N4
Geftting Started
with
IVI Drivers

Your Guide to Using IVI with
MATLAB®

Version 1.3

© Copyright IVI Foundation, 2015
All rights reserved

The 1VI Foundation has full copyright privileges of all versions of the IVI Getting
Started Guide. For persons wishing to reference portions of the guide in their
own written work, standard copyright protection and usage applies. This
includes providing a reference to the guide within the written work. Likewise, it
needs to be apparent what content was taken from the guide. A recommended
method in which to do this is by using a different font in italics to signify the
copyrighted material.

Chapter 1

Chapter 2

Contents

INErOAUCEION.......ecceecr s annns 4
PUMPOSE ...t eneeas 4
Why Use an InstrumentDriver? ... 4
L AT 1Y Y S 5
Why USe an IVIDIIVEI?coouiiiiiiie et 7
FIavors Of IVIDFVELS ... 8
Shared COMPONENTSooiiiiie e 8
Downloadand Install IVIDIVEIScooiiiiiiiieeeeie e 8
Familiarizing Yourselfwiththe Driver...........cccooiiiiiiiiicee e 9
EXAMPIES .. 9
Using IVI With MATLABG.........ccocverrmremrrensssssessssesessssessssssesssssssssasessans 11
The Development Environmentccoooiiiieiiiin e 11
Example ReqUIremMents.ooi i 11
Downloadand Installthe Driver ... 11
Configurethe IVIDFVETooviiiiiii e e 11
Generate an Instrument Wrapper ... ioeiiicie e 15
Configureand Controlthe Instrument ... 15
ConnectingWithan IVI-C DIiVer.........cccoiiiiiiiii e 15
Create anInstance ofthe Instrument..............ccocooiiiiii 15
Connecttothelnstrument ... 15
Configure the Instrument............cooeiiiiiin 15
Setthe TriggerDelay ..o 16
Display Readingccoooiieiiiiiee e 17
Close the Connectiontothe Instrument..............cccoooiiiiiineiene 17
Connecting Withan IVI-COMDIIVET..........cccoeiieiiieiiieeeeeee e 17
Create anInstance ofthe Instrument................occoiiiiiii 17
Connecttothelnstrument ... 17
Configure the Instrument.............oooeiiiiiiii e 17

Set the Trigger Delaycccoeeiiiiiiiiiiieee e 17

Set Reading TIMeEOUL...........coiiiiiiiiiee e 17
Display Reading..........coccviiiiiieiiiiie e 17
Close the Connection to the Instrument ..., 18
Further INnformationo 19

Chapter 1
Introduction

Purpose

Welcome to Getting Started with IVI Drivers: Your Guide to Using IVI with
MATLAB®. This guide introduces key concepts about IVIdrivers and shows you
how to create a short program to perform a measurement. The guide is part of the
IVIFoundation’s series of guides, Getting Started with IVI Drivers.

Getting Started with IVI Drivers is intended for individuals who write and run
programsto controltest-and-measurementinstruments. Each guidefocusesona
differentprogramming environment. As you develop test programs, you face
decisions about howyoucommunicate withtheinstruments.Some of your
choices include Direct 1/O, VXlplug&play drivers, or VI drivers. If you are new to
using IVI drivers or justwant a quick refresher on the basics, Getting Started
with IVI Drivers canhelp.

Getting Started with IVI Drivers shows that IVI drivers can be straightforward,
easy-to-use tools. VI drivers provide a number of advantages that can save time
and money during development, while improving performance as well. Whether
you are starting a new program or making improvements to an existing one, you
should consider the use of IV drivers to develop your test programs.

So considerthis the “hello, instrument” guide for [Vl drivers. If you recall, the “hello
world” program, which originally appearedin Programming in C: A Tutorial, simply
prints out “hello, world.” The “hello, instrument” program performs a simple
measurementonasimulatedinstrumentandreturnsthe result. We think you'llfind
that far more useful.

Why UseanlInstrumentDriver?
Tounderstand the benefits of VI drivers, we need to start by defining instrument
drivers in generaland describing why they are useful. Aninstrumentdriveris a set
of software routines that controls a programmable instrument. Each routine
correspondsto a programmatic operation, such as configuring, writing to, reading
from, andtriggering the instrument. Instrumentdrivers simplify instrument control
and reduce test program development time by eliminating the need to learn the
programming protocol for each instrument.

