are identical regardless of

the type of instrument. This commonality lets you spend less time browsing
through the help files in order to program an instrument, leaving more time to
get your job done.

Thatwas the motivation behind the development of IVIdrivers. The VI
specifications enable drivers with a consistent and high standard of quality,
usability, and completeness. The specifications define an open driver architecture,
asetofinstrumentclasses, and shared software components. Together these
provide consistency and ease of use, as well as the crucial elements needed for
theadvancedfeatures|IVIdrivers support:instrumentsimulation, automaticrange
checking, state caching, and interchangeability.

The IVIFoundation has created |VIclass specifications thatdefine the capabilities
for drivers for the following thirteen instrument classes:

Class IVI Driver
Digital multimeter (DMM) IviDmm
Oscilloscope IviScope

Arbitrary waveform/function generator IviFgen

DC powersupply IviDCPwr

AC power supply IVIACPwr
Switch IviSwtch

Power meter IviPwrMeter
Spectrum analyzer IviSpecAn

RF signalgenerator IViRFSigGen
Upconverter IviUpconverter
Downconverter IviDownconverter
Digitizer IviDigitizer
Counter/timer IviCounter

IVIClass Compliantdrivers usually alsoinclude numerous functions thatare
beyond the scope of the class definition. This may be because the capability is
not common to allinstruments of the class or because the instrument offers
some control thatis more refined than what the class defines.

IVIalso defines custom drivers. Custom drivers are used for instruments that are
not members of a class. For example, there is not a class definition for network
analyzers, so a network analyzer driver must be a custom driver. Custom drivers
provide the same consistency and benefits described below for an IVI driver,
exceptinterchangeability.

IVIdrivers that conformto the IVI specifications are permitted to display the 1VI-
Conformantlogo.

Why Use an IVIDriver?

Why choose IVI drivers over other possibilities? Because IVI drivers can increase
performance andflexibility formoreintricate testapplications. Here are afew ofthe
benefits:

Consistency — VI drivers all follow a common model of how to control the
instrument. That saves you time when you need to use a new instrument.

Ease of use — |Vl drivers feature enhanced ease of use in popular Application
Development Environments (ADEs). The APIs provide fast, intuitive access to
functions. IVI drivers use technology that naturally integrates in many different
software environments.

Quality — VI drivers focus on common commands, desirable options, and
rigorous testing to ensure driver quality.

Simulation— VI drivers allow code development and testing even when an
instrumentis unavailable. Thatreduces the need for scarce hardware resources
and simplifies test of measurement applications. The example programs in this
document use this feature.

Range checking— VI drivers ensure the parameters you use are within
appropriate rangesforaninstrument.

State caching - IVl drivers keep track of an instrument’s status so that I/O is only
performed when necessary, preventing redundant configuration commands from
being sent. This can significantlyimprove test system performance.

Interchangeability— 1VI class compliant drivers also enable exchange of
instruments with minimal code changes, reducing the time and effortneeded to
integrate measurement devicesintoneworexistingsystems. ThelVIclass
specifications provide syntactic interchangeability but may not provide behavioral
interchangeability. In other words, the program may run on two different

8

instruments but the results may not be the same due to differences in the
way the instrument itself functions.

Flavors of IVI Drivers

Tosupport all popular programming languages and development environments, VI
drivers provide eitheran IVI-C or IVI-COM (Component Object Model) API. Driver
developers may provide either or both interfaces, as well as wrapper interfaces
optimized for specific development environments.

Although the functionality is the same, IVI-C drivers are optimized foruse in ANSI
C development environments; IVI-COM drivers are optimized for environments
that support the Component Object Model (COM) such as the .NET
programming environment. IVI-C drivers extend the VXlplug&playdriver
specification and theirusage is similar. IVI-COMdrivers provide easyaccessto
instrumentfunctionality through methods and properties.

The getting started examples communicate with the instruments using the
Virtual Instrument Software Architecture (VISA) I/O library, a widely used
standard library forcommunicating with instrumentsfrom a personal computer.
The VISA standard is also provided by the IVl Foundation.

Shared Components

Tomake it easier to combine drivers and other software from various vendors,
the IVIFoundation members have cooperated to provide common software
components, called IVl Shared Components. These components provide
services to drivers and driver clients that need to be common to all drivers. For
instance, the IVl Configuration Serverenables administration of system-wide
configuration.

Important! Youmustinstallthe VI Shared Components before an VI driver can
beinstalled.

