

Getting Started
with

IVI Drivers
Your Guide to Using IVI with

Visual C# and Visual Basic .NET

Version 1.2

© Copyright IVI Foundation, 2015
All rights reserved

The IVI Foundation has full copyright privileges of all versions of the IVI Getting
Started Guide. For persons wishing to reference portions of the guide in their
own written work, standard copyright protection and usage applies. This
includes providing a reference to the guide within the written work. Likewise, it
needs to be apparent what content was taken from the guide. A recommended
method in which to do this is by using a different font in italics to signify the
copyrighted material.

3 	

• • •

Contents
• • •

Chapter 1 Introduction .. 4

Purpose ... 4

Why Use an Instrument Driver? ... 4

Why IVI? .. 5

Why Use an IVI Driver? ... 7

Flavors of IVI Drivers ... 8

Shared Components ... 8

Download and Install IVI Drivers .. 8

Familiarizing Yourself with the Driver ... 9

Examples .. 9

Chapter 2 Using IVI with Visual C# and Visual Basic .NET 12
The Environment .. 12

Example Requirements ... 12

Download and Install the Driver ... 12

Create a New Project and Reference the Driver 13

Create an Instance of the Driver .. 15

Initialize the Instrument ... 16

Configure the Instrument .. 17

Set the Trigger Delay ... 17

Set the Reading Timeout/Display the Reading 17

Close the Session ... 18

Build and Run the Application .. 19

Tips. .. 19

Further Information ... 20

4 	

• • •

Chapter 1
Introduction
• • •

Purpose

Welcome to Getting Started with IVI Drivers: Your Guide to Using IVI with
Visual C# and Visual Basic .NET. This guide introduces key concepts about IVI
drivers and shows you how to create a short program to perform a measurement.
The guide is part of the IVI Foundation’s series of guides, Getting Started with IVI
Drivers.

Getting Started with IVI Drivers is intended for individuals who write and run
programs to control test-and-measurement instruments. Each guide focuses on a
different programming environment. As you develop test programs, you face
decisions about how you communicate with the instruments. Some of your choices
include Direct I/O, VXIplug&play drivers, or IVI drivers. If you are new to using IVI
drivers or just want a quick refresher on the basics, Getting Started with IVI
Drivers can help.

Getting Started with IVI Drivers shows that IVI drivers can be straightforward,
easy-to-use tools. IVI drivers provide a number of advantages that can save time
and money during development, while improving performance as well. Whether
you are starting a new program or making improvements to an existing one, you
should consider the use of IVI drivers to develop your test programs.

So consider this the “hello, instrument” guide for IVI drivers. If you recall, the “hello
world” program, which originally appeared in Programming in C: A Tutorial, simply
prints out “hello, world.” The “hello, instrument” program performs a simple
measurement on a simulated instrument and returns the result. We think you’ll find
that far more useful.

Why Use an Instrument Driver?
To understand the benefits of IVI drivers, we need to start by defining instrument
drivers in general and describing why they are useful. An instrument driver is a set
of software routines that controls a programmable instrument. Each routine
corresponds to a programmatic operation, such as configuring, writing to, reading
from, and triggering the instrument. Instrument drivers simplify instrument control
and reduce test program development time by eliminating the need to learn the
programming protocol for each instrument.

Starting in the 1970s, programmers used device-dependent commands for
computer control of instruments. But lack of standardization meant even two digital
multimeters from the same manufacturer might not use the same commands. In
the early 1990s a group of instrument manufacturers developed Standard

5 	

Commands for Programmable Instrumentation (SCPI). This defined set of
commands for controlling instruments uses ASCII characters, providing some
basic standardization and consistency to the commands used to control
instruments. For example, when you want to measure a DC voltage, the
standard SCPI command is “MEASURE:VOLTAGE:DC?”.

