

IVI-6.2: VISA Interoperability
Requirements for USBTMC Specification

November 1, 2018 Edition
Revision 1.0

Interchangeable

Instruments
VirtualIVI

IVI Foundation 2 IVI-6.2: VISA Interoperability Requirements for USBTMC

Important Information

IVI-6.2: VISA Interoperability Requirements for USBTMC Specification is authored by the IVI Foundation
member companies. For a vendor membership roster list, please visit the IVI Foundation web site at
www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation
through the web site at www.ivifoundation.org.

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The IVI Foundation and its member companies shall not be liable for errors contained herein or for incidental
or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

IVI-6.2: VISA Interoperability Requirements for USBTMC 3 IVI Foundation

Important Information ... 2

Warranty 2

Trademarks 2

IVI-6.2 VISA Interoperability Requirements for USBTMC 5

1. Overview of the VISA Interoperability Requirements for USBTMC
Specification 6

1.1 Introduction .. 6

1.2 Audience of Specification ... 6

1.3 Organization of Specification .. 6

1.4 VISA Interoperability Requirements for USBTMC Overview .. 6

1.5 References .. 6

1.6 Definition of Terms and Acronyms ... 7

2. Windows Specific Information .. 9
2.1 CreateFile() .. 9

2.2 WriteFile() ... 9

2.3 ReadFile() .. 10

2.4 DeviceIoControl() .. 10

2.4.1 IOCTL_USBTMC_GETINFO ... 11
2.4.1.1 Data structure – USBTMC_DRV_INFO .. 12

2.4.2 IOCTL_USBTMC_CANCEL_IO .. 12
2.4.2.1 Data Structures – USBTMC_PIPE_TYPE .. 13

2.4.3 IOCTL_USBTMC_WAIT_INTERRUPT .. 14
2.4.4 IOCTL_USBTMC_RESET_PIPE .. 15
2.4.5 IOCTL_USBTMC_SEND_REQUEST .. 15

IVI Foundation 4 IVI-6.2: VISA Interoperability Requirements for USBTMC

2.4.5.1 Data Structure – USBTMC_IO_BLOCK .. 16
2.4.6 IOCTL_USBTMC_GET_LAST_ERROR ... 17

2.5 CloseHandle() .. 17

2.6 INF files for USBTMC devices .. 17

2.6.1 Class and ClassGUID for USBTMC devices ... 18
2.6.2 INF ClassInstall32 section .. 18
2.6.3 INF DDInstall.Interfaces section .. 18
2.6.4 Product specific INF files ... 18
2.6.5 Class, SubClass, Protocol specific INF files... 19
2.6.6 Class, SubClass specific INF files and Class specific INF files ... 19

3. USBTMC include file .. 20

4. Available USBD Functions .. 22

Appendix A Linux Specific Information ... 26
A.1 History... 26

A.2 Added Features... 26

A.2.1 Changes to Ioctl USBTMC-USB488 READ_STB.. 26
A.2.2 Support for receiving SRQ notifications via poll/select .. 26
A.2.3 New for IVI: ioctl USBTMC488_IOCTL_WAIT_SRQ ... 27
A.2.4 New ioctl USBTMC488_IOCTL_TRIGGER ... 27
A.2.5 New ioctls USBTMC_IOCTL_GET/SET_TIMEOUT ... 27
A.2.6 New ioctl USBTMC_IOCTL_CTRL_REQUEST .. 27
A.2.7 New ioctl USBTMC_IOCTL_EOM_ENABLE .. 28
A.2.8 New ioctl USBTMC_IOCTL_CONFIG_TERMCHAR.. 28
A.2.9 New ioctl USBTMC_IOCTL_MSG_IN_ATTR ... 28
A.2.10 New ioctl USBTMC_IOCTL_WRITE .. 28
A.2.11 New ioctl USBTMC_IOCTL_WRITE_RESULT ... 29
A.2.12 New ioctl USBTMC_IOCTL_READ .. 29
A.2.13 New ioctl USBTMC_IOCTL_CANCEL_IO .. 30
A.2.14 New ioctl USBTMC_IOCTL_CLEANUP_IO .. 30
A.2.15 New ioctl USBTMC_IOCTL_AUTO_ABORT .. 30
A.2.16 New ioctl USBTMC_IOCTL_API_VERSION ... 30

A.3 Test Functions ... 30

A.3.1 USBTMC_IOCTL_SET_OUT_HALT ... 31
A.3.2 USBTMC_IOCTL_SET_IN_HALT ... 31
A.3.3 USBTMC_IOCTL_ABORT_BULK_IN_TAG .. 31
A.3.4 USBTMC_IOCTL_ABORT_BULK_OUT_TAG .. 31

IVI-6.2: VISA Interoperability Requirements for USBTMC 5 IVI Foundation

 IVI-6.2 VISA Interoperability
Requirements for USBTMC

VISA Interoperability Requirements for USBTMC
Revision History

This section is an overview of the revision history of the VISA Interoperability Requirements for USBTMC
specification.

Table 1-1. VISA Interoperability Requirements for USBTMC Specification Revisions

Revision Number Date of Revision Revision Notes

Revision 1.0 March 23, 2010 First approved version.

Revision 1.0 November 1, 2018 Editorial change to add the informational appendix
describing the Linux USBTMC kernel driver.

IVI Foundation 6 IVI-6.2: VISA Interoperability Requirements for USBTMC

1. Overview of the VISA Interoperability Requirements for USBTMC
Specification

1.1 Introduction

This section summarizes the VISA Interoperability Requirements for USBTMC Specification itself and
contains general information that the reader may need to understand, interpret, and implement aspects of this
specification. These aspects include the following:

• Audience

• Organization

• Overview

• References

• Terms and Acronyms

1.2 Audience of Specification

The intended readers for this specification are the vendors who wish to interface with the IVI Foundation
USBTMC Windows operating systems drivers, and the implementors of the IVI Foundation USBTMC
Windows operating systems drivers.

1.3 Organization of Specification

This specification is organized in sections, with each section discussing a particular aspect of the VISA
model. Section 3, Windows Specific Information, describes the USBTMC Windows operating systems
drivers. Section 4, USBTMC Include File, presents the USBTMC driver include file. Section 5, Available
USBTMC Functions, lists the available USBTMC functions.

1.4 VISA Interoperability Requirements for USBTMC Overview

To achieve USBTMC interoperability, a VISA I/O library running in user-space must be able to interact with
the USB Host kernel driver stack in a predictable way. The accepted strategy is to specify the kernel API –
the system call semantics and behaviors. This enables a VISA I/O library to communicate successfully with
the IVI USBTMC kernel driver.

For Windows, specifying an API means specifying the behaviors of CreateFile (), WriteFile (), ReadFile (),
DeviceIoControl (), and CloseHandle ().

In addition to the specification of an API, error codes must be specified. This is because a VISA I/O library
implementing the USBTMC specification or a USBTMC subclass specification must know when certain
error conditions occur.

1.5 References

Several other documents and specifications are related to this specification. These other related documents
are the following:

USB Implementers Forum

• USB 2.0 Specification (www.usb.org)

• USBTMC Specification (http://www.usb.org/developers/devclass_docs#approved)

• USBTMC USB488 Specification (http://www.usb.org/developers/devclass_docs#approved)

http://www.usb.org/developers/devclass_docs#approved
http://www.usb.org/developers/devclass_docs#approved

IVI-6.2: VISA Interoperability Requirements for USBTMC 7 IVI Foundation

Microsoft

• Microsoft Platform SDKs for Windows operating systems

• Microsoft DDKs for Windows operating systems

IVI Foundation (www.ivifoundation.org)

• VPP-4.3 & 4.3.x, The VISA Library and detailed VISA and VISA-COM specifications

• VPP-9: Instrument Vendor Abbreviations

1.6 Definition of Terms and Acronyms

The following are some commonly used terms and acronyms used in this document.

