N4
Geftting Started
with
IVI Drivers

Your Guide to Using IVI with
LabWindows™/CVI™

Version 1.2

© Copyright IVI Foundation, 2015
All rights reserved

The 1VI Foundation has full copyright privileges of all versions of the IVI Getting
Started Guide. For persons wishing to reference portions of the guide in their
own written work, standard copyright protection and usage applies. This
includes providing a reference to the guide within the written work. Likewise, it
needs to be apparent what content was taken from the guide. A recommended
method in which to do this is by using a different font in italics to signify the
copyrighted material.

Chapter 1

Chapter 2

Contents

INtrodUCHioN.....ccc e ———— 4
PUMPOSE ...t eneeas 4
Why Use an InstrumentDriver? ... 4
WY IVI? ettt e ens 5
Why USe an IVIDIIVEI?coouiiiiiiie et 7
FIavors Of IVIDIIVETScoouiiiiieiiee et 8
Shared COMPONENTSooiiiiie e 8
Downloadand Install IVIDIIVErScccooiiiiii e 8
Familiarizing Yourselfwiththe Driver...........cccooiiiiiiiiicee e 9
EXAMPIES ... 9
Using IVI with LabWindows™/CVI™..............comeemmmmeersmmeessresessssseesans 11
The ENVIFONMENT ..o e 11
Example RequiremMents...........oooi i 11
Downloadand Installthe Driver ... 11
Create a New Projectand Add Instrument DriverFilesc..ccc..... 11
Initialize the INStrUMENt............coi i 12
Configure the INStrument ... 14
Setthe Reading TIMEOULoccuiiiiiiii e 15
DisplaytheReadingccccoicieiiiiiiiie e 16
ClosSethe SeSSIONcocueiiiiiii e 16
Further INformation ... 17

Chapter 1
Introduction

Purpose

Welcome to Getting Started with IVI Drivers: Your Guide to Using IVI with
LabWindows™/CVI™ This guide introduces key concepts aboutIVIdrivers and
shows you howto create a short program to perform a measurement. The guide is
partofthe IVI Foundation’s series of guides, Getting Started with IVI Drivers.

Getting Started with IVI Drivers is intended for individuals who write and run
programsto controltest-and-measurementinstruments. Each guidefocusesona
differentprogramming environment. As you develop test programs, you face
decisionsabouthowyoucommunicate withtheinstruments. Someofyourchoices
include Direct /O, VXlplug&play drivers, or IVI drivers. If you are new to using IVI
drivers orjust want a quick refresher on the basics, Getting Started with IVI
Driverscanhelp.

Getting Started with IVI Drivers shows that VI drivers can be straightforward,
easy-to-use tools. VI drivers provide a number of advantages that can save time
and money during development, whileimproving performance as well. Whether
you are starting a new program or making improvements to an existing one, you
should consider the use of VI drivers to develop your test programs.

So consider this the “hello, instrument” guide for VI drivers. If you recall, the “hello
world” program, which originally appearedin Programmingin C: A Tutorial, simply
prints out “hello, world.” The “hello, instrument” program performs a simple
measurementonasimulatedinstrumentand returnsthe result. We think you'llfind
that far more useful.

Why UseanlInstrumentDriver?
Tounderstand the benefits of IVI drivers, we need to start by defining instrument
driversin generaland describing why they are useful. Aninstrumentdriveris a set
of software routines that controls a programmable instrument. Each routine
correspondsto a programmatic operation, such as configuring, writing to, reading
from, andtriggering the instrument. Instrumentdrivers simplify instrument control
and reduce test program development time by eliminating the need to learn the
programming protocol for each instrument.

Startinginthe 1970s, programmers used device-dependentcommands for
computercontrolofinstruments. Butlack of standardizationmeanteventwodigital
multimeters from the same manufacturer might not use the same commands. In
the early 1990s a group of instrument manufacturers developed Standard

Commands for Programmable Instrumentation (SCPI). This defined setof
commands for controlling instruments uses ASCII characters, providing some
basic standardization and consistency to the commands used to control
instruments. For example, when you want to measure a DC voltage, the
standard SCPI command is “MEASURE : VOLTAGE : DC?".

