

Interchangeable

Instruments
VirtualIVI

IVI-3.5: Configuration Server
Specification

December 19, 2022

Revision 2.5

IVI-3.5: IVI Configuration Server Specification 2 IVI Foundation

Important Information

The IVI Configuration Server Specification (IVI-3.5) is authored by the IVI Foundation member

companies. For a vendor membership roster list, please visit the IVI Foundation web site at

www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation

through the web site at www.ivifoundation.org.

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The IVI Foundation and its member companies shall not be liable for errors contained herein or for

incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

IVI Foundation 3 IVI-3.5: IVI Configuration Server Specification

Important Information .. 2

Warranty 2

Trademarks 2

1. Overview of the IVI Configuration Server Specification 12
1.1 Introduction ..12
1.2 Typical Use Scenario of the Configuration Server ..12

1.2.1 Repeated Capabilities...13
1.3 References ..13
1.4 Definitions of Terms and Acronyms ..14
1.5 Implementation ...14

2. IVI Configuration Server Design ... 15
2.1 UML Design ...15
2.2 Types of Classes and Objects ...15
2.3 Notation ..17
2.4 IVI Configuration Store..17
2.5 IVI Configurable Components ...18

2.5.1 IVI Configurable Component ..18
2.5.2 IVI Software Module ...18
2.5.3 IVI Session and IVI Driver Session ...19
2.5.4 IVI Hardware Asset ...19

2.6 IVI Logical Name ...20
2.7 IVI Published API ..20
2.8 IVI Data Components ...20

2.8.1 IVI Data Component ..21
2.8.2 IVI Structure ..21
2.8.3 IVI Boolean ..22
2.8.4 IVI Real ..22
2.8.5 IVI Integer ..22
2.8.6 IVI String ...22
2.8.7 IVI API Reference ...22

2.9 Repeated Capabilities ...23
2.9.1 Repeated Capabilities in the Configuration Server ..23
2.9.2 IVI Physical Name and IVI Physical Range ..23
2.9.3 IVI Virtual Name and IVI Virtual Range ..25

3. Instantiation and execution of the IVI Configuration Server 26
3.1 Installing the Configuration Server ..26

3.1.1 Packaging ...26
3.1.2 Data File Installation ..26
3.1.3 First Installation ...27
3.1.4 Subsequent Installations...27

3.2 Accessing the Configuration Store ...27
3.2.1 Master Configuration Store..28
3.2.2 Process Default Configuration Store ...28
3.2.3 Instantiating the Right Configuration Store From Software Modules29
3.2.4 Serializing to a Different Configuration Store ...29

3.3 Adding Entries to Collections ..29
3.4 Installing Software Modules ..30

IVI-3.5: IVI Configuration Server Specification 4 IVI Foundation

3.4.1 Data Components In Software Modules ..30
3.4.2 Un-installing Software Modules ..31
3.4.3 Re-installing Software Modules ..31

3.5 Maintaining Configuration Data ..31
3.5.1 Configuring Hardware Assets ..32
3.5.2 Configuring Sessions and Driver Sessions ..32
3.5.3 Data Components In Sessions ..33
3.5.4 Configuring Logical Names ...33
3.5.5 Documentation Data Components ...33

3.6 Using Configuration Data ..34
3.6.1 IVI Class Drivers and the IVI Session Factory ..34
3.6.2 Software Module Initialization ..34
3.6.3 Interchanging Instruments ...34

3.7 Additional Instances of the Configuration Store ..35
3.8 Avoiding the Configuration Server ..35
3.9 Copying Elements ..35

4. Collections ... 36
4.1 Collections in COM..36
4.2 Collections in C ..37
4.3 Properties in C ..37
4.4 Return Codes ..38

5. C API Special Functions ... 38
5.1 C API Special Functions Overview..41
5.2 C API Special Functions ..41

5.2.1 Clear Error ...42
5.2.2 Close ..43
5.2.3 Dispose Handle ..44
5.2.4 Get Error ..45
5.2.5 Initialize ...46

6. IVI Configurable Components Class (Virtual) 46
6.1 IVI Configurable Components Overview ..52
6.2 IVI Configurable Components References ..52

6.2.1 Data Components ...53
6.3 IVI Configurable Components Properties ..54

6.3.1 Description ...55
6.3.2 Name ..56

7. IVI Configuration Store Class ... 57
7.1 IVI Configuration Store Overview ...57
7.2 IVI Configuration Store References ...57

7.2.1 Driver Sessions ..58
7.2.2 Hardware Assets ..59
7.2.3 Logical Names ...60
7.2.4 Published APIs ...61
7.2.5 Sessions ..62
7.2.6 Software Modules ..63

7.3 IVI Configuration Store Properties ..64
7.3.1 Actual Location ..65
7.3.2 Description ...66
7.3.3 Master Location ...67
7.3.4 Name ..68

IVI Foundation 5 IVI-3.5: IVI Configuration Server Specification

7.3.5 Process Default Location ...69
7.3.6 Revision ...70
7.3.7 Specification Major Version ..71
7.3.8 Specification Minor Version ..72
7.3.9 Vendor..73

7.4 IVI Configuration Store Functions ...74
7.4.1 Deserialize..75
7.4.2 Get Driver Session ...76
7.4.3 Get Session...77
7.4.4 Serialize..78

8. IVI Hardware Asset Class.. 79
8.1 IVI Hardware Asset Overview ...88

8.1.1 Documentation Data Components ...88
8.2 IVI Hardware Asset References ...88
8.3 IVI Hardware Asset Properties...88

8.3.1 I/O Resource Descriptor ..89

9. IVI Published API Class .. 89
9.1 IVI Published API Overview ...91
9.2 IVI Published API Properties ...91

9.2.1 Major Version ..92
9.2.2 Minor Version ..93
9.2.3 Name ..94
9.2.4 Type ...95

10. IVI Software Module Class .. 96
10.1 IVI Software Module Overview ...104

10.1.1 Configurable Initial Settings ..104
10.1.2 Documentation Data Components ...105

10.2 IVI Software Module References ...105
10.2.1 Physical Names ..107
10.2.2 Published APIs ...108

10.3 IVI Software Module Properties ..109
10.3.1 Assembly Qualified Class Name ...110
10.3.2 Module Path ...111
10.3.3 Module Path 32 ..112
10.3.4 Module Path 64 ..113
10.3.5 Prefix ..114
10.3.6 ProgID ..115
10.3.7 Supported Instrument Models ..116

11. IVI Physical Name Class ... 116
11.1 IVI Physical Name Overview...122
11.2 IVI Physical Name References...122

11.2.1 Physical Names ..123
11.2.2 Physical Ranges ...124

11.3 IVI Physical Name Properties ..125
11.3.1 Name ..126
11.3.2 RC Name ..127

12. IVI Physical Range Class .. 127
12.1 IVI Physical Range Overview ..129

IVI-3.5: IVI Configuration Server Specification 6 IVI Foundation

12.2 IVI Physical Range Properties ...129
12.2.1 Max ..130
12.2.2 Min ...131
12.2.3 Name ..132

13. IVI Logical Name Class ... 133
13.1 IVI Logical Name Overview ..134
13.2 IVI Logical Name References ..134

13.2.1 Session ...135
13.3 IVI Logical Name Properties ...137

13.3.1 Name ..138

14. IVI Session Class... 139
14.1 IVI Session Overview ..141

14.1.1 Configurable Initial Settings ..141
14.1.2 Documentation Data Components ...142

14.2 IVI Session References ..142
14.2.1 Hardware Asset ..143
14.2.2 Software Module ..144
14.2.3 Virtual Names ..145

14.3 IVI Session Properties ..146
14.3.1 Software Module Name ...147

15. IVI Driver Session Class ... 148
15.1 IVI Driver Session Overview ...149
15.2 IVI Driver Session References ...149
15.3 IVI Driver Session Properties...149

15.3.1 Cache..150
15.3.2 Driver Setup ...151
15.3.3 Interchange Check ...152
15.3.4 Query Instrument Status ..153
15.3.5 Range Check ..154
15.3.6 Record Value Coercions ..155
15.3.7 Simulate ...156

16. IVI Virtual Name Class ... 156
16.1 IVI Virtual Name Overview ...158
16.2 IVI Virtual Name References ...158

16.2.1 Virtual Ranges ...159
16.3 IVI Virtual Name Properties ..160

16.3.1 Map To ...161
16.3.2 Name ..162

17. IVI Virtual Range Class ... 163
17.1 IVI Virtual Range Overview ..164
17.2 IVI Virtual Range Properties ..164

17.2.1 Max ..165
17.2.2 Min ...166
17.2.3 Name ..167
17.2.4 Starting Physical Index ..168

IVI Foundation 7 IVI-3.5: IVI Configuration Server Specification

18. IVI Data Component Class .. 169
18.1 IVI Data Component Overview ...170
18.2 IVI Data Component Properties ...170

18.2.1 Description ...171
18.2.2 Help Context ID ...172
18.2.3 Help File Path ..173
18.2.4 Name ..174
18.2.5 Read Only ..175
18.2.6 Software Module Key ..176
18.2.7 Type ...177
18.2.8 Used In Session ..178

19. IVI Structure Class .. 179
19.1 IVI Structure Overview ..180
19.2 IVI Structure References ..180

19.2.1 Data Components ...181
19.3 IVI Structure Properties..182

20. IVI Integer Class .. 183
20.1 IVI Integer Overview ...184
20.2 IVI Integer Properties ...184

20.2.1 Units ...185
20.2.2 Value ..186

21. IVI Real Class ... 187
21.1 IVI Real Overview ...188
21.2 IVI Real Properties ...188

21.2.1 Units ...189
21.2.2 Value ..190

22. IVI Boolean Class .. 191
22.1 IVI Boolean Overview ...192
22.2 IVI Boolean Properties ...192

22.2.1 Value ..193

23. IVI String Class .. 194
23.1 IVI String Overview ...195
23.2 IVI String Properties ..195

23.2.1 Value ..196

24. IVI API Reference Class .. 197
24.1 IVI API Reference Overview ...198
24.2 IVI API Reference References ...199

24.2.1 Published API ..200
24.3 IVI API Reference Properties...201

24.3.1 Value ..202

IVI-3.5: IVI Configuration Server Specification 8 IVI Foundation

25. Configuration Server Error and Completion Codes 203

26. Configuration Store Data Format ... 207

27. Configuration Utility Implementation Guidelines 208
27.1 General ...208
27.2 Hardware Assets ...208
27.3 Published APIs ...208
27.4 Software Modules...208
27.5 Sessions ..208
27.6 Documentation Data Components..209

28. Limitations ... 210
28.1 Distributed Systems ..210
28.2 Concurrent Reading and Writing ...210

Appendix A: IVI-COM Driver Example ... 211

IVI Foundation 9 IVI-3.5: IVI Configuration Server Specification

LIST OF FIGURES
Figure 2-1 IVI Configuration Server UML Class Diagram ... 16
Figure 24-1 Typical API Reference Configuration Store Entries ... 198

IVI-3.5: IVI Configuration Server Specification 10 IVI Foundation

Configuration Server Specification
Revision History

This section is an overview of the revision history of the IVI Configuration Server specification.

Table 1-1. IVI-3.5 Revisions

Revision

Number

Date of Revision

Revision Notes

Revision 0.1 ?? Original draft.

Revision 0.2 May 23, 2001 Bring up to date.

Revision 0.3 July 31, 2001 First version to reflect UML diagrams for iteration 6 of the

Configuration Server.

Revision 0.4 August 27, 2001 Add Section 3 and incorporate design changes

Revision 0.5 September 10, 2001 Reflect changes discussed at Sept. 2001 IVI Foundation meeting

Revision 0.6 November 1, 2001 Reflect changes made in telephone conferences after the Sept

2001 IVI meeting.

Revision 0.7 November 30, 2001 Reflect changes made in telephone conferences after the Nov. 1,

2001 WG telephone conference.

Revision 0.8 December 18, 2001 Reflects changes made through the December, 2001 IVI Meeting

and immediately after.

Revision 0.9 February 7, 2002 Reflects changes made through the February 7, 2002 telephone

conference. Sections 1-23 are completely reviewed, ready for C

API to be added.

Revision 0.91 March 20, 2002 C API was added in previous version. General cleanup..

Revision 0.92 April 16, 2002 New section for general C functions. Return codes sections

added.

Revision 1.0vc1 April 29, 2002 Version for initial two week review.

Revision 1.0vc2 May 15, 2002 Changes made from two week review.

Revision 1.0vc June 11, 2002 Changes made after two week review.

Revision 1.0 November 7, 2002 Aproved.

Revision 1.4 August 23, 2003 Modified sections describing configurable initial settings.

Revision 1.5 January 12, 2007 Clarification of permissible values for ModulePath in Section

10.3.1

Revision 1.6 February 8. 2008

(Approved)

Add the following new properties to the Software Module

interface:

AssemblyQualifiedClassName

ModulePath32

ModulePath64

Add Vista as a supported OS.

Remove the IDL and XML schema appendices.

Revision 1.6 March, 2008 Editorial change to update the IVI Foundation contact information

in the Important Information section to remove obsolete address

information and refer only to the IVI Foundation web site.

Revsion 1.7 November 17, 2008 Variety of editorial and minor changes related to the 64-bit

implementations.

IVI Foundation 11 IVI-3.5: IVI Configuration Server Specification

Table 1-1. IVI-3.5 Revisions

Revision 1.8 March 31, 2009 Updated references to IVI-3.1 Installation Requirements section

to refer to IVI-3.17.

Revision 2.0 June 9, 2010 Incorporated IVI.NET

Revision 2.1 January 18, 2012 Minor change in Sections 2.9.3 and 27 to avoid conflict between

physical and virtual names.

Revision 2.2 March 6, 2013 Minor changes to add Windows 8 as a supported OS

Revision 2.3 October 22, 2013 Minor Change in Section 11.3.1 to add the term “qualified

repeated capability identifier”.

Revision 2.3 August 6, 2015 Editorial change to add Windows 10 as a supported operating

system

Revision 2.4 June 7, 2016 Minor change to remove support for Windows Vista

Revision 2.4 May 19, 2017 Editorial change to add “IVI.NET” as an allowable published API

type.

Revision 2.4 June 7, 2019 Editorial change to section 1.1 to clarify that there are multiple

Config Server libraries distrib uted with the IVI Shared

Components.

Revision 2.5 June 29, 2021 Minor change: Specify the native .NET Configuration Server

API. Correct various formatting and typo errors.

Revision 2.5 December 19, 2022 Editorial change to add Windows 11 as a supported operating

system

IVI-3.5: IVI Configuration Server Specification 12 IVI Foundation

1. Overview of the IVI Configuration Server Specification

This document describes IVI Configuration Servers that are provided by the IVI Foundation. Following

the introduction, the general capabilities of the system are listed. The top-level architecture design is given

with a component diagram and terminologies used. Capabilities of major components in the architecture

are also described. Detailed descriptions of all the interface properties and functions follow. A sample use

scenario diagram is then given. Next, the requirements on clients that use the IVI Configuration Server in a

system are listed.

1.1 Introduction

IVI Configuration Servers are the run-time libraries that are responsible for providing system database

services to IVI based measurement system applications. Specifically, they provide system initialization and

configuration information. The IVI Configuration Servers are used by several of the IVI compliant

modules. For instance, a Configuration Server indicates which physical instrument and IVI driver will be

used by a particular application to provide a particular measurement capability.

Since a typical system intermixes instruments and drivers from multiple vendors this system configuration

service needs to be accessed in a vendor independent fashion. Therefore, IVI Configuration Servers are

IVI shared components (that is, the code is owned by the IVI Foundation). IVI Configuration Servers are

provided by the IVI Foundation because the architecture requires that the Configuration Servers installed

on any system behave consistently with each other and with this specification. By using one of the IVI

Foundation Configuration Servers, customers eliminate potential conflicts from custom implementations

that diverge from the specification.

An IVI Configuration Server is an executable library that works with one or more XML configuration

stores (databases). Together, they include the following basic components:

• The physical database (known as the configuration store). A physical configuration store is a single

XML file. APIs are available to read and write the data to arbitrary files, thus providing complex

applications with the ability to directly manage system configurations.

• The API (and its implementation) used to read information from the configuration store(s). The IVI

modules typically use this API when they are instantiated and configured.

• The API (and its implementation) to write information to the configuration store(s). This API is

typically used by GUI or other applications that set up the initial configuration.

• The API (and its implementation) used to bind an instance of the Configuration Server code to a

particular copy of the configuration information stored on a system. This includes appropriate

algorithms for gaining access to the master configuration store.

1.2 Typical Use Scenario of the Configuration Server

The following example illustrates the typical operations conducted with an IVI Configuration Server.

1. Various instrument drivers are installed on the system. As each instrument driver is installed on the

system, its installation script makes entries in the configuration store that indicate the location of the

driver, its ProgID, a list of instruments it supports, and the interfaces it provides to its client. This

entry is known as a SoftwareModule because it describes the software module (in this case, an

instrument driver) that was installed. Software module developers determine what happens at

installation time, and are the primary actors at this step.

2. A user configuring the system makes entries in the configuration store that indicate a logical name for

each instrument service they will be using. Then, the user associates a specific instrument and driver

with each logical name. Note that the physical instrument is primarily identified by its I/O address.

The driver is entered as a reference to a SoftwareModule entry that was created by the driver

installation. In addition, the user may provide information regarding the default behavior of the

instrument. This step will typically be completed with the aid of a configuration utility, however a

IVI Foundation 13 IVI-3.5: IVI Configuration Server Specification

configuration utility is beyond the scope of the IVI specifications. Users determine how the software

modules are configured, and are the primary actors at this step.

3. For COM software modules, when the user’s application runs, it instantiates the IVI-COM Session

Factory (refer to IVI-3.6, COM Session Factory Specification). The user application then calls

CreateDriver() passing it the logical name they defined in the configuration step. The factory then

instantiates the software module and configures it based on the entries provided in step 2. The user is

the primary actor at this step.

4. For .NET software modules, the user’s application calls Ivi.<ClassName>Create or Ivi.Driver.Create

passing it the logical name they defined in the configuration step. The Create method then instantiates

the software module and configures it based on the entries provided in step 2. The user is the primary

actor at this step.

The benefit of this use scenario is that the user’s program is entirely de-coupled from the configuration

information. It is therefore possible to modify the configuration information provided in step 2 above

without ever modifying the actual program that invokes and uses the driver. The benefit is that an

instrument with a class-compliant driver can replace another class-compliant driver in an existing system,

with no code changes made to the user application program.

This pattern of associating configuration information with a logical name, and thus allowing a system to be

re-configured without code changes is known as an abstract factory pattern and has other applications

within the IVI architecture. For instance, IVI-MSS role control modules make similar use of the IVI

Configuration Server.

An IVI Configuration Server also allows users to associate arbitrary information with software modules

and logical names. This can be useful when there is additional configuration information that is needed by

the application. The IVI Configuration Server defines several fields specifically for use with instrument

driver sessions.

1.2.1 Repeated Capabilities

In many instruments there are capabilities that are duplicated either identically or very similarly across the

instrument. Such capabilities are called repeated capabilities. The IVI class-compliant APIs represent

repeated capabilities by a parameter that indicates which instance of the duplicate capability this function is

intended to access. The IVI C APIs include this parameter as an additional parameter to function calls.

The IVI COM APIs may do the same, or may also use this parameter as an index into a repeated capability

collection.

An IVI Configuration Server provides a way for software modules to publish the functionality that is

duplicated and the strings that the software module recognizes to access the repeated capabilities. An IVI

Configuration Server also provides a way for the client to supply aliases for the physical identifiers

recognized by the drivers.

Since many instruments have numerous instances of repeated capabilities, an IVI Configuration Server

provides a way to represent the repeated capabilities as a range of identifiers instead of many individual

identifiers.

One repeated capability may also be related to another repeated capability in a hierarchical parent/child

relationship. The child repeated capabilities in these relationships are called nested repeated capabilities.

An IVI Configuration Server provides a way to model these relationships.

1.3 References

Several other documents and specifications are related to this specification. These other related documents

are the following:

• IVI-3.1: Driver Architecture Specification

• IVI-3.2: Inherent Capabilities Specification

IVI-3.5: IVI Configuration Server Specification 14 IVI Foundation

• IVI-3.4: API Style Guide

• IVI-3.6: COM Session Factory Specification

• IVI-3.17 Installation Requirements Specification

1.4 Definitions of Terms and Acronyms

Terms of general interest are defined in IVI-5.0: Glossary.

Symmetrical Repeated Capability – A repeated capability where each instance of a repeated capability has

identical capabilities to all of the other instances.

1.5 Implementation

The IVI Foundation supplied implementations of the IVI Configuration Server and IVI Session Factory are

available from the IVI Foundation web site. These are packaged with the other IVI Foundation shared

components as part of the shared component installation package.

There are currently three shipping implemenations of the IVI Configuration Server, a native IVI-C

implementation, a native IVI.NET implementation, and an IVI-COM implementation that includes a .NET

primary interop assembly. Note that in the rest of the spec, “the configuration server” may refer to any

implementation, or to all of them collectively.

IVI Foundation 15 IVI-3.5: IVI Configuration Server Specification

2. IVI Configuration Server Design

The IVI Configuration Server is based on an object oriented UML (Unified Modeling Language) design.

The Configuration Server data is stored as an XML configuration store file that closely follows the design

of the Configuration Server.

2.1 UML Design

The IVI Configuration Server design is most easily understood by considering an implementation-

independent class diagram for the API. The XML data structure closely follows the structure of the API.

The UML class diagram is shown in Figure 2-1.

In the diagram, a rectangle represents a class. A dotted line indicates class inheritance, with the triangle

pointing to the inherited interface. Note that IviConfigComponent and IviDataComponent are both abstract

base classes, and are never implemented directly by the Configuration Server. Although it is a base class,

IviSession is not abstract, and is directly implemented.

The dashed and solid lines are references from the class at the tail of the arrow to the class at the head of

the arrow. For each reference, it is assumed that the class at the tail of the arrow contains a reference

property (a property that returns a reference to another object) named by the text at the head of the arrow.

Collection classes are implied by the UML diagram wherever there is a relationship (indicated by a solid

line) with an ordinality of 0..* or 1..* at the head of the arrow. For example, the IviLogicalNames

collection class is implied by the Logical Names relationship between IviConfigStore and IviLogicalName.

The IviConfigStore class includes a reference property named “LogicalNames” which references an

IviLogicalNamesCollection object, which manages a collection of zero or more references to

IviLogicalName objects. The Name property uniquely identifies an object in a collection. Refer to section

4, Collections, for more information about Configuration Server collections.

A heavy dashed line represents a reference to a global collection of all of the objects in a global class (refer

to the next section). A solid line represents other references.

2.2 Types of Classes and Objects

Every instance of an IVI Configuration Server has exactly one instance of the IviConfigStore class. This

object is instantiated by users who request an instance of the IVI Configuration Server. Users can navigate

to all of the other objects in the configuration store from this object.

There are six “global” classes – IviLogicalName, IviHardwareAsset, IviSoftwareModule, IviPublishedAPI,

IviSession, and IviDriverSession. Objects in these classes may be referenced from any object in the

configuration server that implements a corresponding reference property. All of the objects of a global

class are unique (by Name), except Published APIs, within the entire Configuration Server. Published APIs

are differentiated by Name, Version, and Type. For example, all of the software module objects in the

configuration server have a unique Name.

There are six global collections in the configuration store, one for each global class. All of the objects of a

global class are part of the corresponding global collection. The global collections are referenced by the

main IviConfigStore object.

Although an object in a global collection may be referenced by other objects, it exists independently of

those other objects. When the referencing object is deleted, the global object is not necessarily deleted. In

fact, with one exception. it may only be deleted when there are no outstanding references to it in the

configuration server. For example, a session may reference a hardware asset, but the hardware asset is not

necessarily deleted when the session is deleted. The hardware asset may only be deleted from the global

collection when there are no sessions or driver sessions that refer to it.

IVI-3.5: IVI Configuration Server Specification 16 IVI Foundation

Configuration Server
UML Class Diagram

IIviComponentIdentity

+Description : string(idl)

+HelpContextID : long(idl)

+HelpFilePath : string(idl)

+Name : string(idl)

+ReadOnly : boolean(idl)

+SoftwareModuleKey : string(idl)

+Type : string(idl)

+UsedInSession : string(idl)

IviDataComponent

+PublishedAPIs

0..*

-.

+PublishedAPIs0..*

-,

+PublishedAPI 1

+Value : string(idl)

IviString

+Units : string(idl)

+Value : double(idl)

IviReal

+Value : string(idl)

IviAPIReference

+Units : string(idl)

+Value : long(idl)

IviInteger

+DataComponents
0..*

IviStructure

+Value : boolean(idl)

IviBoolean

+Deserialize()

+GetDriverSession()

+GetSession()

+Serialize()

+ActualLocation : string(idl)

+Description : string(idl)

+MasterLocation : string(idl)

+Name : string(idl)

+ProcessDefaultLocation : string(idl)

+Revision : string(idl)

+SpecificationMajorVersion : string(idl)

+SpecificationMinorVersion : string(idl)

+Vendor : string(idl)

IviConfigStore

+PhysicalNames

0..*

-.

+DataComponents

1..*

+Name : string(idl)

+Description : string(idl)

IviConfigComponent

+Software Module Name : string(idl)

IviSession

+Sessions 0..*

+Cache : boolean(idl)

+DriverSetup : string(idl)

+InterchangeCheck : boolean(idl)

+QueryInstrStatus : boolean(idl)

+RangeCheck : boolean(idl)

+RecordCoercions : boolean(idl)

+Simulate : boolean(idl)

IviDriverSession

-.

+SoftwareModule

0..1

+VirtualNames0..*

+VirtualRanges0..*

+MapTo : string(idl)

+Name : string(idl)

IviVirtualName

+DriverSessions

0..*

-.
+HardwareAsset

0..1

+Max : long(idl)

+Min : long(idl)

+Name : string(idl)

+StartingPhysicalIndex : long(idl)

IviVirtualRange

+Name : string(idl)

+RCName : string(idl)

IviPhysicalName

+IOResourceDescriptor : string(idl)

IviHardwareAsset

+AssemblyQualifiedClassName : string(idl)

+ModulePath : string(idl)

+ModulePath32 : string(idl)

+ModulePath64 : string(idl)

+Prefix : string(idl)

+ProgID : string(idl)

+SupportedInstrumentModels : string(idl)

IviSoftwareModule

+HardwareAssets

0..*

+SoftwareModules 0..*

+Max : long(idl)

+Min : long(idl)

+Name : string(idl)

IviPhysicalRange

-.

+Session

0..1

+PhysicalNames0..*

+PhysicalRanges0..*

+Name : string(idl)

+Type : string(idl)

+MajorVersion : long(idl)

+MinorVersion : long(idl)

IviPublishedAPIs

+Name : string(idl)

+Description : string(idl)

IviLogicalName

+LogicalNames

0..*

Figure 2-1 IVI Configuration Server UML Class Diagram

The “exception” to this rule is the relationship from session to software module. A software module may

be deleted when there are still sessions that reference it. In this case, the session cannot reference an IVI

Software Module object, but it does “remember” the name of the software module that it referenced, and if

IVI Foundation 17 IVI-3.5: IVI Configuration Server Specification

a software module with the same name is ever re-added to the configuration store, a reference from the

session to that software module is recreated.

The other classes (including other collection classes) are “contained” classes. Contained objects in these

classes are not global, and are unique and meaningful only in the context of a “containing” object that

contains a reference to a collection of the “contained” objects. Contained objects do not exist

independently of the containing object, and are deleted when the containing object is deleted. For example,

all of the Data Component objects referenced by a software module are unique to that software module, and

must be deleted when the software module is deleted. This implies that software modules cannot share

Data Component objects – each software module requires a duplicate Data Component for identical

configuration variables.

Note that the Software Module class references a collection of Published APIs. This collection is not a

global collection. It is “contained” in the software module that references it, and is deleted when the

software module is deleted. However, the Published API objects that are referenced by the collection are

not deleted, since they are also in the global Published API collection.

2.3 Notation

In the descriptions of each class that follow,

• API methods are identified as such.

• API properties that do not reference another object are followed by the basic type (Boolean, string,

long, or double) and an indication of whether the property is read-only (R/O), write-only (W/O), or

both (R/W). If the property is a string, Optional indicates that the string may be empty. It is assumed

that longs, doubles, and Booleans must always have a valid value. All strings must be legal XML

strings, since the configuration store is an XML file.

• API properties that reference an object are followed by the type of the object, and an indication of

whether the reference is optional (0..1) or required (1). If the reference is optional, the property returns

a NULL pointer if there is no reference.

• API properties that reference a collection object are followed by the type of the collection, and an

indication of whether the collection may be empty (0..*) or not (1..*).

2.4 IVI Configuration Store

The IviConfigStore class contains the following references, properties, and methods.

• Driver Sessions (Collection of IviDriverSession, 0..*) – The global collection of references to all of the

IVI Driver Session objects in the configuration store.

• Hardware Assets (Collection of IviHardwareAsset, 0..*) – The global collection of references to all of

the IVI Hardware Asset objects in the configuration store.

• Logical Names(Collection of IviLogicalName, 0..*) – The global collection of references to all of the

IVI Logical Name objects in the configuration store.

• Published APIs (Collection of IviPublishedAPI, 0..*) – The global collection of references to all of the

IVI Published API objects in the configuration store.

• Sessions (Collection of IviSession, 0..*) – The global collection of references to all of the IVI Session

objects in the configuration store.

• Software Modules(Collection of IviSoftwareModule, 0..*) – The global collection of references to all

of the IVI Software Module objects in the configuration store.

• Actual Location (String, optional, R/O) – The full pathname of the IVI configuration store file that

was deserialized by the current instance of the configuration server.

• Description (String, required, R/W) – The description of the configuration store.

• Master Location (String, optional, R/O) – The full pathname of the master IVI configuration store file.

• Name (String, required, R/O) – The name of the running Configuration Server component.

• Process Default Location (String, required, R/W) – The full pathname of the IVI configuration store

file to be used by the current process.

• Revision (String, required, R/O) – The revision of this version of the Configuration Server. Will

match the version reported by the DLL’s file version resource. Refer to Section 5.1, IVI-COM

Interface Versioning, of IVI-3.4: API Style Guide for more details.

IVI-3.5: IVI Configuration Server Specification 18 IVI Foundation

• Specification Major Version (Long, R/O) – The major version of the IVI Configuration Server

specification to which this version of the Configuration Server complies.

• Specification Minor Version (Long, R/O) – The minor version of the IVI Configuration Server

specification to which this version of the Configuration Server complies.

• Vendor (String, required, R/O) – “IVI Foundation, Inc.”

• Deserialize() (method) – Deserializes an instance of a configuration store into the Configuration

Server. Note that the native .NET API does not include Deserialize, but instead provides Load factory

methods that instantiate the ConfigStore class and deserialize a configuration store in one method.

• Get Driver Session() (method) – Given a name, navigates the Configuration Server’s logical name

collection and driver session collection to find the corresponding IVI Driver Session.

• Get Session() (method) – Given a name, navigates the Configuration Server’s logical name collection

and session collection to find the corresponding IVI Session.

• Serialize() (method) – Serializes the configuration store data in Configuration Server memory out to a

configuration store file. Note that the native .NET API does not include Serialize, but instead provides

a similar Save method, so named to parallel the .NET Load factory methods.

2.5 IVI Configurable Components

The IVI Configuration Server is organized around a series of IVI Configurable Components – classes that

inherit from the IVI Configurable Component abstract base class. This class allows the addition of custom

properties to any class that inherits from it, as well as the common Name and Description properties.

Although it is legitimate to define additional IVI Configurable Components, the IVI Foundation only

specifies the semantics of three classes derived from IVI Configurable Component.

• IVI Software Module

• IVI Session (and IVI Driver Session through inheritance)

• IVI Hardware Asset

2.5.1 IVI Configurable Component

The IVI Configurable Component class contains the following references and properties:

• Data Components (Collection of IviDataComponent, 0..*) – An optional collection of references to

additional properties that may be added to any configurable component by its owner.