The IVI Shared Components can be downloaded from vendors’ web sites as well
as from the IVI Foundation Web site.

Todownload and install shared components from the IVl Foundation Web site:

1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.

2 Locate the Shared Components page.

3 Choose the IVI Shared Components msi file for the Microsoft Windows
Installer package or the IVI Shared Components exe for the
executable installer.

Download andInstalllVIDrivers

Afteryou’veinstalled Shared Components, you'rereadytodownload andinstallan
IVl driver. For most ADEs, the steps to download and install an VI driver are
identical. Forthe few thatrequire a different process, the relevant Getting Started

with IVI Drivers guide provides the information you need. VI Drivers are
9

available from the hardware or software vendors’ web site or by linking to them
from the IVl Foundation web site.

The IVI Foundation requires that compliant drivers be registered before the display the
IVI conformant logo. To see the list of drivers registered with the IVI Foundation, go
to the registration section of the IVl web site at http://www.ivifoundation.org.

Familiarizing Yourself with the Driver

Althoughthe examplesin Getting Started with IVIDrivers use a DMMdriver, you
will likely employ a variety of VI drivers to develop test programs. To jumpstart
that task, you’ll want to familiarize yourself quickly with drivers you haven’tused
before. Most ADEs provide a way to explore VI drivers to learn their functionality.
In each IVI guide, where applicable, we add a note explaining how to view the
available functions. In addition, browsing an VI driver’s help file often proves an
excellentway to learn its functionality.

10

Examples

As we noted above, each guide in the Getting Started with IVI Drivers series shows you how to
use an VI driver to write and run a program that performs a simple measurementon a simulated
instrumentand returns the result. The examples demonstrate common steps using IVl drivers.
Where practical, every example includes the steps listed below:

Download and Install the VI driver— covered in the Download and Install IVI Drivers
section above.

Determine the VISA address string— Examples in Getting Started with IVI Drivers
use the simulate mode, so we chose the address string GPIB0::23::INSTR, often
shown as GPIB::23. If you need to determine the VISA address string for your
instrument and the ADE does not provide it automatically, use an10 application, such
as National Instruments Measurementand Automation Explorer (MAX)orKeysight
Connection Expert.

Reference the driver or load driver files — For the examples in this guide, the driver is
the IVI-COM/IVI-C Version 1.3.0.0 for 34401A, March 2015 (from Keysight
Technologies) ... or the Keysight 34401A IVI-C driver, Version 4.5, January
2015 (from National Instruments).

Create an instance of the driverin ADEs that use COM — For the examples in the IVI
guides, thedriveristhe Agilent 34401A (IVI-COM) or HP 34401 (IVI-C).

Writethe program. The programs in this series all perform the following steps:

* |Initialize the instrument— Initialize is required when using any VI driver.
Initialize establishes a communication link with the instrumentand must
be called before the program can do anything with the instrument. The
examplesset resettotrue, ID query tofalse, and simulate to true.

Setting reset to true tells the driver to initially reset the instrument.
Setting the ID query to false prevents the driver from verifying that the
connected instrument is the one the driver was written for. Finally,
setting simulate to true tells the driver that it should not attempt to
connect to a physical instrument, but use a simulation of the
instrument.

* Configuretheinstrument—The examples setarange of1.5voltsanda
resolution of
0.001volts(1millivolt).

* Accessaninstrument property — The examples set the trigger
delay to 0.01 seconds.

* Setthereading timeout—The examplesset the reading
timeoutto 1000 milliseconds (1 second).

®* Takeareading

* Closetheinstrument— This step is required when using any IVI driver,
unless the ADE explicitly does not require it. We close the session to free
resources.

11

Important!Closemaybethemostcommonlymissedstepwhenusingan VI
driver. Failing to do this could meanthat system resources are not freed
upandyourprogrammaybehave unexpectedlyonsubsequent
executions.
® Checkthedriverforany errors.
* Displaythereading.
Note: Examples that use a console application do not show the display.
Now that you understand the logic behind IVI drivers, let’s see how to get started.

12

Chapter 2
Using IVIwith Visual C++

The Environment
Microsoft Visual C++ is a software development environment for the C++
programming language and is available as part of Microsoft Visual Studio.
Visual C++ allows you to create, debug, and execute conventional applications
as well as applications that target the .NET Framework.