In 1993, the VXIplug&play Systems Alliance created specifications forinstrument
drivers called VXlplug&playdrivers. Unlike SCPI, VXIplug&play drivers do not
specify how to control specificinstruments; instead, they specify some common
aspects of an instrument driver. By using a driver, you can access the instrument
by calling a subroutine in your programming language instead of having to format
and send an ASCl| string as you do with SCPI. With ASCII, you have to create and
send the instrument the syntax “MEASURE : VOLTAGE : DC?”, thenread back a
string, and builditinto a variable. With a driver you can merely call a function called
MeasureDCVoltage() and passita variable to return the measured voltage.

Although you still need to be syntactically correctin your calls to the instrument
driver, making calls to a subroutine in your programming language is less error
prone. Ifyou have been programming to instruments withouta driver, thenyou are
probablyalltoofamiliarwith huntingaround the programming guide tofind theright
SCPI command and exact syntax. You also have to deal with an I/O library to
format and send the strings, and then build the response string into a variable.

Why IVI?

The VXIplug&playdrivers do not provide acommon programming interface. That
means programming a Keithley DMM using VXlplug&play still differs from
programming a Keysight DMM. Forexample, the instrumentdriver interface forone
may be ke2000_read while another may be ag34401_getorsomething even
farther afield. Without consistency acrossinstruments manufactured by different
vendors, many programmers still spentalot of time learning each individual driver.
Tocarry VXlplugé&play drivers a step (or two) further, in 1998 a group ofend users,
instrumentvendors, software vendors, system suppliers,and systemintegrators
joined together to form a consortium called the Interchangeable Virtual Instruments
(IV1) Foundation. If you look at the membership, it’s clear that many of the
foundation members are competitors. But all agreed on the need to promote
specifications for programmingtestinstruments thatprovide better performance,
reduce the cost of program developmentand maintenance, and simplify
interchangeability.

Forexample, forany|VIdriverdevelopedforaDMM, the measurementcommand is
lviDmmMeasurement.Read, regardless of the vendor. Once you learn how to
program the commands specified by IVIfor the instrument class, you can use any
vendor’sinstrumentand not need to relearn the commands. Also commands that
are common to all drivers, such as Initialize and Close, are identical regardless of

the type of instrument. This commonality lets you spend less time browsing
through the help files in order to program an instrument, leaving more time to
get your job done.

That was the motivation behind the development of IVIdrivers. The IVI
specifications enable drivers with a consistent and high standard of quality,
usability, and completeness. The specifications define an open driver architecture,
asetofinstrument classes, and shared software components. Togetherthese
provide consistency and ease of use, as well as the crucial elements needed for
theadvancedfeatures|IVIdrivers support:instrumentsimulation, automaticrange
checking, state caching, and interchangeability.

The IVIFoundation has created |Vl class specifications thatdefine the capabilities

fordrivers for the following thirteen instrument classes:

Class IVI Driver
Digital multimeter (DMM) IviDmm
Oscilloscope IviScope
Arbitrary waveform/function generator IviFgen

DC powersupply IviDCPwr
AC power supply IVIACPwr
Switch IviSwtch
Power meter IviPwrMeter
Spectrum analyzer IviSpecAn
RF signalgenerator IVIRFSigGen

Upconverter IviUpconverter
Downconverter IviDownconverter
Digitizer IviDigitizer
Counter/timer IviCounter

IVIClass Compliantdrivers usually also include capability thatis not part of the IVI
Class. Itis common for instruments that are part of a class to have numerous
functions that are beyond the scope of the class definition. This may be because
the capability is not common to all instruments of the class or because the
instrument offers some control that is more refined than what the class defines.

IVl also defines custom drivers. Custom drivers are used for instruments that are
not members of a class. For example, there is not a class definition for network
analyzers, so a network analyzer driver must be a custom driver. Custom drivers
provide the same consistency and benefits described below for an IVI driver,
exceptinterchangeability.

IVIdrivers conform to and are documented according to the VI specifications and
usually display the standard IVl logo.