• Name (String, required) – This is a human readable name for this component. Name may be any valid

string, but is used as a key or index value in collections. Therefore, Name must be unique within

collections of like objects.

• Description (String, optional) - This is a human readable description of this component. Description

may be any valid string.

2.5.2 IVI Software Module

The IVI Software Module class contains information that describes a software component installed on the

system. This component only contains information relevant to the installed software module, it does not

contain information that is associated with a running instance.

IVI Software Module inherits from IVI Configurable Component. In addition to the properties inherited

from IVI Configurable Component, the IVI Software Module class contains the following properties:

• AssemblyQualifiedClassName (String, required for IVI-.NET) – For IVI-.NET software modules, the

assembly qualified class name.

• Module Path (String, required for IVI-C) – For IVI-C software modules (including IVI-C wrappers),

the full pathname or simple filename of the software module DLL. When running in a native 32-bit

context, ModulePath returns ModulePath32. When running in a native 64-bit context, ModulePath

returns ModulePath64.

For backwards compatibility with earlier versions of the Configuration Server, ModulePath sets

ModulePath32 when running in a native 32-bit context. When running in a native 64-bit context,

attempts to set ModulePath return a Not Supported error.

• Module Path32 (String) – For IVI-C software modules, the full pathname or simple filename of the

native 32-bit software module DLL. ModulePath32 is required for IVI-C 32-bit software modules,

including IVI-C wrappers. ModulePath32 shall be the empty string for all other types of IVI drivers.

IVI Foundation 19 IVI-3.5: IVI Configuration Server Specification

• Module Path64 (String) – For IVI-C software modules, the full pathname or simple filename of the

native 64-bit software module DLL. ModulePath64 is required for IVI-C 64-bit software modules,

including IVI-C wrappers. ModulePath64 shall be the empty string for all other types of IVI drivers.

• Prefix (String, optional) – The prefix (IVI-C) or identifier (IVI-COM, IVI.NET) of the software

module.

• ProgID(String, required for IVI-COM) – For IVI-COM software modules, the version independent

ProgID of the registered software module.

• Supported Instrument Models (String, optional) - A comma separated list of supported instrument

models. Required for IVI specific instrument drivers.

• Published APIs (Collection of IviPublishedAPI, 0..*) – The collection of references to the IVI

Published API objects implemented by the software module.

• Physical Names (Collection of IviPhysicalName, 0..*) – The collection of references to the IVI

Physical Identifier objects implemented by the software module. This collection describes information

about the repeated capabilities names implemented by the software module. Refer to Section 2.9,

Repeated Capabilities, for more information.

2.5.3 IVI Session and IVI Driver Session

The IVI Session class describes how an instance of IVI Software Module will be configured. The IVI

Driver Session class defines an additional set of properties for use by IVI instrument drivers. The Ivi Driver

Session class inherits from the Ivi Session class.

IVI Session inherits from IVI Configurable Component. In addition to the properties inherited from IVI

Configurable Component, the IVI Session class contains the following references:

• SoftwareModule (Reference to IviSoftwareModule, 0..1) – A reference to the IVI Software Module

object that is being configured by this session.

• HardwareAsset (Reference to IviHardwareAsset, 0..1) – A reference to the IVI Hardware Asset object

to be used by the configured software module.

• VirtualNames (Collection of IviVirtualName, 0..*) – The collection of references to the IVI Virtual

Name objects defined by the session. This collection describes information about the repeated

capabilities names that can be used as aliases by the software module. Refer to Section 2.9, Repeated

Capabilities for more information.

• SoftwareModuleName (String, optional, R/O) – The name of the current or most recently referenced

software module referenced by the Software Module property.

In addition, the IVI Driver Session class contains the following properties. Refer to IVI-3.2, Section 5 for

exact details.

• Cache (Boolean) – If TRUE, drivers that support state caching will initially enable that feature.

Default is FALSE.

• DriverSetup (String, optional) – The content of this string is dependent on the software module

associated with the driver session. The software module knows how to interpret the string.

• InterchangeCheck (Boolean) – If TRUE, drivers that support interchangeability checking will initially

enable that feature. Default is FALSE.

• QueryInstrumentStatus (Boolean) – If TRUE, drivers will initially enable querying instrument status.

Default is FALSE.

• RangeCheck (Boolean) – If TRUE, drivers that support extended range checking will initially enable

that feature. Default is FALSE.

• RecordCoercions (Boolean) – If TRUE, drivers that support recording of coercions will initially

enable that feature. Default is FALSE.

• Simulate (Boolean) – If TRUE, drivers will initially enable simulation. Default is FALSE.

2.5.4 IVI Hardware Asset

The IVI Hardware Asset class contains the I/O Address of a particular hardware asset. The form of this

address is dependent on the underlying I/O mechanism. For IVI instrument drivers, this will commonly be

a VISA Resource Descriptor string.

IVI-3.5: IVI Configuration Server Specification 20 IVI Foundation

It is valid for a session to refer to a hardware asset even if the asset is not physically at the address.

However, a software module trying to use the hardware asset will be unable to establish communication

with it.

IVI Hardware Asset inherits from IVI Configurable Component. In addition to the properties inherited

from IVI Configurable Component, the IVI Hardware Asset class contains the following property:

• IOResourceDescriptor (String, optional) – The I/O Address of a particular hardware asset.

2.6 IVI Logical Name

The IVI Logical Name class provides the binding between the user’s program and the configuration

information stored in the IVI configuration store. The users program identifies which session to instantiate

by passing the Name associated with a particular IVI Logical Name component to the IVI Session Factory.

The IVI Session Factory instantiates a session based on the configuration in the IviSession that is referred

to by the IVI Logical Name with the name specified by the user.

The IVI Logical Name class contains the following reference and property:

• Session (Reference to IviSession, 0..1) – A reference to an IVI Session object.

• Name (String, required) – The logical name.

• Description (String, optional) – A human readable description of this logical name. Description may

be any valid string.

2.7 IVI Published API

A published API defines the syntax and partial semantics of a programming interface that can be used to

accomplish a particular task. The semantics are specified in sufficient detail to describe the task to be done,

but enough semantics are left unspecified to leave room for a reasonable variety of implementations.

Published APIs defined by the IVI Foundation have names that begin with “Ivi”. For IVI drivers, examples

of published APIs are the inherent interfaces (named IviDriver) and the class-compliant interfaces (named

IviDmm, IviScope, etc.). The names of IVI driver published APIs are defined by the IVI Foundation. For

IVI-MSS, published APIs are the defined MSS measurement interfaces. For example, a phase noise

measurement API defined by the IVI Foundation might be called IviMssPhaseNoise.

Published APIs defined outside of the IVI Foundation shall not have names that begin with “Ivi”. For

example, a phase noise measurement API defined by a T&M company might be called

“TMCoPhaseNoise”, where “TMCo” is the T&M company that developed the API.

The IVI Published API class contains the following properties:

• Name (String, required) – The name of the published API.

• Type (String, required) – The syntactical type of the API. Predefined values are “IVI.NET” for

IVI.NET compliant interfaces, “IVI-COM” for IVI-COM compliant interfaces, and “IVI-C” for IVI-C

compliant interfaces. One of these values must be used for all IVI defined APIs. Other values may be

used if appropriate for other types of APIs.

• MajorVersion (Long) – The major version of the published API. For APIs that are defined by IVI

specifications, this is the major version of the IVI specification.

• MinorVersion (Long) – The minor version of the published API. For APIs that are defined by IVI

specifications, this is the minor version of the IVI specification.

2.8 IVI Data Components

The IVI Data Component class provides a way to attach arbitrary data to the IVI Configurable Components

– hardware assets, software modules, and sessions (including driver sessions).

Data components may be used for two basic purposes

• Configurable Initial Settings: Data components that define and configure initial settings for additional

variables known to a software module and configured by sessions that reference the software module.

• Documentation: Data components that document the configurable component itself.

IVI Foundation 21 IVI-3.5: IVI Configuration Server Specification

2.8.1 IVI Data Component

IVI Data Components are the means of customizing a configuration store’s data structure. They are used to

add custom properties to IVI Configurable Components.

There are six data component classes, each of which inherits from IVI Data Component. IVI Data

Component is an abstract base class. This class has properties that describe the data component, as well as

the common Name and Description properties. The six data component classes that inherit from

IviDataComponent are:

• IVI Structure

• IVI Boolean

• IVI Real

• IVI Integer

• IVI String

• IVI API Reference

The IVI Data Component class contains the following properties:

• Name (String, required) – A human readable name for this component. Name may be any valid string,

but is used as a key or index value in collections. Therefore, Name must be unique within collections

of DataComponents.

• Description (String, optional) - A human readable description of this component. Description may be

any valid string.

• HelpContextID (Long) – The context ID of the help topic for this data component.

• HelpFilePath (String, optional) – The fully qualified help file pathname for the help file in which the

help topic for this data component may be found.

• ReadOnly (Boolean) - Indicates a restriction in the client’s permission to change the value of this data

component. The IVI Configuration Server attaches no significance to this property and does not

enforce any protocol regarding write access to data components. This property is primarily guidance

for configuration utilities.

• SoftwareModuleKey (String, optional) – A string that is meaningful to the software module that

identifies the data component or type of data component to the software module.

• Type (String, optional) - Contains a string that indicates which type of IVI Data Component this is. It

will accurately reflect the type of this component and will contain one of the following values,

“Structure”, “Boolean”, “Real”, “Integer”, “String”, or “APIReference”.

• UsedInSession (String) – Indicates whether or not a data component associated with a software

module must be copied (UsedInSession = “Required”), may be copied (UsedInSession = “Optional”),

or may not be copied (UsedInSession = “None”) to any associated sessions. When associated with a

hardware asset, UsedInSession is always “None”.

The values of some properties are determined at least partially by what type of configurable component the

data component is associated with, and the purpose of the data component.

 Configurable Initial Settings Documentation

Hardware Asset N/A UsedInSession = “None”

SoftwareModuleKey = “”

Software Module UsedInSession = “Required”\”Optional”

ReadOnly = True

UsedInSession = “None”

SoftwareModuleKey = “”

Session/Driver Session UsedInSession = “Required”\”Optional”

ReadOnly = False

UsedInSession = “None”

SoftwareModuleKey = “”

2.8.2 IVI Structure

The IVI Structure data component references a collection of data components. This allows the creation of

complex structures.

In addition to the properties inherited from IVI Data Component, the IVI Structure class contains the

following property:

IVI-3.5: IVI Configuration Server Specification 22 IVI Foundation

• DataComponents (Collection of IviDataComponent, 1..*) – A collection of references to the IVI

DataComponents. This collection defines a child structure of data components. Using this class,

hierarchies of data components can be defined.

2.8.3 IVI Boolean

This class provides Boolean data in data components.

In addition to the properties inherited from IVI Data Component, the IVI Boolean class contains the

following property:

• Value (Boolean) – Boolean data associated with this data component. Must be TRUE or FALSE.

2.8.4 IVI Real

This class provides real data in data components.

In addition to the properties inherited from IVI Data Component, the IVI Real class contains the following

properties:

• Value (Double) – Real data associated with this data component.

• Units (String, optional) – Units associated with the number.

2.8.5 IVI Integer

This class provides integer data in data components.

In addition to the properties inherited from IVI Data Component, the IVI Integer class contains the

following properties:

• Value (Long) – Integer data associated with this data component.

• Units (String, optional) – Units associated with the number.

2.8.6 IVI String

This class provides string data in data components.

In addition to the properties inherited from IVI Data Component, the IVI String class contains the

following property:

• Value (String, optional) – String data associated with this data component.

2.8.7 IVI API Reference

This class provides a way for data component structures to reference published APIs. The Name property

identifies the instance of the published API known by the software module. This data component is

designed for use by IVI Software Modules and IVI Sessions.

In addition to the properties inherited from IVIi Data Component, the IVI String class contains the

following property:

• PublishedAPI (Reference to IviPublishedAPI, 1) – A reference to an IVI Published API object to be

used by the configured software module.

• Value(String,optional) – A logical name or session name. Value can be passed to GetSession() or

GetDriverSession() in the Name parameter. A session reference is returned according to the semantics

defined for GetSession() and GetDriverSession().

IVI Foundation 23 IVI-3.5: IVI Configuration Server Specification

2.9 Repeated Capabilities

Standard ways of referencing repeated capabilities in IVI software module APIs are described in several

sections of IVI-3.1, Driver Architecture Specification, and Section 12, Repeated Capabilities, of the IVI-

3.4: API Style Guide. Most IVI instrument class APIs include some repeated capabilities.

2.9.1 Repeated Capabilities in the Configuration Server

The IVI Configuration Server provides a way for software modules to publish their repeated capabilities

and the physical identifiers that a client may use to access them. Software Modules use the

IviPhysicalName and IviPhysicalRange classes for this purpose.

The IVI Configuration Server also provides a way for clients to configure instances of software modules

for the client’s use. As part of this configuration, clients specify virtual identifiers that the software module

will recognize as aliases for the physical identifiers provided by the software module. Clients use the

IviVirtualName and IviVirtualRange classes for this purpose.

2.9.2 IVI Physical Name and IVI Physical Range

Software modules publish their repeated capabilities using the IVI Physical Name and IVI Physical Range

classes. Together these classes specify

• The repeated capabilities implemented by the software module. (Determined from the RCName

property of IVI Physical Range objects.)

• The repeated capability hierarchy implemented by the software module. (Determined from the

PhysicalNameCollection referenced by the IVI Physical Name objects, which may be used recursively

to represent a hierarchy.)

• A set of physical identifiers recognized by the software module. There is exactly one physical

identifier for each instance of a repeated capability implemented by the software module. (Determined

from the Name property of, and the PhysicalRangeCollection referenced by, the IVI Physical Range

objects.)

An IVI Physical Name object defines one or more physical identifiers corresponding to one or more

instances of a repeated capability. The IVI Physical Name class contains the following properties:

• RCName (String, required) – The name of a repeated capability. All IVI Physical Names within the

same collection that have the same RCName contribute to the definition of that repeated capability.

• Name (String, required) – If there is no associated physical range, the physical identifier for an

instance of a repeated capability of type RCName. If there are associated physical range(s), the prefix

for a range of physical identifiers to which integers from the range(s) are appended. May be empty if

there are associated physical ranges, but note that since Name is a key for the IVI Physical Name

collection, only one Name per collection may be empty. To avoid conflicts with the use of the colon

character as a separator, Name may not contain a colon.

• PhysicalNames (Collection of IviPhysicalName, 0..*) – The collection of the IVI Physical Name

objects for instances of repeated capabilities that are nested under the current physical identifier.

• PhysicalRanges (Collection of IviPhysicalRange, 0..*) – The collection of integer ranges used to

create a set of physical identifiers, as explained below.

When the Physical Ranges property is not NULL, it references a collection of IVI Physical Range objects.

A Physical Range object defines a range of integers between a minimum and maximum. The integers are

appended to the Name property of the IVI Physical Name object to form a set of physical identifiers. If an

IVI Physical Name object references a collection of IVI Physical Ranges, Name may be an empty string.

This allows the range of names to be purely numeric. Also, since IVI Physical Name refers to a collection

of IVI Physical Ranges, several non-contiguous ranges may be referenced. For example, a physical

identifier “C” that references a collection of physical ranges 0-75, 100-175, and 200-275 yields a set of

physical identifiers C0-C75, C100-C175, and C200-C275.

When an IVI Physical Name references IVI Physical Range(s), and IVI Physical Name(s), the collection of

IVI Physical Names (and therefore the implied hierarchy of repeated capabilities) referenced by the IVI

Physical Name is assumed to be symmetrical – the same for every physical identifier in the set. In the

IVI-3.5: IVI Configuration Server Specification 24 IVI Foundation

above example, if the physical identifier “C” referenced a collection of physical identifiers consisting of

“X”, “Y”, and “Z”, it would be assumed that every one of the channels C0-C75, C100-C175, and C200-

C275 had exactly the same set of child physical identifiers “X”, “Y”, and “Z”.

For non-symmetrical nested repeated capabilities, Physical Ranges cannot be used.

The IVI Physical Range class contains the following properties:

• Name (String, required) – A value that uniquely identifies an IVI Physical Range object in a collection.

There is no other significance to the Name field in this class.

• Max (Long, required) – The maximum integer in the range.

• Min (Long, required) – The minimum integer in the range.

2.9.2.1 Nested Repeated Capabilities

The software module represents nested repeated capabilities by creating an instance of IviPhysicalName for

the parent capability (in this example, the output power), which in turn references another instance of

IviPhysicalName for the nested capabilities (in this example, the external trigger). The nesting of

IviPhysicalNames can be arbitrarily deep.

2.9.2.2 Symmetrical and Asymmetrical Nested Capabilities

Multiple instances of the same repeated capability may or may not share the same child repeated

capabilities.

If multiple instances of the same repeated capability share the same child repeated capabilities, the repeated

capability tree is symmetrical. In this case, each IVI Physical Name object for that repeated capability

references an identical collection of child IVI Physical Name objects.

If multiple instances of the same repeated capability do not share the same child repeated capabilities, the

repeated capability tree is asymmetrical. In this case, each (parent) IVI Physical Name object for that

repeated capability will reference a collection of (child) IVI Physical Name objects that describe the

specific child repeated capabilities for that object, and these collections may differ from one parent to the

next.

For example, if a driver models two displays, and both displays can display two traces, that part of the

repeated capability hierarchy would be symmetrical. If a driver models two displays, and the first can

display four traces, but the second can only display two, that part of the repeated capability hierarchy is

asymmetrical.

2.9.2.3 Uniqueness of IVI Physical Names

The IVI Physical Name Name property is unique within a collection of IVI Physical Names. In situations

where collections of physical names include names for more than one repeated capability, this implies that

Name is unique across all of the repeated capabilities in the collection.

For example, the IVI SpecAn class includes two repeated capabilities, “Trace” and “Marker”. Drivers that

implement the IVI SpecAn API will create a software module configuration store entry that includes a

pointer to a physical names collection. The physical names collections will include the physical names that

the driver defines for traces and markers. Since the physical names for traces and markers are stored in the

same physical names collection, the Name property must be unique across all traces and markers.

If a driver includes nested repeated capabilities, the nesting physical name entry contains a reference to a

different, non-empty collection of nested (e.g. child) physical names. In this case, the names in the

collection of nested physical names need only be unique within that collection.

For example, if a driver defines a “trace” repeated capability, and then defines a “display” nested repeated

capability that is a child of “trace”, the “display” repeated capability could use names that are also used in

the “trace” repeated capability.

IVI Foundation 25 IVI-3.5: IVI Configuration Server Specification

2.9.3 IVI Virtual Name and IVI Virtual Range

The IVI Virtual Name and IVI Virtual Range classes are used by the client to create aliases for physical

identifiers and colon separated lists of physical identifiers that the software module can use in context to

select a repeated capability.

The IVI Virtual Name class contains the following properties:

• MapTo (String, required) – The string that is substituted by the software module for Name whenever it

is encountered in a repeated capability selector. The empty string is a legal value for this property only

if the IVI Virtual Name object references a non-empty collection of IVI Virtual Range objects.

• Name (String, required) – If there is no associated physical range, a virtual identifier. If there are

associated physical range(s), the prefix for a range of virtual identifiers to which integers from the

range(s) are appended. May be empty if there are associated virtual ranges. To avoid conflicts with

the use of the colon character as a separator, Name may not contain a colon.

• VirtualRanges (Collection of IviVirtualRange, 0..*) – The collection of integer ranges used to create a

set of IVI Virtual Names, as explained below.

The IVI Virtual name cannot be the same as any physical name in the collection of physical names this

virtual name is mapped to. For instance, if the collection of physical names contains ‘foo’, ‘bar’, and ‘baz’,

the virtual name cannot have a name of ‘foo’, irrespective of the value of MapTo. This rule is not enforced

by the IVI Configuration Server.

An IVI Virtual Name object can also reference a collection of IVI Virtual Range objects. An IVI Virtual

Range object defines a range of integers between a minimum and maximum. The integers are appended to

the Name property of the IVI Virtual Name object to form a set of virtual identifiers. If an IVI Virtual

Name object references a collection of IVI Virtual Ranges, Name may be an empty string. This allows the

range of names to be purely numeric. Also, since IVI Virtual Name refers to a collection of IVI Virtual

Ranges, several non-contiguous ranges may be referenced. For example, a virtual identifier “C” that

references a collection of Virtual Ranges 0-75, 100-175, and 200-275 yields a set of virtual identifiers C0-

C75, C100-C175, and C200-C275.

When an IVI Virtual Name has IVI Virtual Range(s), the set of virtual identifiers maps to a set of physical

identifiers created by appending a series of integers to the IVI Virtual Name object’s MapTo string. The

series of integers is the same size as the virtual range, but starts at the IVI Virtual Range object’s Starting

Physical Index.

The IviVirtualRange class contains the following properties:

• Name (String, required) – A value that uniquely identifies an IVI Virtual Range object in a collection.

There is no other significance to the Name filed in this class.

• Max (Long, required) – The maximum integer to be appended to the virtual identifier.

• Min (Long, required) – The minimum integer to be appended to the virtual identifier.

• StartingVirtualIndex (Long, required) – The first integer in a range of integers to be appended to the

MapTo name.

IVI-3.5: IVI Configuration Server Specification 26 IVI Foundation

3. Instantiation and execution of the IVI Configuration Servers

3.1 Installing the Configuration Server

The Configuration Server files are installed before any IVI software modules are installed. This is enforced

by the requirements for installing IVI shared components, IVI instrument drivers and IVI-MSS role control

modules described in IVI-3.17: Installation Requirements Specification.

The IVI-C and IVI-COM Configuration Server executable files are provided as both 32-bit and 64-bit

Windows executables. The native IVI.NET assembly is an AnyCPU assembly. All executables, as well as

associated data and schema files, are distributed with the IVI Shared Components.

3.1.1 Packaging

The IVI Configuration Server installation consists of the following files.

• IviConfigServer.dll – The COM API executable file.

• README.txt – A file that contains misc. information about the Configuration Server installation,

including standard software dependencies, additional included files, and last minute instructions.

• IviConfigurationStore.xml – An empty XML configuration store file.

• IviConfigurationStore_1-6.xsd – The XSL schema for the configuration store file.

• Ivi.ConfigServer.Interop.dll – The .NET Primary Interop Assembly for the IVI-COM executable.

• Ivi.ConfigServer.Interop.xml – The .NET Primary Interop Assembly help file.

• IviConfigServerCapi.dll – The C API executable file

• IviConfigServer.lib – Microsoft C compatible library files.

• IviConfigServer.h – C header file for C API.

• Ivi.ConfigServer.dll – The native .NET API executable file.

• Ivi.ConfigServer.xml – The documentation file for the .NET Configuration Server.

The IVI Configuration Server installation for 64-bit Windows also includes 64-bit DLLs and libraries.

• IviConfigServer64.dll – The COM server executable file.

• IviConfigServerCapi64.dll – The C API executable file

• IviConfigServer64.lib – Microsoft C compatible library files.

The IVI Configuration Server C and COM implementations use Microsoft XML 6.0 (MSXML 6) if it is

available on the target PC. If it is not available, the Configuration Server uses “Microsoft XML Core

Services 4.0 RTM” which is installed when the IVI Configuration Server is installed. More information on

these services is available at

http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-

files/027/001/766/msdncompositedoc.xml.

The native .NET implementation uses the Microsoft .NET XmlReader and XmlWriter classes to deserialize

and serialize config store files. These provide the best performance of the .NET XML I/O choices.

In addition, there may be other demo or test programs included – refer to the README.txt file for a

complete listing of the files included in the installation.

3.1.2 Data File Installation

The installation directory for the master configuration store is <IVIDataDir>. The value of <IVIDataDir>

is set by the IVI shared components installer. The master configuration store is installed as

IviConfigurationStore.xml. The schema that describes the file format, IviConfigurationStore_1-6.xsd, is

stored in the same directory as IviConfigurationStore.xml.

On 32-bit versions of Windows, the installation program creates the registry key

HKEY/LOCAL_MACHINE/SOFTWARE/IVI/CONFIGURATIONSERVER, MasterStore,

and sets the value to <IVIDataDir> \IviConfigurationStore.xml.

http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-files/027/001/766/msdncompositedoc.xml
http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-files/027/001/766/msdncompositedoc.xml

IVI Foundation 27 IVI-3.5: IVI Configuration Server Specification

On Windows 7 (64-bit), Windows 8 (64-bit), Windows 10 (64-bit), and Windows 11, the installation

program also creates the registry key

HKEY/LOCAL_MACHINE/SOFTWARE/Wow6432Node/IVI/CONFIGURATIONSERVER, MasterStore ,

and sets the value to <IVIDataDir> \IviConfigurationStore.xml.

If the user renames or moves the master configuration store, the user must change the value of the registry

key HKEY/LOCAL_MACHINE/SOFTWARE/IVI/CONFIGURATIONSERVER, MasterStore. On Windows 7

(64-bit), Windows 8 (64-bit), Windows 10 (64-bit), and Windows 11 the user must also change the value of

the registry key HKEY/LOCAL_MACHINE/SOFTWARE/Wow6432Node/IVI/CONFIGURATIONSERVER,

MasterStore to exactly the same value. To find the master configuration store, the Configuration Server

looks at the location designated by the registry key. On Windows 7 (64-bit), Windows 8 (64-bit), Windows

10 (64-bit), and Windows 11, the Configuration Server looks at the location designated by both registry

keys and returns an error if the values are not the same.

“The Configuration Server looks for the schema in <IVIDataDir>. For more information on the value of

<IVIDataDir>, refer to Section 1.2, Definition of Installation Terms, of IVI-3.17: Installer Requirements

Specification.”

3.1.3 First Installation

When the Configuration Server is installed on a computer for the first time, there is only one entry in the

master configuration store – the IviConfigStore entry. This entry carries component and version

information, references collections of other Configuration Server objects.

The component and version information is read only, and serves to identify the Configuration Server

component and version.

The collections referenced from the IviConfigStore object are empty. The collection methods and

properties themselves may be executed, but will not return any configuration data until collection items

(such as Software Modules, Hardware Assets, and so on) are added.

3.1.4 Subsequent Installations

When the Configuration Server is reinstalled on a system, it does not erase existing entries in the master

configuration store. If the same version is being reinstalled, no changes will be made to the master

configuration store. If a more recent version is being installed, there may be changes.

A re-installation may update the values of the IviConfigStore Revision, Description, Specification Major

Version, and Specification Minor Version as appropriate.

A re-installation will also update or convert the data in the master configuration store to match any changes

in the configuration store schema. If the re-installation cannot perform this task silently, a conversion

utility will be provided by the IVI foundation as part of the new install, with suitable instructions.

Reasonable care will be taken to ensure that the Configuration Server behavior is compatible from revision

to revision, and the IVI Foundation strongly recommends that all software access the master configuration

store through the Configuration Server.

If either <IVIStandardDataDir> \IviConfigurationStore.xml or <IVIStandardDataDir>

\IviConfigurationStore_1-6.xsd is missing, re-installing the Configuration Server shall create it as is done

during an initial installation.

3.2 Accessing the Configuration Store

Users and software module developers should only access the configuration store through the

Configuration Server software provided by the IVI Foundation. While it is possible to edit the

configuration store XML file directly, it is discouraged because of the potential for introducing invalid data

IVI-3.5: IVI Configuration Server Specification 28 IVI Foundation

and relationships into the file. Furthermore, the Configuration Server is designed to be independent of the

way the data is stored, and insulates users from potential changes in the data format.

The Master Location property in the IviConfigStore class returns the full pathname of the master

configuration store. It determines the name by reading the registry key

HKEY_LOCAL_MACHINE/SOFTWARE/IVI/CONFIGURATIONSERVER, MasterStore, and, on Windows 7

(64-bit), Windows 8 (64-bit), Windows 10 (64-bit), and Windows 11, the registry key

HKEY_LOCAL_MACHINE/SOFTWARE/Wow6432Node/IVI/CONFIGURATIONSERVER, MasterStore .

Both values must match or an error is returned. For the precise semantics, refer to Section 7.3.3, Master

Location.

Users may copy the master configuration store, modify it, and then save it to another file. Refer to Section

3.7, Additional Instances of the Configuration Store, for more details. Users may then designate such a file

as the default copy of the configuration store for use in a process by assigning the full pathname of the file

to the Process Default Location property in the IviConfigStore class. The Process Default Location

property then returns the full pathname of this file. For the precise semantics, refer to Section 7.3.5,

Process Default Location.

The IVI configuration store provides mechanisms for accessing the master and process default

configuration store files.

Any utility, including Software Module installation programs, which modify the contents of the master

configuration store should consider making a back up copy before serializing a modified version. The IVI

Configuration Server tries to maintain the integrity of all configuration store files, but the consequences of

a corrupt master configuration store are so severe that a back up could prove very valuable.

3.2.1 Master Configuration Store

To access the master configuration store using the C or COM servers

• Instantiate the IVI Configuration Server.

• Call the Deserialize method, providing the location of the master configuration store as a parameter.

This is obtained through the Master Location property.

• Access the configuration data.

To access the master configuration store using the native .NET server

• Call the Load factory method without a parameter, which automatically loads the master configuration

store. (Alternately, call the Load method with ConfigStoreLocation.Master, or with the full pathname

of the master location as returned by the Master Location property.)

• Access the configuration data.

To modify the master configuration store using the C or COM servers

• Perform steps required to access the master configuration store

• Call the Serialize method with the master configuration store filename as a parameter.

To modify the master configuration store using the native .NET server

• Perform steps required to access the master configuration store

• Call the Save method with no parameter or with the master configuration store filename as a

parameter.

When serializing to the master configuration store, care must be taken not to modify the data that is added

when software modules are installed. For instance, deleting a software module entry could make it

impossible to properly configure a driver session to access that software module.

3.2.2 Process Default Configuration Store

To set the process default configuration store for the current process

• Instantiate the IVI Configuration Server.

IVI Foundation 29 IVI-3.5: IVI Configuration Server Specification

• Set the value of the Process Default Location property to the full path name of the configuration store

file to be used in the current process.

To access the process default configuration store using the C or COM servers

• Set the process default configuration store for the current process (see previous step).

• Instantiate the IVI Configuration Server (if not already instantiated).

• Call the Deserialize method, providing the location of the process default configuration store as a

parameter. This is obtained through the Process Default Location property.

• Access the configuration data.

To access the process default configuration store using the native .NET server

• Call the Load factory method with ConfigStoreLocation.ProcessDefault, or with the full pathname of

the process default location as returned by the Process Default Location property.)

• Access the configuration data.

To modify the process default configuration store using the C or COM servers

• Perform steps required to access the process default configuration store.

• Call the Serialize method with the process default configuration store filename as a parameter.

To modify the process default configuration store using the native .NET server

• Perform steps required to access the master configuration store

• Call the Save method with the full pathname of the process default location as returned by the Process

Default Location property.

3.2.3 Instantiating the Right Configuration Store from Software Modules

Software modules first try to open the process default configuration store. If the Process Default Location

property is not the null string, and Deserialize (C/COM) or Load(.NET) cannot open the process default

configuration store, it returns an error, and the software module returns an error as well. If the Process

Default Location property is the null string then the software module tries to open the master configuration

store. If Deserialize (C/COM) or Load(.NET) cannot open the master configuration store, it returns an

error, and the software module returns an error as well.

3.2.4 Serializing to a Different Configuration Store

Users may wish to deserialize from one configuration store file and serialize to a different one. One basic

example is copying a configuration store from one file to another. This is not part of the use model for

driver installation or initialization.

3.3 Adding Entries to Collections

There are six “global” collections in the Configuration Server. Global collections include all of the

instances of a particular class. The six global collections are

• Software Modules

• Published APIs

• Sessions

• Driver Sessions

• Hardware Assets

• Logical Names

When a new instance of one of the six associated classes is added using the Configuration Server, it is

added first to the global collection. If a client tries to add it to another collection first, an error is returned.

For example, if a software module adds a published API entry, it will add it to the global published APIs

collection first, then add it to the Software Module’s published APIs collection.