API Application Programmers Interface. The direct interface that an end

user sees when creating an application. The VISA API consists of the

sum of all of the operations, attributes, and events of each of the

VISA Resource Classes.

Host This is similar to the term “Controller” used in other VISA

specifications. From the USB 2.0 specification: “The host computer

system where the Host Controller is installed. This includes the host

software platform (CPU, bus, etc.) and the operating system in use.”

Instrument Driver Library of functions for controlling a specific instrument

IRP I/O Request Packet. From the USB 2.0 specification: “An identifiable

request by a software client to move data between itself (on the

host) and an endpoint of a device in an appropriate direction.”

SRQ IEEE 488 Service Request. This is an asynchronous request from a

remote GPIB device that requires service. A service request is

essentially an interrupt from a remote device. For USBTMC, this is a

notification on the interrupt IN pipe.

USBTMC client software USBTMC software resident on the host that interacts with the USB

System Software to arrange data transfer between a function and the

host. The client is often the data provider and consumer for

transferred data. A VISA I/O library implementation for USBTMC is

the USBTMC client software.

USBTMC device

dependent command

message

A type of USBTMC command message in which the USBTMC message

data bytes are a sequence of bytes defined by the device vendor.

Typically a query for a measurement result or a request to change

measurement state. Sent from a Host to a device. The VISA method

viWrite transfers these messages.

USBTMC interface A collection of endpoints on a device that conform to the

requirements in this USB Test and Measurement Class specification

and can be used to provide the physical/signaling/packet connectivity

to a Host. The interface descriptor must have bInterfaceClass and

bInterfaceSubClass equal to the appropriate values for a USB Test

and Measurement Class interface.

http://www.ivifoundation.org/

IVI Foundation 8 IVI-6.2: VISA Interoperability Requirements for USBTMC

USBTMC response

message

A type of USBTMC message containing a response to a USBTMC

command message. Sent from a device to a Host. The VISA method

viRead transfers these messages.

IVI-6.2: VISA Interoperability Requirements for USBTMC 9 IVI Foundation

2. Windows Specific Information

The Windows system call behaviors for a USBTMC driver are defined here to resemble the behaviors for a
pass-through driver. A pass-through driver allows software to send bulk-OUT and control pipe requests with
arbitrary content and to receive bulk-IN and interrupt-IN packets with arbitrary content. The motivation to
define system call behaviors in this way are:

• Minimizes the work done by the kernel driver.

• Enables the USBTMC protocol and USBTMC subclass protocols to be implemented in user-space,
which is easier to debug and is less likely to crash the system.

• Makes it easy to change the protocol above the kernel driver. The kernel driver does not need to change
in order to support changes to the protocol.

• Minimizes the volume of USBTMC interoperability specification material that has to be written and
agreed to.

• Multiple protocols may be layered above a pass-through driver.

• Enables using a native pass-through driver if and when it exists.

The sections below describe specific behaviors for each system call. All USB Host USBTMC kernel drivers
loaded for Class=0xFE, Subclass=0x03 devices must implement the system call behaviors defined below.

2.1 CreateFile()

Parameters and behaviors are as specified in the Windows documentation.

In addition, for USBTMC, CreateFile() will open transfer pipes to the control endpoint and to each of the
USBTMC interface endpoints.

The actual filename of the kernel driver is irrelevant. In other words, user-level client USBTMC code should
not be searching for a specific filename. The correct way to find USBTMC resources is to use the class
GUID reserved for USBTMC. Windows defines the routines necessary to query kernel filenames that can be
passed to CreateFile().

The algorithm for finding all available USBTMC kernel filenames is to first call SetupDiGetClassDevs. This
returns a handle to be used with the remaining calls. In a loop, you call SetupDiEnumDeviceInterfaces and
SetupDiGetDeviceInterfaceDetail. The SP_INTERFACE_DEVICE_DETAIL_DATA structure gives you
the kernel filename to pass to CreateFile(). Finally, release the class handle with the function
SetupDiDestroyDeviceInfoList.

A VISA I/O library must always set FILE_FLAG_OVERLAPPED when calling CreateFile(). This is
required for waiting on interrupt data while simultaneously performing normal I/O.

In reality, the kernel driver does not know and should not care whether the user calls CreateFile() with or
without FILE_FLAG_OVERLAPPED. This text is here mainly for clarification.

The USBTMC kernel driver allows multiple handles to a device to be active at any time.

2.2 WriteFile()

Parameters and behaviors are as specified in the Windows documentation.

In addition, for USBTMC, the data in the buffer passed in is sent unmodified to the bulk-OUT endpoint
associated with the file handle.

The implementation of WriteFile() must support transferring data buffers that are larger than the internal
maximum transfer size. For example, if the internal USB buffer is 8KB, and the user buffer is 30KB, then the

IVI Foundation 10 IVI-6.2: VISA Interoperability Requirements for USBTMC

implementation of WriteFile() must transfer the entire user buffer by looping over the buffer (in this case 4
times) and sending a portion from the user buffer each time. The implementation of WriteFile() may send
less than the entire transfer count only if an error occurs.

Regardless of whether the user called CreateFile() with FILE_FLAG_OVERLAPPED, the USBTMC kernel
implementation of WriteFile() must be able to implement requests asynchronously, in other words, it must be
capable of returning STATUS_PENDING. This is not a requirement for all transfer sizes, in other words, it
is valid for a USBTMC kernel implementation to perform tiny transfers synchronously. Note that if the user
did not call CreateFile() with FILE_FLAG_OVERLAPPED, the operating system will cause the call to
WriteFile() to block until the USBTMC kernel driver marks the IRP as complete.

2.3 ReadFile()

Parameters and behaviors are as specified in the Windows documentation.

In addition, for USBTMC, the data received is placed into the specified buffer and is returned unmodified.

ReadFile() must return if a non-maximum length packet is received or the amount of data requested has been
received.

The implementation of ReadFile() must support transferring data buffers that are larger than the internal
maximum transfer size. For example, if the internal USB buffer is 8KB, and the user buffer is 30KB, then the
implementation of ReadFile() must transfer the entire user buffer by looping over the buffer (in this case 4
times) and reading a portion into the user buffer each time. The implementation of ReadFile() may read less
than the entire transfer count only if an error occurs or it receives a short packet.

Regardless of whether the user called CreateFile() with FILE_FLAG_OVERLAPPED, the USBTMC kernel
implementation of ReadFile() must be able to implement requests asynchronously, in other words, it must be
capable of returning STATUS_PENDING. This is not a requirement for all transfer sizes, in other words, it
is valid for a USBTMC kernel implementation to perform tiny transfers synchronously. Note that if the user
did not call CreateFile() with FILE_FLAG_OVERLAPPED, the operating system will cause the call to
ReadFile() to block until the USBTMC kernel driver marks the IRP as complete.

2.4 DeviceIoControl()

Parameters and behaviors are as specified in the Windows documentation.

In addition, for USBTMC, drivers must support the following IOCTL codes. See also section 3.

IOCTL macro Value Description

IOCTL_USBTMC_GETINFO 0x8000_2000 Gets information about the

Windows USB Host USBTMC

driver.

IOCTL_USBTMC_CANCEL_IO 0x8000_2004 Cancels all IRPs on caller-

designated pipe.

IOCTL_USBTMC_WAIT_INTERRUPT 0x8000_2008 Waits for data to arrive on

interrupt-IN endpoint. If

overlapped, the overlapped event

is set when interrupt-IN DATA is

received.

IOCTL_USBTMC_RESET_PIPE 0x8000_201C Clears a Halt condition on a pipe.

IVI-6.2: VISA Interoperability Requirements for USBTMC 11 IVI Foundation

IOCTL_USBTMC_SEND_REQUEST 0x8000_2080 Sends an arbitrary request to the

device control endpoint.

IOCTL_USBTMC_GET_LAST_ERROR 0x8000_2088 Gets the most recent error

returned from the lower-level USB

driver.

Table 2-1 -- USBTMC IOCTL codes

All DeviceIoControl() requests have the following parameters.