Why Use an IVIDriver?

Why choose IV drivers over other possibilities? Because VI drivers can increase
performance and flexibility for more intricate testapplications. Here are afew of the
benefits:

Consistency — VI drivers all follow a common model of how to control the
instrument. That saves you time when you need to use a new instrument.

Ease of use — |Vl drivers feature enhanced ease of use in popular Application
Development Environments (ADEs). The APIs provide fast, intuitive access to
functions. IVI drivers use technology that naturally integrates in many different
software environments.

Quality — VI drivers focus on common commands, desirable options, and
rigorous testing to ensure driver quality.

Simulation - VI drivers allow code development and testing even when an
instrumentis unavailable. Thatreduces the need for scarce hardware resources
and simplifies test of measurement applications. The example programs in this
document use this feature.

Range checking — VI drivers ensure the parameters you use are within
appropriate rangesforaninstrument.

State caching — |Vl drivers keep track of an instrument’s status so that /O is only
performed when necessary, preventing redundant configuration commands from
being sent. This can significantlyimprove test system performance.

Interchangeability — VI drivers enable exchange of instruments with minimal
code changes, reducing the time and effort needed to integrate measurement
devicesintoneworexistingsystems. The[VIclass specifications provide syntactic

interchangeability but may not provide behavioral interchangeability. In other
words, the program may run on two different instruments but the results may
not be the same due to differences in the way the instrument itself functions.

Flavors of IVIDrivers
To support all popular programming languages and development environments, VI
drivers provide either an IVI-C or an IVI-COM (Component Object Model) API.
Driver developers may provide either or both interfaces, as well as wrapper
interfaces optimized for specific development environments.

Although the functionality is the same, IVI-C drivers are optimized foruse in ANSI
C development environments; IVI-COM drivers are optimized for environments
that support the Component Object Model (COM). IVI-C drivers extend the
VXlplugé&play driver specification and their usage is similar. [IVI-COM drivers
provide easy access toinstrumentfunctionality through methods and properties.

AlllVIdriverscommunicate totheinstrumentthroughan1/O Library. Ourexamples
use the Virtual Instrument Software Architecture (VISA), a widely used standard
library forcommunicating with instruments from a personal computer.

Shared Components
Tomake it easier for you to combine drivers and other software from various
vendors, the IVIFoundation members have cooperated to provide common
software components, called IVI Shared Components. These components provide
services to drivers and driver clients that need to be common to all drivers. For
instance, the [Vl Configuration Serverenables administration of system-wide
configuration.

Important! You mustinstallthe IVIShared Components before anIVIdriver
canbeinstalled.

The IVI Shared Components can be downloaded from vendors’ web sites as well
as from the IVI Foundation Web site.

Todownload and install shared components from the IVl Foundation Web site:
1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.

2 Locate Shared Components.

3 Choose the IVI Shared Components msi file for the Microsoft Windows Installer
package or the IVl Shared Components exe for the executable installer.

DownloadandInstalllVIDrivers
Afteryou’veinstalled Shared Components, you'rereadytodownloadandinstallan
IVIdriver. For most ADEs, the steps to download and install an VI driver are
identical. Forthe fewthatrequire adifferent process, the relevant Getting Started
with IVI Drivers guide provides the information you need.

IVI Drivers are available from your hardware or software vendor’s web site or by
linking to them from the IVl Foundation web site.

To see the list of drivers registered with the IVI Foundation, go to
http://www.ivifoundation.org.

Familiarizing Yourself with the Driver

Examples

Althoughthe examplesin Getting Started with IVI Drivers use a DMMdriver, you
will likely employ a variety of VI drivers to develop test programs. To jumpstart
that task, you'll want to familiarize yourself quickly with drivers you haven’'tused
before. Most ADEs provide a way to explore VI drivers to learn their functionality.
In each IVI guide, where applicable, we add a note explaining how to view the
available functions. In addition, browsing an IVI driver’s help file often proves an
excellentway tolearn its functionality.