IVI-3.5: IVI Configuration Server Specification 30 IVI Foundation

3.4 Installing Software Modules

The configuration store must contain data describing a user-configurable software module before the user

can configure the session or driver session that uses it. Installation requirements for software modules,

including the configuration store entries, are described in IVI-3.17: Installation Requirements Specification.

A software module installation program creates the following types of entries in the master configuration

store.

• A software module entry (required).

• A collection of references to published APIs (optional). If the published API entries do not exist, the

software module installation program also adds the published API entry. The published API is added

to the global published API collection first, and then added to the software module’s published API

collection.

• A collection of references to IVI Physical Names (optional).

• One or more collections of physical ranges, each associated with an IVI Physical Name (optional).

• A collection of references to data components, referenced by the software module (optional). Data

components added when the software module is installed are called module-defined data components.

• A default session that uses the software module (optional).

The software module entry contains the information needed to create a running instance of the software

module, as well as a couple of basic identification fields. This is required when IVI class drivers or the IVI

Session Factory are used to instantiate an IVI specific driver.

The collection of IVI Physical Names identifies the repeated capabilities as defined in the software module.

Refer to Section 2.9.2, IVI Physical Name and IVI Physical Range for more information.

3.4.1 Data Components In Software Modules

A software module’s data components may be used for two basic purposes – to define initial settings for

variables known to the software module, and to document the software module itself.

3.4.1.1 Defining Initial Settings

Software module data components may be used to document additional variables that are known by the

software module, and that the software module will attempt to read from a configuration server session at

run-time. For instance, the software module developer may define a Trace property that determines its

tracing behavior, and decide that the software module will attempt to read an initial value for this variable

from the configuration server. This variable is added to the data components of the software module when

the software module is installed, to document the fact that the software module is capable of reading an

initial value for it from the configuration server.

There are several reasons to add this type of data component to a software module.

• To provide additional configuration for driver operation. The IVI Foundation defines several

properties for configuring driver operation (e.g. Cache, Simulate, InterchangeCheck, and so on), but a

software module may need additional data. The Trace property mentioned above is an example of this

type of data component.

• To provide additional configuration for instrument operation. In some cases, an instrument cannot be

used interchangeably with others in its class because of some state variable that is not part of the class-

compliant interfaces, but which must be set correctly in order for the class-compliant interfaces to

work correctly. For example, an instrument that by default returns measurements in terms of period

when the class-compliant interface returns frequency could use a data component that allows the user

to configure the instrument to measure frequency. Refer to Section 5.10.1.5, Applying Configurable

Initial Settings, in IVI-3.1: Driver Architecture Specification.

• To provide initial instrument state. In general, the IVI Foundation recommends against using the

configuration server to store and restore instrument state. While it is possible, it is very complex and

often redundant with other instrument functionality.

These data components are added with UsedInSession = “Required” or “Optional” and ReadOnly = True.

If UsedInSession = “Required”, the data component is copied by the configuration server to any session

IVI Foundation 31 IVI-3.5: IVI Configuration Server Specification

when the reference property from the session to the software module is set or changed. If UsedInSession =

“Optional”, the configuration server will allow the data component to be added to the session.

3.4.1.2 Documenting the Software Module

Data components may be added to the software module just to add information about the software module.

The developer may choose to add these when the software module is installed. These data components are

added with UsedInSession = “None” to indicate that that they are not to be copied to a session for

configuration.

3.4.2 Un-installing Software Modules

When deleting software modules,

• Delete collections for published APIs. Do not delete the published API entries.

• Delete collections and entries for physical names and ranges.

• Delete collections and entries for data components.

• Delete the software module entry.

To accomplish the above, use the Configuration Server to delete the software module entry. The

Configuration Server will delete all of the above listed entries correctly.

When software module entries are deleted, the sessions that reference them will not be automatically

deleted. These sessions may be reusable at a later time, after the software module is installed again, or they

may be reusable with another compatible software module.

3.4.3 Re-installing Software Modules

When re-installing the same version of a software module, delete and re-add the following entries.

• The software module entry.

• Collections of published APIs. Do not delete the published API entries.

• Collections and entries for physical names and ranges.

• Collections and entries for data components.

To accomplish the above, use the Configuration Server to delete the software module entry. The

Configuration Server will delete all of the above listed entries correctly. Then the installation will add the

correct entries as part of the re-install process.

Re-installing is not a special feature. It may be implemented with an un-install followed by a normal install.

If the default session already exists, do not delete and re-add it. If it does not exist, add it.

When re-installing a different version of the software module, the above actions are taken. If the data

components associated with the software module have been changed, the installer notifies the user that the

older associated sessions are not compatible. (Note: what about silent installs? – log files, etc.)

3.5 Maintaining Configuration Data

Users add configuration data to the configuration store. Users have several mechanisms available for

maintaining configuration data, including using a proprietary configuration store editor and using the

Configuration Server from user application code. Users may manually edit the configuration store files, but

this is strongly discouraged.

Users can configure several classes in the configuration store

• IVI Hardware Assets

• IVI Sessions and IVI Driver Sessions

• IVI Data Components associated with an IVI Session or an IVI Hardware Asset

• IVI Virtual Names and Ranges

• IVI Logical Names and Ranges

IVI-3.5: IVI Configuration Server Specification 32 IVI Foundation

3.5.1 Configuring Hardware Assets

Configuration of hardware assets involves the following types of entries.

• Hardware asset entries. These must be added to the global hardware assets collection before being

referenced by a session or driver session.

• A collection of references to data components, referenced by the hardware asset (optional). These

collections and referenced data components are contained in the hardware asset.

Hardware asset entries identify the location of the instrument on the I/O buses. Users must add hardware

asset entries for each instrument that is available for use by a session. In the future, vendors may provide

instruments that make appropriate Hardware Asset entries.

There may be multiple entries with the same value for IO Resource Descriptor.

The hardware asset entries are not contained by the session. In the configuration store, they exist

independently of the session, and are not deleted automatically when the session entry is deleted. A

hardware asset may not be deleted if a session or driver session refers to it.

3.5.1.1 Data Components in Hardware Assets

Data components may be added to a hardware asset entry to further document the hardware asset. These

data components are user-defined, since hardware assets are not added by software modules, with

UsedInSession = “None”. These may be added with the hardware asset, or at a later time. Refer to Section

3.5.5.1, IVI Hardware Assets for more details.

The hardware asset’s data components collection is contained by the hardware asset that references it, and

the associated data component entries are also contained by the hardware asset. They are added with and

deleted with the hardware asset entry.

3.5.2 Configuring Sessions and Driver Sessions

Configuration of sessions and driver sessions involves the following types of entries.

• An IVI Session (required). The session entry will be a driver session entry if the referenced software

module is an IVI instrument driver. These must be added to the global sessions collection and driver

sessions collection (if applicable) before being referenced by a logical name.

• A collection of references to IVI Virtual Names (optional). These collections and referenced IVI

Virtual Names are contained in the session.

• One or more collections of IVI Virtual Ranges, each associated with an IVI Virtual Name (optional).

These collections and referenced physical names are contained in the session.

• A collection of references to IVI Data Components, referenced by the session (optional). These

collections and referenced data components are contained in the session.

An IVI Session entry is used to configure a running instance of a software module. IVI instrument drivers

are configured using IVI Driver Session, which inherit from IVI Session. Because of the inheritance, driver

sessions include all of the functionality associated with sessions, and in addition allow the configuration of

seven additional properties that have special meaning to IVI instrument drivers.

A session references an IVI Software Module. IVI class drivers and the IVI Session Factory both start with

a reference to a session and examine the associated session to determine which software module to

instantiate as described in Section 3.6.1, IVI Class Drivers and the IVI Session Factory. The information in

the software module entry is sufficient to instantiate the software module – ProgID for IVI-COM,

ModulePath for IVI-C. Both may be filled in if the same vendor provides both forms of the driver in the

same installation, and one is a wrapper for the other.

IVI Sessions may reference zero or one IVI Hardware Asset, but this may not be enough for some software

modules that require more than one hardware reference. There are two possible ways to handle this

situation. First, IO Resource Descriptor may be overloaded by using a syntax that allows multiple

instrument locations to be entered. Second, data components for the additional addresses may be added to

the software module entry, and carried over to the session where the values are configured.

IVI Foundation 33 IVI-3.5: IVI Configuration Server Specification

The session’s IVI Virtual Name, IVI Virtual Range, and IVI Data Components collections are contained by

the IVI Session that references them, and the associated virtual name, range, and data component entries

are also contained by the session. They are added with and deleted with the session entry.

3.5.2.1 Virtual Names

3.5.3 The collection of IVI Virtual Names identifies the repeated capabilities as
defined in the client, and maps these names to physical identifiers that are
recognized by the software module. Refer to Section 2.9.2.3, Uniqueness of
IVI Physical Names for more information.Data Components In Sessions

A session’s data components may be used for two basic purposes – to configure initial settings for

additional variables known to the associated software module, and to document the session itself.

3.5.3.1 Configurable Initial Settings

Software modules may use data components to allow configuration of software module variables at

initialization. Refer to section 3.4.1.1, Defining Initial Settings for details. During initialization, the

software module looks for these variables in the associated session that contains the configuration

information. In order for this to work, the configuration server determines what additional variables are

required when the reference to the session’s Software Module is set by examining the data components for

the software module, and copies all data components with UsedInSession = “Required” to the session.

When it does the copy, it changes ReadOnly to “False”. After the copy, clients may change the values of

the session’s data components to the correct values, and may add data components from the associated

software module where UsedInSession = “Optional”.

3.5.3.2 Documenting the Session

Data components may be added to the session just to add information about the session. The developer

may choose to add these when the session is created, or they may be added by a configuration utility, test

system, or configuration server user. These data components are added with UsedInSession = “None” to

indicate that that they are not copied from the software module.

3.5.4 Configuring Logical Names

Configuration of logical identifiers involves the following types of entries.

• IVI Logical Name entries that reference session entries.

3.5.5 Documentation Data Components

Users or configuration utilities may add user-defined data components to hardware assets and sessions

(including driver sessions). These are documentation data components, and there are no pre-defined uses

for them – presumably the user or configuration utility that adds them knows why they are there.

3.5.5.1 IVI Hardware Assets

Users may add data components with Used In Session = “None”, and Read Only = True or False. The data

components are meaningful only to the particular user or configuration utility that added them.

3.5.5.2 IVI Sessions and IVI Driver Sessions

Users may add data components with Used In Session = “None”, and ReadOnly = True or False. The data

components are meaningful only to the particular user or configuration utility that added them.

IVI-3.5: IVI Configuration Server Specification 34 IVI Foundation

3.6 Using Configuration Data

The Configuration Server is used to instantiate and initialize IVI instrument drivers and IVI-MSS role

control modules. Instantiation is useful for class API interchangeability, using either IVI class drivers or

the IVI Session Factory. As part of the Initialize (C/COM) or Load (.NET) functions, software modules

read the configuration store and use the data to configure initial values.

3.6.1 IVI Class Drivers and the IVI Session Factory

IVI class drivers, the IVI-COM Session Factory, and IVI.NET Create session factory methods use the

configuration store to identify and locate the IVI specific driver software module that they instantiate. The

IVI Session Factory can be used to instantiate any kind of software module, including IVI-MSS role control

modules. The user provides a logical name or a session or driver session name to the class driver, IVI

Session Factory, or IVI.NET Create method. This name is then used to lookup the associated session or

driver session entry, and the software module reference is then used to find the software module entry. The

ModulePath or ProgID is then retrieved and used to instantiate the software module.

IVI class drivers, the IVI Session Factory, and the IVI.NET Create methods need only use Get Session to

look up the session and then the software module. However, class drivers may choose to use Get Driver

Session to be sure that the name passed in actually resolves to a driver session.

Get Session looks for the name first in the Configuration Server’s logical name collection. If it finds it

there, it follows the reference to the session. If it doesn’t find the name in the logical name collection, it

tries to find a session with the given name. If it doesn’t find that, it returns an error. If Get Session finds

the name in either place, it returns a pointer to the session.

Get Driver Session works the same as Get Session, except it is restricted to Driver Sessions.

3.6.2 Software Module Initialization

Once a software module is instantiated, it can use the Configuration Server as part of the initialization

process.

An IVI instrument driver accesses the Configuration Server from the Initialize function. It queries the

Configuration Server for the following information.

• Hardware Asset. The driver uses the IO Resource Descriptor to establish a connection to the

instrument.

• The predefined driver properties - Cache, Driver Setup, Interchange Check, Query Instrument Status,

Range Check, Record Coercions, and Simulate. These are applied in the Initialize function.

• Data components. A driver reads through the data components collection referenced by the session,

looking for data component names that it recognizes. If it finds a data component that it doesn’t

recognize, it ignores it and continues with the next data component in the collection. After reading

through the collection, if it hasn’t retrieved the value of one or more required data components, it

reports an error.

• Virtual identifiers. A driver reads through the virtual identifiers collection and any associated virtual

ranges. It stores the mappings for use when resolving repeated capability names. Refer to section

2.9.3, IVI Virtual Name and IVI Virtual Range for more details.

For IVI-MSS role control modules, initialization happens whenever appropriate, as determined by the

software module. Use of the hardware asset reference and virtual identifier, virtual range, and data

component collections is analogous to the driver case. There are no pre-defined configuration variables for

IVI-MSS that are analogous to the driver session properties.

3.6.3 Interchanging Instruments

Several sessions may be set up for a software module, representing several different ways of configuring

the module. Since sessions are identified by name, just changing the name in the source code that

IVI Foundation 35 IVI-3.5: IVI Configuration Server Specification

instantiates and configures the software module is enough to change the way it is configured. Different

sessions can point to different hardware assets or different values for configuration properties.

In order to avoid any source code changes, use logical names to refer to sessions. If the logical name is

used in the client’s source code, the user can use a different session by changing the logical name’s Session

property.

3.7 Additional Instances of the Configuration Store

As mentioned above, it is possible to have multiple instances of the configuration store file. There is one

master configuration store file on each system, but there may be additional configuration store files. The

Process Default property can be set to the full pathname of any configuration store file. The Deserialize (C

and COM) or Load (.NET) method may be called with any full pathname. Deserialize and Load will return

an error if the file is not a legal Configuration Store file and cannot be successfully deserialized. Likewise,

Serialize (C and COM) or Save (.NET) may be called with any full pathname, and will return an error if the

file cannot be written.

Software module installers create entries only in the master configuration store. To create or maintain

additional configuration store files, users must copy software module entries using the Configuration

Server or use a configuration utility.

Users must be careful not to delete the master configuration store’s software module entries, or to make

modifications that would destroy the accuracy of the software module entries. This holds not only for the

software module entry itself, but also for any associated data components, physical identifiers, or ranges.

3.8 Avoiding the Configuration Server

Users can avoid having to interact with the IVI Configuration Server and Store with most IVI specific

instrument drivers and many other IVI software modules. In order to avoid interacting with the

Configuration Server for IVI specific instrument drivers,

• The application program must explicitly specify the location of the IVI-C DLL, or the ProgID of the

IVI-COM class.

• The Resource Name parameter of the Initialize function must be an IO resource descriptor, rather than

a logical name or a session name.

• The application program must use the physical identifiers defined in the driver for repeated

capabilities.

• Either the application program must use the software module’s defaults for configurable attributes, or

the application program must set the driver’s attributes to initial values before the attributes are used in

the driver. Note that adequate defaults are defined for all of the driver session properties in IVI-3.2:

Inherent Capabilities Specification.

3.9 Copying Elements

In general, the IVI Configuration Store does not automatically copy data from one element to another. The

user is responsible for getting the information from one element and then writing it into the second element.

The one exception happens when a Session’s reference to a Software Module is set. Refer to Section

3.5.3.1, Configurable Initial Settings.

IVI-3.5: IVI Configuration Server Specification 36 IVI Foundation

4. Collections

The configuration store design makes extensive use of collections of objects from a single class. For

instance, the Configuration Store class includes a pointer to a collection of all of the IviHardwareAsset

objects in the Configuration Store.

C and COM collections are one based. The smallest legal index is one which refers to the first item in the

collection. .NET collections are dictionaries with string keys.

The IVI Configuration Server returns the “Not in Global Collection” error when a reference is made to an

element before the element is added to the global collection. For example, a Software Module must be

added to the Software Modules collection before the reference in a Session can be set to that Software

Module.

The same element cannot be added to two collections in the same or different configuration stores. A

second separate element with identical values can be used. The only exception is that a Published API can

be added to the global Published APIs collection and to the Published APIs collection in a Software

Module.

4.1 Collections in COM

In COM the designed collections are implemented as standard COM collections. Collection classes are

indicated by appending “Collection” to the end of the class that describes the individual objects in the

collection. For instance, if a collection points to objects of class IviHardwareAsset, the collection class

would be named IviHardwareAssetCollection. The methods implemented by a COM collection are

• Item

• Count

• _NewEnum

• Add

• Remove

All of the above properties and methods have standard COM definitions. Refer to Microsoft

documentation for more details.

Except for the Published API collection, the Item property and Remove method take one parameter whose

type is VARIANT. The contents of the VARIANT may be either the name of an item in the collection or an

integer which is the one-based index of an item in the collection. For the Published API collection, the

parameters for Item and Remove are described in Section 7.2.4, Published APIs.

The _NewEnum property returns an IUnknown pointer. This interface can be queried for an

IEnumVARIANT interface which contains the methods:

• Next

• Skip

• Reset

• Clone

The VARIANT returned by Next can be queried for an interface appropriate for the collection. For example

the VARIANT returned within the Hardware Asset Collection can be queried for the IviHardwareAsset

interface.

All of the above properties and methods have standard COM definitions. Refer to Microsoft

documentation for more details.

The configuration server implements the following collection classes

• IviHardwareAssetCollection

• IviSessionCollection

IVI Foundation 37 IVI-3.5: IVI Configuration Server Specification

• IviDriverSessionCollection

• IviPublishedAPICollection

• IviLogicalNameCollection

• IviSoftwareModuleCollection

• IviPhysicalNameCollection

• IviVirtualNameCollection

• IviPhysicalRangeCollection

• IviVirtualRangeCollection

• IviDataComponentCollection

4.2 Collections in C

In C, collections are accessed with generic functions defined for each class. These functions correspond to

methods described for COM collections.

• IviConfig_Get<ItemName>Count

• IviConfig_Get<ItemName>ItemByIndex

• IviConfig_Get<ItemName>ItemByName

• IviConfig_Add<ItemName>Reference

• IviConfig_Remove<ItemName>Reference

where <ItemName> represents the name of the collection being accessed. For example, to get the number

of IviSession objects in a given IviSessionsCollection, use the function IviConfig_GetSessionCount. To

access a particular object in the collection, use the IviConfig_GetSessionItemByIndex function or the

IviConfig_GetSessionItemByName function.

These functions appear only in the C API. They are equivalent to object creation and destruction handled

by normal COM infrustructure.

• IviConfig_Create<ItemName>

• IviConfig_Destroy<ItemName>

To create a new item and add it to a collection, use the IviConfig_Create<ItemName> function defined for

that collection. To remove an item from a collection, use the IviConfig_Destroy<ItemName> function

defined for that collection. For example, to create a new IviSession object and add it to the global

IviSessions collection, use the IviConfig_CreateSession function. To delete an IviSession object from the

collection, use the IviConfig_DestroySession function. Note that objects can be created and deleted only

from those collections that actually own the items.

To add a reference to an object to a collection that does not own the item, use the

IviConfig_Add<ItemName>Reference function. To remove the reference, use the

IviConfig_Remove<ItemName>Reference function.

4.3 Properties in C

In C, properties for the various objects are accessed using generic functions defined for each class. These

function, which correspond to the get and put COM methods are:

• IviConfig_Get<ItemName>Property<DataType>

• IviConfig_Set<ItemName>Property<DataType>

where <ItemName> represents the name of the object for which the property is being accessed and

<DataType> represents the data type of the property . For example, to get the value of the Revision

property for an IviConfigStore object, call the IviConfig_GetConfigStorePropertyViString function.

IVI-3.5: IVI Configuration Server Specification 38 IVI Foundation

All functions that return properties of type ViString comply with the rules in Section 3.1.2.1, Additional

Compliance Rules for C Functions with ViChar Array Output Parameters of IVI-3.2: Inherent Capabilities

Specification.

4.4 Return Codes

The IVI-3.2: Inherent Capabilities Specification defines general status codes that the collection functions

can return.

The table below specifies additional IVI configuration server status codes for the Add function.

Completion Codes Description

Not In Global Collection The item does not exist in the global collection.

Duplicate Entry An entry with name already exists.

Invalid Data Component The data component is not a valid data component.

The table below specifies additional IVI configuration server status codes for the Item and Remove

functions.

Completion Codes Description

Does Not Exist The item does not exist in the collection.

The table below specifies additional IVI configuration server status codes for the Remove function.

Completion Codes Description

Reference Still Exists The element cannot be removed from the global collection when it is

referenced in the local collections.

The table below specifies additional IVI configuration server status codes for the Get and Set IVI-C

functions.

Completion Codes Description

Invalid Property ID The specified property ID is not valid for this function.

4.5 Collections in .NET

Collection classes are indicated by appending “Collection” to the end of the class name that describes the

individual objects in the collection. For instance, if a collection references objects of class HardwareAsset,

the collection class would be named HardwareAssetCollection. The .NET configuration server implements

the following collection classes:

• IviHardwareAssetCollection

• IviSessionCollection

• IviDriverSessionCollection

• IviPublishedAPICollection

• IviLogicalNameCollection

• IviSoftwareModuleCollection

• IviPhysicalNameCollection

• IviVirtualNameCollection

IVI Foundation 39 IVI-3.5: IVI Configuration Server Specification

• IviPhysicalRangeCollection

• IviVirtualRangeCollection

• IviDataComponentCollection

The public methods exposed by a .NET collection are

• The index operator []

• Count

• Add

• Remove

• ContainsKey

• TryGetValue

• Clear

• GetEnumerator (per IEnumerable use patterns)

All of the above properties and methods have standard .NET definitions. Refer to Microsoft documentation

for more details.

For most .NET collections, keys are specified with a single string parameter. The string is the name of an

item in the collection. For the Published API collection, there are four parameters that identify the key

value in methods and operators that take a key value. Refer to section 9.5, IVI Published API Collection

Methods and Operators (.NET Only) for more details.

IVI-3.5: IVI Configuration Server Specification 40 IVI Foundation

4.5.1 Collection Base Classes

.NET configuration server collections are derived from a set of base classes and interfaces. For the most

part these base classes and interfaces are implementation details, but they are publically visible. This

specification recommends that you always use the collection classes listed in the last section, and that you

not use the base classes unless it is absolutely unavoidable. The base classes are:

• EntityCollection<TEntity> where TEntity : Entity

• EntityCollectionBase<TEntity> where TEntity : Entity

• IEntityCollection

• IEnumerable<T>

Refer to section 5.3.2, .NET Entity Class, for an overview of the Entity class.

IVI Foundation 41 IVI-3.5: IVI Configuration Server Specification

5. C & .NET API Special Features

5.1 C API Special Features Overview

This section defines special functions for the IVI Configuration Server C API in addition to the functions

defined for each IVI Configuration Server class. These functions are used to create an instance of the

configuration server, dispose handles to IVI Configuration Server objects, and to retrieve and clear error

codes and messages.

5.2 C API Special Functions

The IVI Configuration Server C API defines the following functions:

• Clear Error

• Close

• Dispose Handle

• Get Error

• Initialize

This section describes each function.

IVI-3.5: IVI Configuration Server Specification 42 IVI Foundation

5.2.1 Clear Error

Description

This function clears the error description for the current thread of execution.

The Configuration Server C API logs its errors to the thread-local error variables defined by IVI-3.9 C

Shared Component Specification. The Get Error function retrieves and clears these thread-local variables.

For more information about thread local variables, refer to IVI-3.9 C Shared Component Specification,

Section 7, Thread Local Error Storage for more information.

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC IviConfig_ClearError ();

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI Foundation 43 IVI-3.5: IVI Configuration Server Specification

5.2.2 Close

Description

This function releases the handle to an IVI Configuration Store object.

Once a handle to the IVI Configuration Store object is no longer needed, the user must call this function to

release the handle. Subsequent use of this handle will return the Invalid Handle error.

An application must release all IVI Configuration Store handles by calling this function before terminating.

Failure to do so may result in resource or memory leaks.

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC IviConfig_Close (IviConfigStoreHandle ConfigStoreHandle);

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI-3.5: IVI Configuration Server Specification 44 IVI Foundation

5.2.3 Dispose Handle

Description

This function releases the handle to an IVIConfigStore object returned from one of the Get Session, Get

Driver Session, Get Collection, Create, Add Reference, Get Item, or Get Reference functions.

Once a handle to an item is no longer needed, the user must call this function to release the handle.

Subsequent use of this handle will return the Invalid Handle error.

An application must release all handles by calling this function before terminating. Failure to do so may

result in resource or memory leaks.

The user must not pass a handle of type IviConfigStoreHandle as the value of the Handle parameter. The

user may pass a handle of any other type. If a handle of type IviConfigStoreHandle is passed as the value of

the Handle parameter, this function will return the Invalid Handle error.

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC IviConfig_DisposeHandle (IviConfigHandle Handle);

Return Values

The IVI-3.2, Inherent Capabilities Specification defines general status codes that this function can return.

In addition, it returns the following status codes:

Completion Codes Description

Invalid Handle The specified handle is invalid or of an incorrect type.

IVI Foundation 45 IVI-3.5: IVI Configuration Server Specification

5.2.4 Get Error

Description

This function retrieves and clears the description of the first error that occurred for the current thread of

execution.

One exception exists: If the BufferSize parameter is zero, the function does not clear the error

description. By passing 0 for the buffer size, the caller can ascertain the buffer size required to get the entire

error description string and then call the function again with a sufficiently large buffer.

The function complies with the rules in IVI-3.2, Inherent Capabilities Specification, Section 3.1.2.1,

Additional Compliance Rules for C Functions with ViChar Array Output Parameters.

The Configuration Server C API logs its errors to the thread-local error variables defined by IVI-3.9 C

Shared Component Specification. The Clear Error function clears these thread-local variables. For more

information about thread local variables, refer to Section 7, Thread Local Error Storage in IVI-3.9 C Shared

Component Specification for more information.

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetError (ViInt32 BufferSize,

ViChar ErrorDescription[]);

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI-3.5: IVI Configuration Server Specification 46 IVI Foundation

5.2.5 Initialize

Description

This function creates and returns a handle to a new instance of the IVI Configuration Store class. The user

passes this handle to the C API functions defined for the IVI Configuration Store class to access its

properties and to obtain handles to the IVI configuration store global collections.

This function may also perform additional initialization routines required for the use of the IVI

Configuration Server C API. The user must first call this function before calling any other C API function.

Every subsequent call to this function will create a new instance of the IVI Configuration Store class.

The user must call the Close function once and only once for each successful call to the Initialize function.

Refer to Section 1.1.5 Close for more information.

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC IviConfig_Initialize (IviConfigStoreHandle*

ConfigStoreHandle);

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

5.3 .NET API Special Features Overview

This section defines special features of the .NET Configuration Server.

5.3.1 .NET Data Types

.NET uses the following basic data types in place of the corresponding COM types:

COM Data Type .NET Data Type

BSTR string

long int

double double

VARIANT_BOOL bool

5.3.2 .NET Entity Class

Entity is an abstract base class that includes basic functionality used by other Config Store classes. Most of

the class is not publically visible, but the class itself is visible and is used in several constructors including

the main ConfigStore constructor.

The Entity class defines the following public property:

• Name

The following public Config Store classes are derived from Entity.

IVI Foundation 47 IVI-3.5: IVI Configuration Server Specification

• HardwareAsset

• PublishedApi

• SoftwareModule

• PhysicalName

• PhysicalRange

• LogicalName

• Session

• DriverSession

• VirtualName

• VirtualRange

• DataComponent

• IviStructure

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

For additional uses of the Entity class in .NET constructors, refer to 5.3.5.2, Params Parameters in

Constructors.

5.3.2.1 The Entity.Name property.

The definition of Entity.Name matches the definition of the Name property in the classes that derive from

entity.

In cases where a class places additional constriants on the Name property, the validation of Entity.Name is

overridden by the class:

• Published Api

• IVI Physical Name

• IVI Virtual Name

IVI-3.5: IVI Configuration Server Specification 48 IVI Foundation

5.3.3 .NET Enumerations

The .NET API defines the following enumerations:

• Config Store Location

• IVI Published API Name

• IVI Published API Type

• Session Usage

5.3.3.1 Config Store Location

The Config Store Location enumeration provides members for the two standard configuration store XML

file locations.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

ConfigStoreLocation.

Master

The master location.

 .NET ConfigStoreLocation.Master

ConfigStoreLocation.

ProcessDefault

The default location for the current process.

 .NET ConfigStoreLocation.ProcessDefault

5.3.3.2 IVI Published API Name

The IVI Published API Name enumeration provides members for each of the standard APIs defined for IVI

Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiName.

IviDmm

The IviDmm instrument class.

 .NET IviPublishedApiName.IviDmm

IviPublishedApiName.

IviDriver

The IviDriver inherent capabilities class.

 .NET IviPublishedApiName.IviDriver

IviPublishedApiName.

IviScope

The IviScope instrument class.

 .NET IviPublishedApiName.IviScope

IviPublishedApiName.

IviFgen

The IviFgen instrument class.

 .NET IviPublishedApiName.IviFgen

IviPublishedApiName.

IviDCPwr

The IviDCPwr instrument class.

 .NET IviPublishedApiName.IviDCPwr

IviPublishedApiName.

IviACPwr

The IviACPwr instrument class.

 .NET IviPublishedApiName.IviACPwr

IVI Foundation 49 IVI-3.5: IVI Configuration Server Specification

IviPublishedApiName.

IviSwtch

The IviSwtch instrument class.

 .NET IviPublishedApiName.IviSwtch

IviPublishedApiName.

IviPwrMeter

The IviPwrMeter instrument class.

 .NET IviPublishedApiName.IviPwrMeter

IviPublishedApiName.

IviSpecAn

The IviSpecAn instrument class.

 .NET IviPublishedApiName.IviSpecAn

IviPublishedApiName.

IviRFSigGen

The IviRFSigGen instrument class.

 .NET IviPublishedApiName.IviRFSigGen

IviPublishedApiName.

IviCounter

The IviCounter instrument class.

 .NET IviPublishedApiName.IviCounter

IviPublishedApiName.

IviDownConverter

The IviDownconverter instrument class.

 .NET IviPublishedApiName.IviDownconverter

IviPublishedApiName.

IviUpConverter

The IviUpconverter instrument class.

 .NET IviPublishedApiName.IviUpconverter

IviPublishedApiName.

IviDigitizer

The IviDigitizer instrument class.

 .NET IviPublishedApiName.IviDigitizer

IviPublishedApiName.

IviLxiSync

The IviLxiSync instrument class.

 .NET IviPublishedApiName.IviLxiSync

5.3.3.3 IVI Published API Type

The IVI Published API Type enumeration provides members for the three standard API types defined for

IVI Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiType.

IviCom

The IVI-COM API type.

 .NET IviPublishedApiType.IviCom

IviPublishedApiType.

IviNet

The IVI.NET API type.

 .NET IviPublishedApiType.IviNet

IviPublishedApiType.

IviC

The IVI-C API type.

 .NET IviPublishedApiType.IviC

5.3.3.4 Session Usage

The Config Store Location enumeration provides members for the three standard values for data

component Used In Session properties.

IVI-3.5: IVI Configuration Server Specification 50 IVI Foundation

Name Description

 Language Identifier Value

SessionUsage.None A session does not need to define a value for this data component.

 .NET SessionUsage.None 0

SessionUsage.

Required

A session must define a value for this data component.

 .NET SessionUsage.Required 1

SessionUsage.

Optional

A session may define a value for this data component.

 .NET SessionUsage.Optional 2

5.3.4 Collections in .NET

Refer to section 4.5, Collections in .NET for a description of collections in .NET.