Startinginthe 1970s, programmers used device-dependentcommands for
computercontrolofinstruments. Butlack of standardizationmeanteventwodigital
multimeters from the same manufacturer might not use the same commands. In
the early 1990s a group of instrument manufacturers developed Standard

Why IVI?

Commands for Programmable Instrumentation (SCPI). This defined set of
commands for controlling instruments uses ASCII characters, providing some
basic standardization and consistency to the commands used to control
instruments. For example, when you want to measure a DC voltage, the
standard SCPl command is “MEASURE : VOLTAGE : DC?".

In 1993, the VXIplugé&play Systems Alliance created specifications forinstrument
drivers called VXlplug&playdrivers. Unlike SCPI, VXIplug&play drivers do not
specify how to control specificinstruments; instead, they specify some common
aspects of an instrument driver. By using a driver, you can access the instrument
by calling a subroutine in your programming language instead of having to format
and send an ASCl| string as you do with SCPI. With ASCII, you have to create and
send the instrument the syntax “MEASURE : VOLTAGE : DC?”, thenread back a
string, and build itinto a variable. With a driveryou can merely call a function called
MeasureDCVoltage() and passit a variable to return the measured voltage.

Although you still need to be syntactically correctin your calls to the instrument
driver, making calls to a subroutine in your programming language is less error
prone. Ifyou have been programming to instruments withouta driver, thenyou are
probably alltoofamiliarwith huntingaround the programming guide tofind theright
SCPI command and exact syntax. You also have to deal with an I/O library to
format and send the strings, and then build the response string into a variable.

The VXIplug&playdrivers do not provide acommon programming interface. That
means programming a Keithley DMM using VXlplug&play still differs from
programming a Keysight DMM. Forexample, the instrumentdriver interface for
one may be ke2000_read while anothermay be ag34401_getorsomething
even farther afield. Withoutconsistency acrossinstruments manufactured by
different vendors, many programmers still spentalotoftimelearning each
individualdriver.

Tocarry VXlplugé&play drivers a step (or two) further, in 1998 a group of end users,
instrumentvendors, software vendors, system suppliers,and systemintegrators
joined together to form a consortium called the Interchangeable Virtual Instruments
(IV1) Foundation. If you look at the membership, it’s clear that many of the
foundation members are competitors. But all agreed on the need to promote
specifications for programmingtestinstruments thatprovide better performance,
reduce the cost of program developmentand maintenance, and simplify
interchangeability.

Forexample, forany|VIdriverdevelopedforaDMM, the measurementcommand
is viDmmMeasurement.Read, regardless of the vendor. Once you learn how to

program the commands specified by IVIfor the instrument class, you can use any
vendor’sinstrumentand notneed to relearn the commands. Also commands that
are common to all drivers, such as Initialize and Close, are identical regardless of

the type of instrument. This commonality lets you spend less time browsing
through the help files in order to program an instrument, leaving more time to
get your job done.

That was the motivation behind the development of IVI drivers.The IVI
specifications enable drivers with a consistent and high standard of quality,
usability, and completeness. The specifications define an open driver architecture,
asetofinstrumentclasses, and shared software components. Together these
provide consistency and ease of use, as well as the crucial elements needed for
theadvancedfeatures|IVIdrivers support:instrumentsimulation, automaticrange
checking, state caching, and interchangeability.

The lVIFoundation has created |VIclass specifications thatdefine the capabilities

for drivers for the following thirteen instrument classes:

Class IVI Driver
Digital multimeter (DMM) IviDmm
Oscilloscope IviScope
Arbitrary waveform/function generator IviFgen

DC powersupply IviDCPwr
AC power supply IVIACPwr
Switch IviSwtch
Power meter IviPwrMeter
Spectrum analyzer IviSpecAn
RF signalgenerator IVIRFSigGen

Upconverter IviUpconverter
Downconverter IviDownconverter
Digitizer IviDigitizer
Counter/timer IviCounter

IVIClass Compliantdrivers usually alsoinclude numerous functions thatare
beyond the scope of the class definition. This may be because the capability is
not common to allinstruments of the class or because the instrument offers
some control thatis more refined than what the class defines.