Parameter Type Parameter Name Description

HANDLE hDevice Device handle, obtained by calling CreateFile.

DWORD dwControlCode Operation control code. One of the IOCTL’s in Table

1.

LPVOID lpInBuffer Input data buffer

DWORD nInBufferSize Size of input data buffer

DWORD lpOutBuffer Output data buffer

DWORD nOutBufferSize Size of output data buffer

LPDWORD lpBytesReturned Pointer to a location to receive the number of

bytes returned.

LPOVERLAPPED lpOverlapped Optional pointer to an OVERLAPPED structure

(described in the Windows Platform SDK

documentation).

Table 2-2 -- DeviceIoControl parameters

2.4.1 IOCTL_USBTMC_GETINFO

Returns information about the USBTMC driver.

Parameter Name Description

hDevice Device handle, obtained by calling CreateFile.

dwControlCode IOCTL_USBTMC_GETINFO

lpInBuffer NULL

nInBufferSize 0

lpOutBuffer Output data buffer. Pointer to a USBTMC_DRV_INFO structure.

nOutBufferSize Size of output data buffer. Must be sizeof(USBTMC_DRV_INFO).

lpBytesReturned Pointer to a location to receive the number of bytes returned.

lpOverlapped Optional pointer to an OVERLAPPED structure (described in the Windows

Platform SDK documentation).

IVI Foundation 12 IVI-6.2: VISA Interoperability Requirements for USBTMC

When the DeviceloControl function is called with the IOCTL_USBTMC_GETINFO I/O control code, the
caller must specify the address of a USBTMC_DRV_INFO structure as the function's lpOutBuffer parameter.
The kernel-mode driver fills in the structure members.

Code Example

USBTMC_DRV_INFO drvrInfo;

DWORD cbRet;

OVERLAPPED overlapped;
BOOL bRet;

memset(&overlapped, 0, sizeof(OVERLAPPED));

overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

bRet = DeviceIoControl(DeviceHandle,

 (DWORD) IOCTL_USBTMC_GETINFO,

 NULL,

 0,

 &drvInfo,

 sizeof(USBTMC_DRV_INFO),

 &cbRet,

 &overlapped);

if(bRet == TRUE)

 WaitForSingleObject(overlapped.hEvent, INFINITE);

CloseHandle(overlapped.hEvent);

• Data structure – USBTMC_DRV_INFO

typedef struct {

 DWORD major; // major revision of driver

 DWORD minor; // minor revision of driver

 DWORD build; // internal build number

 WCHAR manufacturer[64]; // unicode manufacturer string

} USBTMC_DRV_INFO, *PUSBTMC_DRV_INFO;

As with all Unicode strings, the manufacturer field must be NULL-terminated. This field can contain any
valid Unicode character, and this specification does not impose any further restrictions.

Note that this entire data structure (USBTMC_DRV_INFO) and its IOCTL (IOCTL_USBTMC_GETINFO)
are for diagnostic purposes. If a future Microsoft pass-through driver does not support this IOCTL or all of
its fields, USBTMC client software should not be severely affected. USBTMC client software should not
rely on any part of this IOCTL for normal and proper operation.

2.4.2 IOCTL_USBTMC_CANCEL_IO

This IOCTL cancels activity on the specified USB transfer pipe that is associated with the specified device
handle.

Parameter Name Description

hDevice Device handle, obtained by calling CreateFile.

IVI-6.2: VISA Interoperability Requirements for USBTMC 13 IVI Foundation

dwControlCode IOCTL_USBTMC_CANCEL_IO

lpInBuffer Pointer to a location containing a USBTMC_PIPE_TYPE-typed value

nInBufferSize Sizeof(USBTMC_PIPE_TYPE)

lpOutBuffer NULL

nOutBufferSize 0

lpBytesReturned 0

lpOverlapped Optional pointer to an OVERLAPPED structure (described in the Windows

Platform SDK documentation).

When the DeviceloControl function is called with the IOCTL_USBTMC_CANCEL_IO I/O control code, the
caller must specify one of the USBTMC_PIPE_TYPE-typed values as the function's lpInBuffer parameter.
This value indicates on which of the transfer pipes (interrupt, bulk IN, bulk OUT) the operation should be
performed.

The driver creates an URB with function = URB_FUNCTION_ABORT_PIPE to carry out the request.

Code Example

BOOL bState = FALSE;

DWORD cbRet = 0;

OVERLAPPED overlapped;

memset(&overlapped, 0, sizeof(OVERLAPPED));

overlapped.hEvent =

 CreateEvent(NULL, // pointer to security attributes

 FALSE, // automatic reset

 FALSE, // initialize to nosignaled

 NULL); // pointer to the event-object name

bState =

 DeviceIoControl(hdlDevice,

 (DWORD) IOCTL_USBTMC_CANCEL_IO,

 (LPVOID)&pipeType,

 sizeof(USBTMC_PIPE_TYPE),

 NULL,

 0,

 &cbRet,

 &overlapped);

2.4.2.1 Data Structures – USBTMC_PIPE_TYPE

typedef enum {

 USBTMC_INTERRUPT_IN_PIPE = 1,

 USBTMC_READ_DATA_PIPE = 2,

 USBTMC_WRITE_DATA_PIPE = 3,

 USBTMC_ALL_PIPES = 4

} USBTMC_PIPE_TYPE;

The USBTMC_PIPE_TYPE data type is used as input to the DeviceIoControl function, if the I/O control
code is IOCTL_USBTMC_CANCEL_IO or IOCTL_USBTMC_RESET_PIPE. An interrupt pipe, a bulk IN
pipe, and a bulk OUT pipe are associated with each device handle supplied to DeviceIoControl. The specified
USBTMC_PIPE_TYPE value indicates on which of these pipes the operation should be performed.

IVI Foundation 14 IVI-6.2: VISA Interoperability Requirements for USBTMC

2.4.3 IOCTL_USBTMC_WAIT_INTERRUPT

Returns data arriving on a USB interrupt pipe.

Parameter Name Description

hDevice Device handle, obtained by calling CreateFile.

dwControlCode IOCTL_USBTMC_WAIT_INTERRUPT

lpInBuffer NULL

nInBufferSize 0

lpOutBuffer Pointer to a buffer that is large enough to receive the largest packet the

device is capable of sending on the interrupt pipe. May be large enough to

receive several packets.

nOutBufferSize Size of the output buffer.

lpBytesReturned Pointer to a location to receive the number of bytes returned.

lpOverlapped Optional pointer to an OVERLAPPED structure (described in the Windows

Platform SDK documentation).

Any application process or thread can issue a DeviceIoControl() with IOCTL_USBTMC_
WAIT_INTERRUPT. The USBTMC kernel driver distributes interrupt-IN DATA to multiple processes. A
VISA I/O library may issue a new IOCTL_USBTMC_WAIT_INTERRUPT if one is already outstanding for
a given USBTMC interface.

Code Example

DWORD dwError;

BOOL bRet;

BYTE InterruptData[64];

OVERLAPPED overlappedIntIn;

memset(&overlappedIntIn, 0, sizeof(overlappedIntIn));

overlappedIntIn.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

bRet = DeviceIoControl(hHandle,

 IOCTL_USBTMC_WAIT_INTERRUPT,

 NULL,

 0,

 &InterruptData,

 sizeof(InterruptData),

 &dwError,

 &overlappedIntIn);

if (bRet != 0) {

 printf("DeviceIoControl err\n");

}

WaitForSingleObject(overlappedIn.hEvent,INFINITE);

IVI-6.2: VISA Interoperability Requirements for USBTMC 15 IVI Foundation

2.4.4 IOCTL_USBTMC_RESET_PIPE

Resets the specified USB transfer pipe that is associated with the specified device handle. This clears a Halt
condition on the pipe.