As we noted above, each guide in the Getting Started with IVI Drivers series
shows you how to use an IVI driver to write and run a program that performs a
simple measurementon a simulated instrument and returns the result. The
examples demonstrate common steps using VI drivers. Where practical, every
example includes the steps listed below:

* Download and Install the IVI driver— covered in the Download and Install VI
Drivers section above.

* Determinethe VISA address string—Examples in Getting Started with IVI
Drivers use the simulate mode, so we chose the address string
GPIB0::23::INSTR, often shown as GPIB::23. Ifyou need to determine the
VISA address string for your instrument and the ADE does not provide it
automatically, use an 10 application, such as National Instruments
Measurementand Automation Explorer (MAX)or Agilent Connection Expert.

* Referencethedriverorloaddriverfiles—Forthe examplesinthe [VIguides, the
driver is the IVI-COM/IVI-C Version 1.2.5.0 for 34401A, April 2013 (from
Keysight Technologies) ... or the Keysight 34401A IVI-C driver, Version
4.5,January 2015 (from National Instruments).

* Create aninstance of the driver in ADEs that use COM — For the examples in
the IVIguides, thedriveris the Agilent 34401 (IVI-COM) or hp34401a (IVI-C).
* Writethe program:

* Initialize the instrument— Initialize is required when using any VI driver.
Initialize establishes a communication link with the instrumentand must
be called before the program can do anything with the instrument. We set
resettotrue, ID query to false, and simulate to true.

Setting reset to true tells the driver to initially reset the instrument.

Setting the ID query to false prevents the driver from verifying that the
connected instrument is the one the driver was written for. Finally,
setting simulate to true tells the driver that it should not attempt to
connect to a physical instrument, but use a simulation of the
instrument.

® Configuretheinstrument—We setarange of 1.5 volts and a resolution of
0.001 volts (1 millivolt).

® Accessaninstrument property — We set the trigger delay to 0.01
seconds.

* Setthereading timeout—We set the reading timeout to 1000
milliseconds (1 second).

* Takeareading

* Closetheinstrument— This step is required when using any IVI driver,
unless the ADE explicitly does notrequire it. We close the session to free
resources.

Important! Closemaybethe mostcommonly missedstepwhenusingan
IVl driver. Failing to do this could mean that system resources are not
freed up and your program may behave unexpectedly on subsequent
executions.

® Checkthedriverforany errors.

¢ Displaythereading.

Note: Examples that use a console application do not show the display.

Now that you understand the logic behind IVI drivers, let’s see how to get started.

10

Chapter 2
Using IVI with LabWindows™/CVI™

The Environment

National Instruments LabWindows/CVI is an ANSI-C integrated development
environmentthatprovides a comprehensive setof programming tools for creating
testand controlapplications. LabWindows/CVIcombinesthelongevity and
reusability of ANSI-C with engineering-specificfunctionality designedfor
instrumentcontrol, dataacquisition, analysis, and userinterface development.

Example Requirements
* LabWindows/CVI18.1orlater

* [VI-C: Keysight 34401AIVI-C driver, Version 4.5, January 2015 (from
National Instruments)

Note: IVI-C driver requires the NI IVI Compliance Package to be installed.
Check National Instruments Web site for details.

Download andInstallthe Driver

Ifyou have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install IVI Drivers, for instructions.

This example uses an IVI-C driver. IVI-C is the preferred driver for
LabWindows/CVI.

Create aNew Projectand Add InstrumentDriver Files
1 Launch LabWindows/CVI.

2 Select File, select New, and click Project.
3 Tocreate a new C source file, select New and click Source (*.c). Save the file.
4

Select Edit and click on Add Files to Project to add the C source file to your
project.

5 Select Edit and click on Add Files To Project to add one of the following
instrument driver files to your project: hp34401a.fp, hp34401a.c, or
hp34401a.lib.

1

ol

File | Edit | Yiew Buld Run Instrument Library Tools Window

c:MVI Demo}MVI Demo.cws

Options Help

\Workspace...
Project...
Add Files to Project...
Include File in Build Ct

Enable 'O" Option

Source (*.c)...
Include (*.h)...

Object {*.abj)...
Library (*.lib)...