IVIalso defines custom drivers. Custom drivers are used for instruments that are
not members of a class. For example, there is not a class definition for network
analyzers, so a network analyzer driver must be a custom driver. Custom drivers
provide the same consistency and benefits described below for an IVI driver,
exceptinterchangeability.

IVIdrivers that conformto the IVI specifications are permitted to display the 1VI-
Conformantlogo.

Why Use an IVIDriver?

Why choose IVI drivers over other possibilities? Because IVI drivers can increase
performance andflexibility formoreintricate testapplications. Here are afew ofthe
benefits:

Consistency — VI drivers all follow a common model of how to control the
instrument. That saves you time when you need to use a new instrument.

Ease of use — |Vl drivers feature enhanced ease of use in popular Application
Development Environments (ADEs). The APIs provide fast, intuitive access to
functions. IVI drivers use technology that naturally integrates in many different
software environments.

Quality — VI drivers focus on common commands, desirable options, and
rigorous testing to ensure driver quality.

Simulation— VI drivers allow code development and testing even when an
instrumentis unavailable. Thatreduces the need for scarce hardware resources
and simplifies test of measurement applications. The example programs in this
document use this feature.

Range checking— VI drivers ensure the parameters you use are within
appropriate rangesforaninstrument.

State caching - IVl drivers keep track of an instrument’s status so that I/O is only
performed when necessary, preventing redundant configuration commands from
being sent. This can significantlyimprove test system performance.

Interchangeability— 1VI class compliant drivers also enable exchange of
instruments with minimal code changes, reducing the time and effortneeded to
integrate measurement devicesintoneworexistingsystems. ThelVIclass
specifications provide syntactic interchangeability but may not provide behavioral
interchangeability. In other words, the program may run on two different

7

instruments but the results may not be the same due to differences in the
way the instrument itself functions.

Flavors of IVI Drivers

Tosupport all popular programming languages and development environments, VI
drivers mayprovide eitheran IVI-C, IVI-COM (Component Object Model) or
IVI.NET API.Driver developers may provide either or both interfaces, as well as
wrapperinterfaces optimized for specific development environments.

Although the functionality is the same, IVI-C drivers are optimized foruse in ANSI
C development environments; IVI-COM drivers are optimized for environments
that support the Component Object Model (COM) such as the .NET
programming environment. IVI-C drivers extend the VXlplug&playdriver
specification and theirusage is similar. IVI-COMdrivers provide easyaccessto
instrumentfunctionality through methods and properties.

The getting started examples communicate with the instruments using the
Virtual Instrument Software Architecture (VISA) I/O library, a widely used
standard library forcommunicating with instrumentsfrom a personal computer.
The VISA standard is also provided by the IVl Foundation.

Shared Components

Tomake it easier to combine drivers and other software from various vendors,
the IVIFoundation members have cooperated to provide common software
components, called IVl Shared Components. These components provide
services to drivers and driver clients that need to be common to all drivers. For
instance, the IVl Configuration Serverenables administration of system-wide
configuration.

Important! Youmustinstallthe VI Shared Components before an VI driver can
beinstalled.

The IVI Shared Components can be downloaded from vendors’ web sites as well
as from the IVI Foundation Web site.

Todownload and install shared components from the IVl Foundation Web site:

1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.

2 Locate Shared Components.

3 Choose the IVI Shared Components msi file for the Microsoft Windows
Installer package or the IVI Shared Components exe for the
executable installer.

Download andInstalllVIDrivers

Afteryou’veinstalled Shared Components, you'rereadytodownload andinstallan
IVl driver. For most ADEs, the steps to download and install an VI driver are
identical. Forthe few thatrequire a different process, the relevant Getting Started

with IVI Drivers guide provides the information you need. VI Drivers are
8

available from the hardware or software vendors’ web site or by linking to them
from the IVl Foundation web site.

The IVI Foundation requires that compliant drivers be registered before the display the
IVI conformant logo. To see the list of drivers registered with the IVI Foundation, go
to the registration section of the IVl web site at http://www.ivifoundation.org.