Parameter Name Description

hDevice Device handle, obtained by calling CreateFile.

dwControlCode IOCTL_USBTMC_RESET_PIPE

lpInBuffer NULL

nInBufferSize 0

lpOutBuffer Pointer to a location containing a USBTMC_PIPE_TYPE-typed value.

nOutBufferSize Size of the output buffer.

lpBytesReturned Pointer to a location to receive the number of bytes returned.

lpOverlapped Optional pointer to an OVERLAPPED structure (described in the Windows

Platform SDK documentation).

When the DeviceloControl function is called with the IOCTL_USBTMC_RESET_PIPE I/O control code, the
caller must specify one of the USBTMC_PIPE_TYPE-typed values as the function's lpInBuffer parameter.
This value indicates on which of the transfer pipes (interrupt, bulk IN, bulk OUT) the operation should be
performed.

The driver creates an URB with function = URB_FUNCTION_RESET_PIPE to carry out the request.

2.4.5 IOCTL_USBTMC_SEND_REQUEST

 Sends a vendor-defined or class-specific request to a USB device, using the control pipe, and optionally
sends or receives additional data.

Parameter Name Description

hDevice Device handle, obtained by calling CreateFile.

dwControlCode IOCTL_USBTMC_SEND_REQUEST

lpInBuffer Pointer to an USBTMC_IO_BLOCK structure.

nInBufferSize Sizeof(USBTMC_IO_BLOCK)

lpOutBuffer Pointer to the same buffer identified by the PbyData member of the

USBTMC_IO_BLOCK structure, or NULL if a data transfer is not being

requested.

nOutBufferSize Size of the output buffer, or zero if a data transfer is not being requested.

lpBytesReturned Pointer to a location to receive the number of bytes returned.

lpOverlapped Optional pointer to an OVERLAPPED structure (described in the Windows

Platform SDK documentation).

When the DeviceloControl function is called with the IOCTL_USBTMC_SEND_REQUEST control code,
the caller must specify the address of an USBTMC_IO_BLOCK structure as the function's lpInBuffer
parameter. The type of request specified with this I/O control code is device-specific and vendor-defined, as
are the type and size of any information that might be sent or received.

../../../../AppData/USBTMC/stifnc_1wo9.htm
../../../../AppData/USBTMC/stifnc_0pbd.htm

IVI Foundation 16 IVI-6.2: VISA Interoperability Requirements for USBTMC

The USBTMC kernel implementation must support all vendor-specific requests. For class-specific requests,
if the Windows operating system implements a given request, then the USBTMC kernel implementation must
support that request. If the Windows operating system does not define an implementation for a given request,
such as if the bmRequestType or bRequest parameter is an undefined class request, then the USBTMC kernel
implementation must return the error STATUS_INVALID_PARAMETER.

The following table shows how input arguments should be specified.

 Read Operation Write Operation No data transfer

lpInBuffer USBTMC_IO_BLOCK

pointer.

USBTMC_IO_BLOCK

pointer.

USBTMC_IO_BLOCK

pointer.

lpOutBuffer Pointer to buffer that

will receive data to be

read.

Pointer to buffer

containing data to be

written.

NULL

lpOutBufferSize Size of buffer. Size of buffer. Zero

pbyData member of
USBTMC_IO_BLOCK

Same pointer as

lpOutBuffer.

Same pointer as

lpOutBuffer.

NULL

wLength member of
USBTMC_IO_BLOCK

Same value as

lpOutBufferSize.

Same value as

lpOutBufferSize.

Zero

fTransferDirectionIn

member of
USBTMC_IO_BLOCK

TRUE FALSE FALSE

2.4.5.1 Data Structure – USBTMC_IO_BLOCK

The USBTMC_IO_BLOCK structure is used as a parameter to DeviceIoControl, when the specified I/O
control code is IOCTL_USBTMC_SEND_REQUEST. Values contained in structure members are used to
create a USB Device Request (described in the Universal Serial Bus Specification).

typedef struct {

 IN unsigned char bmRequestType;

 IN unsigned char bRequest;

 IN unsigned short wValue;

 IN unsigned short wIndex;

 IN unsigned short wLength;

 IN OUT PUCHAR pbyData;

 IN UCHAR fTransferDirectionIn;

} USBTMC_IO_BLOCK, *PUSBTMC_IO_BLOCK;

USBTMC_IO_BLOCK field Usage

bmRequestType Used as the Setup DATA bmRequestType

bRequest Used as the Setup DATA bRequest

wValue Used as the Setup DATA wValue

wIndex Used as the Setup DATA wIndex

wLength Used as the Setup DATA wLength

IVI-6.2: VISA Interoperability Requirements for USBTMC 17 IVI Foundation

pbyData Pointer to a data buffer with a length of wLength.

fTransferDirectionIn TRUE for transfers from device to host; FALSE for transfers from

host to device.

The following rules apply when using this data structure:

• pbyData must match lpOutBuffer. If it does not match, ensuing behavior is not guaranteed.

• fTransferDirectionIn must be 0 for a write (data transfer direction = OUT) operation and must be 1 for a
read (data transfer direction = IN) operation. Must match direction in bmRequestType. If it does not
match, ensuing behavior is not guaranteed.

2.4.6 IOCTL_USBTMC_GET_LAST_ERROR

Gets the last error code returned from the lower-level USB driver.

Parameter Name Description

hDevice Device handle, obtained by calling CreateFile.

dwControlCode IOCTL_USBTMC_GET_LAST_ERROR

lpInBuffer NULL

nInBufferSize 0

lpOutBuffer Output data buffer. Pointer to a USBD_STATUS.

nOutBufferSize Size of output data buffer. Must be sizeof(USBD_STATUS).

lpBytesReturned Pointer to a location to receive the number of bytes returned.

lpOverlapped Optional pointer to an OVERLAPPED structure (described in the

Windows Platform SDK documentation).

When the DeviceloControl function is called with the IOCTL_USBTMC_GET_LAST_ERROR I/O control
code, the caller must specify the address of a USBD_STATUS value as the function's lpOutBuffer parameter.
The kernel-mode driver fills in the value with the last error code that it received from USBD.

If the USBTMC kernel driver has never encountered a USBD error, this output value must be 0. The
USBTMC kernel driver must not change this value when it returns an error code other than a USBD error.
Querying the last error does not cause the USBTMC kernel to reset the cached error code value.

2.5 CloseHandle()

Parameters and behaviors are as specified in the Windows documentation.

2.6 INF files for USBTMC devices

INF files determine the kernel driver associated with a USBTMC device. INF files also determine where
USBTMC devices show up in the Windows “Device Manager”.

IVI Foundation 18 IVI-6.2: VISA Interoperability Requirements for USBTMC

2.6.1 Class and ClassGUID for USBTMC devices

None of the existing Windows device setup classes apply to USBTMC devices. A USBTMC INF file may
define a new device setup class for USBTMC devices. The Class and ClassGUID fields appropriate for
USBTMC devices are shown below.

[Version]

...

Class=%USBTMC_CLASS%

ClassGUID=%USBTMC_GUID%

...

[Strings]

USBTMC_CLASS="USBTestAndMeasurementDevice"

USBTMC_GUID="{A9FDBB24-128A-11d5-9961-00108335E361}"

2.6.2 INF ClassInstall32 section

An INF file for USBTMC devices may have a [ClassInstall] section to add a class description and a class icon
to the registry. An example of INF file content to accomplish this is shown below.

…

[ClassInstall32]

AddReg=UsbTmcAddReg

…

[UsbTmcAddReg]

HKR,,,%UsbTmcDevClassName%

HKR,,Icon,,-20

…

[Strings]

UsbTmcDevClassName=”USB Test and Measurement Devices”

…

The example above uses icon number -20. This is a standard icon for the Windows device manager for USB
devices. It has existed since Windows 98 and works on all current Windows WDM operating systems. A
vendor is allowed to use a different icon as long as they provide the Windows resource for it.

2.6.3 INF DDInstall.Interfaces section

An INF file for USBTMC devices may have a [DDInstall.Interfaces] section to add the
DeviceClasses\{InterfaceClassGUID} to the registry. {InterfaceClassGUID} is the same as the ClassGUID
above. Note that the use of the term DDInstall here is a placeholder for an install section name in the
vendor’s INF file.