User Interface (*.uir)...
Instrument {*.Fp)...

all Files (*.*)..,

Replace File in Project...

Remove File Del

Find... Shift+F3 i

[+

=

3 Libraries
£ Instruments
+ ¥ [HP 344014 Dig

Note: Any of the three files listed above will work. Adding one of the HP 34401A
instrument driver files loads that instrument driver. View the available functions
in the library tree in the workspace window.

Add the following line to your program to include the instrument driver header
file:

#include “hp3440la.h”

Initialize the Instrument

1
2

From the Edit menu, select Insert Construct, and click Main.

Find the hp34401a instrument driver in the instrument driver tree. Select
Initialize with Options from the library tree. The Initialize with Options function
panel opens.

Enter values for Resource Name, ID Query, Reset Device, and Option String:
* GPIB0::23::INSTRinthe Resource Namefield

* No for ID Query control

* YesforResetDevice control

¢ Simulate=1inthe Optionsfield

Note: The RangeCheck, QuerylinstrStatus, and Cache options appear
automatically. The options are enabled by default.

12

&1 c:\IVI Demo\IVI Demo.cws - [HP 34401A Digital Multimeter - Initialize With Options] EI@”X]

Bl E0t Vmw Code Buld Run [rstrument Lbeary Took Window OQptions Help =8 x|
a8 Bmiiab & GNlleas &8 |
- 4
=D Source Fies Coppeght 1338 Nationsl Irstauments Conpoeation. Al Rights Reserved.
fcl ™M Democ
= 'Dﬂm::; Resousce Name 1D Query Reset Devica
_r" [*GPIBO::23. INSTR® r o Yes
| < . L B No
S 00 Lbanes |
=12 Instruments Opbice Sting
SR DI | Tater, RangeCheck+1, GueryInstrStatuse1, Cache=1"
BR (IndwiriOptons]

+ @ Corhgueaion

+ @ Meassutement

. Uty

cloge
e Stahus
Irgtnument Handie| [—
§ I
{ |
[hp34401a_InitVithOptions ("GPIBO. :23::INSTR®. VI_FALSE, VI_TRUE. j

<

Sinulaterl, RangeCheckrl, QuerylnstrStatus~i,

[
i ;l_"ﬁ‘) J _f"

4 Select the Instrument Handle parameter. From the Code Menu, click Declare
Variable to set the Instrument Handle parameter.

5 Enter session in the Variable Name field.

6 Check the boxes titled Execute declaration in Interactive Window and Add
declaration to top of target file “*.c”. Click OK.

Note: Totest the function with the specified parameter values, select Code and
click Run Function Panel or click the run button in the toolbar to operate the
function panel interactively.

7 From the Code Menu, click Insert Function Call to insert the function and
values into your program. Close the function panel. The
hp34401a_InitWithOptions function appears in your program.

13

& ¢:\IVI Demo\IVI Demo.cws - [1V] Demo.c *]
Bl ER Yeow M Run Instrument LUUV Tods ﬂm mions Wb

HasH o H 453 [& 5 p

(9]L=1[3]
ETE

Configure the Instrument

= [#] VI Demo A Tsinclude <ansic. hy
= 2 Soucs Files »‘: nclude hpB(GDl; h*
WV Democ™ u ccvirte h>
i? j@i"_?gﬂ:‘iw 'tauc ViReal$d reading;
- r:w""hr; static ViSession ssssion!
[=4
2 J_] int msin (int arge, char wargv(])
3 Liraries " | if {InitCVIRTE (0, argv, 0) == 0)
* l—;l ""e‘ return =1: ‘e out aof mencry
= 2 Instrumeets
= @/ HP 344014 Digtal b hp34401a_InitVithOptions {“GPIBO: 23 IHSTR VI_FALSE,
Led
Py e Suulete-l RangeCheck=1, Quaryl
.%@IM CeRenion)s
* (""m’]
+ @ Moasuemant
+ Uty
choss return 0.

}

1 From the library tree, select Configuration and click ConfigureMeasurement.
The ConfigureMeasurement function panel opens.