Example Requirements
* Visual C++
* MicrosoftVisual Studio2010

* [VI-COM: Keysight 34401A IVI-COM, Version 1.3.0.0, March 2015 (from
Keysight Technologies); or

* Keysight 34401A IVI-C driver, Version 4.5, January 2015 (from
National Instruments)

* Keysight IO Libraries Suite 16.1 or greater
® National Instruments IVI Compliance Package version 4.0 or later

Download andInstallthe Driver

Ifyou have notalready installed the driver, go to the vendor Web site and follow the
instructions todownload and install it.

Since Visual C++ supports both IVI-COM and IVI-C drivers, this example is written
two ways, first to show how to use an IVI-COM driver in Visual C++, and second to
show how to use an IVI-C driver in Visual C++.

Note: Ifyoudonotinstallthe appropriate instrumentdriver, the project will not build
because the referenced files are not included in the program. If you need to
download andinstall a driver, you do notneedto exit Visual Studio. Installthe driver
and continue with your program.

UsingIVI-COMinC++

The following sections show how to get started with an IVI-COM driver in Visual
C++.

Create aNew Projectand Importthe Driver Type Libraries

Touse an IVI Driverin a Visual C++ program, you must provide the path to the
type libraries it uses.

13

1 Launch Visual Studio 2010 and create a Visual C++ Win32 Console Application
with the name “lviDemo”. Use the default settings.

Note: The program already includes some required code, including the
standard header file:

#include "stdafx.h"
2 In Solution Explorer, right click on the “lviDemo” project node and click on
“Properties”. This will open the “IviDemo Property Pages” dialog.

3 Inthe tree view on the left of the dialog, expand “Configuration Properties”,
then click on “VC++ Directories”.

4 Locate the “Include Directories” row in the right hand pane and click on the
drop down icon in the column that contains the directory paths. Click on
“<Edit...>".

5 Add the following two entries to your path.

The first entry will point to the default directory for IVI drivers. On 32-bit
Windows, use:

“C:\Program Files\IVI Foundation\IVI\Bin”

On 64-bit Windows, use:

“C:\Program Files (x86)\IVI Foundation\IVI\Bin”

The second entry points to the VISA DLL that many drivers
require:

“$ (VXIPNPPATH) VisaCom”

Note: The second entry will point to the correct VISA COM directory regardless
of whether you are operating with 32-bit or 64-bit Windows.

6 Click OKtwice tosave changesand exit the “lviDemo Property Pages” dialog.

Import COM Type Libraries
COM type libraries must be imported before they can be accessed. To import
the type libraries, type the following statements following the header file
reference:

#import <IviDriverTypeLib.dll> no namespace
#import <IviDmmTypeLib.dll> no namespace
#import <GlobMgr.dll> no namespace

14

Initialize COM
1

#import <Ag34401.d11> no namespace

Note: The #import statements access the driver type libraries used by the
Agilent 34401 DMM. The no_namespace attribute allows the code to access the
interfaces inthe type libraries from the global namespace.

Atthis pointthe Visual C++ editor may flag the # import statements as errors. To
fix the errors, select “Rebuild Solution” from the Build menu.

Initialize the COM library, and check for errors. Add the following lines at the
beginning of the _tmain function (immediately before the return statement):

HRESULT hr = ::CoInitialize (NULL) ;
if (FAILED (hr)) exit (1) ;

To close the COM library before exiting, type the following line at the end of
your code, right before the return line:

::CoUninitialize();

Create an Instance of the Driver

Tocreate an instance of the driver, type

{
IIviDmmPtr dmm(uuidof (Agilent34401));
}
Note: This creates a smart pointerthat provides easy access to the COM object.

You are now ready to write the program to control the simulated instrument.

Initialize the Instrument

You can now write the main constructs for your program.
Below the smart pointer statement, type
dmm->Initialize ("GPIB::23", false, true, "simulate=true");

Note: As soon as you type ->, Intellisense displays options
and helps ensure you use correct syntax and values.

Configure the Instrument

Toset the range to 1.5 volts and resolution to 0.001 volts, type

dmm->Configure (IviDmmFunctionDCVolts, 1.5, 0.001);

15

Setthe TriggerDelay
Toset the trigger delay to 0.01 seconds, type

dmm->Trigger->Delay = 0.01;

Set the Reading Timeout/Display the Reading
Createavariabletorepresentthereading, makeareadingwithatimeoutof1second
(1000 milliseconds), and display the result to the console:

double reading = dmm->Measurement->Read (1000) ;

wprintf (L"Reading: %g\n", reading);

Error Checking
Tocatch errors in the code, activate error checking.

