N4
Geftting Started
with
IVI Drivers

Your Guide to Using IVI with
Visual Basic 6.0

Version 1.2

© Copyright IVI Foundation, 2015
All rights reserved

The 1VI Foundation has full copyright privileges of all versions of the IVI Getting
Started Guide. For persons wishing to reference portions of the guide in their
own written work, standard copyright protection and usage applies. This
includes providing a reference to the guide within the written work. Likewise, it
needs to be apparent what content was taken from the guide. A recommended
method in which to do this is by using a different font in italics to signify the
copyrighted material.

Chapter 1

Chapter 2

Contents

INtroduCtion........cc i ————— 4
PUMDOSE ...ttt e e eneeas 4
Why Use an InstrumentDriver? ... 4
WY IVI? et ee e e ens 5
Why USe an IVIDIIVEI?cooiiiiiiie et 7
FIAvOrs Of IVIDIIVETScoiiiiiiiieiiee ettt 8
Shared COMPONENTSooiiiiiiie e 8
Downloadand Install IVIDFAVErScooiiiiieiiee e 8
Familiarizing Yourselfwiththe Driver...........ccoeoiiiiii e 9
EXAMPIES ..o 9
Using IVIwith Visual Basic 6.0.............cococnenennnnnnnnneseniscssssssssnnnns 12
The ENVIFONMENT ..o e 12
Example RequIremMents..........cooii i 12
Downloadand Installthe Driver ..o 12
Create a New Projectand Reference the Drivercccoccoeeiiiiieiiien. 12
AdA@BULION.......oiiiiic e 13
Create an Instance of the Driver ..o 14
Initialize the INStrUMENt...........cooi i 14
Configure the INStrument ..o 15
Setthe TriggerDelay ...t 16
DisplaytheReadingccccooiiiiiiiii e 16
ClosSethe SeSSIONcoceiiiiiiiee e 16
I 0L USSR 17
Further Information............oooiiii e 18

Chapter 1
Introduction

Purpose

Welcome to Getting Started with IVI Drivers: Your Guide to Using IVI with
Visual Basic 6.0. This guideintroduces key concepts about 1VIdriversand shows
you how to create a short program to perform a measurement. The guide is part of
the IVI Foundation’s series of guides, Getting Started with IVI Drivers.

Getting Started with IVI Drivers is intended for individuals who write and run
programsto controltest-and-measurementinstruments. Each guidefocusesona
different programming environment. As you develop test programs, you face
decisions abouthowyoucommunicate withtheinstruments. Some ofyourchoices
include Direct /O, VXIplugé&play drivers, or IVI drivers. If you are new to using IVI
drivers or just want a quick refresher on the basics, Getting Started with IVI
Driverscanhelp.

Getting Started with IVI Drivers shows that IVI drivers can be straightforward,
easy-to-use tools. VI drivers provide a number of advantages that can save time
and money during development, while improving performance as well. Whether
you are starting a new program or making improvements to an existing one, you
should consider the use of IV drivers to develop your test programs.

So considerthis the “hello, instrument” guide for [Vl drivers. If you recall, the “hello
world” program, which originally appearedin Programming in C: A Tutorial, simply
prints out “hello, world.” The “hello, instrument” program performs a simple
measurementonasimulatedinstrumentandreturnsthe result. We think you'llfind
that far more useful.

Why UseanInstrumentDriver?
Tounderstand the benefits of VI drivers, we need to start by defining instrument
drivers in generaland describing why they are useful. Aninstrumentdriveris a set
of software routines that controls a programmable instrument. Each routine
correspondsto a programmatic operation, such as configuring, writing to, reading
from, andtriggering the instrument. Instrumentdrivers simplify instrument control
and reduce test program development time by eliminating the need to learn the
programming protocol for each instrument.

L_Startinginthe 1970s, programmers used device-dependent commandsfor

computercontrolofinstruments. Butlack of standardizationmeanteventwodigital
multimeters from the same manufacturer might not use the same commands. In
the early 1990s a group of instrument manufacturers developed Standard

Why IVI?