2 Set the function to DC Voltage, range to 1.5 volts, resolution to 1 millivolt, and
instrument handle to session. Select and enter:

¢ DC Volts from the drop-down list in the Measurement Function field,

* 1.5inthe Rangefield,
® 0.001inthe Resolution field, and

* sessioninthe InstrumentHandle field.

14

£0 c:\IVI Demo\IVI Demo.cws - [HP 34401A Digital Multimeter - Configure Measurement]
Fle Et VYew Code fud Bun jnstrument (Brary Tooks Window OQptiors Help
@ miEaGgsNilkasS «&8 0
- (3] V1 Demo
= (22 Source Fies
i M Democ™
= [Instumect Files

re30lalfp

5

+) Livanes
= £ Inatruments S—
=/ HP 344014 Digtal Multerate 0.001
5
2N Inf\WithDptons
- 9 Corfgueston
[CorbpaeNosnienss
+ @ Spechic Mesnsemen
< @ Tegger
+ & MaPont
+ @ Tempershae
+ @ Measweomert Oporats
+ @ Corbgursbon Informat A
+ @ Set/Get/Theck Attt 3033100
e

|

Messsemant Furchon Ronge!

J_] S DCVoRs 1.5
|

Retoktion [absokie)

Iratnament Handle

.
e Mo,

3 Select the Code menu and click Insert Function Call to insert the function and

values into your program. Close the function panel. The
hp34401a_ConfigureMeasurement function appears in your program.

From the library tree, select Configuration, select Trigger, and click
ConfigureTrigger. The Configure Trigger function panel opens.

Set the trigger source to immediate, the trigger delay to 0.01 seconds, and the
instrument handle to session. Select and enter:

* Immediate from the drop-down listin the Trigger Source field

® 0.01inthe Trigger Delay field

* sessioninthe InstrumentHandle field

Select Code and click Insert Function Call to insert the function and values into
your program. Close the function panel. The hp34401a_ConfigureTrigger
function appears in your program.

Setthe Reading Timeout

1

From the library tree, select Measurement and click Read. The Read dialog
opens.

Set the value for Timeout to 1 second (1000 ms), and instrument handle to
session. Enter:

* 1000 in the Read field
* sessioninthe InstrumentHandle field

15

Display the Reading

1

2
3
4

Select the Reading parameter.
Select Code and click Declare Variable. The Declare Variable dialog appears.
Enter reading in the Variable Name field.

Check the boxes titled Execute declaration in Interactive Window and Add
declaration to top of target file “*.c”. Click OK.

Select Code and click Insert Function Call to insert the function and values into
your program. Close the function panel. The hp34401a_Read function appears
in your program.

Close the Session

1
2
3

From the library tree, select Close. The Close function panel opens.
Enter session in the Instrument Handle field.
Select Code and click Insert Function Call to insert the function and values into

your program. Close the function panel. The hp34401a_Close function
appears in your program. Your final program should contain the code below:

#include <ansi_c.h>
#include "hp3440la.h"
#include <cvirte.h>
static ViReal64 reading;
static ViSession session;

int main (int argc, char *argv[])

{
if (InitCVIRTE (0, argv, 0) == 0)
return -1; /* out of memory */
hp3440la_InitWithOptions (
"GPIB0::23::INSTR", VI_FALSE,
VI_TRUE, "Simulate=1", &session);
hp3440la_ConfigureMeasurement (session,
HP34401A VAL DC_VOLTS, 1.5, 0.001);
hp3440la_ConfigureTrigger (session,
HP34401A VAL IMMEDIATE, 0.01);
hp3440la_Read (session, 1000, &reading);
printf ("%$f", reading);
hp3440la_close (session);
return 0;
}

16

Note: Todisplaythe reading, add a printffunction. Before the Close function, type:
printf (“%£”, reading);

Note: Including error checking in your programs is good practice. Use the
CheckErr macro provided in the ivi.h file to handle errors. See the example

included with the hp34401 downloaded driverforerrorhandling demonstration
code.

Further Information
Learn more about LabWindows/CVI at http://www.ni.com/lwcvi/.

The mark LabWindows is used under a license from Microsoft Corporation.

17