In 1993, the VXIplug&play Systems Alliance created specifications for instrument
drivers called VXIplug&play drivers. Unlike SCPI, VXIplug&play drivers do not
specify how to control specific instruments; instead, they specify some common
aspects of an instrument driver. By using a driver, you can access the instrument
by calling a subroutine in your programming language instead of having to format
and send an ASCII string as you do with SCPI. With ASCII, you have to create and
send the instrument the syntax “MEASURE:VOLTAGE:DC?”, then read back a
string, and build it into a variable. With a driver you can merely call a function called
MeasureDCVoltage() and pass it a variable to return the measured voltage.

Although you still need to be syntactically correct in your calls to the instrument
driver, making calls to a subroutine in your programming language is less error
prone. If you have been programming to instruments without a driver, then you are
probably all too familiar with hunting around the programming guide to find the right
SCPI command and exact syntax. You also have to deal with an I/O library to
format and send the strings, and then build the response string into a variable.

Why IVI?

The VXIplug&play drivers do not provide a common programming interface. That
means programming a Keithley DMM using VXIplug&play still differs from
programming a Keysight DMM. For example, the instrument driver interface for
one may be ke2000_read while another may be ag34401_get or something
even farther afield. Without consistency across instruments manufactured by
different vendors, many programmers still spent a lot of time learning each
individual driver.

To carry VXIplug&play drivers a step (or two) further, in 1998 a group of end users,
instrument vendors, software vendors, system suppliers, and system integrators
joined together to form a consortium called the Interchangeable Virtual Instruments
(IVI) Foundation. If you look at the membership, it’s clear that many of the
foundation members are competitors. But all agreed on the need to promote
specifications for programming test instruments that provide better performance,
reduce the cost of program development and maintenance, and simplify
interchangeability.

For example, for any IVI driver developed for a DMM, the measurement command
is IviDmmMeasurement.Read, regardless of the vendor. Once you learn how to
program the commands specified by IVI for the instrument class, you can use any
vendor’s instrument and not need to relearn the commands. Also commands that
are common to all drivers, such as Initialize and Close, are identical regardless of

6 	

the type of instrument. This commonality lets you spend less time browsing
through the help files in order to program an instrument, leaving more time to
get your job done.

That was the motivation behind the development of IVI drivers.The IVI
specifications enable drivers with a consistent and high standard of quality,
usability, and completeness. The specifications define an open driver architecture,
a set of instrument classes, and shared software components. Together these
provide consistency and ease of use, as well as the crucial elements needed for
the advanced features IVI drivers support: instrument simulation, automatic range
checking, state caching, and interchangeability.

The IVI Foundation has created IVI class specifications that define the capabilities
for drivers for the following thirteen instrument classes:

Class IVI Driver

Digital multimeter (DMM) IviDmm

Oscilloscope IviScope

Arbitrary waveform/function generator IviFgen

DC power supply IviDCPwr

AC power supply IviACPwr

Switch IviSwtch

Power meter IviPwrMeter

Spectrum analyzer IviSpecAn

RF signal generator IviRFSigGen

Upconverter IviUpconverter

Downconverter IviDownconverter

Digitizer IviDigitizer

Counter/timer IviCounter

IVI Class Compliant drivers usually also include numerous functions that are
beyond the scope of the class definition. This may be because the capability is
not common to all instruments of the class or because the instrument offers
some control that is more refined than what the class defines.

7 	

IVI also defines custom drivers. Custom drivers are used for instruments that are
not members of a class. For example, there is not a class definition for network
analyzers, so a network analyzer driver must be a custom driver. Custom drivers
provide the same consistency and benefits described below for an IVI driver,
except interchangeability.
IVI drivers that conform to the IVI specifications are permitted to display the IVI-
Conformant logo.

Why Use an IVI Driver?