5.3.5 .NET Constructors

In contrast to the COM API which does not allow parameterized constructors, the .NET API uses

parameterized constructors, so that new objects have legal and consistent data from the start.

5.3.5.1 Constructors and Property Access

Each constructor includes parameters for

• Properties that serve as keys in the corresponding collection. For example, Name is the key value for

nearly all classes, and so name is a common constructor parameter.

• Properties that should not be changed after they are set initially. For example, the Prefix property for

SoftwareModules only needs to be set once, and does not need to be changed after that.

In general, if a constructor includes a parameter, the corresponding property is read only.

5.3.5.2 Params Parameters in Constructors

Some constructors include a params parameter. In the .NET API, these allow a calling program to specify

members of the object’s collections. For example, the constructor for the Virtual Name class includes the

virtualRanges parameter, which allows the calling program to specify multiple Virtual Range objects to

be added to the Virtual Name’s Virtual Range collection.

In most cases the type of the params parameter is an array of a base type, either Entity or DataComponent.

This allows the calling program to specify any object whose class derives from the base class. The

constructor is then responsible for ensuring that the specified objects are valid for that constructor. For

example, the Config Store constructor has a params parameter of type Entity[]. This allows the calling

program to specify any class that derives from Entity as an argument. However, the Config Store

constructor checks each argument to make sure that they are valid for the constructor, and only six types

are valid: Driver Sessions, Hardware Assets, Logical Names, Published APIs, Sessions, and Software

Modules. If the calling program specifies an object of an invalid derived type, the constructor will throw

an exception.

Constructors may enforce additional order constraints on the specified objects. The most common

constraint is for items that must be added to one of the six global collections before they are referenced

elsewhere. If an order constraint is violated, the constructor will throw an exception.

IVI Foundation 51 IVI-3.5: IVI Configuration Server Specification

5.3.5.3 Collection Constructors

Collection constructors are not public. Instead, the Configuration Server creates collections when needed,

and allows calling programs to populate the collections using the collection Add() methods or constructor

params arguments.

5.3.6 .NET Static Methods and Properties

The .NET API includes a few static methods and properties. These are documented for the classes where

they are defined, in separate sections to emphasize the fact that they are static. For the most part these

methods and properties do not have an exact match in the C or COM APIs.

The most important of the static methods is the factory method Load(…). Load combines instantiating a

ConfigStore object and deserializing a configuration store file, returning the instantiated and loaded object.

In contract, the ConfigStore constructor should only be used to create a new configuration store from

scratch.

5.3.7 .NET Schema Validation

The .NET API provides more control over validation than the C or COM APIs. The default for all of the

APIs is to validate an XML file against the Configuration Store XML schema when a file is deserialized.

In addition, the .NET API allows a calling program to deserialize a file without validation (for

performance) and to validate a file without deserializing it.

5.3.8 .NET Exceptions

Refer to section 5.12.2, IVI.NET Error Handling, of IVI-3.1, Driver Architecture Specification, for a

general overview of exceptions in IVI.NET components. Calling programs should be able to accommodate

arbitrary exceptions, including those defined by the .NET Framework.

The .NET Configuration Server does not define any new exceptions. When it explicitly throws an

exception, it throws one of the standard .NET exceptions (usually ArgumentException or

InvalidOperationException) with a custom message that indicates the problem.

The Configuration Server does not generate warnings.

IVI-3.5: IVI Configuration Server Specification 52 IVI Foundation

6. IVI Configurable Components Class (Virtual)

6.1 IVI Configurable Components Overview

The IVI Configurable Components class allows developers to add properties to several of the other

Configuration Server classes. This class is not implemented directly – it is a virtual base class. The

following Configuration Server classes inherit from the IVI Configurable Components class:

• IVI Session

• IVI Driver Session (through IVI Session)

• IVI Hardware Asset

• IVI Software Module

Each of these classes inherits Name, Description, and a reference to a collection of Data Component

objects. Each object in the Data Component collection represents either a property added by the developer

or a pointer to another collection of Data Component objects.

6.2 IVI Configurable Components References

The IVI Configurable Components class defines the following reference:

• Data Components

This section describes the reference.

IVI Foundation 53 IVI-3.5: IVI Configuration Server Specification

6.2.1 Data Components

API Technology Data Type Access

COM IIviDataComponentCollection** R/O

C IviDataComponentCollectionHandle R/O

.NET DataComponentCollection R/O

COM/.NET Property Name

DataComponents

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetConfigComponentDataComponentCollection

(IviConfigComponentHandle

ConfigComponentHandle,

IviDataComponentCollectionHandle*

DataComponentCollectionHandle);

C Parameters

Inputs Description Datatype

ConfigComponentHa

ndle

Handle to an IviConfigComponent object. You may

pass a handle to any of the derived

IviConfigComponent objects.

IviConfigCompon

entHandle

Outputs Description Datatype

DataComponentColl

ectionHandle

Handle to an IviDataComponentCollection object. IviDataComponen

tCollectionHand

le

Description

References a collection of DataComponents that modifies the object of which the collection is a part.

IVI-3.5: IVI Configuration Server Specification 54 IVI Foundation

6.3 IVI Configurable Components Properties

The IVI Configurable Components class defines the following properties:

• Description

• Name

This section describes the behavior and requirements of each property.

IVI Foundation 55 IVI-3.5: IVI Configuration Server Specification

6.3.1 Description

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Description

C Constant Name

IVICONFIG_VAL_CONFIG_COMPONENT_DESCRIPTION

Description

The description of the associated object. The empty string is a legal value for this property.

IVI-3.5: IVI Configuration Server Specification 56 IVI Foundation

6.3.2 Name

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Name

C Constant Name

IVICONFIG_VAL_CONFIG_COMPONENT_NAME

Description

The name of the associated object. The empty string is not a legal value for this property.

IVI Foundation 57 IVI-3.5: IVI Configuration Server Specification

7. IVI Configuration Store Class

7.1 IVI Configuration Store Overview

The IVI Configuration Store class is the main class of the Configuration Server. There is exactly one IVI

Configuration Store object in each instance of the configuration server. This object is created before any

others, and there is no way to delete it. Use of the Configuration Server starts with this object.

The IVI Configuration Store class allows users to find out information about the Configuration Server

using a similar approach to that used in other IVI components. Information includes Revision,

Specification Major Version, Specification Minor Version, and Vendor, as well as Name and Description.

The IVI Configuration Store class allows users to Deserialize (Load) an IVI configuration store XML file

into the Configuration Server, and to Serialize (Save) updated information out to the file again.

The IVI Configuration Store class provides two helper functions to help developers find Sessions and

Driver Sessions in the configuration store. Sessions and Driver Sessions may be identified either by their

Name or by a Logical Name that maps to their name. These functions are be used to make sure that the

logic used to search for a session is correct and consistent among IVI software modules.

Finally, the IVI Configuration Store class provides the means to navigate to collections of Configuration

Store objects. This class includes references to collections of Logical Names, Sessions, Driver Sessions,

Hardware Assets, Software Modules, and Published APIs.

7.2 IVI Configuration Store References

The IVI Configuration Store class defines the following references:

• Driver Sessions

• Hardware Assets

• Logical Names

• Published APIs

• Sessions

• Software Modules

This section describes each reference.

IVI-3.5: IVI Configuration Server Specification 58 IVI Foundation

7.2.1 Driver Sessions

API Technology Data Type Access

COM IIviDriverSessionCollection** R/O

C IviDriverSessionCollectionHandle R/O

.NET DriverSessionCollection R/O

COM/.NET Property Name

DriverSessions

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetConfigStoreDriverSessionCollection

(IviConfigStoreHandle

ConfigStoreHandle,

IviDriverSessionCollectionHandle*

DriverSessionCollectionHandle);

C Parameters

Inputs Description Datatype

ConfigStoreHandle Handle to an IviConfigStore object. IviConfigStoreH

andle

Outputs Description Datatype

DriverSessionColl

ectionHandle

Handle to an IviDriverSessionCollection object. IviDriverSessio

nCollectionHand

le

Description

References the global collection of all Driver Session objects in the configuration store.

IVI Foundation 59 IVI-3.5: IVI Configuration Server Specification

7.2.2 Hardware Assets

API Technology Data Type Access

COM IIviHardwareAssetCollection** R/O

C IviHardwareAssetCollectionHandle R/O

.NET HardwareAssetCollection R/O

COM/.NET Property Name

HardwareAssets

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetConfigStoreHardwareAssetCollection

(IviConfigStoreHandle

ConfigStoreHandle,

IviHardwareAssetCollectionHandle*

HardwareAssetCollection);

C Parameters

Inputs Description Datatype

ConfigStoreHandle Handle to an IviConfigStore object. IviConfigStoreH

andle

Outputs Description Datatype

HardwareAssetColl

ection

Handle to an IviHardwareAssetCollection object. IviHardwareAsse

tCollectionHand

le

Description

References the global collection of all Hardware Asset objects in the configuration store.

IVI-3.5: IVI Configuration Server Specification 60 IVI Foundation

7.2.3 Logical Names

API Technology Data Type Access

COM IIviLogicalNameCollection** R/O

C IviLogicalNameCollectionHandle R/O

.NET LogicalNameCollection R/O

COM/.NET Property Name

LogicalNames

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetConfigStoreLogicalNameCollection

(IviConfigStoreHandle

ConfigStoreHandle,

IviLogicalNameCollectionHandle*

LogicalNameCollectionHandle);

C Parameters

Inputs Description Datatype

ConfigStoreHandle Handle to an IviConfigStore object. IviConfigStoreH

andle

Outputs Description Datatype

LogicalNameCollec

tionHandle

Handle to an IviLogicalNameCollection object. IviLogicalNameC

ollectionHandle

Description

References the global collection of all Logical Name objects in the configuration store.

IVI Foundation 61 IVI-3.5: IVI Configuration Server Specification

7.2.4 Published APIs

API Technology Data Type Access

COM IIviPublishedAPICollection** R/O

C IviPublishedAPICollectionHandle R/O

.NET PublishedAPICollection R/O

COM/.NET Property Name

PublishedAPIs

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetConfigStorePublishedAPICollection

(IviConfigStoreHandle

ConfigStoreHandle,

IviPublishedAPICollectionHandle*

PublishedAPICollection);

C Parameters

Inputs Description Datatype

ConfigStoreHandle Handle to an IviConfigStore object. IviConfigStoreH

andle

Outputs Description Datatype

PublishedAPIColle

ction

Handle to an IviPublishedAPICollection object. IviPublishedAPI

CollectionHandl

e

Description

References the global collection of all Published API objects in the configuration store.

The Item property and Remove method for this collection require parameters different from the other

collections.

Item([in] VARIANT varIndex, [in] long MajorVersion, [in] long MinorVersion,

 [in] BSTR Type, [out, retval]IIviPublishedAPI**pVal)

Remove([in] VARIANT varIndex, [in] long MajorVersion, [in] long MinorVersion,

 [in] BSTR Type, [out, retval]IIviPublishedAPI**pVal)

If the parameter, varIndex, is an integer, the remaining parameters are ignored as a numeric index

completely identifies the item to be retrieved or removed.

The key for the Published API Collection is the combination of the PublishedAPI Name, Type, Major

Version, and Minor Version. This is the only collection in the Configuration Server that has a composite

key. Collection methods such as Item and Remove that require a key have a set of four parameters that

comprise the key.

IVI-3.5: IVI Configuration Server Specification 62 IVI Foundation

7.2.5 Sessions

API Technology Data Type Access

COM IIviSessionCollection** R/O

C IviSessionCollectionHandle R/O

.NET SessionCollection R/O

COM/.NET Property Name

Sessions

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetConfigStoreSessionCollection

(IviConfigStoreHandle

ConfigStoreHandle,

IviSessionCollectionHandle*

SessionCollectionHandle);

C Parameters

Inputs Description Datatype

ConfigStoreHandle Handle to an IviConfigStore object. IviConfigStoreH

andle

Outputs Description Datatype

SessionCollection

Handle

Handle to an IviSessionCollection object. IviSessionColle

ctionHandle

Description

References the global collection of all IVI Session objects in the configuration store. The collection of all

sessions includes all driver sessions.

IVI Foundation 63 IVI-3.5: IVI Configuration Server Specification

7.2.6 Software Modules

API Technology Data Type Access

COM IIviSoftwareModuleCollection** R/O

C IviSoftwareModuleCollectionHandle R/O

.NET SoftwareModuleCollection R/O

COM/.NET Property Name

SoftwareModules

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetConfigStoreSoftwareModuleCollection

(IviConfigStoreHandle

ConfigStoreHandle,

IviSoftwareModuleCollectionHandle*

SoftwareModuleCollection);

C Parameters

Inputs Description Datatype

ConfigStoreHandle Handle to an IviConfigStore object. IviConfigStoreH

andle

Outputs Description Datatype

SoftwareModuleCol

lection

Handle to an IviSoftwareModuleCollection object. IviSoftwareModu

leCollectionHan

dle

Description

References the global collection of all Software Module objects in the configuration store.

IVI-3.5: IVI Configuration Server Specification 64 IVI Foundation

7.3 IVI Configuration Store Properties

The IVI Configuration Store class defines the following properties:

• Actual Location

• Description

• Master Location

• Name

• Process Default Location

• Revision

• Specification Major Version

• Specification Minor Version

• Vendor

This section describes the behavior and requirements of each property.

IVI Foundation 65 IVI-3.5: IVI Configuration Server Specification

7.3.1 Actual Location

API Technology Data Type Access

.NET string R/O

C ViString R/O

COM BSTR R/O

COM/.NET Property Name

ActualLocation

C Constant Name

IVICONFIG_VAL_CONFIG_STORE_ACTUAL_LOCATION

Description

Returns the full pathname of the configuration store file that is currently being edited. In general, this value

is set when the configuration server deserializes or serializes a configuration store file. If no configuration

store file has been successfully deserialized by the current instance of the configuration server, the property

returns the empty string.

IVI-3.5: IVI Configuration Server Specification 66 IVI Foundation

7.3.2 Description

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Description

C Constant Name

IVICONFIG_VAL_CONFIG_STORE_DESCRIPTION

Description

The description of the Configuration Server component. The default value for this string is “The IVI

Configuration Server allows access to and modification of an IVI configuration store.”

IVI Foundation 67 IVI-3.5: IVI Configuration Server Specification

7.3.3 Master Location

API Technology Data Type Access

.NET string R/O

C ViString R/O

COM BSTR R/O

COM/.NET Property Name

MasterLocation

C Constant Name

IVICONFIG_VAL_CONFIG_STORE_MASTER_LOCATION

Description

Specifies the full pathname of the master configuration store. This includes the file name, which is always

IviConfigurationStore.xml.

The configuration server checks the Windows registry for a non-empty value of the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\IVI\CONFIGURATIONSERVER, MasterStore

If MasterStore exists, the value of Master Location shall be the value of this key. If MasterStore does

not exist or is an empty-value, the configuration server shall return Master Not Found error.

On 64-bit operating systems, the configuration server also checks the Windows registry for a non-empty

value of the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\IVI\CONFIGURATIONSERVER, MasterStore

If MasterStore does not exist, the configuration server shall return Master Not Found error.

On 64-bit operating systems, the configuration server compares the values of the above two MasterStore

locations. If both registry keys are not set to the same value, the configuration server shall return the

Master Store Registry Conflict error.

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

The table below specifies additional IVI configuration server status codes for this function.

Completion Codes Description

Master Not Found The registry key does not exist or the file can not be found.

Master Store Registry Conflict The locations of the master configuration store in the 32-bit and 64-

bit registry hives are not the same.

IVI-3.5: IVI Configuration Server Specification 68 IVI Foundation

7.3.4 Name

API Technology Data Type Access

.NET string R/O

C ViString R/O

COM BSTR R/O

COM/.NET Property Name

Name

C Constant Name

IVICONFIG_VAL_CONFIG_STORE_NAME

Description

The name of the Configuration Server executable.

• For a 32-bit COM executable, “IVI Configuration Server (32-bit COM)”

• For a 64-bit COM executable, “IVI Configuration Server (64-bit COM)”

• For a 32-bit C executable, “IVI Configuration Server (32-bit C)”

• For a 64-bit C executable, “IVI Configuration Server (64-bit C)”

IVI Foundation 69 IVI-3.5: IVI Configuration Server Specification

7.3.5 Process Default Location

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

ProcessDefaultLocation

C Constant Name

IVICONFIG_VAL_CONFIG_STORE_PROC_DEFAULT_LOCATION

Description

Specifies the full pathname of the default configuration store for the process in which this property is used.

If a non-empty string is assigned to this property by code executed in the process, the property shall return

that string when accessed in the same process. The empty string is a legal value for this property. Refer to

Section 0, To modify the process default configuration store using the native .NET server

• Perform steps required to access the master configuration store

• Call the Save method with the full pathname of the process default location as returned by the Process

Default Location property.

Instantiating the Right Configuration Store from Software Modules, for more information.

Implementation Note

Once the value of Process Default Location is determined by the first instance of the Configuration Server

in a process, the value is stored in an environment variable called “IVICONFIGSERVERDEFAULT”.

Subsequent instances of the Configuration Server in the same process retrieve the value of this environment

variable and return it as the value of the Process Default Location property”

IVI-3.5: IVI Configuration Server Specification 70 IVI Foundation

7.3.6 Revision

API Technology Data Type Access

.NET string R/O

C ViString R/O

COM BSTR R/O

COM/.NET Property Name

Revision

C Constant Name

IVICONFIG_VAL_CONFIG_STORE_REVISION

Description

This string shall be the current revision of the Configuration Server. The format of the revision string or a

revision string is defined in Section 5.18, File Versioning, of the IVI-3.1: Driver Architecture Specification.

IVI Foundation 71 IVI-3.5: IVI Configuration Server Specification

7.3.7 Specification Major Version

API Technology Data Type Access

.NET int R/O

C ViInt32 R/O

COM long R/O

COM/.NET Property Name

SpecificationMajorVersion

C Constant Name

IVICONFIG_VAL_CONFIG_STORE_SPEC_MAJOR_VERSION

Description

This property shall be the major version of the Configuration Server specification supported by the

Configuration Server component. The rules related to Specification Major Version are defined in Section

5.18, File Versioning, of the IVI-3.1: Driver Architecture Specification.

IVI-3.5: IVI Configuration Server Specification 72 IVI Foundation

7.3.8 Specification Minor Version

API Technology Data Type Access

.NET int R/O

C ViInt32 R/O

COM long R/O

COM/.NET Property Name

SpecificationMinorVersion

C Constant Name

IVICONFIG_VAL_CONFIG_STORE_SPEC_MINOR_VERSION

Description

This property shall be the minor version of the Configuration Server specification supported by the

Configuration Server component. The rules related to Specification Minor Version are defined in Section

5.18, File Versioning, of the IVI-3.1: Driver Architecture Specification.

IVI Foundation 73 IVI-3.5: IVI Configuration Server Specification

7.3.9 Vendor

API Technology Data Type Access

.NET string R/O

C ViString R/O

COM BSTR R/O

COM/.NET Property Name

Vendor

C Constant Name

IVICONFIG_VAL_CONFIG_STORE_VENDOR

Description

The vendor of the Configuration Server component. This string shall be “IVI Foundation, Inc.”.

IVI-3.5: IVI Configuration Server Specification 74 IVI Foundation

7.4 IVI Configuration Store Functions

The IVI Configuration Store class defines the following functions:

• Deserialize

• Get Driver Session

• Get Session

• Serialize

This section describes the behavior and requirements of each function.

IVI Foundation 75 IVI-3.5: IVI Configuration Server Specification

7.4.1 Deserialize (C and COM Only)

Description

Reads a configuration store file from a data source location, parses the data, and creates the corresponding

Configuration Server classes in memory.

Deserialize opens the configuration file specified by the Location parameter. The location parameter must

be the full pathname of the configuration store file to be opened. If the file is found, but cannot be

successfully deserialized, Deseriailize shall return a Deserialized Failed error and the Configuration Server

is returned to its initial state.

Deserialize may only be run successfully once per instance of the Configuration Server. If Deserialize is

called after being previously called successfully it shall return a Already Deserialized error. Multiple

copies of the Configuration Server can be accessed by accessing multiple instances of the Configuration

Server.

COM Method Prototype

Deserialize([in] BSTR Location);

C Function Prototype

ViStatus _VI_FUNC IviConfig_Deserialize (IviConfigStoreHandle

ConfigStoreHandle, ViConstString Location);

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

The table below specifies additional IVI configuration server status codes for this function.

Completion Codes Description

Deserialize Failed The specified Configuration Store file could not be deserialized.

Already Deserialized A deserialize was attempted after a previous de-serialize had already

succeeded.

IVI-3.5: IVI Configuration Server Specification 76 IVI Foundation

7.4.2 Get Driver Session

Description

Returns a reference to a driver session, given a name that identifies the session. Name may be either the

Name of the Driver Session object, or a logical name that refers to the Driver Session object.

To find the Driver Session object, Get Driver Session first searches the global Logical Names collection to

see if Name is defined in that collection. If Name is found in the collection, Get Driver Session examines

the referenced Session. If the Session is a Driver Session, then the Driver Session reference is returned in

the DriverSession parameter.

If Name is not found in the Logical Names collection, or if the Session referenced by the Logical Name is

not a Driver Session, Get Driver Session searches the global Driver Session collection to see if Name is

defined in the Driver Session collection. If Name is found in the Driver Session collection, then the Driver

Session reference is returned in the DriverSession parameter.

If Name is not found in the Logical Names or the Driver Session collections, Get Driver Session shall

return a NULL pointer for the DriverSession parameter and shall return a Session Not Found error. Note

that if both collections have an item that matches Name, the item found by following the Logical Name

reference is returned.

COM Method Prototype

GetDriverSession([in] BSTR Name,

 [in,out] IIviDriverSession** DriverSession);

.NET Method Prototype

public DriverSession GetDriverSession(string name)

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetDriverSession (IviConfigStoreHandle

ConfigStoreHandle,

ViConstString Name,

IviDriverSessionHandle*

DriverSessionHandle);

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

The table below specifies additional IVI configuration server status codes for this function.

Completion Codes Description

Session Not Found The session name or logical name could not be resolved to a driver

session.

IVI Foundation 77 IVI-3.5: IVI Configuration Server Specification

7.4.3 Get Session

Description

Returns a reference to a session, given a name that identifies the session. Name may be either the Name of

the Session object, or a logical name that refers to the Session object.

To find the Session object, Get Session first searches the global Logical Names collection to see if Name is

defined in that collection. If Name is found in the Logical Names collection, then the Session reference is

returned in the Session parameter.

If Name is not found in the collection, Get Session searches the global Sessions collection to see if Name is

defined in the Sessions collection. If Name is found in the collection, then the Session reference is returned

in the Session parameter.

If Name is not found in the Logical Names or the Sessions collections, Get Session returns a NULL pointer

for the Session parameter and returns a Session Not Found error.

Note that if both collections have an item that matches Name, the item found by following the Logical

Name reference is returned.

COM Method Prototype

GetSession([in] BSTR Name,

 [in,out] IIviSession** Session);

.NET Method Prototype

public Session GetSession(string name)

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetSession (IviConfigStoreHandle ConfigStoreHandle,

ViConstString Name,

IviSessionHandle* SessionHandle);

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

The table below specifies additional IVI configuration server status codes for this function.

Completion Codes Description

Session Not Found The session name or logical name could not be resolved to a session.

IVI-3.5: IVI Configuration Server Specification 78 IVI Foundation

7.4.4 Serialize (C and COM Only)

Description

Serializes a configuration store from the Configuration Server to a data source location. The Serialize

method creates the configuration file specified by the Location parameter. The location parameter must be

the full pathname of the configuration store file to be written, or a path relative to the current working

directory. If the folders specified in the pathname do not exist, this function will create them. If the file is

found, but cannot be successfully serialized, Serialize shall return a Serialize Failed error.

COM Method Prototype

Serialize([in] BSTR Location)

C Function Prototype

ViStatus _VI_FUNC IviConfig_Serialize (IviConfigStoreHandle ConfigStoreHandle,

ViConstString Location);

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

The table below specifies additional IVI configuration server status codes for this function.

Completion Codes Description

Serialize Failed The specified Configuration Store file could not be serialized.

IVI Foundation 79 IVI-3.5: IVI Configuration Server Specification

7.4.5 Add (.NET Only)

Description

Adds a set of items to the six global collections in the configuration store.

Children parameters may be any one of the following classes deriving from Entity:

• PublishedApi,

• SoftwareModule

• HardwareAsset

• DriverSession

• Session

• LogicalName

Children parameters are added to the corresponding global collections in the order in which they are

specified. Order is important because if a child parameter references another child parameter, the

referenced item must have already been added to its corresponding global collection.

.NET Prototype

public void Add(params Entity[] children)

IVI-3.5: IVI Configuration Server Specification 80 IVI Foundation

7.4.6 Save (.NET Only)

Description

Serializes a configuration store from the Configuration Server to a data source location. The Serialize

method creates the configuration file specified by the Location parameter. The location parameter must be

the full pathname of the configuration store file to be written, or a path relative to the current working

directory. If the folders specified in the pathname do not exist, this function will create them.

.NET Prototype

public void Save (ConfigStoreLocation location = ConfigStoreLocation.Master)

public void Save (string location)

7.5 IVI Configuration Store Constructor (.NET Only)

The .NET IVI Configuration Store class defines one public constructor.

This section describes the behavior and requirements of the constructor.

IVI Foundation 81 IVI-3.5: IVI Configuration Server Specification

7.5.1 ConfigStore Constructor

Description

Creates an instance of a configuration server.

If there are no children parameters, the ConfigStore is empty, and may be serialized to create a “default”

configuration store XML file that is logically the equivalent of the file provided when the ConfigServer

component is installed.

Children parameters may be any one of the classes in the list below. These classes derive from the Entity

class. They are added in the order shown in the list below, which guarantees that referenced entities are

added before the entities that reference them.

• PublishedApi,

• HardwareAsset

• SoftwareModule

• Session

• DriverSession

• LogicalName

In addition to using this constructor, new instances of the .NET configuration server may also be created

using the following static factory methods:

• Load (refer to section 7.7.1, Load)

• Load Without Validation (refer to section 7.7.2, Load Without Validation)

.NET Prototype

public ConfigStore(params Entity[] children)

.NET Parameters

Inputs Description .NET Type

children Published APIs, Software Modules, Hardware Assets,

Driver Sessions, Sessions, and Logical Names

to be added to the corresponding global collections

referenced by the Config Store. There may be zero to n

children of each type.

params Entity[]

IVI-3.5: IVI Configuration Server Specification 82 IVI Foundation

7.6 IVI Configuration Store Static Property (.NET Only)

The .NET IVI Configuration Store class defines the following static property for the ConfigStore class:

• SchemaLocation

This section describes the behavior and requirements of this static method.

IVI Foundation 83 IVI-3.5: IVI Configuration Server Specification

7.6.1 Schema Location

API Technology Data Type Access

.NET string R/O

Description

The full path of the Configuration Store’s XML schema file. The schema is used when validating

configuration store XML.

.NET Prototype

public static string SchemaLocation

IVI-3.5: IVI Configuration Server Specification 84 IVI Foundation

7.7 IVI Configuration Store Static Methods (.NET Only)

The .NET IVI Configuration Store class defines the following static methods for the ConfigStore class:

• Load

• LoadWithoutValidation

• Validate

This section describes the behavior and requirements of each static method.

IVI Foundation 85 IVI-3.5: IVI Configuration Server Specification

7.7.1 Load

Description

Create an instance of the ConfigStore class, deserialize the specified file, or the file at the master location if

no file is specified, and return the instance. Validate the XML file against the Configuration Store’s XML

schema.

This method incurs the overhead of schema validation.

.NET Prototypes

public static ConfigStore Load(ConfigStoreLocation location =

ConfigStoreLocation.Master)

public static ConfigStore Load(string location)

IVI-3.5: IVI Configuration Server Specification 86 IVI Foundation

7.7.2 Load Without Validation

Description

Create an instance of the ConfigStore class, deserialize the specified file, or the file at the master location if

no file is specified, and return the instance. Do not validate the XML file against the Configuration Store’s

XML schema.

This method does not incur the overhead of schema validation.

.NET Prototype

public static ConfigStore LoadWithoutValidation (ConfigStoreLocation location =

ConfigStoreLocation.Master)

public static ConfigStore LoadWithoutValidation (string location)

IVI Foundation 87 IVI-3.5: IVI Configuration Server Specification

7.7.3 Validate

Description

Validate the specified file against the Configuration Store’s XML schema.

.NET Prototype

public static ConfigStore Validate (ConfigStoreLocation location =

ConfigStoreLocation.Master)

public static ConfigStore Validate (string location)

IVI-3.5: IVI Configuration Server Specification 88 IVI Foundation

8. IVI Hardware Asset Class

8.1 IVI Hardware Asset Overview

The IVI Hardware Asset class identifies the physical assets available to a system. Hardware assets are

identified by their I/O Resource Descriptor, which generally speaking will be unique for a given instrument

on a given PC.

The Data Components objects referenced by a hardware asset serve to document the hardware asset.

8.1.1 Documentation Data Components

Data components that document the hardware asset may be added to the hardware asset’s data components

collection at any time. These data components shall have Used In Session equal to “None” since they are

not used to configure a software module.

8.2 IVI Hardware Asset Reference

The IVI Hardware Asset class inherits the following reference from IVI Configurable Component

(Section5.3, .NET API Special Features Overview

This section defines special features of the .NET Configuration Server.

8.2.1 .NET Data Types

.NET uses the following basic data types in place of the corresponding COM types:

COM Data Type .NET Data Type

BSTR string

long int

double double

VARIANT_BOOL bool

8.2.2 .NET Entity Class

Entity is an abstract base class that includes basic functionality used by other Config Store classes. Most of

the class is not publically visible, but the class itself is visible and is used in several constructors including

the main ConfigStore constructor.

The Entity class defines the following public property:

• Name

The following public Config Store classes are derived from Entity.

• HardwareAsset

• PublishedApi

• SoftwareModule

• PhysicalName

• PhysicalRange

• LogicalName

• Session

• DriverSession

• VirtualName

IVI Foundation 89 IVI-3.5: IVI Configuration Server Specification

• VirtualRange

• DataComponent

• IviStructure

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

For additional uses of the Entity class in .NET constructors, refer to 5.3.5.2, Params Parameters in

Constructors.

8.2.2.1 The Entity.Name property.

The definition of Entity.Name matches the definition of the Name property in the classes that derive from

entity.

In cases where a class places additional constriants on the Name property, the validation of Entity.Name is

overridden by the class:

• Published Api

• IVI Physical Name

• IVI Virtual Name

IVI-3.5: IVI Configuration Server Specification 90 IVI Foundation

8.2.3 .NET Enumerations

The .NET API defines the following enumerations:

• Config Store Location

• IVI Published API Name

• IVI Published API Type

• Session Usage

8.2.3.1 Config Store Location

The Config Store Location enumeration provides members for the two standard configuration store XML

file locations.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

ConfigStoreLocation.

Master

The master location.

 .NET ConfigStoreLocation.Master

ConfigStoreLocation.

ProcessDefault

The default location for the current process.

 .NET ConfigStoreLocation.ProcessDefault

8.2.3.2 IVI Published API Name

The IVI Published API Name enumeration provides members for each of the standard APIs defined for IVI

Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiName.

IviDmm

The IviDmm instrument class.

 .NET IviPublishedApiName.IviDmm

IviPublishedApiName.

IviDriver

The IviDriver inherent capabilities class.

 .NET IviPublishedApiName.IviDriver

IviPublishedApiName.

IviScope

The IviScope instrument class.

 .NET IviPublishedApiName.IviScope

IviPublishedApiName.

IviFgen

The IviFgen instrument class.

 .NET IviPublishedApiName.IviFgen

IviPublishedApiName.

IviDCPwr

The IviDCPwr instrument class.

 .NET IviPublishedApiName.IviDCPwr

IviPublishedApiName.

IviACPwr

The IviACPwr instrument class.

 .NET IviPublishedApiName.IviACPwr

IVI Foundation 91 IVI-3.5: IVI Configuration Server Specification

IviPublishedApiName.