1 Surround the preceding statements with a try block. Add the following lines
before the call to the Initialize method:

try
{

2 Process errors in a catch block. Add the following lines after the call to the
wprintf method that follows the Read method:

}
catch (_com error e)
{

wprintf (L"Error: %s", e.ErrorMessage());

Close the Session
Close out the instance of the driver and free resources. Add the following line
after the closing bracket of the catch block:

dmm->Close () ;

ViewtheResults

Prompt the user to press any key to continue. Without these lines, the console
window would immediately close before the user could view the information
that was written to it. Add the following lines immediately before the return
statement:

printf ("\nDone - Press any key to exit");

getchar () ;

16

Complete Source Code

The complete source code for the lviDemo.cpp file is shown below:

// IviDemo.cpp : Defines the entry point for the console
application.

//
#include "stdafx.h"

#import <IviDriverTypeLib.dll> no namespace
#import <IviDmmTypeLib.dll> no namespace
#import <GlobMgr.dll> no namespace

#import <Ag34401.dl11> no namespace

int tmain(int argc, TCHAR* argvl[])

{
HRESULT hr = ::ColInitialize (NULL);
if (FAILED (hr)) exit(1l);

IIviDmmPtr dmm(_ uuidof (Agilent34401));

try
{
dmm->Initialize ("GPIB::23", false, true,
"simulate=true");
dmm->Configure (IviDmmFunctionDCVolts, 1.5,

0.001);
dmm->Trigger->Delay = 0.01;
double reading = dmm->Measurement->Read (1000) ;
wprintf (L"Reading: %g\n", reading);
}
catch (_com error e)
{
wprintf (L"Error: %$s", e.ErrorMessage());
}
dmm->Close () ;
}
::CoUninitialize();
printf ("\nDone - Press any key to exit");

17

getchar () ;

return 0;

Buildand Runthe Application
Build your application and run it to verify it works properly.

1 From the Build menu, select “Build”, and click “Rebuild Solution”.
2 From the Debug menu, select “Start Debugging” to run the application.

Using IVI-C in Visual C++
The following sections show to get started with IVI-C in Visual C++.

Create aNewProjectand Importthe Driver Type Libraries

To use an IVI-C Driver in a Visual C++ program, you must provide paths to the

header files and libraries it uses.
1 Launch Visual Studio 2010 and create a Visual C++ Win32 Console

Application with the name “lviDemo2”. Use the default settings.
Note: The program already includes some required code, including the
standard header file:

#include “stdafx.h”
2 In Solution Explorer, right click on the “IviDemo2” project node and click on
“Properties”. This will open the “lviDemo2 Property Pages” dialog.

3 Inthe tree view on the left of the dialog, expand “Configuration Properties”,
then click on “VC++ Directories”.

4 Locate the “Include Directories” row in the right hand pane and click on the
drop down icon in the column that contains the directory paths. Click on
“<Edit...>".

5 Add the following two entries to your path. The first entry will point to the default
directory for IVI drivers.
On 32-bit Windows, use:

“C:\Program Files\IVI Foundation\IVI\Include”

On 64-bit Windows, use:
“C:\Program Files (x86)\IVI Foundation\IVI\Include”

18

The second entry points to the VISA DLL that many drivers require:

“$ (VXIPNPPATH) WinNT\include”
Note: The second entry will point to the correct VISA directory regardless of
whether you are operating with 32-bit or 64-bit Windows.

6 Locate the “Library Directories” row in the right hand pane and click on the drop
down icon in the column that contains the directory paths. Click on “<Edit...>".

7 Add the following two entries to your path. The first entry will point to the default
directory for IVl drivers.

On 32-bit Windows, use:

“C:\Program Files\IVI Foundation\IVI\Lib\msc”

On 64-bitWindows, use:

“C:\Program Files (x86)\IVI Foundation\IVI\Lib\msc”
The second entry points to the VISA DLL that many drivers require:

“$ (VXTIPNPPATH) WinNT\lib\msc”
Note: The second entry will point to the correct VISA directory regardless of
whether you are operating with 32-bit or 64-bit Windows.

8 Next, expand “Linker” in the tree view on the left of the “lviDemo2 Property
Pages” dialog, then click on “Input”.

9 Locate the “Additional Dependencies” row in the right hand pane and click on
the drop down icon in the column that contains the list of .lib files. Click on
“<Edit...>".

10 Add the following library file to the list:
“Ag34401.11ib”

11 Click OK twice to save changes and exit the “lviDemo2 Property Pages” dialog.

Include Driver Header
Toadd the Ag34401 instrument driver header file to your program, type the
following statementfollowing the existing headerfile reference:

#include “Ag34401.h”
Select “Rebuild Solution” from the Build menu.