Why choose IVI drivers over other possibilities? Because IVI drivers can increase
performance and flexibility for more intricate test applications. Here are a few of the
benefits:
Consistency – IVI drivers all follow a common model of how to control the
instrument. That saves you time when you need to use a new instrument.
Ease of use – IVI drivers feature enhanced ease of use in popular Application
Development Environments (ADEs). The APIs provide fast, intuitive access to
functions. IVI drivers use technology that naturally integrates in many different
software environments.
Quality – IVI drivers focus on common commands, desirable options, and
rigorous testing to ensure driver quality.
Simulation – IVI drivers allow code development and testing even when an
instrument is unavailable. That reduces the need for scarce hardware resources
and simplifies test of measurement applications. The example programs in this
document use this feature.
Range checking – IVI drivers ensure the parameters you use are within
appropriate ranges for an instrument.
State caching – IVI drivers keep track of an instrument’s status so that I/O is only
performed when necessary, preventing redundant configuration commands from
being sent. This can significantly improve test system performance.
Interchangeability – IVI class compliant drivers also enable exchange of
instruments with minimal code changes, reducing the time and effort needed to
integrate measurement devices into new or existing systems. The IVI class
specifications provide syntactic interchangeability but may not provide behavioral
interchangeability. In other words, the program may run on two different

8 	

instruments but the results may not be the same due to differences in the
way the instrument itself functions.

Flavors of IVI Drivers

To support all popular programming languages and development environments, IVI
drivers provide either an IVI-C or IVI-COM (Component Object Model) API. Driver
developers may provide either or both interfaces, as well as wrapper interfaces
optimized for specific development environments.
Although the functionality is the same, IVI-C drivers are optimized for use in ANSI
C development environments; IVI-COM drivers are optimized for environments
that support the Component Object Model (COM) such as the .NET
programming environment. IVI-C drivers extend the VXIplug&play driver
specification and their usage is similar. IVI-COM drivers provide easy access to
instrument functionality through methods and properties.
The getting started examples communicate with the instruments using the
Virtual Instrument Software Architecture (VISA) I/O library, a widely used
standard library for communicating with instruments from a personal computer.
The VISA standard is also provided by the IVI Foundation.

Shared Components

To make it easier to combine drivers and other software from various vendors,
the IVI Foundation members have cooperated to provide common software
components, called IVI Shared Components. These components provide
services to drivers and driver clients that need to be common to all drivers. For
instance, the IVI Configuration Server enables administration of system-wide
configuration.
Important! You must install the IVI Shared Components before an IVI driver can
be installed.
The IVI Shared Components can be downloaded from vendors’ web sites as well
as from the IVI Foundation Web site.
To download and install shared components from the IVI Foundation Web site:

1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.
2 Locate Shared Components.
3 Choose the IVI Shared Components msi file for the Microsoft Windows

Installer package or the IVI Shared Components exe for the
executable installer.

Download and Install IVI Drivers

After you’ve installed Shared Components, you’re ready to download and install an
IVI driver. For most ADEs, the steps to download and install an IVI driver are
identical. For the few that require a different process, the relevant Getting Started
with IVI Drivers guide provides the information you need. IVI Drivers are

9 	

available from the hardware or software vendors’ web site or by linking to them
from the IVI Foundation web site.
The IVI Foundation requires that compliant drivers be registered before the display the
IVI conformant logo. To see the list of drivers registered with the IVI Foundation, go
to the registration section of the IVI web site at http://www.ivifoundation.org.

Familiarizing Yourself with the Driver

Although the examples in Getting Started with IVI Drivers use a DMM driver, you
will likely employ a variety of IVI drivers to develop test programs. To jumpstart
that task, you’ll want to familiarize yourself quickly with drivers you haven’t used
before. Most ADEs provide a way to explore IVI drivers to learn their functionality.
In each IVI guide, where applicable, we add a note explaining how to view the
available functions. In addition, browsing an IVI driver’s help file often proves an
excellent way to learn its functionality.

	

10 	

Examples

As we noted above, each guide in the Getting Started with IVI Drivers series shows you how to
use an IVI driver to write and run a program that performs a simple measurement on a simulated
instrument and returns the result. The examples demonstrate common steps using IVI drivers.
Where practical, every example includes the steps listed below:

• Download and Install the IVI driver– covered in the Download and Install IVI Drivers
section above.