Commands for Programmable Instrumentation (SCPI). This defined set of
commands for controlling instruments uses ASCII characters, providing some
basic standardization and consistency to the commands used to control
instruments. For example, when you want to measure a DC voltage, the
standard SCPl command is “MEASURE : VOLTAGE : DC?".

In 1993, the VXIplugé&play Systems Alliance created specifications forinstrument
drivers called VXlplug&playdrivers. Unlike SCPI, VXIplug&play drivers do not
specify how to control specificinstruments; instead, they specify some common
aspects of an instrument driver. By using a driver, you can access the instrument
by calling a subroutine in your programming language instead of having to format
and send an ASCl| string as you do with SCPI. With ASCII, you have to create and
send the instrument the syntax “MEASURE : VOLTAGE : DC?”, thenread back a
string, and build itinto a variable. With a driveryou can merely call a function called
MeasureDCVoltage() and passit a variable to return the measured voltage.

Although you still need to be syntactically correctin your calls to the instrument
driver, making calls to a subroutine in your programming language is less error
prone. Ifyou have been programming to instruments withouta driver, thenyou are
probably alltoofamiliarwith huntingaround the programming guide tofind theright
SCPI command and exact syntax. You also have to deal with an I/O library to
format and send the strings, and then build the response string into a variable.

The VXIplug&playdrivers do not provide acommon programming interface. That
means programming a Keithley DMM using VXlplug&play still differs from
programming a Keysight DMM. Forexample, the instrumentdriver interface for
one may be ke2000_read while anothermay be ag34401_getorsomething
even farther afield. Withoutconsistency acrossinstruments manufactured by
different vendors, many programmers still spentalotoftimelearning each
individualdriver.

Tocarry VXlplugé&play drivers a step (or two) further, in 1998 a group of end users,
instrumentvendors, software vendors, system suppliers,and systemintegrators
joined together to form a consortium called the Interchangeable Virtual Instruments
(IV1) Foundation. If you look at the membership, it’s clear that many of the
foundation members are competitors. But all agreed on the need to promote
specifications for programmingtestinstruments thatprovide better performance,
reduce the cost of program developmentand maintenance, and simplify
interchangeability.

Forexample, forany|VIdriverdevelopedforaDMM, the measurementcommand
is viDmmMeasurement.Read, regardless of the vendor. Once you learn how to

program the commands specified by IVIfor the instrument class, you can use any
vendor’sinstrumentand notneed to relearn the commands. Also commands that
are common to all drivers, such as Initialize and Close, are identical regardless of

the type of instrument. This commonality lets you spend less time browsing
through the help files in order to program an instrument, leaving more time to
get your job done.

That was the motivation behind the development of IVI drivers.The IVI
specifications enable drivers with a consistent and high standard of quality,
usability, and completeness. The specifications define an open driver architecture,
asetofinstrumentclasses, and shared software components. Together these
provide consistency and ease of use, as well as the crucial elements needed for
theadvancedfeatures|IVIdrivers support:instrumentsimulation, automaticrange
checking, state caching, and interchangeability.

The IVIFoundation has created |VIclass specifications thatdefine the capabilities

for drivers for the following thirteen instrument classes:

Class IVI Driver
Digital multimeter (DMM) IviDmm
Oscilloscope IviScope
Arbitrary waveform/function generator IviFgen

DC powersupply IviDCPwr
AC power supply IVIACPwr
Switch IviSwtch
Power meter IviPwrMeter
Spectrum analyzer IviSpecAn
RF signalgenerator IVIRFSigGen

Upconverter IviUpconverter
Downconverter IviDownconverter
Digitizer IviDigitizer
Counter/timer IviCounter

IVIClass Compliantdrivers usually alsoinclude numerous functions thatare
beyond the scope of the class definition. This may be because the capability is
not common to allinstruments of the class or because the instrument offers
some control thatis more refined than what the class defines.

IVIalso defines custom drivers. Custom drivers are used for instruments that are
not members of a class. For example, there is not a class definition for network
analyzers, so a network analyzer driver must be a custom driver. Custom drivers
provide the same consistency and benefits described below for an IVI driver,
exceptinterchangeability.

IVIdrivers thatconformto the IVI specifications are permitted to display the 1VI-
Conformantlogo.