Declare Variables
Declare the program variables. Add the following lines at the beginning of the
_tmainfunction (immediately before the return statement):

ViSession session;

19

ViStatus error = VI SUCCESS;
ViReal64 reading;

Define Error Checking
Next define error checking for your program. First you will define a macro to
catch the errors. It is better to define it once at the beginning of the program
that to add the logic to each of your program statements. After the #include
statements, type the following lines:

#ifndef checkErr
#define checkErr (fCall) \

if (error = (fCall), (error = (error < 0) ? error
VI_SUCCESS)) \

{goto Error;} else error = error

#endif

Next add code to handle any errors that occur. Add the following lines
before the return statement:

Error:
if (error != VI SUCCESS)
{
ViChar errStr[2048];
Ag34401 GetError (session, é&error, 2048,
errStr) ;

printf ("Error!", errStr);

}

Note: Including error handling in your programs is good practice. This code
checks for errors in your program.

Initialize the Instrument

Toinitialize the instrument, add the following Initialize with Options function right
afterthe variable declarations you added in the previous section:

checkErr (Ag34401 InitWithOptions
("GPIB::23::INSTR",VI FALSE, VI TRUE,
- - "Simulate = 1",
&session));
This initializes the instrument with the following parameters:
GPIB0::23::INSTRis the Resource Name (instrumentat GPIB address 23).
VI_FALSE indicates thatan ID Query should not be performed by this function.
VI_TRUE resetsthe device.
Simulate=1 is the Options parameter that sets the driver to simulation mode.

20

® &session assigns the Instrument Handle to the variable “session” defined
above.Configure the Instrument

Configure the Instrument

To set the range to 1.5 volts and resolution to 0.001 millivolts, type:

checkErr (Ag34401 ConfigureMeasurement (session,
AG34401_VAL_DC_VOLTsS, 1.5, 0.001));

Setthe Triggerand Trigger Delay
Tosetthe trigger source to immediate and the trigger delay to 0.01 seconds, type:

checkErr (Ag34401 ConfigureTrigger (session,
AG34401 VAL IMMEDIATE,

0.01));

Set the Reading Timeout/Display the Reading
Totake areading from the instrument and to set the reading timeout to 1 second
(1000 ms) type, and display the result using the printf function:

checkErr (Ag34401 Read (session, 1000, &reading);
printf ("Reading = %f", reading);

Note: The Read function takes a reading from the instrument and assigns the
result to the variable “reading” defined above.

Close the Session
To close out the instance of the driver and free resources, add the following
lines immediately before the return statement:

If (session)
Ag34401 Close(session);

ViewtheResults
Prompt the user to press any key to continue. Without these lines, the console
window would immediately close before the user could view the information that
was written to it. Add the following lines immediately before the return statement:

printf ("\nDone - Press any key to exit");
getchar () ;

20

Complete Source Code

The complete source code for the lviDemo2.cpp file is shown below:

#include "stdafx.h"
#include <Ag34401.h>

#ifndef checkErr

#tdefine checkErr(fCall) \

if (error = (fCall), (error = (error < @) ? error :
VI_SUCCESS)) \

{goto Error;} else error = error

#endif

int _tmain(int argc, _TCHAR* argv[])
{

ViSession session;

ViStatus error = VI_SUCCESS;

ViReal64 reading;

checkErr(Ag34401_InitWithOptions ("GPIB::23::INSTR",
VI_FALSE, VI_TRUE,

"Simulate=1", &session));

checkErr(Ag34401_ConfigureMeasurement (session,

AG34401_VAL_DC_VOLTS,
1.5, 0.0001));

checkErr(Ag34401_ConfigureTrigger (session,
AG34401_VAL_IMMEDIATE, ©.01));

checkErr(Ag34401_Read (session, 1000, &reading));

printf ("Reading = %f", reading);

Error:
if (error != VI_SUCCESS)
{
ViChar errStr[2048];
Ag34401_GetError (session, &error, 2048, errStr);
printf ("Error!", errStr);
}

21

if (session)
Ag34401_close (session);

printf("\nDone - Press any key to exit");
getchar();

return 0;

}

Buildand Runthe Application

Build your application and run it to verify it works properly.
1 From the Build menu, select “Build”, and click “Rebuild Solution”.

2 From the Debug menu, select “StartDebugging” to run the application.

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

22