• Determine the VISA address string – Examples in Getting Started with IVI Drivers
use the simulate mode, so we chose the address string GPIB0::23::INSTR, often
shown as GPIB::23. If you need to determine the VISA address string for your
instrument and the ADE does not provide it automatically, use an IO application, such
as National Instruments Measurement and Automation Explorer (MAX) or Keysight
Connection Expert.

• Reference the driver or load driver files – For the examples in this guide, the driver is
the IVI-COM/IVI-C Version 1.2.5.0 for 34401A, April 2013 (from Keysight
Technologies) … or the Keysight 34401A IVI-C driver, Version 4.5, January 2015
(from National Instruments).

• Create an instance of the driver in ADEs that use COM – For the examples in the IVI
guides, the driver is the Agilent 34401A (IVI-COM) or HP 34401 (IVI-C).

• Write the program. The programs in this series all perform the following steps:
• Initialize the instrument – Initialize is required when using any IVI driver.

Initialize establishes a communication link with the instrument and must
be called before the program can do anything with the instrument. The
examples set reset to true, ID query to false, and simulate to true.

Setting reset to true tells the driver to initially reset the instrument.
Setting the ID query to false prevents the driver from verifying that the
connected instrument is the one the driver was written for. Finally,
setting simulate to true tells the driver that it should not attempt to
connect to a physical instrument, but use a simulation of the
instrument.

• Configure the instrument – The examples set a range of 1.5 volts and a
resolution of
0.001 volts (1 millivolt).

• Access an instrument property – The examples set the trigger
delay to 0.01 seconds.

• Set the reading timeout – The	
 examples	
 set the reading
timeout to 1000 milliseconds (1 second).

• Take a reading
• Close the instrument – This step is required when using any IVI driver,

unless the ADE explicitly does not require it. We close the session to free
resources.

11 	

Important! Close may be the most commonly missed step when using an
IVI driver. Failing to do this could mean that system resources are not
freed up and your program may behave unexpectedly on subsequent
executions.
• Check the driver for any errors.
• Display the reading.

Note: Examples that use a console application do not show the display.

Now that you understand the logic behind IVI drivers, let’s see how to get started.

	

• • •

Chapter 2
Using IVI with Visual C# and
Visual Basic .NET
• • •

The Environment

C# and Visual Basic are object-oriented programming languages developed by
Microsoft. They enable programmers to quickly build a wide range of applications
for the Microsoft .NET platform. This chapter provides detailed instructions in C#
as well as the code for Visual Basic. NET. If you are using Visual Basic 6.0, we
recommend another guide in this series, Getting Started with IVI Drivers: Your
Guide to Using IVI with Visual Basic 6.

Note: One of the key advantages of using C# and Visual Basic in the Microsoft®
Visual Studio® Integrated Development Environment is IntelliSense™.
InstelliSense is a form of autocompletion for variable names and functions and a
convenient way to access parameter lists and ensure correct syntax. The feature
also enhances software development by reducing the amount of keyboard input
required.

Example Requirements
• Visual C#
• Microsoft Visual Studio 2010
• Agilent 34401A IVI-COM, Version 1.2.2.0, October 2008 (from Agilent

Technologies)
• Agilent IO Libraries Suite 16.1

Download and Install the Driver

If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install IVI Drivers, for instructions.

This example uses an IVI-COM driver. IVI-COM is the preferred driver for C#, but
IVI-C is also supported.

	

	

	

	

	

	

	
 	
 	
 	
 12

	

Create a New Project and Reference the Driver
Begin by creating a new project, and add a reference to the IVI Driver.

1 Launch Visual Studio and create a new Console Application in Visual C# by
selecting File -> New -> Project and selecting a Visual C# Console Application.
Note: When you select new, Visual Studio will create an empty program the
includes some necessary code, including using statements. Keep this required
code.

For the next steps you will need to ensure that the "Program.cs" editor window
is visible and the Solution Explorer is visible.