IviSwtch

The IviSwtch instrument class.

 .NET IviPublishedApiName.IviSwtch

IviPublishedApiName.

IviPwrMeter

The IviPwrMeter instrument class.

 .NET IviPublishedApiName.IviPwrMeter

IviPublishedApiName.

IviSpecAn

The IviSpecAn instrument class.

 .NET IviPublishedApiName.IviSpecAn

IviPublishedApiName.

IviRFSigGen

The IviRFSigGen instrument class.

 .NET IviPublishedApiName.IviRFSigGen

IviPublishedApiName.

IviCounter

The IviCounter instrument class.

 .NET IviPublishedApiName.IviCounter

IviPublishedApiName.

IviDownConverter

The IviDownconverter instrument class.

 .NET IviPublishedApiName.IviDownconverter

IviPublishedApiName.

IviUpConverter

The IviUpconverter instrument class.

 .NET IviPublishedApiName.IviUpconverter

IviPublishedApiName.

IviDigitizer

The IviDigitizer instrument class.

 .NET IviPublishedApiName.IviDigitizer

IviPublishedApiName.

IviLxiSync

The IviLxiSync instrument class.

 .NET IviPublishedApiName.IviLxiSync

8.2.3.3 IVI Published API Type

The IVI Published API Type enumeration provides members for the three standard API types defined for

IVI Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiType.

IviCom

The IVI-COM API type.

 .NET IviPublishedApiType.IviCom

IviPublishedApiType.

IviNet

The IVI.NET API type.

 .NET IviPublishedApiType.IviNet

IviPublishedApiType.

IviC

The IVI-C API type.

 .NET IviPublishedApiType.IviC

8.2.3.4 Session Usage

The Config Store Location enumeration provides members for the three standard values for data

component Used In Session properties.

IVI-3.5: IVI Configuration Server Specification 92 IVI Foundation

Name Description

 Language Identifier Value

SessionUsage.None A session does not need to define a value for this data component.

 .NET SessionUsage.None 0

SessionUsage.

Required

A session must define a value for this data component.

 .NET SessionUsage.Required 1

SessionUsage.

Optional

A session may define a value for this data component.

 .NET SessionUsage.Optional 2

8.2.4 Collections in .NET

Refer to section 4.5, Collections in .NET for a description of collections in .NET.

8.2.5 .NET Constructors

In contrast to the COM API which does not allow parameterized constructors, the .NET API uses

parameterized constructors, so that new objects have legal and consistent data from the start.

8.2.5.1 Constructors and Property Access

Each constructor includes parameters for

• Properties that serve as keys in the corresponding collection. For example, Name is the key value for

nearly all classes, and so name is a common constructor parameter.

• Properties that should not be changed after they are set initially. For example, the Prefix property for

SoftwareModules only needs to be set once, and does not need to be changed after that.

In general, if a constructor includes a parameter, the corresponding property is read only.

8.2.5.2 Params Parameters in Constructors

Some constructors include a params parameter. In the .NET API, these allow a calling program to specify

members of the object’s collections. For example, the constructor for the Virtual Name class includes the

virtualRanges parameter, which allows the calling program to specify multiple Virtual Range objects to

be added to the Virtual Name’s Virtual Range collection.

In most cases the type of the params parameter is an array of a base type, either Entity or DataComponent.

This allows the calling program to specify any object whose class derives from the base class. The

constructor is then responsible for ensuring that the specified objects are valid for that constructor. For

example, the Config Store constructor has a params parameter of type Entity[]. This allows the calling

program to specify any class that derives from Entity as an argument. However, the Config Store

constructor checks each argument to make sure that they are valid for the constructor, and only six types

are valid: Driver Sessions, Hardware Assets, Logical Names, Published APIs, Sessions, and Software

Modules. If the calling program specifies an object of an invalid derived type, the constructor will throw

an exception.

Constructors may enforce additional order constraints on the specified objects. The most common

constraint is for items that must be added to one of the six global collections before they are referenced

elsewhere. If an order constraint is violated, the constructor will throw an exception.

IVI Foundation 93 IVI-3.5: IVI Configuration Server Specification

8.2.5.3 Collection Constructors

Collection constructors are not public. Instead, the Configuration Server creates collections when needed,

and allows calling programs to populate the collections using the collection Add() methods or constructor

params arguments.

8.2.6 .NET Static Methods and Properties

The .NET API includes a few static methods and properties. These are documented for the classes where

they are defined, in separate sections to emphasize the fact that they are static. For the most part these

methods and properties do not have an exact match in the C or COM APIs.

The most important of the static methods is the factory method Load(…). Load combines instantiating a

ConfigStore object and deserializing a configuration store file, returning the instantiated and loaded object.

In contract, the ConfigStore constructor should only be used to create a new configuration store from

scratch.

8.2.7 .NET Schema Validation

The .NET API provides more control over validation than the C or COM APIs. The default for all of the

APIs is to validate an XML file against the Configuration Store XML schema when a file is deserialized.

In addition, the .NET API allows a calling program to deserialize a file without validation (for

performance) and to validate a file without deserializing it.

8.2.8 .NET Exceptions

Refer to section 5.12.2, IVI.NET Error Handling, of IVI-3.1, Driver Architecture Specification, for a

general overview of exceptions in IVI.NET components. Calling programs should be able to accommodate

arbitrary exceptions, including those defined by the .NET Framework.

The .NET Configuration Server does not define any new exceptions. When it explicitly throws an

exception, it throws one of the standard .NET exceptions (usually ArgumentException or

InvalidOperationException) with a custom message that indicates the problem.

The Configuration Server does not generate warnings.

IVI Configurable Components Class (Virtual)):

• Data Components

8.3 IVI Hardware Asset Properties

The IVI Hardware Asset class defines the following property:

• I/O Resource Descriptor

The IVI Hardware Asset class inherits the following properties from IVI Configurable Component

(Section5.3, .NET API Special Features Overview

This section defines special features of the .NET Configuration Server.

8.3.1 .NET Data Types

.NET uses the following basic data types in place of the corresponding COM types:

COM Data Type .NET Data Type

BSTR string

long int

IVI-3.5: IVI Configuration Server Specification 94 IVI Foundation

double double

VARIANT_BOOL bool

8.3.2 .NET Entity Class

Entity is an abstract base class that includes basic functionality used by other Config Store classes. Most of

the class is not publically visible, but the class itself is visible and is used in several constructors including

the main ConfigStore constructor.

The Entity class defines the following public property:

• Name

The following public Config Store classes are derived from Entity.

• HardwareAsset

• PublishedApi

• SoftwareModule

• PhysicalName

• PhysicalRange

• LogicalName

• Session

• DriverSession

• VirtualName

• VirtualRange

• DataComponent

• IviStructure

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

For additional uses of the Entity class in .NET constructors, refer to 5.3.5.2, Params Parameters in

Constructors.

8.3.2.1 The Entity.Name property.

The definition of Entity.Name matches the definition of the Name property in the classes that derive from

entity.

In cases where a class places additional constriants on the Name property, the validation of Entity.Name is

overridden by the class:

• Published Api

• IVI Physical Name

• IVI Virtual Name

IVI Foundation 95 IVI-3.5: IVI Configuration Server Specification

8.3.3 .NET Enumerations

The .NET API defines the following enumerations:

• Config Store Location

• IVI Published API Name

• IVI Published API Type

• Session Usage

8.3.3.1 Config Store Location

The Config Store Location enumeration provides members for the two standard configuration store XML

file locations.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

ConfigStoreLocation.

Master

The master location.

 .NET ConfigStoreLocation.Master

ConfigStoreLocation.

ProcessDefault

The default location for the current process.

 .NET ConfigStoreLocation.ProcessDefault

8.3.3.2 IVI Published API Name

The IVI Published API Name enumeration provides members for each of the standard APIs defined for IVI

Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiName.

IviDmm

The IviDmm instrument class.

 .NET IviPublishedApiName.IviDmm

IviPublishedApiName.

IviDriver

The IviDriver inherent capabilities class.

 .NET IviPublishedApiName.IviDriver

IviPublishedApiName.

IviScope

The IviScope instrument class.

 .NET IviPublishedApiName.IviScope

IviPublishedApiName.

IviFgen

The IviFgen instrument class.

 .NET IviPublishedApiName.IviFgen

IviPublishedApiName.

IviDCPwr

The IviDCPwr instrument class.

 .NET IviPublishedApiName.IviDCPwr

IviPublishedApiName.

IviACPwr

The IviACPwr instrument class.

 .NET IviPublishedApiName.IviACPwr

IVI-3.5: IVI Configuration Server Specification 96 IVI Foundation

IviPublishedApiName.

IviSwtch

The IviSwtch instrument class.

 .NET IviPublishedApiName.IviSwtch

IviPublishedApiName.

IviPwrMeter

The IviPwrMeter instrument class.

 .NET IviPublishedApiName.IviPwrMeter

IviPublishedApiName.

IviSpecAn

The IviSpecAn instrument class.

 .NET IviPublishedApiName.IviSpecAn

IviPublishedApiName.

IviRFSigGen

The IviRFSigGen instrument class.

 .NET IviPublishedApiName.IviRFSigGen

IviPublishedApiName.

IviCounter

The IviCounter instrument class.

 .NET IviPublishedApiName.IviCounter

IviPublishedApiName.

IviDownConverter

The IviDownconverter instrument class.

 .NET IviPublishedApiName.IviDownconverter

IviPublishedApiName.

IviUpConverter

The IviUpconverter instrument class.

 .NET IviPublishedApiName.IviUpconverter

IviPublishedApiName.

IviDigitizer

The IviDigitizer instrument class.

 .NET IviPublishedApiName.IviDigitizer

IviPublishedApiName.

IviLxiSync

The IviLxiSync instrument class.

 .NET IviPublishedApiName.IviLxiSync

8.3.3.3 IVI Published API Type

The IVI Published API Type enumeration provides members for the three standard API types defined for

IVI Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiType.

IviCom

The IVI-COM API type.

 .NET IviPublishedApiType.IviCom

IviPublishedApiType.

IviNet

The IVI.NET API type.

 .NET IviPublishedApiType.IviNet

IviPublishedApiType.

IviC

The IVI-C API type.

 .NET IviPublishedApiType.IviC

8.3.3.4 Session Usage

The Config Store Location enumeration provides members for the three standard values for data

component Used In Session properties.

IVI Foundation 97 IVI-3.5: IVI Configuration Server Specification

Name Description

 Language Identifier Value

SessionUsage.None A session does not need to define a value for this data component.

 .NET SessionUsage.None 0

SessionUsage.

Required

A session must define a value for this data component.

 .NET SessionUsage.Required 1

SessionUsage.

Optional

A session may define a value for this data component.

 .NET SessionUsage.Optional 2

8.3.4 Collections in .NET

Refer to section 4.5, Collections in .NET for a description of collections in .NET.

8.3.5 .NET Constructors

In contrast to the COM API which does not allow parameterized constructors, the .NET API uses

parameterized constructors, so that new objects have legal and consistent data from the start.

8.3.5.1 Constructors and Property Access

Each constructor includes parameters for

• Properties that serve as keys in the corresponding collection. For example, Name is the key value for

nearly all classes, and so name is a common constructor parameter.

• Properties that should not be changed after they are set initially. For example, the Prefix property for

SoftwareModules only needs to be set once, and does not need to be changed after that.

In general, if a constructor includes a parameter, the corresponding property is read only.

8.3.5.2 Params Parameters in Constructors

Some constructors include a params parameter. In the .NET API, these allow a calling program to specify

members of the object’s collections. For example, the constructor for the Virtual Name class includes the

virtualRanges parameter, which allows the calling program to specify multiple Virtual Range objects to

be added to the Virtual Name’s Virtual Range collection.

In most cases the type of the params parameter is an array of a base type, either Entity or DataComponent.

This allows the calling program to specify any object whose class derives from the base class. The

constructor is then responsible for ensuring that the specified objects are valid for that constructor. For

example, the Config Store constructor has a params parameter of type Entity[]. This allows the calling

program to specify any class that derives from Entity as an argument. However, the Config Store

constructor checks each argument to make sure that they are valid for the constructor, and only six types

are valid: Driver Sessions, Hardware Assets, Logical Names, Published APIs, Sessions, and Software

Modules. If the calling program specifies an object of an invalid derived type, the constructor will throw

an exception.

Constructors may enforce additional order constraints on the specified objects. The most common

constraint is for items that must be added to one of the six global collections before they are referenced

elsewhere. If an order constraint is violated, the constructor will throw an exception.

IVI-3.5: IVI Configuration Server Specification 98 IVI Foundation

8.3.5.3 Collection Constructors

Collection constructors are not public. Instead, the Configuration Server creates collections when needed,

and allows calling programs to populate the collections using the collection Add() methods or constructor

params arguments.

8.3.6 .NET Static Methods and Properties

The .NET API includes a few static methods and properties. These are documented for the classes where

they are defined, in separate sections to emphasize the fact that they are static. For the most part these

methods and properties do not have an exact match in the C or COM APIs.

The most important of the static methods is the factory method Load(…). Load combines instantiating a

ConfigStore object and deserializing a configuration store file, returning the instantiated and loaded object.

In contract, the ConfigStore constructor should only be used to create a new configuration store from

scratch.

8.3.7 .NET Schema Validation

The .NET API provides more control over validation than the C or COM APIs. The default for all of the

APIs is to validate an XML file against the Configuration Store XML schema when a file is deserialized.

In addition, the .NET API allows a calling program to deserialize a file without validation (for

performance) and to validate a file without deserializing it.

8.3.8 .NET Exceptions

Refer to section 5.12.2, IVI.NET Error Handling, of IVI-3.1, Driver Architecture Specification, for a

general overview of exceptions in IVI.NET components. Calling programs should be able to accommodate

arbitrary exceptions, including those defined by the .NET Framework.

The .NET Configuration Server does not define any new exceptions. When it explicitly throws an

exception, it throws one of the standard .NET exceptions (usually ArgumentException or

InvalidOperationException) with a custom message that indicates the problem.

The Configuration Server does not generate warnings.

IVI Configurable Components Class (Virtual)):

• Description

• Name

This section describes the behavior and requirements of the property defined in the IVI Hardware class.

IVI Foundation 99 IVI-3.5: IVI Configuration Server Specification

8.3.9 I/O Resource Descriptor

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

IOResourceDescriptor

C Constant Name

IVICONFIG_VAL_HARDWARE_ASSET_IO_DESCRIPTOR

Description

I/O Resource Descriptor stores a string that specifies the address of the hardware asset that can be

recognized by I/O used by a software module that will access the hardware. For a complete description of

the I/O Resource Descriptor property, refer to Section 5.17, Function Compliance Rules and Section 6.14,

Initialize, of the IVI-3.2: Inherent Capabilities Specification.

The empty string is a legal value for this property.

8.4 IVI Hardware Asset Constructor (.NET Only)

The .NET IVI Hardware Asset class defines one public constructor.

This section describes the behavior and requirements of the constructor.

IVI-3.5: IVI Configuration Server Specification 100 IVI Foundation

8.4.1 HardwareAsset Constructor

Description

Creates an instance of a hardware asset.

DataComponents parameters may be any one of the following classes deriving from DataComponent:

• IviStructure,

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

DataComponents parameters are added to the Harware Asset’s Data Components Collection in the order in

which they are specified.

The IVI Published Api referenced by a DataComponents IviAPIReference parameter must have been added

to the global Published API Collection before the Hardware Asset is added to the global Hardware Asset

Collection.

.NET Prototype

public HardwareAsset(string name, string ioResourceDescriptor,

 params DataComponent[] dataComponents)

.NET Parameters

Inputs Description .NET Type

name The name of the Hardware Asset. This name must be

unique in any collection of Hardware Assets which

includes this one.

string

ioResourceDescriptor The I/O Resource Descriptor of the asset. string

dataComponents Zero to n Data Components to be referenced by this

Hardware Asset.

DataComponent[]

IVI Foundation 101 IVI-3.5: IVI Configuration Server Specification

9. IVI Published API Class

9.1 IVI Published API Overview

Published APIs are APIs that are supported across several products, and as such are published

independently of any one component that implements them. Published APIs may be standard APIs

published by the IVI Foundation, such as the IviDriver API for IVI driver inherent capabilities (refer to IVI-

3.2: Inherent Capabilities Specification) or the instrument class specification APIs. Published APIs may

also be IVI-MSS roles or IVI Signal Interface APIs. Published APIs may also be vendor-defined APIs that

span multiple components.

Published APIs are identified by name. The name is a logical description of the API. For instance, the IVI-

C IviDriver API consists of function prototypes, attribute ID constants, and so on, while the IVI-COM

IviDriver API consists of IDL enumerations and interface definitions. In both cases, the name of the

published API is “IviDriver”. Published APIs are not necessarily tied to any particular revision of an API.

Suppose that the IviDriver API is revised, so that both version 1 and version 2 are implemented in different

drivers. In both cases, the name of the published API is “IviDriver”. Published API names are specified by

the document that specifies the API.

For IVI Instrument Classes, the published API name shall be the instrument class name.

The Type field identifies the syntax of the API. “IVI.NET”, “IVI-C”, and “IVI-COM” are predefined

values that shall be used for IVI defined APIs. There will be separate Published API entries in the

configuration server for the IVI.NET IviDriver API, the IVI-C IviDriver API, and the IVI-COM IviDriver

API.

The Version fields identify revisions of the API specification which are reflected in the API. Multiple

revisions of a specific API (identified by Name and Type) may be stored in the configuration store. For

IviDriver and IVI class specifications, the major and minor versions shall be the major and minor versions

of the specification supported by the driver.

Together, the Name, Type, and Version properties identify a unique entry in the global Published API

collection. This uniqueness is enforced by the configuration server. However, the properties appear

individually in the API.

9.2 IVI Published API Properties

The IVI Published API class defines the following properties:

• Major Version

• Minor Version

• Name

• Type

This section describes the behavior and requirements of each property.

IVI-3.5: IVI Configuration Server Specification 102 IVI Foundation

9.2.1 Major Version

API Technology Data Type Access

.NET int R/O

C ViInt32 R/W

COM long R/W

COM/.NET Property Name

MajorVersion

C Constant Name

IVICONFIG_VAL_PUBLISHED_API_MAJOR_VERSION

Description

The major version of this revision of the published API. This is determined by the person or group who

publishes the API.

IVI Foundation 103 IVI-3.5: IVI Configuration Server Specification

9.2.2 Minor Version

API Technology Data Type Access

.NET int R/O

C ViInt32 R/W

COM long R/W

COM/.NET Property Name

MinorVersion

C Constant Name

IVICONFIG_VAL_PUBLISHED_API_MINOR_VERSION

Description

The minor version of this revision of the published API. This is determined by the person or group who

publishes the API.

IVI-3.5: IVI Configuration Server Specification 104 IVI Foundation

9.2.3 Name

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Name

C Constant Name

IVICONFIG_VAL_PUBLISHED_API_NAME

Description

The name of a Published API. Name may refer to either:

• An IVI-defined API. In this case, the first 3 characters of the string shall be “Ivi”. These API names

are defined in the various IVI specifications.

• An API defined outside of the IVI Foundation. In this case, the first three characters of the string shall

not be “Ivi”, where “Ivi” is case insensitive. The definition of these names is specific to the person or

group that defines the API.

The empty string is not a legal value for this property.

IVI Foundation 105 IVI-3.5: IVI Configuration Server Specification

9.2.4 Type

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Type

C Constant Name

IVICONFIG_VAL_PUBLISHED_API_TYPE

Description

The type of a Published API.

Three predefined values are supported for the IVI defined interfaces, “IVI.NET”, “IVI-C”, and “IVI-

COM”. These values shall be used for all IVI defined inherent and class APIs.

Other user-defined values may be used for other types of APIs. However, if the APIs follow the style for

IVI.NET, IVI-C, or IVI-COM interfaces as described in IVI-3.4: API Style Guide, it is recommended that

“IVI.NET”, “IVI-C”, or “IVI-COM” be used as the type, respectively.

The empty string is not a legal value for this property.

IVI-3.5: IVI Configuration Server Specification 106 IVI Foundation

9.3 IVI Published API Static Methods (.NET Only)

The IVI Configuration Store class defines the following methods to assist the calling program in translating

between IviPublishedApiName and string, and IviPublishedApiType and string:

• ParseName

• ParseType

• TryParseName

• TryParseType

• TypeToString

This section describes the behavior and requirements of each method.

IVI Foundation 107 IVI-3.5: IVI Configuration Server Specification

9.3.1 Parse Name

Description

Converts the specified Published API name class name to the corresponding enum value for an IVI defined

Published API. If there is not a corresponding IVI defined name for the specified Published API name, the

method throws an ArgumentException with an explanatory message.

To avoid handling an exception, use this method only if you are sure that the specified Published API name

is an IVI defined name. If you are not sure, use the Try Parse Name method instead. Refer to section

9.3.3, Try Parse Name for details.

.NET Prototype

public static IviPublishedApiName ParseName(string name)

.NET Parameters

Inputs Description .NET Type

name The Published API name. string

Return Value Description .NET Type

The IVI defined Published API name. IviPublishedApiName

IVI-3.5: IVI Configuration Server Specification 108 IVI Foundation

9.3.2 Parse Type

Description

Converts the specified Published API type name to the corresponding enum value for an IVI defined

Published API type. If there is not a corresponding IVI defined type for the specified Published API type

name, the method throws an ArgumentException with an explanatory message

To avoid handling an exception, use this method only if you are sure that the specified Published API type

name is an IVI defined Published API type. If you are not sure, use the Try Parse Type method instead.

Refer to section 0, .NET Parameters

Inputs Description .NET Type

name The name of the Published API. string

Outputs Description .NET Type

iviName The IVI defined Published API name that corresponds to the

specified name, if one exists. If one does not exist, this value

is undefined.

IviPublishedApiName

Return Value Description .NET Type

True if an IVI defined name was found for the specified

name, otherwise false.

bool

Try Parse Type for details.

.NET Prototype

public static IviPublishedApiType ParseType(string typeName)

.NET Parameters

Inputs Description .NET Type

typeName The name of the Published API Type. string

Return Value Description .NET Type

The IVI defined Published API name. IviPublishedApiType

IVI Foundation 109 IVI-3.5: IVI Configuration Server Specification

9.3.3 Try Parse Name

Description

Converts the specified Published API name to the corresponding enum value for an IVI defined Published

API type. If there is not a corresponding IVI defined name for the specified name, this function returns

False and the iviName output parameter is undefined.

.NET Method Prototype

public static bool TryParseName(string name, out IviPublishedApiName iviName)

.NET Parameters

Inputs Description .NET Type

name The name of the Published API. string

Outputs Description .NET Type

iviName The IVI defined Published API name that corresponds to the

specified name, if one exists. If one does not exist, this value

is undefined.

IviPublishedApiName

Return Value Description .NET Type

True if an IVI defined name was found for the specified

name, otherwise false.

bool

IVI-3.5: IVI Configuration Server Specification 110 IVI Foundation

9.3.4 Try Parse Type

Description

Converts the specified Published API type name to the corresponding enum value for an IVI defined

Published API type. If there is not a corresponding IVI defined type for the specified Published API type

name, this function returns False and the type output parameter is undefined.

.NET Prototype

public static bool TryParseType(string typeName, out IviPublishedApiType type)

.NET Parameters

Inputs Description .NET Type

typeName The name of the Published API Type.. string

Outputs Description .NET Type

type The IVI defined type that corresponds to the specified

typeName, if one exists. If one does not exist, this value is

undefined.

IviPublishedApiType

Return Value Description .NET Type

True if an IVI defined type was found for the Published API

Type, otherwise false.

bool

IVI Foundation 111 IVI-3.5: IVI Configuration Server Specification

9.3.5 Type To String

Description

Converts the specified IVI defined Published API type to a string.

.NET Method Prototype

public static string TypeToString(IviPublishedApiType type)

.NET Parameters

Inputs Description .NET Type

type The name of an IVI defined Published API. string

Return Value Description .NET Type

The string form of the name. bool

IVI-3.5: IVI Configuration Server Specification 112 IVI Foundation

9.4 IVI Published API Constructors (.NET Only)

The .NET IVI Published API class defines two public constructors.

The first constructor takes arbitrary values for name and type, and has the flexibility to describe published

APIs that are defined by software module vendors for modules that are not defined by the IVI Foundation.

This constructors paramaters more closely match the data types of the corresponding .NET properties.

The second constructor takes an enumerated value for name and type, and has the advantage of limiting the

calling program to a list of valid values for IVI instrument drivers when that is what is intended.

This section describes the behavior and requirements of the constructors.

9.4.1 PublishedAPI Constructors

Description

Creates an instance of an Ivi Published Api.

.NET Prototype

public PublishedApi(string name,

 string type,

 int majorVersion,

 int minorVersion)

public PublishedApi(IviPublishedApiName name,

 IviPublishedApiType type,

 int majorVersion,

 int minorVersion)

.NET Parameters

Inputs Description .NET Type

name The name of any Ivi Published Api. string

The name of an Ivi Published Api that is supported by the

IVI Foundation for IVI specific drivers,

IviPublishedApiName

type The type of any Ivi Published Api. string

The type of an Ivi Published Api that is supported by the IVI

Foundation for IVI specific drivers,

IviPublishedApiType

majorVersion The major version of the revision of the published API. int

minorVersion The minor version of the revision of the published API. int

IVI Foundation 113 IVI-3.5: IVI Configuration Server Specification

9.5 IVI Published API Collection Methods and Operators (.NET Only)

All of the IVI configuration server collections have Name as the unique key value, with the exception of

the IVI Published API Collection. Each item in a IVI Published API Collection is uniquely identified by a

combination of four values: Name, Type, Major Version, and Minor Version. As a result, operations on the

IVI Published API collection take four parameters to represent the key, rather than the one parameter used

in corresponding operations for other collections.

The public IVI Published API Collection methods and operators affected by the key requirements are:

• [] – The indexer for the collection.

• Contains Key

• Remove

• TryGetValue

There are two forms of each method/operator. The first form allows for general definition of Published

APIs by taking string values for name and type parameters. The second form allows for validated

definition of IVI defined APIs by taking IviPublishedAPIName values for the name parameter and

IviPublishedAPIType values for the type parameter.

IVI-3.5: IVI Configuration Server Specification 114 IVI Foundation

10. IVI Software Module Class

10.1 IVI Software Module Overview

The Software Module class identifies IVI software components. IVI software components include, but are

not limited to, various types of IVI drivers and IVI-MSS components.

A Software Module is a software component that exposes its functionality via an ANSI C, COM, or .NET

API, or both. For ANSI C modules, the value of the Module Path property is the full pathname or simple

filename of the DLL containing the ANSI C entry points. For COM modules, the value of the ProgID

property is the version independent ProgID of the software module’s COM coclass. If a single vendor

supports both ANSI C and COM APIs for the Software Module object, both Module Path and ProgID have

valid values. The Software Module installer is responsible for making sure one or both of these entries are

not empty. If both entries are empty, the client program cannot find the Software Module’s executable

code.

.NET software modules are always in separate SoftwareModules. For .NET software modules, the

AssemblyQualifiedClassName is used to instrantiate the driver. ModulePath and ProgID are not used. The

Software Module installer is responsible for making sure this entry is not empty. If it is empty, the client

program cannot find the Software Module’s executable code. The name of a .NET software module for

IVI.NET specific instrument drivers shall be <Namespace>.<FwkVerShortName>.

Software Modules may expose one or more APIs that are published and implemented by one or more

modules. IVI class-compliant interfaces are examples of such APIs. Refer to Section 9.1, IVI Published

API Overview for a description of how Published APIs are defined and treated in the Configuration Server.

If a software module implements both ANSI C and COM APIs for the same module, the associated

Published API collection shall include references to both types of the APIs.

Software Modules may implement repeated capabilities. Refer to Section 2.8.7. IVI API Reference for a

description of how repeated capabilities are defined in the Configuration Server. If a Software Module

implements repeated capabilities, if must reference a collection of IVI Physical Name objects. The IVI

Physical Name objects may be structured hierarchically to reflect a hierarchy of repeated capabilities in the

Software Module. Refer to Section 11.1, IVI Physical Name Overview for an overview of how IVI

Physical Names may be structured hierarchically.

The Data Components objects referenced by a software module are either configurable initial settings or

serve to document the software module.

10.1.1 Configurable Initial Settings

A configurable initial setting in an IVI Software Module is an IVI Data Component object with particular

characteristics. An IVI Software Module object’s IVI Data Components collection may contain an IVI

Structure whose name is “Configurable Initial Settings”. An IVI Data Component in this IVI Structure with

Used In Session equal to “Required” or “Optional”, Read Only equal to “True”, and Type equal to

“Boolean”, “String”, “Integer”, “Real”, or “APIReference” is a configurable initial setting. An IVI

Structure is never a configurable initial setting. The Value property of the data component is a suitable

default value for the setting when the software module is initialized, if possible. The Description property

should contain a description of the configurable initial setting and its possible values. If this exceeds the

practical size limit for a string, then the data component’s help properties should refer the user to a suitable

form of help that fully describes the configurable initial setting and its possible values. Refer to Section

5.5.3, Defining Configurable Initial Settings in the IVI Configuration Store, of IVI-3.17: Installation

Requirements Specification, for more information on the Configurable Initial Settings structure.

Because the configurable initial settings are selected by the software module developer, and are recognized

by the software module during initialization, configurable initial settings are only added by the software

module when it is installed.

IVI Foundation 115 IVI-3.5: IVI Configuration Server Specification

Configurable initial settings from the software module are copied to sessions that reference the software

module. Refer to Section 14.1.1, Configurable Initial Settings, for more details.

10.1.2 Documentation Data Components

Data components that document the software module in some way may be added to the software module’s

data components collection at any time. These data components shall have Used In Session equal to

“None” since they are not used by the session to configure the software module.

10.1.3 API Type-Specific Software Module Classes (.NET Only)

The .NET Configration Server includes three additional classes that are specific to each of the three API

types supported by IVI.

• IviComSoftwareModule

• IviNetSoftwareModule

• IviCSoftwareModule

These classes derive from SoftwareModule. They are designed to make it clear what properties are used to

create new instances of each type of module.

The SoftwareModule class exposes all properties used to find and load modules: ProgID. Module Path,

Module Path 32, Module Path 64, and Assembly Qualified Class Name. The derived classes only expose

the properties that are used to find and load modules of that API type.

10.1.3.1 IviComSoftwareModule

COM software modules are located using the ProgID property.

If a COM software module includes a C wrapper, the module is also located using Module Path, Module

Path 32, and Module Path 64 properties.

The IviComSoftwareModule class constructor includes ProgID. Module Path 32, and Module Path 64, but

not Assembly Qualified Class Name.

The IviComSoftwareModule class exposes the ProgID. Module Path, Module Path 32, and Module Path 64

properties, but not the Assembly Qualified Class Name property.

10.1.3.2 IviCSoftwareModule

C software modules are located using Module Path, Module Path 32, and Module Path 64 properties.

The IviCSoftwareModule class constructor includes Module Path 32, and Module Path 64, but not ProgID

or Assembly Qualified Class Name.

The IviCSoftwareModule class exposes Module Path, Module Path 32, and Module Path 64 properties, but

not the ProgID or Assembly Qualified Class Name properties.

10.1.3.3 IviNetSoftwareModule

.NET software modules are located using the Assembly Qualified Class Name property.

The IviNetSoftwareModule class constructor includes Assembly Qualified Class Name, but not ProgID.

Module Path, Module Path 32, or Module Path 64.

The IviNetSoftwareModule class exposes the Assembly Qualified Class Name property, but not the

ProgID. Module Path, Module Path 32, or Module Path 64 properties.

IVI-3.5: IVI Configuration Server Specification 116 IVI Foundation

10.2 IVI Software Module References

The IVI Software Module class defines the following references:

• Physical Names

• Published APIs

The IVI Software Module class inherits the following references from IVI Configurable Component -

Section 5.3, .NET API Special Features Overview

This section defines special features of the .NET Configuration Server.