Familiarizing Yourself with the Driver

Althoughthe examplesin Getting Started with IVIDrivers use a DMMdriver, you
will likely employ a variety of VI drivers to develop test programs. To jumpstart
that task, you’ll want to familiarize yourself quickly with drivers you haven’tused
before. Most ADEs provide a way to explore VI drivers to learn their functionality.
In each IVI guide, where applicable, we add a note explaining how to view the
available functions. In addition, browsing an VI driver’s help file often proves an
excellentway to learn its functionality.

Examples

As we noted above, each guide in the Getting Started with IVI Drivers series shows you how to
use an VI driver to write and run a program that performs a simple measurementon a simulated
instrumentand returns the result. The examples demonstrate common steps using IVl drivers.
Where practical, every example includes the steps listed below:

Download and Install the VI driver— covered in the Download and Install IVI Drivers
section above.

Determine the VISA address string— Examples in Getting Started with IVI Drivers
use the simulate mode, so we chose the address string GPIB0::23::INSTR, often
shown as GPIB::23. If you need to determine the VISA address string for your
instrument and the ADE does not provide it automatically, use an10 application, such
as National Instruments Measurementand Automation Explorer (MAX)orKeysight
Connection Expert.

Referencethedriverorloaddriverfiles—Forthe examplesinthe [VIguides,the driveris
the IVI-COM/IVI-C Version 1.2.5.0 for 34401A, April 2013 (from Keysight
Technologies) ... or the Keysight 34401A IVI-C driver, Version4.5,January2015
(from National Instruments).

Create an instance of the driverin ADEs that use COM — For the examples in theIVI
guides, thedriveristhe Agilent 34401A (IVI-COM) or HP 34401 (IVI-C).

Writethe program. The programs in this series all perform the following steps:

* |Initialize the instrument— Initialize is required when using any VI driver.
Initialize establishes a communication link with the instrumentand must
be called before the program can do anything with the instrument. The
examplesset resettotrue, ID query tofalse, and simulate to true.

Setting reset to true tells the driver to initially reset the instrument.
Setting the ID query to false prevents the driver from verifying that the
connected instrument is the one the driver was written for. Finally,
setting simulate to true tells the driver that it should not attempt to
connect to a physical instrument, but use a simulation of the
instrument.

* Configuretheinstrument—The examples setarange of1.5voltsanda
resolution of

0.001 volts (1 millivolt).

* Accessaninstrument property — The examples set the trigger
delay to 0.01 seconds.

* Setthereading timeout—The examplesset the reading
timeoutto 1000 milliseconds (1 second).

®* Takeareading

* Closetheinstrument— This step is required when using any IVI driver,
unless the ADE explicitly does not require it. We close the session to free
resources.

Important! Close may bethe mostcommonly missed stepwhen
usingan IVldriver. Failing to do this could mean that system
resources are not freed up and your program may behave
unexpectedly on subsequent executions.

® Checkthedriverforany errors.
* Displaythereading.
Note: Examples that use a console application do not show the display.
Now that you understand the logic behind IVI drivers, let’s see how to get started.

Chapter 2
Using IVI with MATLAB®

The Development Environment
MATLAB from MathWorks is an interactive software environmentfordata
acquisition and analysis, waveform generation, algorithm creation, and test system
development. MATLAB also provides a technical computing language thatis
designed to help you solve technical challenges faster than with traditional
software environments.

MATLAB supports IVIdrivers using the Instrument Control Toolbox™.The
toolbox provides additional MATLAB functionality.

Requirements for this Example
* MATLAB R2014a or higher
®* MATLAB and Instrument Control Toolbox
* Agilent 34401A1VIdriver (from Keysight Technologies)
® KeysightlO Libraries Suite 17 or higher

Download andInstallthe Driver
Ifyou have notalready installed the driver, go to the vendor Web site and follow the
instructions to download and install it.

ConfigurethelVIDriver
ThelnstrumentControl Toolboxprovidesagraphical Test&MeasurementToolthat
enables you tointeract with instrument drivers and instruments without writing
MATLAB code. The Test & Measurement Tool lets you configure VI driver
properties in MATLAB and store them in the IVI configuration store.