Why Use an IVIDriver?

Why choose IVI drivers over other possibilities? Because IVI drivers can increase
performance andflexibility formoreintricate testapplications. Here are afew ofthe
benefits:

Consistency — VI drivers all follow a common model of how to control the
instrument. That saves you time when you need to use a new instrument.

Ease of use — |Vl drivers feature enhanced ease of use in popular Application
Development Environments (ADEs). The APIs provide fast, intuitive access to
functions. IVI drivers use technology that naturally integrates in many different
software environments.

Quality — VI drivers focus on common commands, desirable options, and
rigorous testing to ensure driver quality.

Simulation— VI drivers allow code development and testing even when an
instrumentis unavailable. Thatreduces the need for scarce hardware resources
and simplifies test of measurement applications. The example programs in this
document use this feature.

Range checking— VI drivers ensure the parameters you use are within
appropriate rangesforaninstrument.

State caching - IVl drivers keep track of an instrument’s status so that I/O is only
performed when necessary, preventing redundant configuration commands from
being sent. This can significantlyimprove test system performance.

Interchangeability— 1VI class compliant drivers also enable exchange of
instruments with minimal code changes, reducing the time and effortneeded to
integrate measurement devicesintoneworexistingsystems. ThelVIclass
specifications provide syntactic interchangeability but may not provide behavioral
interchangeability. In other words, the program may run on two different

7

instruments but the results may not be the same due to differences in the
way the instrument itself functions.

Flavors of IVI Drivers

Tosupport all popular programming languages and development environments, VI
drivers provide eitheran IVI-C or IVI-COM (Component Object Model) API. Driver
developers may provide either or both interfaces, as well as wrapper interfaces
optimized for specific development environments.

Although the functionality is the same, IVI-C drivers are optimized foruse in ANSI
C development environments; IVI-COM drivers are optimized for environments
that support the Component Object Model (COM) such as the .NET
programming environment. IVI-C drivers extend the VXlplug&playdriver
specification and theirusage is similar. IVI-COMdrivers provide easyaccessto
instrumentfunctionality through methods and properties.

The getting started examples communicate with the instruments using the
Virtual Instrument Software Architecture (VISA) I/O library, a widely used
standard library forcommunicating with instrumentsfrom a personal computer.
The VISA standard is also provided by the VI Foundation.

Shared Components

Tomake it easier to combine drivers and other software from various vendors,
the IVIFoundation members have cooperated to provide common software
components, called IVl Shared Components. These components provide
services to drivers and driver clients that need to be common to all drivers. For
instance, the IVl Configuration Serverenables administration of system-wide
configuration.

Important! Youmustinstallthe VI Shared Components before an VI driver can
beinstalled.

The IVI Shared Components can be downloaded from vendors’ web sites as well
as from the IVI Foundation Web site.

Todownload and install shared components from the IVl Foundation Web site:

1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.

2 Locate Shared Components.

3 Choose the IVI Shared Components msi file for the Microsoft Windows
Installer package or the IVI Shared Components exe for the
executable installer.

Download andInstalllVIDrivers

Afteryou’veinstalled Shared Components, you'rereadytodownload andinstallan

IVl driver. For most ADEs, the steps to download and install an VI driver are

identical. Forthe few thatrequire a different process, the relevant Getting Started
8

http://www.ivifoundation.org/

with IVI Drivers guide provides the information you need. VI Drivers are
available from the hardware or software vendors’ web site or by linking to them
from the IVl Foundation web site.

The IVI Foundation requires that compliant drivers be registered before the display the
IVI conformant logo. To see the list of drivers registered with the VI Foundation, go
to the registration section of the IVl web site at http://www.ivifoundation.org.