[install-section-name.Interfaces]

AddInterface=%USBTMC_GUID%

2.6.4 Product specific INF files

Any vendor may supply product specific INF files for USBTMC device(s). An example of part of such an
INF file is shown below.

…

[Models]

device-description = install-section-name, USB\Vid_XX&Pid_YY

device-description = install-section-name, USB\Vid_XX&Pid_ZZ

…

IVI-6.2: VISA Interoperability Requirements for USBTMC 19 IVI Foundation

where

• XX is the idVendor in the device descriptor

• YY is the idProduct in the device descriptor for product #1

• ZZ is the idProduct in the device descriptor for product #2

Any software that installs a product specific INF file must also install all of the necessary files required by the
INF file.

2.6.5 Class, SubClass, Protocol specific INF files

Any vendor may supply an INF file generic to a set of USBTMC devices with the same bInterfaceClass,
bInterfaceSubClass, and bInterfaceProtocol. This mechanism provides a way for a vendor to override
operating system vendor supplied INF files for USBTMC devices. An example of part of such an INF file is
shown below.

…

[Models]

device-description = install-section-name, USB\Class_XX&SubClass_YY&Prot_ZZ

…

where

• XX is the bInterfaceClass in the interface descriptor

• YY is the bInterfaceSubClass in the interface descriptor

• ZZ is the bInterfaceProtocol in the interface descriptor

Any software that installs a class, subclass, and protocol specific INF file must also install all of the necessary
files required by the INF file.

2.6.6 Class, SubClass specific INF files and Class specific INF files

Only the operating system vendor is allowed to supply an INF file generic to a set of USBTMC devices with
the same bInterfaceClass and bInterfaceSubClass. An example of part of such an INF file is shown below.

…

[Models]

device-description = install-section-name, USB\Class_XX&SubClass_YY

…

where

• XX is the bInterfaceClass in the interface descriptor

• YY is the bInterfaceSubClass in the interface descriptor

Table 2-3 -- INF file syntax permissions

INF file syntax: Operating System

Vendor

(eg. Microsoft)

VISA I/O Library

Vendor

Instrument

Vendor

Class_##&Subclass_## Yes No No

Class_##&Subclass_##&Prot_## No Yes No

Vid_## No No Yes

Vid_##&Pid_## No No Yes

IVI Foundation 20 IVI-6.2: VISA Interoperability Requirements for USBTMC

3. USBTMC include file

The following content summarizes the content that must be placed in a header file associated with the
USBTMC kernel driver.

#ifndef USBTMC_IOCTL_H

#define USBTMC_IOCTL_H

#include <windows.h>

#include <devioctl.h>

//===

// The following are the I/O control codes that this driver supports.

#define FILE_DEVICE_USBTMC 0x8000

#define IOCTL_INDEX 0x0800

#define IOCTL_USBTMC(idx,meth) CTL_CODE(FILE_DEVICE_USBTMC,(idx),(meth),FILE_ANY_ACCESS)

#define IOCTL_USBTMC_GETINFO IOCTL_USBTMC(IOCTL_INDEX, METHOD_BUFFERED) // 0x80002000

#define IOCTL_USBTMC_CANCEL_IO IOCTL_USBTMC(IOCTL_INDEX+1, METHOD_BUFFERED) // 0x80002004

#define IOCTL_USBTMC_WAIT_INTERRUPT IOCTL_USBTMC(IOCTL_INDEX+2, METHOD_BUFFERED) // 0x80002008

#define IOCTL_USBTMC_RESET_PIPE IOCTL_USBTMC(IOCTL_INDEX+7, METHOD_BUFFERED) // 0x8000201C

#define IOCTL_USBTMC_SEND_REQUEST IOCTL_USBTMC(IOCTL_INDEX+32,METHOD_BUFFERED) // 0x80002080

#define IOCTL_USBTMC_GET_LAST_ERROR IOCTL_USBTMC(IOCTL_INDEX+34,METHOD_BUFFERED) // 0x80002088

//===

// The following are required data structures used for DeviceIoControl.

// Applications will pass data to the driver using these data structures.

// This data structure is used for:

// IOCTL_USBTMC_SEND_REQUEST

typedef struct USBTMC_IO_BLOCK

{

 UCHAR bmRequestType;

 UCHAR bRequest;

 USHORT wValue;

 USHORT wIndex;

 USHORT wLength;

IVI-6.2: VISA Interoperability Requirements for USBTMC 21 IVI Foundation

 PUCHAR pbyData; // ignore – use lpOutBuffer instead – usbscan compatible

 UCHAR fTransferDirectionIn; // ignore – use bmRequestType instead – usbscan compatible

} USBTMC_IO_BLOCK, *PUSBTMC_IO_BLOCK;

// This data structure is used for:

// IOCTL_USBTMC_CANCEL_IO

// IOCTL_USBTMC_RESET_PIPE

typedef enum USBTMC_PIPE_TYPE

{

 USBTMC_INTERRUPT_IN_PIPE = 1,

 USBTMC_READ_DATA_PIPE = 2,

 USBTMC_WRITE_DATA_PIPE = 3,

 USBTMC_ALL_PIPES = 4

} USBTMC_PIPE_TYPE, *PUSBTMC_PIPE_TYPE;

// This data structure is used for:

// IOCTL_USB_GETINFO

typedef struct USBTMC_DRV_INFO

{

 USHORT major;

 USHORT minor;

 USHORT build;

 WCHAR manufacturer[64];

} USBTMC_DRV_INFO, *PUSBTMC_DRV_INFO;

//==

// Class GUID for all USBTMC devices is {A9FDBB24-128A-11D5-9961-00108335E361}

#define USBTMC_CLASS_GUID (GUID)\

 { 0xa9fdbb24, 0x128a, 0x11d5, { 0x99, 0x61, 0x00, 0x10, 0x83, 0x35, 0xe3, 0x61 } }

#endif

IVI Foundation 22 IVI-6.2: VISA Interoperability Requirements for USBTMC

4. Available USBD Functions

Not all “Standard Request Codes” listed in Table 9.4 of the Universal Serial Bus Specification are supported
by USBD. Following is an excerpt from usbdi.h, the header file that defines function codes and error codes
for USBD:

#define URB_FUNCTION_SELECT_CONFIGURATION 0x0000

#define URB_FUNCTION_SELECT_INTERFACE 0x0001

#define URB_FUNCTION_ABORT_PIPE 0x0002

#define URB_FUNCTION_TAKE_FRAME_LENGTH_CONTROL 0x0003

#define URB_FUNCTION_RELEASE_FRAME_LENGTH_CONTROL 0x0004

#define URB_FUNCTION_GET_FRAME_LENGTH 0x0005

#define URB_FUNCTION_SET_FRAME_LENGTH 0x0006

#define URB_FUNCTION_GET_CURRENT_FRAME_NUMBER 0x0007

#define URB_FUNCTION_CONTROL_TRANSFER 0x0008

#define URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER 0x0009

#define URB_FUNCTION_ISOCH_TRANSFER 0x000A

#define URB_FUNCTION_RESET_PIPE 0x001E

// These functions correspond to the standard commands on

// the default pipe. The direction is implied.