1 Atthe MATLAB command line, type tmtool to launch the Test & Measurement
Tool GUI. Or from the MATLAB Main Menu, select Toolboxes, then Instrument
Control Toolbox and click Test & Measurement Tool. The Test & Measurement
Tool GUI opens.

2 Inthe tree at left, click the /VI node under the Instrument Drivers node.

3 Select the Hardware Assets tab. In the Hardware Assets dialog, select Add and
enter the following:

1

* myDMM inthe Name field
* Thisis my Agilent 34401 Digital Multimeter in the Description field (optional)
® GPIB0::23 inthe IO Resource namefield

f\ Test & Measurement Too!
| File View Tools Desktop Window Help
1@ | ©

f: Test & Measurement
!

4\ Instrument Control Toclbox Configuration store

©-08 Hardware C:\ProgramData\IVI Foundaticn\IVI\lviCenfigurationSterexml

LT*J-""‘ Instrument Objects
(4] Insteument Drivers lggical Names | Driver Sessions | Software Modules| Hardware Assets l
- #) MATLAB Instrument Drivers =
[€) Viaplug&play Drivers myDMM Nome:
myOMM

Description:
This is my Agilent 34401 Digital
Multimeter

IO resource name:
GPIBD::23

,——‘-—m«“"""‘“--..\ / u"“‘*-«.«__“_

4 Select the Software Modules tab. The installed VI drivers appear.

Note: If you have not installed the VI driver, it will not appear in this list. You must
close MATLAB, installthe driver, and restart MATLAB for the driverto appear.

5 SelectAgilent34401 from the drop-down list. The Software Modules dialog lists
the module name, supported instrument models, and description.

12

(=]

© 0 ~N

Configuration store
C:\ProgramData\IVI Foundation\IVI\lviConfigurationStore.xml

| Logical Names | Driver Sessions| Software Modules | Hardware Assets

e
AglnfiniiVision Supported instrument models:
34401A

Description:

IVI driver for Agilent Technologies
34401A Digital Multi Meter

Physical names:

—

Next, you must define your Driver Session to link the Software Module with the
Hardware Asset and indicate whether you want to use Simulation Mode or other
optional parameters when connecting.

Select the Driver Sessions tab. In the Driver Sessions dialog, select Add and
enter the following:

* DMMin the Name field

* Thissessionmatchesthe Agilent34401 driver withthe hardware asset of
GPIBO0::23, and turns on Simulation mode of the driver in the Description
field (optional)

Select Agilent34401 in the Software module drop-down list.
Select myDMM in the Hardware asset drop-down list.
Check Simulate in the options.

13

Configuration store

DMM

C:\ProgramData\IVl Feundation\IVI\lviConfigurationStore.xml

Logical Namesl Driver Sessions | Software Modules | Hardware Assets

Name:
\DMM

Description:

This session matches the Agilent 34401 driver with the hardware asset of
GPIB0::23, and turns on Simulation mode of the driver in the Description field

Driver setup: .
| |
Software module: Hardware asset:

[Ag34401 ~ [myoMm -

Physical Name ~ Virtual Name 2

Cache [] Interchange check
Query instrument status Range check

Record coercions Simulaté

10 Select the Logical Names tab. In the Logical Names dialog, select Add and
enter the following:

* dmminthe Name field

* Thislogicalnameenablesyourprogramtoaccessany DMMindependent
of manufacturer or hardware assetin the Description field (optional)

* DMMin the Driver session field

14

Het
Configuration store

C:\ProgramData\IVI Foundation\IVI\IviConfigurationStore.xml

Logical Names | Driver Sessionsl Software Modules | Hardware Assets

P -

dmm

Description: 2.