Familiarizing Yourself with the Driver

Althoughthe examplesin Getting Started with IVIDrivers use a DMMdriver, you
will likely employ a variety of VI drivers to develop test programs. To jumpstart
that task, you’ll want to familiarize yourself quickly with drivers you haven’tused
before. Most ADEs provide a way to explore VI drivers to learn their functionality.
In each IVI guide, where applicable, we add a note explaining how to view the
available functions. In addition, browsing an VI driver’s help file often proves an
excellentway to learn its functionality.

http://www.ivifoundation.org/

Examples

As we noted above, each guide in the Getting Started with IVI Drivers series shows you how to
use an VI driver to write and run a program that performs a simple measurementon a simulated
instrumentand returns the result. The examples demonstrate common steps using IVl drivers.
Where practical, every example includes the steps listed below:

Download and Install the VI driver— covered in the Download and Install IVI Drivers
section above.

Determine the VISA address string— Examples in Getting Started with IVI Drivers
use the simulate mode, so we chose the address string GPIB0::23::INSTR, often
shown as GPIB::23. If you need to determine the VISA address string for your
instrument and the ADE does not provide it automatically, use an10 application, such
as National Instruments Measurementand Automation Explorer (MAX)orKeysight
Connection Expert.

Reference the driver or load driver files — For the examples in this guide, the driver is
the IVI-COM/IVI-C Version 1.2.2.0 for 34401A, October 2008 (from Keysight
Technologies) ... or the Keysight 34401A IVI-C driver, Version4.5,January2015
(from National Instruments).

Create an instance of the driverin ADEs that use COM — For the examples in theIVI
guides, thedriveristhe Agilent 34401A (IVI-COM) or HP 34401 (IVI-C).

Writethe program. The programs in this series all perform the following steps:

® Initialize the instrument— Initialize is required when using any VI driver.
Initialize establishes a communication link with the instrumentand must
be called before the program can do anything with the instrument. The
examplesset resettotrue, ID query tofalse, and simulate to true.

Setting reset to true tells the driver to initially reset the instrument.
Setting the ID query to false prevents the driver from verifying that the
connected instrument is the one the driver was written for. Finally,
setting simulate to true tells the driver that it should not attempt to
connect to a physical instrument, but use a simulation of the
instrument.

* Configuretheinstrument—The examples setarange of1.5voltsanda
resolution of
0.001 volts (1 millivolt).

* Accessaninstrument property — The examples set the trigger
delay to 0.01 seconds.

* Setthereading timeout—The examplesset the reading
timeoutto 1000 milliseconds (1 second).

®* Takeareading

* Closetheinstrument— This step is required when using any IVI driver,
unless the ADE explicitly does not require it. We close the session to free
resources.

10

Important! Closemaybethe mostcommonly missedstepwhenusingan
IVidriver. Failing to do this could mean that system resources are not
freed up and your program may behave unexpectedly on subsequent
executions.

® Checkthedriverforany errors.
* Displaythereading.
Note: Examples that use a console application do not show the display.
Now that you understand the logic behind IVI drivers, let’s see how to get started.

11

Chapter 2
Using IVIwith Visual Basic 6.0

The Environment

Visual Basic 6.0 is a programming environment derived from Basic and
developed by Microsoft for the Windows operating system. Software vendors
and developers use VB to create applications quickly by writing code to
accompany on-screen objects such as buttons, windows, and dialog boxes.

This chapter focuses on VB 6.0, which is not the most current version. If you
are new to VB, we recommend another guide in this series, Getting Started
with IVI Drivers: Your Guide to Using IVI with C# and Visual Basic .NET.

Example Requirements
* VisualBasic6.0
* MicrosoftVisual Studio2010

* [VI-COM: Agilent 34401A IVI-COM, Version 1.2.2.0, October 2008 (from
Keysight Technologies); or

* |VI-C: Keysight 34401A IVI-C driver, Version4.5,January2015
(from National Instruments).

® Agilent 10 Libraries Suite 16.1 or later
® National Instruments IVI Compliance Package version 4.0 or later

Download andInstallthe Driver
Ifyou have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install IVI Drivers, for instructions.

This example uses an IVI-COM driver. IVI-COM s the preferred driver for Visual
Basic 6.0, butIVI-C is also supported via the inclusion of .bas files.

Create aNew Projectand Reference the Driver

Touse an VI Driverin a Visual Basic program, you must first create a projectand
add a reference to the driver.

1 Launch Visual Basic and create a new project using Standard EXE project.
Note: This creates a Windows Application program.