#define URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE 0x000B

#define URB_FUNCTION_GET_DESCRIPTOR_FROM_ENDPOINT 0x0024

#define URB_FUNCTION_GET_DESCRIPTOR_FROM_INTERFACE 0x0028

#define URB_FUNCTION_SET_DESCRIPTOR_TO_DEVICE 0x000C

#define URB_FUNCTION_SET_DESCRIPTOR_TO_ENDPOINT 0x0025

#define URB_FUNCTION_SET_DESCRIPTOR_TO_INTERFACE 0x0029

#define URB_FUNCTION_SET_FEATURE_TO_DEVICE 0x000D

#define URB_FUNCTION_SET_FEATURE_TO_INTERFACE 0x000E

#define URB_FUNCTION_SET_FEATURE_TO_ENDPOINT 0x000F

#define URB_FUNCTION_SET_FEATURE_TO_OTHER 0x0023

#define URB_FUNCTION_CLEAR_FEATURE_TO_DEVICE 0x0010

#define URB_FUNCTION_CLEAR_FEATURE_TO_INTERFACE 0x0011

#define URB_FUNCTION_CLEAR_FEATURE_TO_ENDPOINT 0x0012

IVI-6.2: VISA Interoperability Requirements for USBTMC 23 IVI Foundation

#define URB_FUNCTION_CLEAR_FEATURE_TO_OTHER 0x0022

#define URB_FUNCTION_GET_STATUS_FROM_DEVICE 0x0013

#define URB_FUNCTION_GET_STATUS_FROM_INTERFACE 0x0014

#define URB_FUNCTION_GET_STATUS_FROM_ENDPOINT 0x0015

#define URB_FUNCTION_GET_STATUS_FROM_OTHER 0x0021

// Direction is specified in TransferFlags.

#define URB_FUNCTION_RESERVED0 0x0016

// These are for sending vendor and class commands on the

// default pipe. The direction is specified in TransferFlags.

#define URB_FUNCTION_VENDOR_DEVICE 0x0017

#define URB_FUNCTION_VENDOR_INTERFACE 0x0018

#define URB_FUNCTION_VENDOR_ENDPOINT 0x0019

#define URB_FUNCTION_VENDOR_OTHER 0x0020

#define URB_FUNCTION_CLASS_DEVICE 0x001A

#define URB_FUNCTION_CLASS_INTERFACE 0x001B

#define URB_FUNCTION_CLASS_ENDPOINT 0x001C

#define URB_FUNCTION_CLASS_OTHER 0x001F

// Reserved function codes.

#define URB_FUNCTION_RESERVED 0x001D

#define URB_FUNCTION_GET_CONFIGURATION 0x0026

#define URB_FUNCTION_GET_INTERFACE 0x0027

#define URB_FUNCTION_LAST 0x0029

Upon mapping Table 9-4 onto the above function codes defined for USBD, the following “Required USBD
Function Code Support” table becomes apparent. These mappings of bmRequestType and bmRequest to
USB’s are required:

Table 4-1: Required USBD Function Code Support

Required USBD Function Code Support

IVI Foundation 24 IVI-6.2: VISA Interoperability Requirements for USBTMC

bmRequestType

(with value)

bRequest

(with value)

Recipient (with value)

Class (0x20) NA DEVICE (0) URB_FUNCTION_CLASS_DEVICE (0x001A)

INTERFACE (1) URB_FUNCTION_CLASS_INTERFACE (0x001B)

ENDPOINT (2) URB_FUNCTION_CLASS_ENDPOINT (0x001C)

OTHER (3) URB_FUNCTION_CLASS_OTHER (0x001F)

Vendor (0x40) NA DEVICE (0) URB_FUNCTION_VENDOR_DEVICE (0x0017)

INTERFACE (1) URB_FUNCTION_VENDOR_INTERFACE (0x0018)

ENDPOINT (2) URB_FUNCTION_VENDOR_ENDPOINT (0x0019)

OTHER (3) URB_FUNCTION_VENDOR_OTHER (0x0020)

Reserved

(0x60)

NA URB_FUNCTION_RESERVED (0x001D)

Standard

(0x00)

GET_STATUS (0) DEVICE (0) URB_FUNCTION_GET_STATUS_FROM_DEVICE (0x0013)

INTERFACE (1) URB_FUNCTION_GET_STATUS_FROM_INTERFACE (0x0014)

ENDPOINT (2) URB_FUNCTION_GET_STATUS_FROM_ENDPOINT (0x0015)

OTHER (3) URB_FUNCTION_GET_STATUS_FROM_OTHER (0x0021)

CLEAR_FEATURE

(1)

DEVICE (0) URB_FUNCTION_CLEAR_FEATURE_TO_DEVICE (0x0010)

INTERFACE (1) URB_FUNCTION_CLEAR_FEATURE_TO_INTERFACE

(0x0011)

ENDPOINT (2) URB_FUNCTION_CLEAR_FEATURE_TO_ENDPOINT (0x0012)

OTHER (3) URB_FUNCTION_CLEAR_FEATURE_TO_OTHER (0x0022)

SET_FEATURE

(3)

DEVICE (0) URB_FUNCTION_SET_FEATURE_TO_DEVICE (0x000D)

INTERFACE (1) URB_FUNCTION_SET_FEATURE_TO_INTERFACE (0x000E)

ENDPOINT (2) URB_FUNCTION_SET_FEATURE_TO_ENDPOINT (0x000F)

OTHER (3) URB_FUNCTION_SET_FEATURE_TO_OTHER (0x0023)

GET_DESCRIPTOR

(6)

DEVICE (0) URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE

(0x000B)

INTERFACE (1) URB_FUNCTION_GET_DESCRIPTOR_FROM_INTERFACE

(0x0028)

ENDPOINT (2) URB_FUNCTION_GET_DESCRIPTOR_FROM_ENDPOINT

(0x0024)

OTHER (3) None

SET_DESCRIPTOR

(0x07)

DEVICE (0) URB_FUNCTION_SET_DESCRIPTOR_TO_DEVICE (0x000C)

INTERFACE (1) URB_FUNCTION_SET_DESCRIPTOR_TO_INTERFACE

(0x0029)

ENDPOINT (2) URB_FUNCTION_SET_DESCRIPTOR_TO_ENDPOINT

(0x0025)

OTHER (3) None

GET_CONFIGURAT

ION (0x08)

DEVICE (0) URB_FUNCTION_GET_CONFIGURATION (0x0026)

INTERFACE (1) None

ENDPOINT (2) None

OTHER (3) None

GET_INTERFACE

(0x0A)

DEVICE (0) URB_FUNCTION_GET_INTERFACE (0x0027)

INTERFACE (1) None

ENDPOINT (2) None

OTHER (3) None

IVI-6.2: VISA Interoperability Requirements for USBTMC 25 IVI Foundation

IVI Foundation 26 IVI-6.2: VISA Interoperability Requirements for USBTMC

Appendix A: Linux Specific Information
The IVI Foundation is both contributing to and using the USBTMC kernel driver that is part of the Linux
kernel open source project.

This appendix is informational only. Because the Linux open source USBTMC kernel driver is not owned by
the IVI Foundation, this specification does not specify the driver. However, this section documents changes
contributed by the IVI Foundation to the Linux open source USBTMC kernel driver to make sure that IVI
members can properly evaluate future proposed changes to the driver.

A.1 History

As part of the initial effort to migrate VISA standards to Linux in 2018, the IVI Foundation agreed that the
best USBTMC solution on Linux was to use the existing Linux open source USBTMC kernel driver, if it
could be modified to provide essential functionality from the Windows version of the driver. As a result,
member companies contributed engineering time to modify and test the driver, and submitted their changes to
the Linux kernel open source.

A.2 Added Features

In contrast to the Windows driver, the I/O operations of the initial Linux USBTMC kernel driver already
include the USBTMC protocol header. Thus all contributed Linux kernel patches should still support current
Linux applications and shall meet the following requirements needed for a VISA Library:

• Synchronous and asynchronous I/O operations

• Vendor specific and generic USB request operations

• Multiple applications can share access to the same instruments

• The driver handles SRQ conflicts

• Simplify definition of device access rules (udev) for USBTMC devices

A.2.1 Changes to ioctl USBTMC488_IOCTL_READ_STB

The ioctl function USBTMC488_IOCTL_READ_STB reads the Status Byte of the connected instrument.
The Linux kernel driver supports USB488 interfaces with or without an Interrupt IN endpoint.

This function was modified to return the correct Status Byte with RQS bit set (Bit 6) when the instrument has
issued a service request via Interrupt IN endpoint. If more file handles are opened to the same instrument, all
file handles will receive the same status byte with RQS bit set. Note that instruments without Interrupt IN
endpoint do not support SR1 device capabilities and will just return a Status Byte without RQS bit set.