This logical name enables your program te access any
DMM independent of manufacturer or hardware asset

Driver session:
_§DMM

11 Select File and Save IVI Configuration Store. Saving to the store
may take several moments.

12 Close the Test & Measurement Tool.

Configure and Control the Instrument

This next section consists of 2 parts. The first illustrates how to
communicate with the DMM using an IVI-C driver and the second
illustrates how to communicate with the DMM using an IVI-COM driver.
IVI-COM drivers are only supported on 32-bit MATLAB. IVI-C drivers
are the recommended way to communicate with instruments when
using IVI drivers as they are supported in both 32-bit and 64-bit
versions of MATLAB.

nnecting with an IVI-C driver:

Additional Software Required

To use IVI-C drivers, first install National Instruments IVI Compliance Package
version 4.0 or later

Create an Instance of the Instrument using the IVI-C Class-

15

Compliant Interface

DMM IVI drivers provide a standard interface, called the class-compliant
interface, to access functionality that is consistent across all instruments of a
particular type. We'll access the Agilent 34401 using the standard DMM
interface. MATLAB also supports access to the device-specific interface
representing unique capabilities of the instrument.

To create an instance of the instrument and assign to a variable in the
MATLAB environment, type

myDmm = instrument.ivic.lviDmm();

Connect to the Instrument

The Initialize command connects to the instrument. The instrument will be
initialized with the properties you specified using the Test & Measurement
Tool. Type

myDmm.init('"dmm’,false,false)

Configure the Instrument
To set a range of 1.5 volts and resolution of 0.001 volts, type

myDmm.BasicOperation.Range = 1.5;
myDmm.BasicOperation.Resolution = 0.001;

Set the Trigger Delay
To set the trigger delay to 0.01 seconds, type

myDmm.Trigger.Trigger_Delay = 0.01,

16

Display Reading
To display the reading, type

data = myDmm.Measurement.Read(1000)
Note: data=0 if using Agilent driver in simulation mode

Close the Connection to the Instrument
To disconnect, type

myDmm.Close()
Your final application should contain the code below:

>>myDmm = instrument.ivic.lviDmm();
>>myDmm.init ('dmm’,false,false)
>>myDmm.BasicOperation.Range = 1.5;
>>myDmm.BasicOperation.Resolution = 0.001;
>>myDmm.Trigger.Trigger_Delay = 0.01;

>> data = myDmm.Measurement.Read(1000)
data =

0

>>myDmm.Close();

nnecting with an IVI-COM driver:

NOTE: |VI-COM drivers can only be used with 32-bit version of MATLAB. IVI-C
drivers are the recommended way to connect to instruments from MATLAB.

Create anInstance ofthe Instrumentusing the IVI-COM Class-
Compliant Interface

DMM 1VI drivers provide a standard interface, called the class-compliant
interface, to access functionality that is consistent across all instruments of a
particular type. We'll access the Agilent 34401 using the standard DMM
interface. MATLAB also supports access to the device-specific interface
representing unique capabilities of the instrument.

Tocreate an instance of the instrument and assign to a variable in the MATLAB
environment, type

17

myDmm = instrument.ivicom.lviDmm(‘'dmm");

Connect to the Instrument

The Initialize command connects to the instrument. The instrument will be
initialized with the properties you specified using the Test & Measurement Tool.
Type

myDmm.Initialize('dmm’,false,false,")

Configure the Instrument
Toset a range of 1.5 volts and resolution of 0.001 volts, type

myDmm.Range = 1.5;
myDmm.Resolution = 0.001;

Setthe TriggerDelay

Toset the trigger delay to 0.01 seconds, type
myDmm.Trigger.Delay = 0.01;

Display Reading

Todisplay the reading, type

data = myDmm.Measurement.Read(1000)

Note: data=0 if using Agilent driver in simulation mode.
Closethe Connectiontothelnstrument
Todisconnect, type

myDmm.Close()

Yourfinal application should contain the code below:

>>myDmm = instrument.ivicom.lviDmm(‘dmm’);
>>myDmm.Initialize('dmm’,false,false,")
>>myDmm.Range = 1.5;

>> myDmm.Resolution = 0.001;
>>myDmm.Trigger.Delay = 0.01;

>> data = myDmm.Measurement.Read(1000)

data=0

18

>>myDmm.Close();

Further Information
Tolearn more about using MATLAB with IVl instrument drivers over both class-
compliant and device-specific interfaces, visit: http://www.mathworks.com/ivi

MATLAB:s a registered trademark of MathWorks, Inc.

19