10.2.1 .NET Data Types

.NET uses the following basic data types in place of the corresponding COM types:

COM Data Type .NET Data Type

BSTR string

long int

double double

VARIANT_BOOL bool

10.2.2 .NET Entity Class

Entity is an abstract base class that includes basic functionality used by other Config Store classes. Most of

the class is not publically visible, but the class itself is visible and is used in several constructors including

the main ConfigStore constructor.

The Entity class defines the following public property:

• Name

The following public Config Store classes are derived from Entity.

• HardwareAsset

• PublishedApi

• SoftwareModule

• PhysicalName

• PhysicalRange

• LogicalName

• Session

• DriverSession

• VirtualName

• VirtualRange

• DataComponent

• IviStructure

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

For additional uses of the Entity class in .NET constructors, refer to 5.3.5.2, Params Parameters in

Constructors.

IVI Foundation 117 IVI-3.5: IVI Configuration Server Specification

10.2.2.1 The Entity.Name property.

The definition of Entity.Name matches the definition of the Name property in the classes that derive from

entity.

In cases where a class places additional constriants on the Name property, the validation of Entity.Name is

overridden by the class:

• Published Api

• IVI Physical Name

• IVI Virtual Name

IVI-3.5: IVI Configuration Server Specification 118 IVI Foundation

10.2.3 .NET Enumerations

The .NET API defines the following enumerations:

• Config Store Location

• IVI Published API Name

• IVI Published API Type

• Session Usage

10.2.3.1 Config Store Location

The Config Store Location enumeration provides members for the two standard configuration store XML

file locations.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

ConfigStoreLocation.

Master

The master location.

 .NET ConfigStoreLocation.Master

ConfigStoreLocation.

ProcessDefault

The default location for the current process.

 .NET ConfigStoreLocation.ProcessDefault

10.2.3.2 IVI Published API Name

The IVI Published API Name enumeration provides members for each of the standard APIs defined for IVI

Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiName.

IviDmm

The IviDmm instrument class.

 .NET IviPublishedApiName.IviDmm

IviPublishedApiName.

IviDriver

The IviDriver inherent capabilities class.

 .NET IviPublishedApiName.IviDriver

IviPublishedApiName.

IviScope

The IviScope instrument class.

 .NET IviPublishedApiName.IviScope

IviPublishedApiName.

IviFgen

The IviFgen instrument class.

 .NET IviPublishedApiName.IviFgen

IviPublishedApiName.

IviDCPwr

The IviDCPwr instrument class.

 .NET IviPublishedApiName.IviDCPwr

IviPublishedApiName.

IviACPwr

The IviACPwr instrument class.

 .NET IviPublishedApiName.IviACPwr

IVI Foundation 119 IVI-3.5: IVI Configuration Server Specification

IviPublishedApiName.

IviSwtch

The IviSwtch instrument class.

 .NET IviPublishedApiName.IviSwtch

IviPublishedApiName.

IviPwrMeter

The IviPwrMeter instrument class.

 .NET IviPublishedApiName.IviPwrMeter

IviPublishedApiName.

IviSpecAn

The IviSpecAn instrument class.

 .NET IviPublishedApiName.IviSpecAn

IviPublishedApiName.

IviRFSigGen

The IviRFSigGen instrument class.

 .NET IviPublishedApiName.IviRFSigGen

IviPublishedApiName.

IviCounter

The IviCounter instrument class.

 .NET IviPublishedApiName.IviCounter

IviPublishedApiName.

IviDownConverter

The IviDownconverter instrument class.

 .NET IviPublishedApiName.IviDownconverter

IviPublishedApiName.

IviUpConverter

The IviUpconverter instrument class.

 .NET IviPublishedApiName.IviUpconverter

IviPublishedApiName.

IviDigitizer

The IviDigitizer instrument class.

 .NET IviPublishedApiName.IviDigitizer

IviPublishedApiName.

IviLxiSync

The IviLxiSync instrument class.

 .NET IviPublishedApiName.IviLxiSync

10.2.3.3 IVI Published API Type

The IVI Published API Type enumeration provides members for the three standard API types defined for

IVI Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiType.

IviCom

The IVI-COM API type.

 .NET IviPublishedApiType.IviCom

IviPublishedApiType.

IviNet

The IVI.NET API type.

 .NET IviPublishedApiType.IviNet

IviPublishedApiType.

IviC

The IVI-C API type.

 .NET IviPublishedApiType.IviC

10.2.3.4 Session Usage

The Config Store Location enumeration provides members for the three standard values for data

component Used In Session properties.

IVI-3.5: IVI Configuration Server Specification 120 IVI Foundation

Name Description

 Language Identifier Value

SessionUsage.None A session does not need to define a value for this data component.

 .NET SessionUsage.None 0

SessionUsage.

Required

A session must define a value for this data component.

 .NET SessionUsage.Required 1

SessionUsage.

Optional

A session may define a value for this data component.

 .NET SessionUsage.Optional 2

10.2.4 Collections in .NET

Refer to section 4.5, Collections in .NET for a description of collections in .NET.

10.2.5 .NET Constructors

In contrast to the COM API which does not allow parameterized constructors, the .NET API uses

parameterized constructors, so that new objects have legal and consistent data from the start.

10.2.5.1 Constructors and Property Access

Each constructor includes parameters for

• Properties that serve as keys in the corresponding collection. For example, Name is the key value for

nearly all classes, and so name is a common constructor parameter.

• Properties that should not be changed after they are set initially. For example, the Prefix property for

SoftwareModules only needs to be set once, and does not need to be changed after that.

In general, if a constructor includes a parameter, the corresponding property is read only.

10.2.5.2 Params Parameters in Constructors

Some constructors include a params parameter. In the .NET API, these allow a calling program to specify

members of the object’s collections. For example, the constructor for the Virtual Name class includes the

virtualRanges parameter, which allows the calling program to specify multiple Virtual Range objects to

be added to the Virtual Name’s Virtual Range collection.

In most cases the type of the params parameter is an array of a base type, either Entity or DataComponent.

This allows the calling program to specify any object whose class derives from the base class. The

constructor is then responsible for ensuring that the specified objects are valid for that constructor. For

example, the Config Store constructor has a params parameter of type Entity[]. This allows the calling

program to specify any class that derives from Entity as an argument. However, the Config Store

constructor checks each argument to make sure that they are valid for the constructor, and only six types

are valid: Driver Sessions, Hardware Assets, Logical Names, Published APIs, Sessions, and Software

Modules. If the calling program specifies an object of an invalid derived type, the constructor will throw

an exception.

Constructors may enforce additional order constraints on the specified objects. The most common

constraint is for items that must be added to one of the six global collections before they are referenced

elsewhere. If an order constraint is violated, the constructor will throw an exception.

IVI Foundation 121 IVI-3.5: IVI Configuration Server Specification

10.2.5.3 Collection Constructors

Collection constructors are not public. Instead, the Configuration Server creates collections when needed,

and allows calling programs to populate the collections using the collection Add() methods or constructor

params arguments.

10.2.6 .NET Static Methods and Properties

The .NET API includes a few static methods and properties. These are documented for the classes where

they are defined, in separate sections to emphasize the fact that they are static. For the most part these

methods and properties do not have an exact match in the C or COM APIs.

The most important of the static methods is the factory method Load(…). Load combines instantiating a

ConfigStore object and deserializing a configuration store file, returning the instantiated and loaded object.

In contract, the ConfigStore constructor should only be used to create a new configuration store from

scratch.

10.2.7 .NET Schema Validation

The .NET API provides more control over validation than the C or COM APIs. The default for all of the

APIs is to validate an XML file against the Configuration Store XML schema when a file is deserialized.

In addition, the .NET API allows a calling program to deserialize a file without validation (for

performance) and to validate a file without deserializing it.

10.2.8 .NET Exceptions

Refer to section 5.12.2, IVI.NET Error Handling, of IVI-3.1, Driver Architecture Specification, for a

general overview of exceptions in IVI.NET components. Calling programs should be able to accommodate

arbitrary exceptions, including those defined by the .NET Framework.

The .NET Configuration Server does not define any new exceptions. When it explicitly throws an

exception, it throws one of the standard .NET exceptions (usually ArgumentException or

InvalidOperationException) with a custom message that indicates the problem.

The Configuration Server does not generate warnings.

IVI Configurable Components Class (Virtual)

• Data Components

This section describes each reference.

IVI-3.5: IVI Configuration Server Specification 122 IVI Foundation

10.2.9 Physical Names

API Technology Data Type Access

COM IIviPhysicalNameCollection** R/O

C IviPhysicalNameCollectionHandle R/O

.NET PhysicalNameCollection R/O

COM/.NET Property Name

PhysicalNames

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetSoftwareModulePhysicalNameCollection

(IviSoftwareModuleHandle

SoftwareModuleHandle,

IviPhysicalNameCollectionHandle*

PhysicalNameCollectionHandle);

C Parameters

Inputs Description Datatype

SoftwareModuleHan

dle

Handle to an IviSoftwareModule object. IviSoftwareModu

leHandle

Outputs Description Datatype

PhysicalNameColle

ctionHandle

Handle to an IviPhysicalNameCollection object. IviPhysicalName

CollectionHandl

e

Description

References a collection of all the PhysicalName objects defined by the Software Module.

If a Software Module implements IVI instrument class-compliant APIs that have repeated capabilities, it

shall reference a collection of IVI Physical Name objects for the class-defined repeated capabilities. This

information is required in order to specify virtual identifiers for IVI Sessions and Driver Sessions, and

virtual identifiers are required to use repeated capabilities interchangeably.

For other repeated capabilities in a Software Module, physical identifiers are optional but recommended,

particularly if needed to support interchangeability.

The IVI Physical Name collections may be structured hierarchically to reflect a hierarchy of repeated

capabilities in the Software Module. Refer to Section 11.1, IVI Physical Name Overview for an description

of how physical identifiers may be structured hierarchically.

IVI Foundation 123 IVI-3.5: IVI Configuration Server Specification

10.2.10 Published APIs

API Technology Data Type Access

COM IIviPublishedAPICollection** R/O

C IviPublishedAPICollectionHandle R/O

.NET PublishedAPICollection R/O

COM/.NET Property Name

PublishedAPIs

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetSoftwareModulePublishedAPIsCollection

(IviSoftwareModuleHandle

SoftwareModuleHandle,

IviPublishedAPIsCollectionHandle*

PublishedAPIsCollectionHandle);

C Parameters

Inputs Description Datatype

SoftwareModuleHan

dle

Handle to an IviSoftwareModule object. IviSoftwareModu

leHandle

Outputs Description Datatype

PublishedAPIsColl

ectionHandle

Handle to an IviPublishedAPIsCollection object. IviPublishedAPI

sCollectionHand

le

Description

References a collection of all the Published APIs that are implemented by the Software Module. Refer to

Section 9.1, IVI Published API Overview for an overview of Published APIs.

Before a Published API can be added to a Software Module’s Published API collection, it must already

exist in the global Published API collection. To add a Published API to a Software Module’s Published API

collection first get the Published API from the global collection and the add the returned reference to the

Software Module’s collection.

IVI-3.5: IVI Configuration Server Specification 124 IVI Foundation

10.3 IVI Software Module Properties

The IVI Software Module class defines the following properties:

• Assembly Qualified Class Name

• Module Path

• Module Path 32

• Module Path 64

• Prefix

• ProgID

• Supported Instrument Models\

The IVI Software Module class inherits the following properties from IVI Configurable Component -

Section 5.3, .NET API Special Features Overview

This section defines special features of the .NET Configuration Server.

10.3.1 .NET Data Types

.NET uses the following basic data types in place of the corresponding COM types:

COM Data Type .NET Data Type

BSTR string

long int

double double

VARIANT_BOOL bool

10.3.2 .NET Entity Class

Entity is an abstract base class that includes basic functionality used by other Config Store classes. Most of

the class is not publically visible, but the class itself is visible and is used in several constructors including

the main ConfigStore constructor.

The Entity class defines the following public property:

• Name

The following public Config Store classes are derived from Entity.

• HardwareAsset

• PublishedApi

• SoftwareModule

• PhysicalName

• PhysicalRange

• LogicalName

• Session

• DriverSession

• VirtualName

• VirtualRange

• DataComponent

• IviStructure

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

IVI Foundation 125 IVI-3.5: IVI Configuration Server Specification

For additional uses of the Entity class in .NET constructors, refer to 5.3.5.2, Params Parameters in

Constructors.

10.3.2.1 The Entity.Name property.

The definition of Entity.Name matches the definition of the Name property in the classes that derive from

entity.

In cases where a class places additional constriants on the Name property, the validation of Entity.Name is

overridden by the class:

• Published Api

• IVI Physical Name

• IVI Virtual Name

IVI-3.5: IVI Configuration Server Specification 126 IVI Foundation

10.3.3 .NET Enumerations

The .NET API defines the following enumerations:

• Config Store Location

• IVI Published API Name

• IVI Published API Type

• Session Usage

10.3.3.1 Config Store Location

The Config Store Location enumeration provides members for the two standard configuration store XML

file locations.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

ConfigStoreLocation.

Master

The master location.

 .NET ConfigStoreLocation.Master

ConfigStoreLocation.

ProcessDefault

The default location for the current process.

 .NET ConfigStoreLocation.ProcessDefault

10.3.3.2 IVI Published API Name

The IVI Published API Name enumeration provides members for each of the standard APIs defined for IVI

Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiName.

IviDmm

The IviDmm instrument class.

 .NET IviPublishedApiName.IviDmm

IviPublishedApiName.

IviDriver

The IviDriver inherent capabilities class.

 .NET IviPublishedApiName.IviDriver

IviPublishedApiName.

IviScope

The IviScope instrument class.

 .NET IviPublishedApiName.IviScope

IviPublishedApiName.

IviFgen

The IviFgen instrument class.

 .NET IviPublishedApiName.IviFgen

IviPublishedApiName.

IviDCPwr

The IviDCPwr instrument class.

 .NET IviPublishedApiName.IviDCPwr

IviPublishedApiName.

IviACPwr

The IviACPwr instrument class.

 .NET IviPublishedApiName.IviACPwr

IVI Foundation 127 IVI-3.5: IVI Configuration Server Specification

IviPublishedApiName.

IviSwtch

The IviSwtch instrument class.

 .NET IviPublishedApiName.IviSwtch

IviPublishedApiName.

IviPwrMeter

The IviPwrMeter instrument class.

 .NET IviPublishedApiName.IviPwrMeter

IviPublishedApiName.

IviSpecAn

The IviSpecAn instrument class.

 .NET IviPublishedApiName.IviSpecAn

IviPublishedApiName.

IviRFSigGen

The IviRFSigGen instrument class.

 .NET IviPublishedApiName.IviRFSigGen

IviPublishedApiName.

IviCounter

The IviCounter instrument class.

 .NET IviPublishedApiName.IviCounter

IviPublishedApiName.

IviDownConverter

The IviDownconverter instrument class.

 .NET IviPublishedApiName.IviDownconverter

IviPublishedApiName.

IviUpConverter

The IviUpconverter instrument class.

 .NET IviPublishedApiName.IviUpconverter

IviPublishedApiName.

IviDigitizer

The IviDigitizer instrument class.

 .NET IviPublishedApiName.IviDigitizer

IviPublishedApiName.

IviLxiSync

The IviLxiSync instrument class.

 .NET IviPublishedApiName.IviLxiSync

10.3.3.3 IVI Published API Type

The IVI Published API Type enumeration provides members for the three standard API types defined for

IVI Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiType.

IviCom

The IVI-COM API type.

 .NET IviPublishedApiType.IviCom

IviPublishedApiType.

IviNet

The IVI.NET API type.

 .NET IviPublishedApiType.IviNet

IviPublishedApiType.

IviC

The IVI-C API type.

 .NET IviPublishedApiType.IviC

10.3.3.4 Session Usage

The Config Store Location enumeration provides members for the three standard values for data

component Used In Session properties.

IVI-3.5: IVI Configuration Server Specification 128 IVI Foundation

Name Description

 Language Identifier Value

SessionUsage.None A session does not need to define a value for this data component.

 .NET SessionUsage.None 0

SessionUsage.

Required

A session must define a value for this data component.

 .NET SessionUsage.Required 1

SessionUsage.

Optional

A session may define a value for this data component.

 .NET SessionUsage.Optional 2

10.3.4 Collections in .NET

Refer to section 4.5, Collections in .NET for a description of collections in .NET.

10.3.5 .NET Constructors

In contrast to the COM API which does not allow parameterized constructors, the .NET API uses

parameterized constructors, so that new objects have legal and consistent data from the start.

10.3.5.1 Constructors and Property Access

Each constructor includes parameters for

• Properties that serve as keys in the corresponding collection. For example, Name is the key value for

nearly all classes, and so name is a common constructor parameter.

• Properties that should not be changed after they are set initially. For example, the Prefix property for

SoftwareModules only needs to be set once, and does not need to be changed after that.

In general, if a constructor includes a parameter, the corresponding property is read only.

10.3.5.2 Params Parameters in Constructors

Some constructors include a params parameter. In the .NET API, these allow a calling program to specify

members of the object’s collections. For example, the constructor for the Virtual Name class includes the

virtualRanges parameter, which allows the calling program to specify multiple Virtual Range objects to

be added to the Virtual Name’s Virtual Range collection.

In most cases the type of the params parameter is an array of a base type, either Entity or DataComponent.

This allows the calling program to specify any object whose class derives from the base class. The

constructor is then responsible for ensuring that the specified objects are valid for that constructor. For

example, the Config Store constructor has a params parameter of type Entity[]. This allows the calling

program to specify any class that derives from Entity as an argument. However, the Config Store

constructor checks each argument to make sure that they are valid for the constructor, and only six types

are valid: Driver Sessions, Hardware Assets, Logical Names, Published APIs, Sessions, and Software

Modules. If the calling program specifies an object of an invalid derived type, the constructor will throw

an exception.

Constructors may enforce additional order constraints on the specified objects. The most common

constraint is for items that must be added to one of the six global collections before they are referenced

elsewhere. If an order constraint is violated, the constructor will throw an exception.

IVI Foundation 129 IVI-3.5: IVI Configuration Server Specification

10.3.5.3 Collection Constructors

Collection constructors are not public. Instead, the Configuration Server creates collections when needed,

and allows calling programs to populate the collections using the collection Add() methods or constructor

params arguments.

10.3.6 .NET Static Methods and Properties

The .NET API includes a few static methods and properties. These are documented for the classes where

they are defined, in separate sections to emphasize the fact that they are static. For the most part these

methods and properties do not have an exact match in the C or COM APIs.

The most important of the static methods is the factory method Load(…). Load combines instantiating a

ConfigStore object and deserializing a configuration store file, returning the instantiated and loaded object.

In contract, the ConfigStore constructor should only be used to create a new configuration store from

scratch.

10.3.7 .NET Schema Validation

The .NET API provides more control over validation than the C or COM APIs. The default for all of the

APIs is to validate an XML file against the Configuration Store XML schema when a file is deserialized.

In addition, the .NET API allows a calling program to deserialize a file without validation (for

performance) and to validate a file without deserializing it.

10.3.8 .NET Exceptions

Refer to section 5.12.2, IVI.NET Error Handling, of IVI-3.1, Driver Architecture Specification, for a

general overview of exceptions in IVI.NET components. Calling programs should be able to accommodate

arbitrary exceptions, including those defined by the .NET Framework.

The .NET Configuration Server does not define any new exceptions. When it explicitly throws an

exception, it throws one of the standard .NET exceptions (usually ArgumentException or

InvalidOperationException) with a custom message that indicates the problem.

The Configuration Server does not generate warnings.

IVI Configurable Components Class (Virtual)

• Description

• Name

This section describes the behavior and requirements of each property defined in the IVI Software Module

class.

IVI-3.5: IVI Configuration Server Specification 130 IVI Foundation

10.3.9 Assembly Qualified Class Name

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

AssemblyQualifiedClassName

C Constant Name

IVICONFIG_VAL_SW_MODULE_ASMBLY_QLFD_CLASS_NAME

Description

Returns a string that is the assembly qualified class name of the default .NET class of the software module.

The assembly-qualified name of a type consists of the type name, including its namespace, followed by a

comma, followed by the four-part display name of the assembly. The display name includes the simple

name of the assembly, a version number, a cryptographic key pair, and a supported culture1.

For .NET software modules the following line of code returns the assembly qualified class name (where

module is a reference to the software module’s main, instantiable class):

module.GetType().AssemblyQualifiedName;

This property shall be filled in for .NET software modules. It shall be an empty string for C or COM

software modules.

1 Note that processor architecture is included in assembly identity in .NET 2.0, but is not included in the assembly

qualified name.

IVI Foundation 131 IVI-3.5: IVI Configuration Server Specification

10.3.10 Module Path

API Technology Data Type Access

.NET string None

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

ModulePath

C Constant Name

IVICONFIG_VAL_SW_MODULE_PATH

Description

Returns a string that is either the simple file name or the full pathname of the software module DLL. When

running in a native 32-bit context, ModulePath returns ModulePath32. When running in a native 64-bit

context, ModulePath returns ModulePath64. This property may be an empty string.

For backwards compatibility with earlier versions of the Configuration Server, ModulePath sets

ModulePath32 when running in a native 32-bit context. When running in a native 64-bit context, attempts

to set ModulePath return a Not Supported.

Note that ModulePath as defined here is not represented in the version 1.6 schema at all. ModulePath in

the version 1.6 schema actually stores the value of the Configuration Server’s ModulePath32.

IVI-3.5: IVI Configuration Server Specification 132 IVI Foundation

10.3.11 Module Path 32

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

ModulePath32

C Constant Name

IVICONFIG_VAL_SW_MODULE_PATH_32

Description

Returns a string that is either the simple filename or the full pathname of the native 32-bit software module

DLL. This property may be an empty string.

Note that ModulePath32 is represented in the schema as ModulePath, rather than ModulePath32, to

preserve the backwards compatibility with data files created by versions of the Configuration Server prior

to version 1.6.

IVI Foundation 133 IVI-3.5: IVI Configuration Server Specification

10.3.12 Module Path 64

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

ModulePath64

C Constant Name

IVICONFIG_VAL_SW_MODULE_PATH_64

Description

Returns a string that is either the simple filename or the full pathname of the native 64-bit software module

DLL. This property may be an empty string.

IVI-3.5: IVI Configuration Server Specification 134 IVI Foundation

10.3.13 Prefix

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Prefix

C Constant Name

IVICONFIG_VAL_SW_MODULE_PREFIX

Description

Prefix is a string that specifies the prefix (for IVI-C components) or the component identifier (for IVI-COM

and IVI.NET components) of the software module. This shall exactly match the value returned by the

Prefix attribute or the Component Identifier attributes. Refer to Section 5.6, Class Driver Prefix, Section

5.13, Component Identifier, and Section 5.32, Specific Driver Prefix, of the IVI-3.2: Inherent Capabilities

Specification, for complete details.

The empty string is a legal value for this property.

IVI Foundation 135 IVI-3.5: IVI Configuration Server Specification

10.3.14 ProgID

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

ProgID

C Constant Name

IVICONFIG_VAL_SW_MODULE_PROGID

Description

ProgID returns a string that specifies the version-independent COM ProgID of the software module. This

property may be an empty string.

IVI-3.5: IVI Configuration Server Specification 136 IVI Foundation

10.3.15 Supported Instrument Models

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

SupportedInstrumentModels

C Constant Name

IVICONFIG_VAL_SW_MODULE_SUPPORTED_INSTR_MODELS

Description

A comma-separated string that specifies the instrument models supported by the software module. This

shall exactly match the value returned by the Supported Instrument Models attribute as defined in Section

5.35, Supported Instrument Models, of the IVI-3.2: Inherent Capabilities Specification.

10.4 IVI Software Module Constructors (.NET Only)

The .NET IVI Software Module class defines one public constructor.

The .NET IVI COM Software Module class defines two public constructors.

The .NET IVI C Software Module class defines one public constructor.

The .NET IVI .NET Software Module class defines one public constructor.

This section describes the behavior and requirements of each constructor.

IVI Foundation 137 IVI-3.5: IVI Configuration Server Specification

10.4.1 SoftwareModule Constructor

Description

Creates an instance of a Software Module. ProgID, Module Path 32, Module Path64, and Assembly

Qualified Path Name are not specified.

Children parameters may be any one of the following classes deriving from Entity:

• PublishedAPI

• PhysicalName

• DataComponents

If there are no children parameters, the SoftwareModule is created without any Physical Name or Published

API references.

Children parameters are added to the corresponding collections in the order in which they are specified.

Before a Published API object may be added to the Software Module’s Published APIs collection, that

Published API object must have already been added to the global Published APIs Collection.

.NET Prototype

public SoftwareModule(string name, string prefix, params Entity[] children)

.NET Parameters

Inputs Description .NET Type

name The name of the Software Module. string

prefix The Prefix or Component Indentifier of the Software

Module.

string

children Zero to n Published APIs and zero to n Physical Names to be

referenced by the Software Module.

params Entity[]

IVI-3.5: IVI Configuration Server Specification 138 IVI Foundation

10.4.2 IviComSoftwareModule Constructor

Description

Creates an instance of an IVI-COM Software Module.

There are two overloads of the constructor:

• The first specifies ProgID, and describes a Software Module with a COM instrument driver with no C

wrapper included in the same DLL.

• The second specifies ProgID, Module Path 32, and Module Path64, and describes a Software Module

with a COM instrument driver with a C wrapper included in the same DLL.

Children parameters may be any one of the following classes deriving from Entity:

• PublishedAPI

• PhysicalName

If there are no children parameters, the IVI-COM Software Module is created without any Physical Name

or Published API references.

Children parameters are added to the corresponding collections in the order in which they are specified.

If a Published API object is included in the Software Module’s Published APIs collection, that Published

API object must have already been added to the global Published APIs Collection.

.NET Prototype

public IviComSoftwareModule(string name,

 string prefix,

 string progId,

 params Entity[] children)

public IviComSoftwareModule(string name,

 string prefix,

 string progId,

 string modulePath32,

 string modulePath64,

 params Entity[] children)

.NET Parameters

Inputs Description .NET Type

name The name of the Software Module. string

prefix The Prefix or Component Indentifier of the Software

Module.

string

progId A string that specifies the version-independent COM ProgID

of the COM software module.

string

modulePath32 For COM modules that include C wrappers, either the simple

filename or the full pathname of the native 32-bit software

module DLL. For software modules that do not include a C

wrapper or modules that do not include a native 32-bit

wrapper, this is the empty string.

string

IVI Foundation 139 IVI-3.5: IVI Configuration Server Specification

modulePath64 For COM modules that include C wrappers, either the simple

filename or the full pathname of the native 64-bit software

module DLL. For software modules that do not include a C

wrapper or modules that do not include a native 64-bit

wrapper, this is the empty string.

string

children Zero to n Published APIs and zero to n Physical Names to be

referenced by the Software Module.

params Entity[]

IVI-3.5: IVI Configuration Server Specification 140 IVI Foundation

10.4.3 IviCSoftwareModule Constructor

Description

Creates an instance of an IVI-C Software Module and specifies Module Path 32 and Module Path64.

Children parameters may be any one of the following classes deriving from Entity:

• PublishedAPI

• PhysicalName,

If there are no children parameters, the IVI-C Software Module is created without any Physical Name or

Published API references.

Children parameters are added to the corresponding collections in the order in which they are specified.

If a Published API object is included in the Software Module’s Published APIs collection, that Published

API object must have already been added to the global Published APIs Collection.

.NET Prototype

public IviCSoftwareModule(string name,

 string prefix,

 string modulePath32,

 string modulePath64,

 params Entity[] children)

.NET Parameters

Inputs Description .NET Type

name The name of the Software Module. string

prefix The Prefix or Component Indentifier of the Software

Module.

string

modulePath32 The full pathname of the native 32-bit software module DLL.

For software modules that do not include a native 32-bit

executable, this is the empty string.

string

modulePath64 The full pathname of the native 64-bit software module DLL.

For software modules that do not include a native 64-bit

executable, this is the empty string.

string

children Zero to n Published APIs and zero to n Physical Names to be

referenced by the Software Module.

params Entity[]

IVI Foundation 141 IVI-3.5: IVI Configuration Server Specification

10.4.4 IviNetSoftwareModule Constructor

Description

Creates an instance of an IVI.NET Software Module and specifies the Assembly Qualified Class Name.

Children parameters may be any one of the following classes deriving from Entity:

• PublishedAPI

• PhysicalName,

If there are no children parameters, the IVI.NET Software Module is created without any Physical Name or

Published API references.

Children parameters are added to the corresponding collections in the order in which they are specified.

If a Published API object is included in the Software Module’s Published APIs collection, that Published

API object must have already been added to the global Published APIs Collection.

.NET Prototype

public IviNetSoftwareModule(string name,

 string assemblyQualifiedPathName,

 string prefix,

 params Entity[] children)

.NET Parameters

Inputs Description .NET Type

name The name of the Software Module. string

prefix The Prefix or Component Indentifier of the

Software Module.

string

assemblyQualifiedPathName The assembly qualified class name of the

default .NET class of the software module.

string

children Zero to n Published APIs and zero to n Physical

Names to be referenced by the Software

Module.

params Entity[]

IVI-3.5: IVI Configuration Server Specification 142 IVI Foundation

11. IVI Physical Name Class

11.1 IVI Physical Name Overview

IVI Physical Name objects describe the physical identifiers supported by a software module. Physical

identifiers are the names that an IVI specific instrument driver, IVI-MSS role control module, or other IVI

software module gives to instances of the repeated capabilities they implement. For example, one IviScope

specific instrument driver might name channels “A”, “B”, and “C” while another might name them “1”,

“2”, “3’, and “4”.

The RC Name property describes the type of repeated capability. In the above example, RC Name might

be “Channel” – the name of the repeated capability in the IviScope specification.

An IVI Physical Name object can reference a collection of IVI Physical Name objects, thereby creating a

hierarchy of nested repeated capabilities.

An IVI Physical Name object can reference a collection of IVI Physical Range objects, which allows an

efficient way of creating a large number of physical identifiers by appending integers from the range to the

Name property.

For a comprehensive overview of the treatment of repeated capabilities in the Configuration Server,

including the role that physical identifiers play, refer to Section 2.9, Repeated Capabilities.

11.2 IVI Physical Name References

The IVI Physical Name class defines the following references:

• Physical Names

• Physical Ranges

This section describes the behavior and requirements of each property.

IVI Foundation 143 IVI-3.5: IVI Configuration Server Specification

11.2.1 Physical Names

API Technology Data Type Access

COM IIviPhysicalNameCollection** R/O

C IviPhysicalNameCollectionHandle R/O

.NET PhysicalNameCollection R/O

COM/.NET Property Name

PhysicalNames

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetPhysicalNameChildPhysicalNameCollection

(IviPhysicalNameHandle

PhysicalNameHandle,

IviPhysicalNameCollectionHandle*

ChildPhysicalNameCollectionHandle);

C Parameters

Inputs Description Datatype

PhysicalNameHandle Handle to an IviPhysicalName object. IviPhysicalName

Handle

Outputs Description Datatype

ChildPhysicalNameC

ollectionHandle

Handle to an IviPhysicalNameCollection object. IviPhysicalName

CollectionHandl

e

Description

References a collection of the IVI Physical Name objects that are hierarchically structured under this IVI

Physical Name object. This collection will commonly be empty.

IVI-3.5: IVI Configuration Server Specification 144 IVI Foundation

11.2.2 Physical Ranges

API Technology Data Type Access

COM IIviPhysicalRangeCollection** R/O

C IviPhysicalRangeCollectionHandle R/O

.NET PhysicalRangeCollection R/O

COM/.NET Property Name

PhysicalRanges

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetPhysicalNamePhysicalRangeCollection

(IviPhysicalNameHandle

PhysicalNameHandle,

IviPhysicalRangeCollectionHandle*

PhysicalRangeCollectionHandle);

C Parameters

Inputs Description Datatype

PhysicalNameHandle Handle to an IviPhysicalName object. IviPhysicalName

Handle

Outputs Description Datatype

PhysicalRangeColle

ctionHandle

Handle to an IviPhysicalRangeCollection object. IviPhysicalRang

eCollectionHand

le

Description

References a collection of IVI Physical Range objects used to qualify the referencing IVI Physical Name

object.