2 From the Start Menu, select Project, and click References. The References
dialog appears.

12

Add aButton

References - Project1

Available References: OK

Select the IVI Agilent34401 1.1 Type Library from the drop-down list. Place a
check in the box next to this driver.

Note: If you have not installed the IVI driver, it will not appear in this list. You must
close the References dialog, install the driver, and select References again for the
driverto appear.

Click OK. The References dialog closes.

1
2
3

|_liPassSQMRecorder 1.0 Type Library A Cancel
|_|1PassSQMUploader 1.0 Type Library = —_
__liPCAgent 1.0 Type Library
| I1SAFrdm 1.0 Type Library Browse...

|| ISScriptHandler 1.0 Type Library =
__|IVI Agilent33220 (Agilent Technologies) 1.1 Type Libr — ﬂ

| IVI Agilent34410 1.0 Type Library
|| IVI AgilentRFPowerMeter 3.0 Type Library

nnfiauration Server 1.0 Type Library

Note: You mustclick OK for Visual Basic to accept the References; however, the
software provides no confirmation. You can verify the driveris available for use by
opening the Add References dialog and viewing the checked references. All
checked references appear near the top ofthe list.

Click the Command Button in the Toolbox to create a button.
Drag the button to the form and drop it.

Change the (Name) property to btnTest and the Caption property on the
Command1 button to Test in the Properties list at right.

13

= Project1 - Form1 (Form)

= I3 Project1 (Project1)
= &3 Forms
&Y Form1 (Form1)

IProperties - btnTest X

|btnTest CommandButton -l

Create an Instance of the Driver

1

Double-click Test. The Project1 — Form1(Code) screen appears. Note that
some code has already been added, including Private Sub
btnTest Click() and End Sub.

To enable strong type checking, at the top of the screen before the Private
Sub linetype

Option Explicit

Create a variable for the driver and initialize it with the New statement. On the
next line type

Dim dmm As New Agilent33401

Initialize the Instrument

Now you will enter the code that will execute when you click Test.

OnthelineafterPrivate Sub btnTest Click(),typedmm. Thentype
dmm.Initialize "GPIB::23", False, True, "Simulate=True"

Note: As soon as you type the period, Intellisense displays the possible methods
and properties and helps ensure you use correct syntax and values.

Note: From the Start Menu, select View, and click Object Browser to view the
functions and parameters available in the instrument driver. Limit the Object
Browser to a specific library by selecting it in the top left list box.

14

w’; Object Browser

|<AIlLibnlies> LI 4| »I By #» ;?J
| = ALY
Classes Members of ‘Agilent34401°
@ <globals> A 8 AC s
& Agilent34401 i 5 ACCurrent
&P Agilent34401Apertur [e§' ACVoltage
&P Agilent34401AutoZe — |g&' Advanced
=P Agilent34401dBmRe Calibration

&F Agilent34401ErorCe @ Close

&P Agilent34401Functio DCCurrent

= Agilent34401InputTe ' DCVoltage

& Agilent34401MathFu DCVoltageRatio

&P Agilent34401MeasC ' Display

=P Agilent34401Resolu DriverOperation

&P Agilent34401Sample Frequency

&P Agilent34401Statusf Function

&P Agilent34401 Statuss & Identity

P Agilent34401Trigger |=® Initialize

¥ Initialized
wiDmm

Math
Measurement

=# Agilent34401Trigger
& AlignConstants

& AlignmentConstants
& AmbientProperties
& App §' Resistance —
& ApplicationStartCons Status
& AsyncProperty o |& System

<

Sub Initialize(ResourceName As String, idQuery As Booiean, Reset As Boolean,

[OptionString As String))

Member of Agilent34401Lib Agilent34401

Opens the /O session to the instrument. Driver methods and properties that access the
instrument are only accessible after Initialize is called. Intialize optionally performs a Reset
and queries the instrument to validate the instrument model.

(|

Configure the Instrument
Set the function to DC Voltage, range to 1.5 volts, and resolution to 1 millivolt.

1 Typedmm.Function = Agilent34401FunctionDCVolts
2 Type dmm.DCVoltage.Configure 1.5, 0.001
3 Select Configure from the drop-down list and press the space bar.