A.2.2 Support for receiving SRQ notifications via poll/select

In many situations operations on multiple instruments need to be synchronized. The poll() and select()
functions provide a convenient way of waiting on a number of different instruments and other peripherals
simultaneously. When the instrument sends an SRQ notification the file descriptors (fd) watching for
exceptional conditions become readable. To reset the exceptional condition a
USBTMC488_IOCTL_READ_STB ioctl must be performed.

With the new asynchronous functions the behavior of the poll function was extended.

• POLLPRI is set when the interrupt pipe receives a status byte with SRQ.

• POLLIN | POLLRDNORM signals that asynchronous URBs are available on IN pipe.

• POLLOUT | POLLWRNORM signals that no URBS are submitted to IN or OUT pipe. It is safe to write.

• POLLERR is set when any submitted URB fails.

IVI-6.2: VISA Interoperability Requirements for USBTMC 27 IVI Foundation

Note that POLLERR cannot be masked out. That means waiting only for POLLPRI does not work when
asynchronous operations are used. In this case using the next ioctl USBTMC488_IOCTL_WAIT_SRQ is
recommended.

A.2.3 New ioctl USBTMC488_IOCTL_WAIT_SRQ

The new ioctl offers an alternative way to wait for a Service Request. In contrast to the poll() function (see
above) the ioctl does not return when asynchronous operations fail.

The given parameter of type __u32 specifies the maximum timeout in milliseconds to wait for the next
Service Request.

The ioctl returns 0 or -1 with errno set:

• 0 when an SRQ is received

• errno = ETIMEDOUT when timeout (in ms) is elapsed.

• errno = ENODEV when file handle is closed or device disconnected

• errno = EFAULT when device does not have an interrupt pipe.

A.2.4 New ioctl USBTMC488_IOCTL_TRIGGER

This ioctl was added to send a TRIGGER Bulk-OUT header according to the Subclass USB488 Specification.

A.2.5 New ioctls USBTMC_IOCTL_GET/SET_TIMEOUT

These ioctls were added to set/get the I/O timeout in milliseconds for a specific file handle. The I/O timeout is
used for write(), read(), and USBTMC488_IOCTL_READ_STB operations.

By default the timeout is set to 5000 milliseconds for compatibility with current Linux applications. VISA
implementations should change this timeout to the VISA default of 2000 milliseconds.

USBTMC_IOCTL_SET_TIMEOUT will return with an error EINVAL if timeout is set to less than 100
milliseconds.

A.2.6 New ioctl USBTMC_IOCTL_CTRL_REQUEST
This new ioctl USBTMC_IOCTL_CTRL_REQUEST allows sending arbitrary requests on the control pipe.
VISA implementations will use it to implement the VISA API functions: viUsbControlIn/Out.

The given parameter is of type:

struct usbtmc_ctrlrequest {

 struct usbtmc_request req;

 void __user *data; /* pointer to data */
} __attribute__ ((packed));

where struct usbtmc_request defines the standard setup control request:

struct usbtmc_request {

 __u8 bRequestType;

 __u8 bRequest;

 __u16 wValue;

 __u16 wIndex;

 __u16 wLength;

} __attribute__ ((packed));

IVI Foundation 28 IVI-6.2: VISA Interoperability Requirements for USBTMC

A.2.7 New ioctl USBTMC_IOCTL_EOM_ENABLE

By default the EOM bit is set on the last transfer of a write() operation. This ioctl enables or disables setting
the EOM bit for the next write() operation.

Will return with error EINVAL if given parameter eom is not 0 or 1.

A.2.8 New ioctl USBTMC_IOCTL_CONFIG_TERMCHAR

Allows enabling/disabling terminating a read on reception of a termination character. The parameters are
passed with the struct:

struct usbtmc_termchar {

 __u8 term_char;

 __u8 term_char_enabled;

} __attribute__ ((packed));

This ioctl controls the field TermChar and Bit 1 of field bmTransferAttributes of the

REQUEST_DEV_DEP_MSG_IN BULK-OUT header. By default TermCharEnabled is false and TermChar
is '\n' (0x0a).

Will return with error EINVAL if TermCharEnabled is not 0 or 1 or if attempting to enable
TermCharEnabled when the device does not support terminating a read when a byte matches the specified
TermChar.

A.2.9 New ioctl USBTMC_IOCTL_MSG_IN_ATTR

The ioctl function returns the specific field bmTransferAttributes of the last DEV_DEP_MSG_IN Bulk-

IN header. This header is received by the read() function. The meaning of the (u8) bitmap
bmTransferAttributes is:

• Bit 0 = EOM flag is set when the last of a USBTMC message is received.

• Bit 1 = Is set when the last byte is a termchar (e.g. '\n').
Note that this bit is always zero when the device does not support termchar feature or when termchar
detection is not enabled (see ioctl USBTMC_IOCTL_CONFIG_TERMCHAR).

A.2.10 New ioctl USBTMC_IOCTL_WRITE

The ioctl function uses the following struct to send generic OUT bulk messages for synchronous and
asynchronous write operation:

#define USBTMC_FLAG_ASYNC 0x0001

#define USBTMC_FLAG_APPEND 0x0002

struct usbtmc_message {

 __u32 transfer_size; /* size of bytes to transfer */

 __u32 transferred; /* size of received/written bytes */

 __u32 flags; /* bit 0: 0 = synchronous; 1 = asynchronous */

 void __user *message; /* pointer to header and data in user space */
} __attribute__ ((packed));

In synchronous mode (flags=0) the generic write function sends the message with a size of

transfer_size. The message is split into chunks of 4k (=page size) and submitted (by usb_submit_urb) to

the Bulk Out. A semaphore limits the number of flying urbs. The function waits for the end of transmission or
returns on error, for example when a single chunk exceeds the timeout. The member
usbtmc_message.transferred returns the number of transferred bytes.

IVI-6.2: VISA Interoperability Requirements for USBTMC 29 IVI Foundation

In asynchronous mode (flags=USBTMC_FLAG_ASYNC) the generic write function is non-blocking. The
ioctl clears the current error state and the internal transfer counter. The member

usbtmc_message.transferred returns the number of submitted bytes, however less data can be sent to

the device in case of error. The internal transfer counter holds the number of total transferred bytes.

With flag USBTMC_FLAG_APPEND additional urbs are submitted without clearing the current error state
or internal transfer counter.

The function returns -1 and sets errno = EAGAIN when the semaphore does not allow submitting any urb.

POLLOUT | POLLWRNORM are signaled when all submitted urbs are completed. POLLERR is set when
any urb fails. See poll() function above.

A.2.11 New ioctl USBTMC_IOCTL_WRITE_RESULT

The ioctl function copies the current internal transfer counter to the given __u32 pointer and returns

the current error state of the last (asynchronous) USBTMC_IOCTL_WRITE call. The error state and
internal transfer counter is not cleared by this ioctl.

A.2.12 New ioctl USBTMC_IOCTL_READ

The ioctl function uses the following struct to get generic IN bulk messages:

#define USBTMC_FLAG_ASYNC 0x0001

#define USBTMC_FLAG_IGNORE_TRAILER 0x0004

struct usbtmc_message {

 __u32 transfer_size; /* size of bytes to transfer */

 __u32 transferred; /* size of received/written bytes */

 __u32 flags; /* bit 0: 0 = synchronous; 1 = asynchronous */

 void __user *message; /* pointer to header and data in user space */
} __attribute__ ((packed));

In synchronous mode (flags=0) the generic read function copies maximum transfer_size bytes of

received data from Bulk IN to the usbtmc_message.message pointer. Depending on transfer_size the

read function submits one (<=4kB) or more urbs (up to 16) to Bulk IN. For best performance, the read
function copies bytes from one urb to the message buffer while other urbs still can receive data from the

T&M device concurrently. The function waits for the end of transmission or returns on error or timeout. The
member usbtmc_message.transferred returns the number of received bytes.