IVI Foundation 145 IVI-3.5: IVI Configuration Server Specification

11.3 IVI Physical Name Properties

The IVI Physical Name class defines the following properties:

• Name

• RC Name

This section describes the behavior and requirements of each property.

IVI-3.5: IVI Configuration Server Specification 146 IVI Foundation

11.3.1 Name

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Name

C Constant Name

IVICONFIG_VAL_PHYSICAL_NAME_NAME

Description

The name of a specific instance of a repeated capability as defined in the software module. This is also

known as the physical identifier.

Name shall consist of one or more of the following characters: ‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’, ‘!’, and ‘_’. In

cases where driver writers need to qualify the physical name with the repeated capability name or qualified

repeated capability name, “!!” is used to separate the repeated capability name from the portion of the name

that designates the repeated capability instance. For example if a driver implements both an IviScope

Channel and an IviDigitizer Channel called “C1”, then the physical name for the scope channel would be

“IviScopeChannel!!C1” where the instance of the repeated capability name, “C1”, is disambiguated from

the Digitizer channel “C1” by prefixing “IviScopeChannel” followed by “!!”. Beginning January 1, 2009,

“!!” shall be reserved for this purpose in the Name property.

The empty string is valid for this property only if the IVI Physical Name object references a non-empty

collection of Physical Range objects. Note that since Name is a key for the IVI Physical Name collection,

only one Name per collection may be empty.

IVI Foundation 147 IVI-3.5: IVI Configuration Server Specification

11.3.2 RC Name

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

RCName

C Constant Name

IVICONFIG_VAL_PHYSICAL_NAME_RCNAME

Description

The repeated capability name as defined in the software module. Each IVI Physical Name object

represents an instance of the repeated capability of type RC Name. For software modules that reference

Published APIs that define repeated capabilities, the RC Name shall be the repeated capability name

defined by the Published API specification.

A single driver repeated capability may be used to implement two or more Published API repeated

capabilities. (For example, a driver that implements both the IviScope and IviDigitizer instrument classes

may combine the IviScope “Channel” and IviDigitizer “Channel” repeated capabilities into a single

repeated capability.) In such cases, it is possible that the names of the repeated capabilities defined by the

Published APIs will be different, and if they are, RC Name shall be one of the names defined by the

Published APIs.

The empty string is not a legal value for this property.

11.4 IVI Physical Name Constructor (.NET Only)

The .NET IVI Physical Name class defines one public constructor.

This section describes the behavior and requirements of the constructor.

11.4.1 PhysicalName Constructors

Description

Creates an instance of a Physical Name.

Children parameters may be any one of the following classes deriving from Entity:

• PhysicalName,

• PhysicalRange

If there are no children parameters, the Physical Name is created without any Physical Name or Physical

Range references.

Children parameters are added to the corresponding collections in the order in which they are specified.

IVI-3.5: IVI Configuration Server Specification 148 IVI Foundation

.NET Prototype

public PhysicalName(string name, params Entity[] children)

.NET Parameters

Inputs Description .NET Type

name The name of the PhysicalName. string

children Zero to n Physical Names and zero to n Physical Ranges to

be referenced by the Physical Name

params Entity[]

IVI Foundation 149 IVI-3.5: IVI Configuration Server Specification

12. IVI Physical Range Class

12.1 IVI Physical Range Overview

The IVI Physical Range class allows multiple instances of a repeated capability to be defined with a

minimum of effort. An IVI Physical Range object shall be referenced by exactly one IVI Physical Name

object.

For a comprehensive overview of the treatment of repeated capabilities in the Configuration Server,

including the role that physical names play, refer to Section 2.9, Repeated Capabilities.

12.2 IVI Physical Range Properties

The IVI Physical Range class defines the following properties:

• Max

• Min

• Name

This section describes the behavior and requirements of each property.

IVI-3.5: IVI Configuration Server Specification 150 IVI Foundation

12.2.1 Max

API Technology Data Type Access

.NET int R/W

C ViInt32 R/W

COM long R/W

COM/.NET Property Name

Max

C Constant Name

IVICONFIG_VAL_PHYSICAL_RANGE_MAX

Description

The upper end of a range of integers to be appended to the Name property of the referencing IVI Physical

Name object to create a set of physical repeated capability identifiers.

IVI Foundation 151 IVI-3.5: IVI Configuration Server Specification

12.2.2 Min

API Technology Data Type Access

.NET int R/W

C ViInt32 R/W

COM long R/W

COM/.NET Property Name

Min

C Constant Name

IVICONFIG_VAL_PHYSICAL_RANGE_MIN

Description

The lower end of a range of integers to be appended to the Name property of the referencing IVI Physical

Name object to create a set of physical repeated capability identifiers.

IVI-3.5: IVI Configuration Server Specification 152 IVI Foundation

12.2.3 Name

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Name

C Constant Name

IVICONFIG_VAL_PHYSICAL_RANGE_NAME

Description

The name of the physical range. This name is used to uniquely identify the range in the collection, and is

not used in creating the set of physical identifiers.

The empty string is not a legal value for this property.

IVI Foundation 153 IVI-3.5: IVI Configuration Server Specification

12.3 IVI Physical Range Constructors (.NET Only)

The .NET IVI Physical Range class defines one public constructor.

This section describes the behavior and requirements of the constructor.

12.3.1 PhysicalRange Constructors

Description

Creates an instance of a Physical Range.

.NET Prototype

public PhysicalRange(string name, int min, int max)

.NET Parameters

Inputs Description .NET Type

name The name of the Physical Range. string

min The lower bound of a range of integers to be appended to the

Name property of the referencing IVI PhysicalName object

to create a set of physical repeated capability identifiers.

int

max The upper bound of a range of integers to be appended to the

Name property of the referencing IVI PhysicalName object

to create a set of physical repeated capability identifiers.

int

IVI-3.5: IVI Configuration Server Specification 154 IVI Foundation

13. IVI Logical Name Class

13.1 IVI Logical Name Overview

Logical Names introduce an additional level of indirection when referencing IVI Sessions and IVI Driver

Sessions. Logical Names allow users to define and name multiple Sessions and switch between them by

referencing a Logical Name in a client program. The user changes the Logical Name reference to point to

any one of the Sessions depending on the situation, without changing source code.

It is impossible to tell by looking at a Logical Name object whether the reference is to a Session or a Driver

Session. The Session object must be examined by the client code to determine whether or not it is a Driver

Session.

13.2 IVI Logical Name Reference

The IVI Logical Name class defines the following reference:

• Session

This section describesthe reference.

IVI Foundation 155 IVI-3.5: IVI Configuration Server Specification

13.2.1 Session

API Technology Data Type Access

COM IIviSession** R/O

C IviSessionHandle R/O

.NET Session R/O

COM/.NET Property Name

Session

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetLogicalNameSessionReference

(IviLogicalNameHandle

LogicalNameHandle,

IviSessionHandle*

SessionHandle);

ViStatus _VI_FUNC IviConfig_SetLogicalNameSessionReference

(IviLogicalNameHandle

LogicalNameHandle,

IviSessionHandle SessionHandle);

C Parameters

Inputs Description Datatype

LogicalNameHandle Handle to an IviLogicalNameHandle object. IviLogicalNameH

andle

SessionHandle Handle to an IviSession object. IviSessionHandl

e

Outputs Description Datatype

SessionHandle Handle to an IviSession object. IviSessionHandl

e

Description

The IVI Session to which the logical name refers. The IVI Session may be an IVI Driver Session.

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

The table below specifies additional IVI configuration server status codes for this function.

Completion Codes Description

Not In Global Collection The item does not exist in the global collection.

IVI-3.5: IVI Configuration Server Specification 156 IVI Foundation

IVI Foundation 157 IVI-3.5: IVI Configuration Server Specification

13.3 IVI Logical Name Properties

The IVI Logical Name class defines the following properties:

• Name

This section describes the behavior and requirements of each property.

IVI-3.5: IVI Configuration Server Specification 158 IVI Foundation

13.3.1 Name

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Name

C Constant Name

IVICONFIG_VAL_LOGICAL_NAME_NAME

Description

The logical name.

The empty string is not a legal value for this property.

IVI Foundation 159 IVI-3.5: IVI Configuration Server Specification

13.3.2 Description

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Description

C Constant Name

IVICONFIG_VAL_CONFIG_COMPONENT_DESCRIPTION

Description

The description of the logical name. The empty string is a legal value for this property.

IVI-3.5: IVI Configuration Server Specification 160 IVI Foundation

13.4 IVI Logical Name Constructors (.NET Only)

The .NET IVI Logical Name class defines one public constructor.

This section describes the behavior and requirements of the constructor.

13.4.1 LogicalName Constructors

Description

Creates an instance of a Logical Name.

If a Session object is referenced by the Logical Name, that Session object must have already been added to

the global Session Collection.

.NET Prototype

public LogicalName(string name, Session session = null)

.NET Parameters

Inputs Description .NET Type

name The name of the Logical Name. string

session A reference to a Session object that is already a member of

the parent ConfigStore's Sessions collection, or null.

Session

IVI Foundation 161 IVI-3.5: IVI Configuration Server Specification

14. IVI Session Class

14.1 IVI Session Overview

The IVI Session class provides the information needed to configure a software module. A software module

may be referenced by several sessions. In other words, the configuration store may contain several

configurations for one software module. The client specifies at run time which configuration will be used.

The Software Module property refers to the specific module configured by an IVI Session object.

The Hardware Asset property refers to the hardware asset that identifies the specific instrument or other

physical asset that will be used by the software module.

Virtual identifiers are used to assign client specific names to the physical identifiers used by the software

module for repeated capabilities. Refer to Section 16.1, IVI Virtual Name Overview, for more information.

The Data Components objects referenced by a session are either configurable initial settings or serve to

document the session.

14.1.1 Configurable Initial Settings

Certain IVI Data Components, including configurable initial settings, in a software module are copied to

the sessions that reference the software module.

A transferable data component is an IVI Data Component in an IVI Software Module whose type is not

Structure with Used In Session equal to “Required” or “Optional”. It may be directly in the software

module’s IVI Data Components collection. It may also be in an IVI Structure whose name is “Configurable

Initial Settings” which is in the software module’s IVI Data Components collection. Refer to Section 5.5.3,

Defining Configurable Initial Settings in the IVI Configuration Store, of IVI-3.17: Installation

Requirements Specification, for more information on this structure.

A transferred data component in an IVI Session is a transferable data component which has been copied. It

has the same characteristics as a transferable data component, though its Read Only property is set to

“False”. Its Value property is copied from the matching transferable data component, but it may be

changed by the user. This Value is used by the software module when it is initialized. All of the other

properties are copied over unchanged from the software module referenced by the session.

A session shall include copies of all of the transferable data components with Used In Session equal to

“Required” from the referenced software module. Clients may optionally copy transferable data

components with Used In Session equal to “Optional” from the referenced software module. Before any

transferable data component in the “Configurable Initial Settings” structure is copied, an equivalent IVI

Structure is first added to the session and the transferred data component appears in that IVI Structure.

In general, the configuration server tries to preserve a session and all of its transferred data components,

even if the referenced software module is deleted. This preserves configuration information when, for

instance, a driver is reinstalled or upgraded to a new version. The configuration server employs relatively

complex logic to meet this objective.

• When the session’s Software Module reference property is set for the first time, the configuration

server copies all of the transferable data components with Used In Session equal to “Required” from

the referenced software module. Users may subsequently copy transferable data components with

Used In Session equal to “Optional” over to the session using a configuration utility.

• When the session’s Software Module reference property is set to a null reference, the configuration

server deletes all of the transferred data components from the session. The session does not

“remember” the previously referenced software module by its Name.

IVI-3.5: IVI Configuration Server Specification 162 IVI Foundation

• When the session’s Software Module reference is changed explicitly, the configuration server deletes

all of the transferred data components from the session then copies transferable data components as if

the reference had been set for the first time.

• If the software module referenced by the session’s Software Module reference property is deleted, the

session’s Software Module reference property is set to a null reference implicitly. However, the

session will “remember” the previously referenced software module by its Name. This remembered

name is returned by the Software Module Name property. The configuration server does not delete the

session’s transferred data components in this case.

• When the configuration server adds a new software module, it finds all sessions with Software Module

Name identical to that of the newly added software module. For each session found, the configuration

server checks to see if the session’s transferred data components match the newly added software

module’s transferable data components.

• A software module’s transferable data component matches a session’s transferred data component

if the two have identical values for the Name, Type, and, where applicable, Units properties.

• If a match is found, then the values for Description, Help Context ID, Help File Path, Software

Module Key, and Used In Session are copied from the software module’s transferable data

component to the matching session’s transferred data component. Read Only and Value are not

changed in the session’s transferred data component.

• Software module transferable data components that don’t match any session transferred data

components are copied to the session if Used In Session is equal to “Required”.

• Session transferred data components that don’t match any software module transferable data

components are deleted from the session if Used In Session is equal to “Required”.

14.1.2 Documentation Data Components

Data components that document the session in some way may be added to the session’s data components

collection at any time. These data components shall have “Used In Session” equal to “None” since they are

not used by the session to configure the software module.

14.2 IVI Session References

The IVI Session class defines the following references:

• Hardware Asset

• Software Module

• Virtual Names

The IVI Software Module class inherits the following reference from IVI Configurable Component -

Section 5.3, .NET API Special Features Overview

This section defines special features of the .NET Configuration Server.

14.2.1 .NET Data Types

.NET uses the following basic data types in place of the corresponding COM types:

COM Data Type .NET Data Type

BSTR string

long int

double double

VARIANT_BOOL bool

IVI Foundation 163 IVI-3.5: IVI Configuration Server Specification

14.2.2 .NET Entity Class

Entity is an abstract base class that includes basic functionality used by other Config Store classes. Most of

the class is not publically visible, but the class itself is visible and is used in several constructors including

the main ConfigStore constructor.

The Entity class defines the following public property:

• Name

The following public Config Store classes are derived from Entity.

• HardwareAsset

• PublishedApi

• SoftwareModule

• PhysicalName

• PhysicalRange

• LogicalName

• Session

• DriverSession

• VirtualName

• VirtualRange

• DataComponent

• IviStructure

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

For additional uses of the Entity class in .NET constructors, refer to 5.3.5.2, Params Parameters in

Constructors.

14.2.2.1 The Entity.Name property.

The definition of Entity.Name matches the definition of the Name property in the classes that derive from

entity.

In cases where a class places additional constriants on the Name property, the validation of Entity.Name is

overridden by the class:

• Published Api

• IVI Physical Name

• IVI Virtual Name

IVI-3.5: IVI Configuration Server Specification 164 IVI Foundation

14.2.3 .NET Enumerations

The .NET API defines the following enumerations:

• Config Store Location

• IVI Published API Name

• IVI Published API Type

• Session Usage

14.2.3.1 Config Store Location

The Config Store Location enumeration provides members for the two standard configuration store XML

file locations.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

ConfigStoreLocation.

Master

The master location.

 .NET ConfigStoreLocation.Master

ConfigStoreLocation.

ProcessDefault

The default location for the current process.

 .NET ConfigStoreLocation.ProcessDefault

14.2.3.2 IVI Published API Name

The IVI Published API Name enumeration provides members for each of the standard APIs defined for IVI

Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiName.

IviDmm

The IviDmm instrument class.

 .NET IviPublishedApiName.IviDmm

IviPublishedApiName.

IviDriver

The IviDriver inherent capabilities class.

 .NET IviPublishedApiName.IviDriver

IviPublishedApiName.

IviScope

The IviScope instrument class.

 .NET IviPublishedApiName.IviScope

IviPublishedApiName.

IviFgen

The IviFgen instrument class.

 .NET IviPublishedApiName.IviFgen

IviPublishedApiName.

IviDCPwr

The IviDCPwr instrument class.

 .NET IviPublishedApiName.IviDCPwr

IviPublishedApiName.

IviACPwr

The IviACPwr instrument class.

 .NET IviPublishedApiName.IviACPwr

IVI Foundation 165 IVI-3.5: IVI Configuration Server Specification

IviPublishedApiName.

IviSwtch

The IviSwtch instrument class.

 .NET IviPublishedApiName.IviSwtch

IviPublishedApiName.

IviPwrMeter

The IviPwrMeter instrument class.

 .NET IviPublishedApiName.IviPwrMeter

IviPublishedApiName.

IviSpecAn

The IviSpecAn instrument class.

 .NET IviPublishedApiName.IviSpecAn

IviPublishedApiName.

IviRFSigGen

The IviRFSigGen instrument class.

 .NET IviPublishedApiName.IviRFSigGen

IviPublishedApiName.

IviCounter

The IviCounter instrument class.

 .NET IviPublishedApiName.IviCounter

IviPublishedApiName.

IviDownConverter

The IviDownconverter instrument class.

 .NET IviPublishedApiName.IviDownconverter

IviPublishedApiName.

IviUpConverter

The IviUpconverter instrument class.

 .NET IviPublishedApiName.IviUpconverter

IviPublishedApiName.

IviDigitizer

The IviDigitizer instrument class.

 .NET IviPublishedApiName.IviDigitizer

IviPublishedApiName.

IviLxiSync

The IviLxiSync instrument class.

 .NET IviPublishedApiName.IviLxiSync

14.2.3.3 IVI Published API Type

The IVI Published API Type enumeration provides members for the three standard API types defined for

IVI Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiType.

IviCom

The IVI-COM API type.

 .NET IviPublishedApiType.IviCom

IviPublishedApiType.

IviNet

The IVI.NET API type.

 .NET IviPublishedApiType.IviNet

IviPublishedApiType.

IviC

The IVI-C API type.

 .NET IviPublishedApiType.IviC

14.2.3.4 Session Usage

The Config Store Location enumeration provides members for the three standard values for data

component Used In Session properties.

IVI-3.5: IVI Configuration Server Specification 166 IVI Foundation

Name Description

 Language Identifier Value

SessionUsage.None A session does not need to define a value for this data component.

 .NET SessionUsage.None 0

SessionUsage.

Required

A session must define a value for this data component.

 .NET SessionUsage.Required 1

SessionUsage.

Optional

A session may define a value for this data component.

 .NET SessionUsage.Optional 2

14.2.4 Collections in .NET

Refer to section 4.5, Collections in .NET for a description of collections in .NET.

14.2.5 .NET Constructors

In contrast to the COM API which does not allow parameterized constructors, the .NET API uses

parameterized constructors, so that new objects have legal and consistent data from the start.

14.2.5.1 Constructors and Property Access

Each constructor includes parameters for

• Properties that serve as keys in the corresponding collection. For example, Name is the key value for

nearly all classes, and so name is a common constructor parameter.

• Properties that should not be changed after they are set initially. For example, the Prefix property for

SoftwareModules only needs to be set once, and does not need to be changed after that.

In general, if a constructor includes a parameter, the corresponding property is read only.

14.2.5.2 Params Parameters in Constructors

Some constructors include a params parameter. In the .NET API, these allow a calling program to specify

members of the object’s collections. For example, the constructor for the Virtual Name class includes the

virtualRanges parameter, which allows the calling program to specify multiple Virtual Range objects to

be added to the Virtual Name’s Virtual Range collection.

In most cases the type of the params parameter is an array of a base type, either Entity or DataComponent.

This allows the calling program to specify any object whose class derives from the base class. The

constructor is then responsible for ensuring that the specified objects are valid for that constructor. For

example, the Config Store constructor has a params parameter of type Entity[]. This allows the calling

program to specify any class that derives from Entity as an argument. However, the Config Store

constructor checks each argument to make sure that they are valid for the constructor, and only six types

are valid: Driver Sessions, Hardware Assets, Logical Names, Published APIs, Sessions, and Software

Modules. If the calling program specifies an object of an invalid derived type, the constructor will throw

an exception.

Constructors may enforce additional order constraints on the specified objects. The most common

constraint is for items that must be added to one of the six global collections before they are referenced

elsewhere. If an order constraint is violated, the constructor will throw an exception.

IVI Foundation 167 IVI-3.5: IVI Configuration Server Specification

14.2.5.3 Collection Constructors

Collection constructors are not public. Instead, the Configuration Server creates collections when needed,

and allows calling programs to populate the collections using the collection Add() methods or constructor

params arguments.

14.2.6 .NET Static Methods and Properties

The .NET API includes a few static methods and properties. These are documented for the classes where

they are defined, in separate sections to emphasize the fact that they are static. For the most part these

methods and properties do not have an exact match in the C or COM APIs.

The most important of the static methods is the factory method Load(…). Load combines instantiating a

ConfigStore object and deserializing a configuration store file, returning the instantiated and loaded object.

In contract, the ConfigStore constructor should only be used to create a new configuration store from

scratch.

14.2.7 .NET Schema Validation

The .NET API provides more control over validation than the C or COM APIs. The default for all of the

APIs is to validate an XML file against the Configuration Store XML schema when a file is deserialized.

In addition, the .NET API allows a calling program to deserialize a file without validation (for

performance) and to validate a file without deserializing it.

14.2.8 .NET Exceptions

Refer to section 5.12.2, IVI.NET Error Handling, of IVI-3.1, Driver Architecture Specification, for a

general overview of exceptions in IVI.NET components. Calling programs should be able to accommodate

arbitrary exceptions, including those defined by the .NET Framework.

The .NET Configuration Server does not define any new exceptions. When it explicitly throws an

exception, it throws one of the standard .NET exceptions (usually ArgumentException or

InvalidOperationException) with a custom message that indicates the problem.

The Configuration Server does not generate warnings.

IVI Configurable Components Class (Virtual)

• Data Components

This section describes each reference.

IVI-3.5: IVI Configuration Server Specification 168 IVI Foundation

14.2.9 Hardware Asset

API Technology Data Type Access

COM IIviHardwareAsset** R/O

C IviHardwareAssetHandle R/O

.NET HardwareAsset R/O

COM/.NET Property Name

HardwareAsset

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetSessionHardwareAssetReference

(IviSessionHandle SessionHandle,

IviHardwareAssetHandle*

HardwareAssetHandle);

ViStatus _VI_FUNC IviConfig_SetSessionHardwareAssetReference

(IviSessionHandle SessionHandle,

IviHardwareAssetHandle

HardwareAssetHandle);

C Parameters

Inputs Description Datatype

SessionHandle Handle to an IviSession object. IviSessionHandl

e

Outputs Description Datatype

HardwareAssetHand

le

Handle to an IviHardwareAsset object. IviHardwareAsse

tHandle

Description

References the Hardware Asset used by the Session.

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

The table below specifies additional IVI configuration server status codes for this function.

Completion Codes Description

Not In Global Collection The item does not exist in the global collection.

IVI Foundation 169 IVI-3.5: IVI Configuration Server Specification

14.2.10 Software Module

API Technology Data Type Access

COM IIviSoftwareModule** R/O

C IviSoftwareModuleHandle R/O

.NET SoftwareModule R/O

COM/.NET Property Name

SoftwareModule

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetSessionSoftwareModuleReference

(IviSessionHandle SessionHandle,

IviSoftwareModuleHandle*

SoftwareModuleHandle);

ViStatus _VI_FUNC IviConfig_SetSessionSoftwareModuleReference

(IviSessionHandle SessionHandle,

IviSoftwareModuleHandle

SoftwareModuleHandle);

C Parameters

Inputs Description Datatype

SessionHandle Handle to an IviSession object. IviSessionHandl

e

Outputs Description Datatype

SoftwareModuleHan

dle

Handle to an IviSoftwareModule object. IviSoftwareModu

leHandle

Description

References the Software Module configured by the Session.

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

The table below specifies additional IVI configuration server status codes for this function.

Completion Codes Description

Not In Global Collection The item does not exist in the global collection.

IVI-3.5: IVI Configuration Server Specification 170 IVI Foundation

14.2.11 Virtual Names

API Technology Data Type Access

COM IIviVirtualNameCollection** R/O

C IviVirtualNameCollectionHandle R/O

.NET VirtualNameCollection R/O

COM/.NET Property Name

VirtualNames

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetSessionVirtualNameCollection

(IviSessionHandle SessionHandle,

IviVirtualNameCollectionHandle*

VirtualNameCollectionHandle);

C Parameters

Inputs Description Datatype

SessionHandle Handle to an IviSession object. IviSessionHandl

e

Outputs Description Datatype

VirtualNameCollec

tionHandle

Handle to an IviVirtualNameCollection object. IviVirtualNameC

ollectionHandle

Description

References a collection of all the IVI Virtual Name objects used by the Session. Within a collection, the

Name property uniquely identifies an IVI Virtual name object. IVI Virtual Name objects cannot be reused

between sessions.

IVI Foundation 171 IVI-3.5: IVI Configuration Server Specification

14.3 IVI Session Properties

The IVI Session class defines the following property:

• Software Module Name

The IVI Session class inherits the following properties from IVI Configurable Component - Section 5.3,

.NET API Special Features Overview

This section defines special features of the .NET Configuration Server.

14.3.1 .NET Data Types

.NET uses the following basic data types in place of the corresponding COM types:

COM Data Type .NET Data Type

BSTR string

long int

double double

VARIANT_BOOL bool

14.3.2 .NET Entity Class

Entity is an abstract base class that includes basic functionality used by other Config Store classes. Most of

the class is not publically visible, but the class itself is visible and is used in several constructors including

the main ConfigStore constructor.

The Entity class defines the following public property:

• Name

The following public Config Store classes are derived from Entity.

• HardwareAsset

• PublishedApi

• SoftwareModule

• PhysicalName

• PhysicalRange

• LogicalName

• Session

• DriverSession

• VirtualName

• VirtualRange

• DataComponent

• IviStructure

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

For additional uses of the Entity class in .NET constructors, refer to 5.3.5.2, Params Parameters in

Constructors.

IVI-3.5: IVI Configuration Server Specification 172 IVI Foundation

14.3.2.1 The Entity.Name property.

The definition of Entity.Name matches the definition of the Name property in the classes that derive from

entity.

In cases where a class places additional constriants on the Name property, the validation of Entity.Name is

overridden by the class:

• Published Api

• IVI Physical Name

• IVI Virtual Name

IVI Foundation 173 IVI-3.5: IVI Configuration Server Specification

14.3.3 .NET Enumerations

The .NET API defines the following enumerations:

• Config Store Location

• IVI Published API Name

• IVI Published API Type

• Session Usage

14.3.3.1 Config Store Location

The Config Store Location enumeration provides members for the two standard configuration store XML

file locations.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

ConfigStoreLocation.

Master

The master location.

 .NET ConfigStoreLocation.Master

ConfigStoreLocation.

ProcessDefault

The default location for the current process.

 .NET ConfigStoreLocation.ProcessDefault

14.3.3.2 IVI Published API Name

The IVI Published API Name enumeration provides members for each of the standard APIs defined for IVI

Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiName.

IviDmm

The IviDmm instrument class.

 .NET IviPublishedApiName.IviDmm

IviPublishedApiName.

IviDriver

The IviDriver inherent capabilities class.

 .NET IviPublishedApiName.IviDriver

IviPublishedApiName.

IviScope

The IviScope instrument class.

 .NET IviPublishedApiName.IviScope

IviPublishedApiName.

IviFgen

The IviFgen instrument class.

 .NET IviPublishedApiName.IviFgen

IviPublishedApiName.

IviDCPwr

The IviDCPwr instrument class.

 .NET IviPublishedApiName.IviDCPwr

IviPublishedApiName.

IviACPwr

The IviACPwr instrument class.

 .NET IviPublishedApiName.IviACPwr

IVI-3.5: IVI Configuration Server Specification 174 IVI Foundation

IviPublishedApiName.

IviSwtch

The IviSwtch instrument class.

 .NET IviPublishedApiName.IviSwtch

IviPublishedApiName.

IviPwrMeter

The IviPwrMeter instrument class.

 .NET IviPublishedApiName.IviPwrMeter

IviPublishedApiName.

IviSpecAn

The IviSpecAn instrument class.

 .NET IviPublishedApiName.IviSpecAn

IviPublishedApiName.

IviRFSigGen

The IviRFSigGen instrument class.

 .NET IviPublishedApiName.IviRFSigGen

IviPublishedApiName.

IviCounter

The IviCounter instrument class.

 .NET IviPublishedApiName.IviCounter

IviPublishedApiName.

IviDownConverter

The IviDownconverter instrument class.

 .NET IviPublishedApiName.IviDownconverter

IviPublishedApiName.

IviUpConverter

The IviUpconverter instrument class.

 .NET IviPublishedApiName.IviUpconverter

IviPublishedApiName.

IviDigitizer

The IviDigitizer instrument class.

 .NET IviPublishedApiName.IviDigitizer

IviPublishedApiName.

IviLxiSync

The IviLxiSync instrument class.

 .NET IviPublishedApiName.IviLxiSync

14.3.3.3 IVI Published API Type

The IVI Published API Type enumeration provides members for the three standard API types defined for

IVI Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiType.

IviCom

The IVI-COM API type.

 .NET IviPublishedApiType.IviCom

IviPublishedApiType.

IviNet

The IVI.NET API type.

 .NET IviPublishedApiType.IviNet

IviPublishedApiType.

IviC

The IVI-C API type.

 .NET IviPublishedApiType.IviC

14.3.3.4 Session Usage

The Config Store Location enumeration provides members for the three standard values for data

component Used In Session properties.

IVI Foundation 175 IVI-3.5: IVI Configuration Server Specification

Name Description

 Language Identifier Value

SessionUsage.None A session does not need to define a value for this data component.

 .NET SessionUsage.None 0

SessionUsage.

Required

A session must define a value for this data component.

 .NET SessionUsage.Required 1

SessionUsage.

Optional

A session may define a value for this data component.

 .NET SessionUsage.Optional 2

14.3.4 Collections in .NET

Refer to section 4.5, Collections in .NET for a description of collections in .NET.

14.3.5 .NET Constructors

In contrast to the COM API which does not allow parameterized constructors, the .NET API uses

parameterized constructors, so that new objects have legal and consistent data from the start.

14.3.5.1 Constructors and Property Access

Each constructor includes parameters for

• Properties that serve as keys in the corresponding collection. For example, Name is the key value for

nearly all classes, and so name is a common constructor parameter.

• Properties that should not be changed after they are set initially. For example, the Prefix property for

SoftwareModules only needs to be set once, and does not need to be changed after that.

In general, if a constructor includes a parameter, the corresponding property is read only.

14.3.5.2 Params Parameters in Constructors

Some constructors include a params parameter. In the .NET API, these allow a calling program to specify

members of the object’s collections. For example, the constructor for the Virtual Name class includes the

virtualRanges parameter, which allows the calling program to specify multiple Virtual Range objects to

be added to the Virtual Name’s Virtual Range collection.

In most cases the type of the params parameter is an array of a base type, either Entity or DataComponent.

This allows the calling program to specify any object whose class derives from the base class. The

constructor is then responsible for ensuring that the specified objects are valid for that constructor. For

example, the Config Store constructor has a params parameter of type Entity[]. This allows the calling

program to specify any class that derives from Entity as an argument. However, the Config Store

constructor checks each argument to make sure that they are valid for the constructor, and only six types

are valid: Driver Sessions, Hardware Assets, Logical Names, Published APIs, Sessions, and Software

Modules. If the calling program specifies an object of an invalid derived type, the constructor will throw

an exception.

Constructors may enforce additional order constraints on the specified objects. The most common

constraint is for items that must be added to one of the six global collections before they are referenced

elsewhere. If an order constraint is violated, the constructor will throw an exception.

IVI-3.5: IVI Configuration Server Specification 176 IVI Foundation

14.3.5.3 Collection Constructors

Collection constructors are not public. Instead, the Configuration Server creates collections when needed,

and allows calling programs to populate the collections using the collection Add() methods or constructor

params arguments.

14.3.6 .NET Static Methods and Properties

The .NET API includes a few static methods and properties. These are documented for the classes where

they are defined, in separate sections to emphasize the fact that they are static. For the most part these

methods and properties do not have an exact match in the C or COM APIs.

The most important of the static methods is the factory method Load(…). Load combines instantiating a

ConfigStore object and deserializing a configuration store file, returning the instantiated and loaded object.