Note: The Object Browser shows the parameters and syntax for Configure in the
box at bottom, along with a short description.

4 Typel.5, 0.001

15

Setthe Trigger Delay
Setthe trigger delay to 0.01 seconds.

Type: dmm.Trigger.Delay=0.01

Display the Reading
Setthe reading timeout to 1 second and display the reading.

1 Return to the form view and click the Label Button in the Toolbox to create a
label.

Drag it to the form and drop it.
Change the Name to IbIResult in the Properties list at right.
Remove the text under Caption.

a b~ ODN

In the code after the trigger delay command, type
1blResult.Caption = dmm.Measurement.Read (1000)

Close the Session
Type dmm.Close

Yourfinal program should contain the code below.

Option Explicit

Dim dmm As New Agilent34401

Private Sub btnTest Click()

dmm.Initialize “GPIB::23”, False, True, “Simulate=True”
dmm.Function = Agilent34401FunctionDCVolts
dmm.DCVoltage.Configure 1.5, 0.001

dmm.Trigger.Delay = 0.01

1blResult.Caption = dmm.Measurement.Read (1000)

dmm.Close

End Sub

16

Tips

oEa
= - I3 Project1 (Project1)
= & Forms

B Formt (Form1)

binTest v | |Click -

Option Explicit

Dim dmm As New Agilent34401

Private Sub btnTest_Click()

dmm. Initialize "GPIB::23", False, True, "Simulate=True”
dmm. Function = Agilent34401FunctionDCVolts

dmm. DCVoltage.Configure 1.5, 0.001

dm. Trigger.Delay = 0.01

1blResult.Caption = cimo.Heasurement.Read (1000)
dmm.Close

End Sub

The Agilent 34401 driver conforms to the lviDmm class, so you can easily write
your program to use the class-compliantinterfaces instead of the instrument-
specific interfaces. You will need to add a Reference to the lviDmm Class Type
library for your project to compile. Here is the code:

Option Explicit

Dim dmm As New Agilent33401
Dim ividmm As IIviDmm

Private Sub btnTest Click()

Set ividmm = dmm

ividmm.Initialize "GPIB::23", False, True, "Simu-
late=True"

ividmm.Configure IviDmmFunctionDCVolts, 1.5, 0.001
ividmm.Trigger.Delay = 0.01

1blResult.Caption = ividmm.Measurement.Read (1000)

ividmm.Close

End Sub

17

Further Information
Learn more about Visual Basic at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnanchor/html/vb6anchor.asp.

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

18

	Getting_Started_with_IVI_Drivers
	Contents
	Introduction_4
	Chapter_1
	Using_IVI_with_Visual_Basic_6.0_11
	Introduction
	IVI_Driver
	Class
	1_Go_to_the_IVI_Foundation_Web_site_at_h
	2_Locate_Shared_Components.
	3_Choose_the_IVI_Shared_Components_msi_f
	Using_IVI_with_Visual_Basic_6.0
	Chapter_2
	1_Launch_Visual_Basic_and_create_a_new_p
	2_From_the_Start_Menu,_select_Project,_a
	3_Select_the_IVI_Agilent34401_1.1_Type_L
	4_Click_OK._The_References_dialog_closes
	1_Click_the_Command_Button_in_the_Toolbo
	2_Drag_the_button_to_the_form_and_drop_i
	3_Change_the_(Name)_property_to_btnTest_
	1_Double-click_Test._The_Project1_–_Form
	2_To_enable_strong_type_checking,_at_the
	3_Create_a_variable_for_the_driver_and_i
	1_Type_dmm.Function_=_Agilent34401Functi
	2_Type_dmm.DCVoltage.Configure_1.5,_0.00
	3_Select_Configure_from_the_drop-down_li
	4_Type_1.5,_0.001
	1_Return_to_the_form_view_and_click_the_
	2_Drag_it_to_the_form_and_drop_it.
	3_Change_the_Name_to_lblResult_in_the_Pr
	4_Remove_the_text_under_Caption.
	5_In_the_code_after_the_trigger_delay_co