2 Select Project and click Add Reference. The Add Reference dialog appears.
3 Select the COM tab. All IVI drivers begin with IVI. Scroll to the IVI section and

select IVI Agilent 34401 (Agilent Technologies) 1.2 Type Library. Click OK.
Note: If you have not installed the IVI driver, it will not appear in this list. You must
close the Add Reference dialog, install the driver, and select Add Reference again
for the driver to appear.

13

	

Note: The program looks the same as it did before you added the reference, but
the driver is now available for use. To see the reference, select View and click
Solution Explorer. Solution Explorer appears and lists the reference.

14

	

Create an Instance of the Driver
To allow your program to access the driver without specifying the full path, type the
following line immediately below the other using statements:
using Agilent.Agilent34401.Interop;

Note: As soon as you type the A for Agilent, IntelliSense lists the valid inputs.

Congratulations! You may now write the program to control the simulated
instrument.

Note: To view the functions and parameters available in the instrument driver, right-
click the library in the References folder in Solution Explorer and select View in
Object Browser.

15

	

Initialize the Instrument
You can now write the main constructs for your program. Create a variable to
represent your instrument and set the Initialization parameters.

1 Type Agilent34401 dmm = new Agilent34401();
2 Type dmm.Initialize (“GPIB::23”, false, true,

“simulate=true”);

Note: IntelliSense helps ensure you use correct syntax and values.

16

	

Configure the Instrument
To set the range to 1.5 volts and the resolution to 1 millivolt, type

dmm.DCVoltage.Configure(1.5, 0.001);

Set the Trigger Delay

To set the trigger delay to 0.01 seconds, type

dmm.Trigger.Delay = 0.01;

Set the Reading Timeout/Display the Reading

Create a variable to represent the reading and display the reading:

1 Type double reading;

17

	

2 To trigger the multimeter and take a reading with a timeout of 1 second, type
reading = dmm.Measurement.Read(1000);

3 Type Console.WriteLine("The measurement is {0}", reading);
4 Type Console.ReadLine();

Close the Session

To close out the instance of the driver to free resources, type

dmm.Close();

Your final program should contain the code below:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Agilent.Agilent34401.Interop;

namespace ConsoleApplication1

{

class Program

{

static void Main(string[] args)

{

Agilent34401 dmm = new Agilent34401();

dmm.Initialize("GPIB::23", false, true, "sim-

ulate=true");

dmm.DCVoltage.Configure(1.5, 0.001);

dmm.Trigger.Delay = 0.01;

double reading;

reading = dmm.Measurement.Read(1000);

Console.WriteLine("The measurement is {0}",

reading);

}

Console.ReadLine();

dmm.Close();

}
}

18

	

Build and Run the Application
Build your application and run it to verify it works properly.

1 From the Build menu, click the name of your Console Application.
2 From the Debug menu, click Start Debugging.

Tips

The code for a Visual Basic console application in Visual Studio 2010 is almost
identical to the C# application:

Option Explicit On

Imports Agilent.Agilent34401.Interop

Module Module1

Sub Main()

Dim dmm As New Agilent34401

dmm.Initialize("GPIB::23", False, True,
"simulate=true")

dmm.Function =
Agilent34401FunctionEnum.Agilent34401FunctionDCVolts

dmm.DCVoltage.Configure(1.5, 0.001)

dmm.Trigger.Delay = 0.01

Dim reading As New Double

reading = dmm.Measurement.Read(1000)

dmm.Close()

Console.WriteLine(“The reading is {0}”, reading)

Console.ReadLine()

End Sub

End Module

The main differences include the following:

• To use Visual Basic, select Visual Basic in Project Types.
• To enforce type checking, insert a line at the start of the code. Type

Option Explicit On

• This example also shows how to set an enumerated property. This property
assignment sets the DMM function to Voltage: Type
dmm.Function =
Agilent34401FunctionEnum.Agilent34401FunctionDCVolts

	

• To dimension a variable for the instrument and reading, use Dim dmm and Dim
reading.

Further Information

• Learn more about Visual C# at http://msdn.microsoft.com/vcsharp/.
• Learn more about Visual Basic at http://msdn.microsoft.com/vbasic/.

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

 20