For best performance, the requested transfer size should be a multiple of 4 kB. Please note that the driver has
to round down the transfer_size to a multiple of 4 kB when you use more than 4kB, since the driver does not
cache or save unread data. The flag USBTMC_FLAG_IGNORE_TRAILER can be used when the
transmission size is already known. Then the driver does not round down the transfer_size to a multiple of 4
kB, but does reserve extra space to receive the final short or zero length packet. Note that the instrument may
send up to wMaxPacketSize - 1 bytes at the end of a message to avoid sending a zero-length packet.

In asynchronous mode (flags=USBTMC_FLAG_ASYNC) the generic read function is non-blocking. When
no received data is available, the read function submits urbs as many as needed to receive transfer_size

bytes. However, the number of flying urbs (=4kB) is limited to 16 even with subsequent calls of this ioctl.

The message pointer can be NULL when no receiving data shall be returned. The function returns -EAGAIN
when no data is available. -EINVAL is returned when data is available but the message pointer is NULL.

When available data is copied to a valid usbtmc_message.message pointer the member

usbtmc_message.transferred returns the number of received bytes.

IVI Foundation 30 IVI-6.2: VISA Interoperability Requirements for USBTMC

POLLIN | POLLRDNORM are signaled when at least one urb has completed with received data. POLLOUT |
POLLWRNORM are signaled when all submitted urbs IN/OUT are completed. POLLERR is set when any
urb fails. See poll() function above.

The function returns:

• 1 when a short or zero length packet is detected.

• 0 is returned when the transferred size is a multiple of wMaxPacketSize

• -1 and errno = EAGAIN: when no data can be read asynchronous.

• -1 and errno = EINVAL: when message pointer is invalid and data could be read.

• -1 and errno = ETIMEDOUT: when no data can be read synchronous (see
USBTMC_IOCTL_SET_TIMEOUT) Otherwise the ioctl always returns the very first error of submitted
urbs.

A.2.13 New ioctl USBTMC_IOCTL_CANCEL_IO

This ioctl function cancels USBTMC_IOCTL_READ/USBTMC_IOCTL_WRITE functions. Internal error
states are set to -ECANCELED. A subsequent call to USBTMC_IOCTL_READ or
USBTMC_IOCTL_WRITE_RESULT will return -ECANCELED with information about current transferred
data.1

A.2.14 New ioctl USBTMC_IOCTL_CLEANUP_IO

This ioctl function kills all submitted urbs to OUT and IN pipe, and clears all received data from IN pipe. The
Internal transfer counters and error states are reset. An application should use this ioctl after an

asynchronous transfer was canceled and/or error handling has finished.

A.2.15 New ioctl USBTMC_IOCTL_AUTO_ABORT

Enable/Disable the auto_abort feature. Auto_abort is disabled by default.

A.2.16 New ioctl USBTMC_IOCTL_API_VERSION

Returns current API version of usbtmc driver.

This is to allow an instrument library to determine whether the driver API is compatible with the
implementation.

The API may change in future versions. Therefore, the macro USBTMC_API_VERSION should be
incremented when changing tmc.h with new flags, ioctls or when changing a significant behavior of the
driver.

A.3 Test Functions

These ioctls are implemented in the intermediate github driver2 to simulate error conditions while testing.
Because these ioctls are not part of the core driver functionality, they are not included in the USBTMC Linux
kernel driver code.

1 For examples on the proper way to use this ioctl, refer to examples on the IVI git repository.

2 https://github.com/GuidoKiener/linux-usbtmc

https://github.com/GuidoKiener/linux-usbtmc

IVI-6.2: VISA Interoperability Requirements for USBTMC 31 IVI Foundation

A.3.1 USBTMC_IOCTL_SET_OUT_HALT

For testing: This ioctl sends a SET_FEATURE(HALT) request to the OUT endpoint. The ioctl is useful for
test purposes, to simulate a device that cannot receive any data due to an error condition.

A.3.2 USBTMC_IOCTL_SET_IN_HALT

For testing: This ioctl sends a SET_FEATURE(HALT) request to the IN endpoint. The ioctl is useful for test
purposes to simulate a device that cannot send any data due to an error condition.

A.3.3 USBTMC_IOCTL_ABORT_BULK_IN_TAG

For testing: The ioctl tries to abort a BULK IN transfer with a given tag.

A.3.4 USBTMC_IOCTL_ABORT_BULK_OUT_TAG

For testing: The ioctl tries to abort a BULK OUT transfer with a given tag.

	Important Information
	Warranty
	Trademarks
	IVI-6.2 VISA Interoperability Requirements for USBTMC
	1. Overview of the VISA Interoperability Requirements for USBTMC Specification
	1.1 Introduction
	1.2 Audience of Specification
	1.3 Organization of Specification
	1.4 VISA Interoperability Requirements for USBTMC Overview
	1.5 References
	1.6 Definition of Terms and Acronyms

	2. Windows Specific Information
	2.1 CreateFile()
	2.2 WriteFile()
	2.3 ReadFile()
	2.4 DeviceIoControl()
	2.4.1 IOCTL_USBTMC_GETINFO
	 Data structure – USBTMC_DRV_INFO

	2.4.2 IOCTL_USBTMC_CANCEL_IO
	2.4.2.1 Data Structures – USBTMC_PIPE_TYPE

	2.4.3 IOCTL_USBTMC_WAIT_INTERRUPT
	2.4.4 IOCTL_USBTMC_RESET_PIPE
	2.4.5 IOCTL_USBTMC_SEND_REQUEST
	2.4.5.1 Data Structure – USBTMC_IO_BLOCK

	2.4.6 IOCTL_USBTMC_GET_LAST_ERROR

	2.5 CloseHandle()
	2.6 INF files for USBTMC devices
	2.6.1 Class and ClassGUID for USBTMC devices
	2.6.2 INF ClassInstall32 section
	2.6.3 INF DDInstall.Interfaces section
	2.6.4 Product specific INF files
	2.6.5 Class, SubClass, Protocol specific INF files
	2.6.6 Class, SubClass specific INF files and Class specific INF files

	3. USBTMC include file
	4. Available USBD Functions
	Appendix A: Linux Specific Information
	A.1 History
	A.2 Added Features
	A.2.1 Changes to ioctl USBTMC488_IOCTL_READ_STB
	A.2.2 Support for receiving SRQ notifications via poll/select
	A.2.3 New ioctl USBTMC488_IOCTL_WAIT_SRQ
	A.2.4 New ioctl USBTMC488_IOCTL_TRIGGER
	A.2.5 New ioctls USBTMC_IOCTL_GET/SET_TIMEOUT
	A.2.6 New ioctl USBTMC_IOCTL_CTRL_REQUEST
	A.2.7 New ioctl USBTMC_IOCTL_EOM_ENABLE
	A.2.8 New ioctl USBTMC_IOCTL_CONFIG_TERMCHAR
	A.2.9 New ioctl USBTMC_IOCTL_MSG_IN_ATTR
	A.2.10 New ioctl USBTMC_IOCTL_WRITE
	A.2.11 New ioctl USBTMC_IOCTL_WRITE_RESULT
	A.2.12 New ioctl USBTMC_IOCTL_READ
	A.2.13 New ioctl USBTMC_IOCTL_CANCEL_IO
	A.2.14 New ioctl USBTMC_IOCTL_CLEANUP_IO
	A.2.15 New ioctl USBTMC_IOCTL_AUTO_ABORT
	A.2.16 New ioctl USBTMC_IOCTL_API_VERSION

	A.3 Test Functions
	A.3.1 USBTMC_IOCTL_SET_OUT_HALT
	A.3.2 USBTMC_IOCTL_SET_IN_HALT
	A.3.3 USBTMC_IOCTL_ABORT_BULK_IN_TAG
	A.3.4 USBTMC_IOCTL_ABORT_BULK_OUT_TAG