In contract, the ConfigStore constructor should only be used to create a new configuration store from

scratch.

14.3.7 .NET Schema Validation

The .NET API provides more control over validation than the C or COM APIs. The default for all of the

APIs is to validate an XML file against the Configuration Store XML schema when a file is deserialized.

In addition, the .NET API allows a calling program to deserialize a file without validation (for

performance) and to validate a file without deserializing it.

14.3.8 .NET Exceptions

Refer to section 5.12.2, IVI.NET Error Handling, of IVI-3.1, Driver Architecture Specification, for a

general overview of exceptions in IVI.NET components. Calling programs should be able to accommodate

arbitrary exceptions, including those defined by the .NET Framework.

The .NET Configuration Server does not define any new exceptions. When it explicitly throws an

exception, it throws one of the standard .NET exceptions (usually ArgumentException or

InvalidOperationException) with a custom message that indicates the problem.

The Configuration Server does not generate warnings.

IVI Configurable Components Class (Virtual)

• Description

• Name

This section describes the behavior and requirements of the property defined in the IVI Session class.

IVI Foundation 177 IVI-3.5: IVI Configuration Server Specification

14.3.9 Software Module Name

API Technology Data Type Access

.NET string R/O

C ViString R/O

COM BSTR R/O

COM/.NET Property Name

SoftwareModuleName

C Constant Name

IVICONFIG_VAL_SESSION_SOFTWARE_MODULE_NAME

Description

The name of the current or most recently referenced software module referenced by the Software Module

property.

IVI-3.5: IVI Configuration Server Specification 178 IVI Foundation

14.4 IVI Session Constructor (.NET Only)

The .NET IVI Session class defines one public constructor.

This section describes the behavior and requirements of the constructor.

14.4.1 Session Constructor

Description

Creates an instance of a Session.

Children parameters may be any one of the following classes deriving from Entity:

• Hardware Asset

• Software Module

• Virtual Name

• Data Component

If there are no children parameters, the Session is created without any corresponding references.

Children parameters are added to the corresponding collections. The order does not matter.

• If a Hardware Asset or Software Module object is referenced by the Session, that Hardware Asset or

Software Module object must have already been added to the global Hardware Asset Collection or

Software Module Collection, respectively.

.NET Prototype

public Session(string name, params Entity[] children)

.NET Parameters

Inputs Description .NET Type

name The name of the Session. string

children Zero or one Hardware Asset, zero or one Software Module,

zero to n Virtual Names, and zero to n data components to be

referenced by the Session.

params Entity[]

IVI Foundation 179 IVI-3.5: IVI Configuration Server Specification

15. IVI Driver Session Class

15.1 IVI Driver Session Overview

The IVI Driver Session class inherits from the IVI Session class and adds several properties that may be

configured for IVI instrument driver software modules. These properties are common to all IVI instrument

drivers and are defined in IVI-3.2: Inherent Capabilities Specification.

15.2 IVI Driver Session References

The IVI Driver Session class inherits the following references from IVI Session - Section 13.3.2,

Description

API Technology
Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Description

C Constant Name

IVICONFIG_VAL_CONFIG_COMPONENT_DESCRIPTION

Description

The description of the logical name. The empty string is a legal value for this property.

IVI-3.5: IVI Configuration Server Specification 180 IVI Foundation

15.3 IVI Logical Name Constructors (.NET Only)

The .NET IVI Logical Name class defines one public constructor.

This section describes the behavior and requirements of the constructor.

15.3.1 LogicalName Constructors

Description

Creates an instance of a Logical Name.

If a Session object is referenced by the Logical Name, that Session object must have already been added to

the global Session Collection.

.NET Prototype

public LogicalName(string name, Session session = null)

.NET Parameters

Inputs Description .NET Type

name The name of the Logical Name. string

session A reference to a Session object that is already a member of

the parent ConfigStore's Sessions collection, or null.

Session

IVI Foundation 181 IVI-3.5: IVI Configuration Server Specification

IVI Session Class:

• Hardware Asset

• Software Module

• Virtual Names

The IVI Driver Session class inherits the following reference from IVI Configurable Component – Section

5.3, .NET API Special Features Overview

This section defines special features of the .NET Configuration Server.

15.3.2 .NET Data Types

.NET uses the following basic data types in place of the corresponding COM types:

COM Data Type .NET Data Type

BSTR string

long int

double double

VARIANT_BOOL bool

15.3.3 .NET Entity Class

Entity is an abstract base class that includes basic functionality used by other Config Store classes. Most of

the class is not publically visible, but the class itself is visible and is used in several constructors including

the main ConfigStore constructor.

The Entity class defines the following public property:

• Name

The following public Config Store classes are derived from Entity.

• HardwareAsset

• PublishedApi

• SoftwareModule

• PhysicalName

• PhysicalRange

• LogicalName

• Session

• DriverSession

• VirtualName

• VirtualRange

• DataComponent

• IviStructure

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

For additional uses of the Entity class in .NET constructors, refer to 5.3.5.2, Params Parameters in

Constructors.

IVI-3.5: IVI Configuration Server Specification 182 IVI Foundation

15.3.3.1 The Entity.Name property.

The definition of Entity.Name matches the definition of the Name property in the classes that derive from

entity.

In cases where a class places additional constriants on the Name property, the validation of Entity.Name is

overridden by the class:

• Published Api

• IVI Physical Name

• IVI Virtual Name

IVI Foundation 183 IVI-3.5: IVI Configuration Server Specification

15.3.4 .NET Enumerations

The .NET API defines the following enumerations:

• Config Store Location

• IVI Published API Name

• IVI Published API Type

• Session Usage

15.3.4.1 Config Store Location

The Config Store Location enumeration provides members for the two standard configuration store XML

file locations.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

ConfigStoreLocation.

Master

The master location.

 .NET ConfigStoreLocation.Master

ConfigStoreLocation.

ProcessDefault

The default location for the current process.

 .NET ConfigStoreLocation.ProcessDefault

15.3.4.2 IVI Published API Name

The IVI Published API Name enumeration provides members for each of the standard APIs defined for IVI

Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiName.

IviDmm

The IviDmm instrument class.

 .NET IviPublishedApiName.IviDmm

IviPublishedApiName.

IviDriver

The IviDriver inherent capabilities class.

 .NET IviPublishedApiName.IviDriver

IviPublishedApiName.

IviScope

The IviScope instrument class.

 .NET IviPublishedApiName.IviScope

IviPublishedApiName.

IviFgen

The IviFgen instrument class.

 .NET IviPublishedApiName.IviFgen

IviPublishedApiName.

IviDCPwr

The IviDCPwr instrument class.

 .NET IviPublishedApiName.IviDCPwr

IviPublishedApiName.

IviACPwr

The IviACPwr instrument class.

 .NET IviPublishedApiName.IviACPwr

IVI-3.5: IVI Configuration Server Specification 184 IVI Foundation

IviPublishedApiName.

IviSwtch

The IviSwtch instrument class.

 .NET IviPublishedApiName.IviSwtch

IviPublishedApiName.

IviPwrMeter

The IviPwrMeter instrument class.

 .NET IviPublishedApiName.IviPwrMeter

IviPublishedApiName.

IviSpecAn

The IviSpecAn instrument class.

 .NET IviPublishedApiName.IviSpecAn

IviPublishedApiName.

IviRFSigGen

The IviRFSigGen instrument class.

 .NET IviPublishedApiName.IviRFSigGen

IviPublishedApiName.

IviCounter

The IviCounter instrument class.

 .NET IviPublishedApiName.IviCounter

IviPublishedApiName.

IviDownConverter

The IviDownconverter instrument class.

 .NET IviPublishedApiName.IviDownconverter

IviPublishedApiName.

IviUpConverter

The IviUpconverter instrument class.

 .NET IviPublishedApiName.IviUpconverter

IviPublishedApiName.

IviDigitizer

The IviDigitizer instrument class.

 .NET IviPublishedApiName.IviDigitizer

IviPublishedApiName.

IviLxiSync

The IviLxiSync instrument class.

 .NET IviPublishedApiName.IviLxiSync

15.3.4.3 IVI Published API Type

The IVI Published API Type enumeration provides members for the three standard API types defined for

IVI Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiType.

IviCom

The IVI-COM API type.

 .NET IviPublishedApiType.IviCom

IviPublishedApiType.

IviNet

The IVI.NET API type.

 .NET IviPublishedApiType.IviNet

IviPublishedApiType.

IviC

The IVI-C API type.

 .NET IviPublishedApiType.IviC

15.3.4.4 Session Usage

The Config Store Location enumeration provides members for the three standard values for data

component Used In Session properties.

IVI Foundation 185 IVI-3.5: IVI Configuration Server Specification

Name Description

 Language Identifier Value

SessionUsage.None A session does not need to define a value for this data component.

 .NET SessionUsage.None 0

SessionUsage.

Required

A session must define a value for this data component.

 .NET SessionUsage.Required 1

SessionUsage.

Optional

A session may define a value for this data component.

 .NET SessionUsage.Optional 2

15.3.5 Collections in .NET

Refer to section 4.5, Collections in .NET for a description of collections in .NET.

15.3.6 .NET Constructors

In contrast to the COM API which does not allow parameterized constructors, the .NET API uses

parameterized constructors, so that new objects have legal and consistent data from the start.

15.3.6.1 Constructors and Property Access

Each constructor includes parameters for

• Properties that serve as keys in the corresponding collection. For example, Name is the key value for

nearly all classes, and so name is a common constructor parameter.

• Properties that should not be changed after they are set initially. For example, the Prefix property for

SoftwareModules only needs to be set once, and does not need to be changed after that.

In general, if a constructor includes a parameter, the corresponding property is read only.

15.3.6.2 Params Parameters in Constructors

Some constructors include a params parameter. In the .NET API, these allow a calling program to specify

members of the object’s collections. For example, the constructor for the Virtual Name class includes the

virtualRanges parameter, which allows the calling program to specify multiple Virtual Range objects to

be added to the Virtual Name’s Virtual Range collection.

In most cases the type of the params parameter is an array of a base type, either Entity or DataComponent.

This allows the calling program to specify any object whose class derives from the base class. The

constructor is then responsible for ensuring that the specified objects are valid for that constructor. For

example, the Config Store constructor has a params parameter of type Entity[]. This allows the calling

program to specify any class that derives from Entity as an argument. However, the Config Store

constructor checks each argument to make sure that they are valid for the constructor, and only six types

are valid: Driver Sessions, Hardware Assets, Logical Names, Published APIs, Sessions, and Software

Modules. If the calling program specifies an object of an invalid derived type, the constructor will throw

an exception.

Constructors may enforce additional order constraints on the specified objects. The most common

constraint is for items that must be added to one of the six global collections before they are referenced

elsewhere. If an order constraint is violated, the constructor will throw an exception.

IVI-3.5: IVI Configuration Server Specification 186 IVI Foundation

15.3.6.3 Collection Constructors

Collection constructors are not public. Instead, the Configuration Server creates collections when needed,

and allows calling programs to populate the collections using the collection Add() methods or constructor

params arguments.

15.3.7 .NET Static Methods and Properties

The .NET API includes a few static methods and properties. These are documented for the classes where

they are defined, in separate sections to emphasize the fact that they are static. For the most part these

methods and properties do not have an exact match in the C or COM APIs.

The most important of the static methods is the factory method Load(…). Load combines instantiating a

ConfigStore object and deserializing a configuration store file, returning the instantiated and loaded object.

In contract, the ConfigStore constructor should only be used to create a new configuration store from

scratch.

15.3.8 .NET Schema Validation

The .NET API provides more control over validation than the C or COM APIs. The default for all of the

APIs is to validate an XML file against the Configuration Store XML schema when a file is deserialized.

In addition, the .NET API allows a calling program to deserialize a file without validation (for

performance) and to validate a file without deserializing it.

15.3.9 .NET Exceptions

Refer to section 5.12.2, IVI.NET Error Handling, of IVI-3.1, Driver Architecture Specification, for a

general overview of exceptions in IVI.NET components. Calling programs should be able to accommodate

arbitrary exceptions, including those defined by the .NET Framework.

The .NET Configuration Server does not define any new exceptions. When it explicitly throws an

exception, it throws one of the standard .NET exceptions (usually ArgumentException or

InvalidOperationException) with a custom message that indicates the problem.

The Configuration Server does not generate warnings.

IVI Configurable Components Class (Virtual):

• Data Components

15.4 IVI Driver Session Properties

The IVI Driver Session class defines the following properties:

• Cache

• Driver Setup

• Interchange Check

• Query Instrument Status

• Range Check

• Record Coercions

• Simulate

The IVI Driver Session class inherits the following properties from IVI Configurable Component – Section

5.3, .NET API Special Features Overview

This section defines special features of the .NET Configuration Server.

15.4.1 .NET Data Types

.NET uses the following basic data types in place of the corresponding COM types:

IVI Foundation 187 IVI-3.5: IVI Configuration Server Specification

COM Data Type .NET Data Type

BSTR string

long int

double double

VARIANT_BOOL bool

15.4.2 .NET Entity Class

Entity is an abstract base class that includes basic functionality used by other Config Store classes. Most of

the class is not publically visible, but the class itself is visible and is used in several constructors including

the main ConfigStore constructor.

The Entity class defines the following public property:

• Name

The following public Config Store classes are derived from Entity.

• HardwareAsset

• PublishedApi

• SoftwareModule

• PhysicalName

• PhysicalRange

• LogicalName

• Session

• DriverSession

• VirtualName

• VirtualRange

• DataComponent

• IviStructure

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

For additional uses of the Entity class in .NET constructors, refer to 5.3.5.2, Params Parameters in

Constructors.

15.4.2.1 The Entity.Name property.

The definition of Entity.Name matches the definition of the Name property in the classes that derive from

entity.

In cases where a class places additional constriants on the Name property, the validation of Entity.Name is

overridden by the class:

• Published Api

• IVI Physical Name

• IVI Virtual Name

IVI-3.5: IVI Configuration Server Specification 188 IVI Foundation

15.4.3 .NET Enumerations

The .NET API defines the following enumerations:

• Config Store Location

• IVI Published API Name

• IVI Published API Type

• Session Usage

15.4.3.1 Config Store Location

The Config Store Location enumeration provides members for the two standard configuration store XML

file locations.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

ConfigStoreLocation.

Master

The master location.

 .NET ConfigStoreLocation.Master

ConfigStoreLocation.

ProcessDefault

The default location for the current process.

 .NET ConfigStoreLocation.ProcessDefault

15.4.3.2 IVI Published API Name

The IVI Published API Name enumeration provides members for each of the standard APIs defined for IVI

Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiName.

IviDmm

The IviDmm instrument class.

 .NET IviPublishedApiName.IviDmm

IviPublishedApiName.

IviDriver

The IviDriver inherent capabilities class.

 .NET IviPublishedApiName.IviDriver

IviPublishedApiName.

IviScope

The IviScope instrument class.

 .NET IviPublishedApiName.IviScope

IviPublishedApiName.

IviFgen

The IviFgen instrument class.

 .NET IviPublishedApiName.IviFgen

IviPublishedApiName.

IviDCPwr

The IviDCPwr instrument class.

 .NET IviPublishedApiName.IviDCPwr

IviPublishedApiName.

IviACPwr

The IviACPwr instrument class.

 .NET IviPublishedApiName.IviACPwr

IVI Foundation 189 IVI-3.5: IVI Configuration Server Specification

IviPublishedApiName.

IviSwtch

The IviSwtch instrument class.

 .NET IviPublishedApiName.IviSwtch

IviPublishedApiName.

IviPwrMeter

The IviPwrMeter instrument class.

 .NET IviPublishedApiName.IviPwrMeter

IviPublishedApiName.

IviSpecAn

The IviSpecAn instrument class.

 .NET IviPublishedApiName.IviSpecAn

IviPublishedApiName.

IviRFSigGen

The IviRFSigGen instrument class.

 .NET IviPublishedApiName.IviRFSigGen

IviPublishedApiName.

IviCounter

The IviCounter instrument class.

 .NET IviPublishedApiName.IviCounter

IviPublishedApiName.

IviDownConverter

The IviDownconverter instrument class.

 .NET IviPublishedApiName.IviDownconverter

IviPublishedApiName.

IviUpConverter

The IviUpconverter instrument class.

 .NET IviPublishedApiName.IviUpconverter

IviPublishedApiName.

IviDigitizer

The IviDigitizer instrument class.

 .NET IviPublishedApiName.IviDigitizer

IviPublishedApiName.

IviLxiSync

The IviLxiSync instrument class.

 .NET IviPublishedApiName.IviLxiSync

15.4.3.3 IVI Published API Type

The IVI Published API Type enumeration provides members for the three standard API types defined for

IVI Instrument Drivers.

Members do not have explicitly defined values.

Name Description

 Language Identifier Value

IviPublishedApiType.

IviCom

The IVI-COM API type.

 .NET IviPublishedApiType.IviCom

IviPublishedApiType.

IviNet

The IVI.NET API type.

 .NET IviPublishedApiType.IviNet

IviPublishedApiType.

IviC

The IVI-C API type.

 .NET IviPublishedApiType.IviC

15.4.3.4 Session Usage

The Config Store Location enumeration provides members for the three standard values for data

component Used In Session properties.

IVI-3.5: IVI Configuration Server Specification 190 IVI Foundation

Name Description

 Language Identifier Value

SessionUsage.None A session does not need to define a value for this data component.

 .NET SessionUsage.None 0

SessionUsage.

Required

A session must define a value for this data component.

 .NET SessionUsage.Required 1

SessionUsage.

Optional

A session may define a value for this data component.

 .NET SessionUsage.Optional 2

15.4.4 Collections in .NET

Refer to section 4.5, Collections in .NET for a description of collections in .NET.

15.4.5 .NET Constructors

In contrast to the COM API which does not allow parameterized constructors, the .NET API uses

parameterized constructors, so that new objects have legal and consistent data from the start.

15.4.5.1 Constructors and Property Access

Each constructor includes parameters for

• Properties that serve as keys in the corresponding collection. For example, Name is the key value for

nearly all classes, and so name is a common constructor parameter.

• Properties that should not be changed after they are set initially. For example, the Prefix property for

SoftwareModules only needs to be set once, and does not need to be changed after that.

In general, if a constructor includes a parameter, the corresponding property is read only.

15.4.5.2 Params Parameters in Constructors

Some constructors include a params parameter. In the .NET API, these allow a calling program to specify

members of the object’s collections. For example, the constructor for the Virtual Name class includes the

virtualRanges parameter, which allows the calling program to specify multiple Virtual Range objects to

be added to the Virtual Name’s Virtual Range collection.

In most cases the type of the params parameter is an array of a base type, either Entity or DataComponent.

This allows the calling program to specify any object whose class derives from the base class. The

constructor is then responsible for ensuring that the specified objects are valid for that constructor. For

example, the Config Store constructor has a params parameter of type Entity[]. This allows the calling

program to specify any class that derives from Entity as an argument. However, the Config Store

constructor checks each argument to make sure that they are valid for the constructor, and only six types

are valid: Driver Sessions, Hardware Assets, Logical Names, Published APIs, Sessions, and Software

Modules. If the calling program specifies an object of an invalid derived type, the constructor will throw

an exception.

Constructors may enforce additional order constraints on the specified objects. The most common

constraint is for items that must be added to one of the six global collections before they are referenced

elsewhere. If an order constraint is violated, the constructor will throw an exception.

IVI Foundation 191 IVI-3.5: IVI Configuration Server Specification

15.4.5.3 Collection Constructors

Collection constructors are not public. Instead, the Configuration Server creates collections when needed,

and allows calling programs to populate the collections using the collection Add() methods or constructor

params arguments.

15.4.6 .NET Static Methods and Properties

The .NET API includes a few static methods and properties. These are documented for the classes where

they are defined, in separate sections to emphasize the fact that they are static. For the most part these

methods and properties do not have an exact match in the C or COM APIs.

The most important of the static methods is the factory method Load(…). Load combines instantiating a

ConfigStore object and deserializing a configuration store file, returning the instantiated and loaded object.

In contract, the ConfigStore constructor should only be used to create a new configuration store from

scratch.

15.4.7 .NET Schema Validation

The .NET API provides more control over validation than the C or COM APIs. The default for all of the

APIs is to validate an XML file against the Configuration Store XML schema when a file is deserialized.

In addition, the .NET API allows a calling program to deserialize a file without validation (for

performance) and to validate a file without deserializing it.

15.4.8 .NET Exceptions

Refer to section 5.12.2, IVI.NET Error Handling, of IVI-3.1, Driver Architecture Specification, for a

general overview of exceptions in IVI.NET components. Calling programs should be able to accommodate

arbitrary exceptions, including those defined by the .NET Framework.

The .NET Configuration Server does not define any new exceptions. When it explicitly throws an

exception, it throws one of the standard .NET exceptions (usually ArgumentException or

InvalidOperationException) with a custom message that indicates the problem.

The Configuration Server does not generate warnings.

IVI Configurable Components Class (Virtual):

• Description

• Name

This section describes the behavior and requirements of each property defined in the IviDriver Session

class.

IVI-3.5: IVI Configuration Server Specification 192 IVI Foundation

15.4.9 Cache

API Technology Data Type Access

.NET bool R/W

C ViBoolean R/W

COM VARIANT_BOOL R/W

COM/.NET Property Name

Cache

C Constant Name

IVICONFIG_VAL_DRIVER_SESSION_CACHE

Description

Cache stores the Boolean value that initializes the Cache attribute in an IVI instrument specific driver. For

a complete description of the Cache attribute, refer to Section 5.1, Cache, of IVI-3.2: Inherent Capabilities

Specification.

IVI Foundation 193 IVI-3.5: IVI Configuration Server Specification

15.4.10 Driver Setup

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

DriverSetup

C Constant Name

IVICONFIG_VAL_DRIVER_SESSION_DRIVER_SETUP

Description

Driver Setup stores the string that initializes the Driver Setup attribute in an IVI instrument specific driver.

For a complete description of the Driver Setup attribute, refer to Section 5.16, Driver Setup, of IVI-3.2:

Inherent Capabilities Specification.

The empty string is a legal value for this property.

IVI-3.5: IVI Configuration Server Specification 194 IVI Foundation

15.4.11 Interchange Check

API Technology Data Type Access

.NET bool R/W

C ViBoolean R/W

COM VARIANT_BOOL R/W

COM/.NET Property Name

InterchangeCheck

C Constant Name

IVICONFIG_VAL_DRIVER_SESSION_INTERCHANGE_CHECK

Description

Interchange Check stores the Boolean value that initializes the Interchange Check attribute in an IVI

instrument specific driver. For a complete description of the Interchange Check attribute, refer to Section

5.22, Interchange Check, of IVI-3.2: Inherent Capabilities Specification.

IVI Foundation 195 IVI-3.5: IVI Configuration Server Specification

15.4.12 Query Instrument Status

API Technology Data Type Access

.NET bool R/W

C ViBoolean R/W

COM VARIANT_BOOL R/W

COM/.NET Property Name

QueryInstrStatus

C Constant Name

IVICONFIG_VAL_DRIVER_SESSION_QUERY_INSTR_STATUS

Description

Query Instrument Status stores the Boolean value that initializes the Query Instrument Status attribute in an

IVI instrument specific driver. For a complete description of the Query Instrument Status attribute, refer to

Section 5.24, Query Instrument Status, of IVI-3.2: Inherent Capabilities Specification.

IVI-3.5: IVI Configuration Server Specification 196 IVI Foundation

15.4.13 Range Check

API Technology Data Type Access

.NET bool R/W

C ViBoolean R/W

COM VARIANT_BOOL R/W

COM/.NET Property Name

RangeCheck

C Constant Name

IVICONFIG_VAL_DRIVER_SESSION_RANGE_CHECK

Description

Range Check stores the Boolean value that initializes the Range Check attribute in an IVI instrument

specific driver. For a complete description of the Range Check attribute, refer to Section 5.25, Range

Check, of IVI-3.2: Inherent Capabilities Specification.

IVI Foundation 197 IVI-3.5: IVI Configuration Server Specification

15.4.14 Record Value Coercions

API Technology Data Type Access

.NET bool R/W

C ViBoolean R/W

COM VARIANT_BOOL R/W

COM/.NET Property Name

RecordCoercions

C Constant Name

IVICONFIG_VAL_DRIVER_SESSION_RECORD_COERCIONS

Description

Record Value Coercions stores the Boolean value that initializes the Record Value Coercions attribute in an

IVI instrument specific driver. For a complete description of the Record Value Coercions attribute, refer to

Section 5.26, Record Value Coercions, of IVI-3.2: Inherent Capabilities Specification.

IVI-3.5: IVI Configuration Server Specification 198 IVI Foundation

15.4.15 Simulate

API Technology Data Type Access

.NET bool R/W

C ViBoolean R/W

COM VARIANT_BOOL R/W

COM/.NET Property Name

Simulate

C Constant Name

IVICONFIG_VAL_DRIVER_SESSION_SIMULATE

Description

Simulate stores the Boolean value that initializes the Simulate attribute in an IVI instrument specific driver.

For a complete description of the Simulate attribute, refer to Section 5.27, Simulate, of IVI-3.2: Inherent

Capabilities Specification.

15.5 IVI Driver Session Constructor (.NET Only)

The .NET IVI Driver Session class defines one public constructor.

This section describes the behavior and requirements of the constructor.

15.5.1 DriverSession Constructor

Description

Creates an instance of a Driver Session.

Children parameters may be any one of the following classes deriving from Entity:

• Hardware Asset

• Software Module

• Virtual Name

• Data Component

If there are no children parameters, the Driver Session is created without any corresponding references.

Children parameters are added to the corresponding collections. The order does not matter.

• If a Hardware Asset or Software Module object is referenced by the Session, that Hardware Asset or

Software Module object must have already been added to the global Hardware Asset Collection or

Software Module Collection, respectively.

.NET Prototype

public DriverSession(string name, params Entity[] children)

IVI Foundation 199 IVI-3.5: IVI Configuration Server Specification

.NET Parameters

Inputs Description .NET Type

name The name of the Driver Session. string

children Zero or one Hardware Asset, zero or one Software Module,

zero to n Virtual Names, and zero to n data components to be

referenced by the Session.

params Entity[]

IVI-3.5: IVI Configuration Server Specification 200 IVI Foundation

16. IVI Virtual Name Class

16.1 IVI Virtual Name Overview

IVI Virtual Name objects describe virtual identifiers defined by the user for a particular session. Virtual

identifiers are the names that a client program gives to instances of the repeated capabilities it accesses in

software modules. For example, an IVI Scope specific instrument driver might name channels “A”, “B”,

and “C” while the client programmer might choose to name them “Chan1”, “Chan2”, and “Chan3”. In this

case, “A”, “B”, and “C” are physical identifiers defined by the software module and “Chan1”, “Chan2”,

and “Chan3” are the corresponding virtual identifiers used by the client program.

Name is the virtual identifier string. It may be qualified by referenced Virtual Ranges.

MapTo is the string that is substituted for the virtual identifier. It may be qualified by referenced Virtual

Ranges.

An IVI Virtual Name object can reference a collection of IVI Virtual Range objects, which allows an

efficient way of creating a large number of virtual identifiers by appending integers from the range to the

Name property.

For a comprehensive overview of the treatment of repeated capabilities in the Configuration Server,

including the role that IVI Virtual Names play, refer to Section 2.9, Repeated Capabilities.

16.2 IVI Virtual Name Reference

The IVI Virtual Name class defines the following reference:

• Virtual Ranges

This section describes the reference.

IVI Foundation 201 IVI-3.5: IVI Configuration Server Specification

16.2.1 Virtual Ranges

API Technology Data Type Access

COM IIviVirtualRangeCollection** R/O

C IviVirtualRangeCollectionHandle R/O

.NET VirtualRangeCollection R/O

COM/.NET Property Name

VirtualRanges

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetVirtualNameVirtualRangeCollection

(IviVirtualNameHandle

VirtualNameHandle,

IviVirtualRangeCollectionHandle*

VirtualRangeCollectionHandle);

C Parameters

Inputs Description Datatype

VirtualNameHandle Handle to an IviVirtualName object. IviVirtualNameH

andle

Outputs Description Datatype

VirtualRangeColle

ctionHandle

Handle to an IviVirtualRangeCollection object. IviVirtualRange

CollectionHandl

e

Description

References a collection of IVI Virtual Range objects used to qualify the referencing IVI Virtual Name

object.

IVI-3.5: IVI Configuration Server Specification 202 IVI Foundation

16.3 IVI Virtual Name Properties

The IVI Virtual Name class defines the following properties:

• Map To

• Name

This section describes the behavior and requirements of each property.

IVI Foundation 203 IVI-3.5: IVI Configuration Server Specification

16.3.1 Map To

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

MapTo

C Constant Name

IVICONFIG_VAL_VIRTUAL_NAME_MAPTO

Description

A string used to replace the virtual identifier when the virtual identifier is used to specify repeated

capability instances in a software module. When the software module encounters the associated virtual

identifier in a repeated capability selector, it substitutes the Map To string for the virtual identifier. The

software module is responsible for determining if the resulting string is a valid physical repeated capability

selector in context. Refer to section 5.9.2, Applying Virtual Identifier Mappings, of IVI-3.1: Driver

Architecture Specification for a description of how software modules resolve virtual identifiers.

The empty string is a legal value for this property only if the IVI Virtual Name object references a non-

empty collection of IVI Virtual Range objects.

IVI-3.5: IVI Configuration Server Specification 204 IVI Foundation

16.3.2 Name

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Name

C Constant Name

IVICONFIG_VAL_VIRTUAL_NAME_NAME

Description

The virtual identifier name. When the software module encounters the virtual identifier name in a repeated

capability selector, it substitutes the Map To string for the virtual identifier. The software module is

responsible for determining if the resulting string is a valid physical repeated capability selector in context.

Refer to section 5.9.2, Applying Virtual Identifier Mappings, of IVI-3.1: Driver Architecture Specification

for a description of how software modules resolve virtual identifiers. Name shall consist of one or more of

the following characters: ‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’, ‘!’, and ‘_’.

The empty string is not a legal value for this property.

IVI Foundation 205 IVI-3.5: IVI Configuration Server Specification

16.4 IVI Virtual Name Constructors (.NET Only)

The .NET IVI Virtual Name class defines one public constructor.

This section describes the behavior and requirements of the constructor.

16.4.1 VirtualName Constructors

Description

Creates an instance of a Virtual Name.

If there are no virtualRanges parameters, the Virtual Name is created without any Virtual Range references.

VirtualRanges parameters are added to the corresponding collection. The order does not matter.

.NET Prototype

public VirtualName(string name,

 string mapTo,

 params VirtualRange[] virtualRanges)

.NET Parameters

Inputs Description .NET Type

name The name of the Virtual Name. string

mapTo The string that is substituted by the software module for

Name whenever it is encountered in a repeated capability

selector. The empty string is a legal value for this

property only if the virtual range collection is non-empty.

string

virtualRanges Zero to n Virtual Ranges to be referenced by the Virtual

Name

params VirtualRange []

IVI-3.5: IVI Configuration Server Specification 206 IVI Foundation

17. IVI Virtual Range Class

17.1 IVI Virtual Range Overview

The IVI Virtual Range class allows multiple virtual identifiers to be defined with a minimum of effort. An

IVI Virtual Range object shall be referenced by exactly one IVI Virtual Name object.

For a comprehensive overview of the treatment of repeated capabilities in the Configuration Server,

including the role that virtual names play, refer to Section 2.9, Repeated Capabilities.

17.2 IVI Virtual Range Properties

The IVI Virtual Range class defines the following properties:

• Max

• Min

• Name

• Starting Physical Index

This section describes the behavior and requirements of each property.

IVI Foundation 207 IVI-3.5: IVI Configuration Server Specification

17.2.1 Max

API Technology Data Type Access

.NET int R/W

C ViInt32 R/W

COM long R/W

COM/.NET Property Name

Max

C Constant Name

IVICONFIG_VAL_VIRTUAL_RANGE_MAX

Description

The upper bound of a range of integers to be appended to the Name property of the referencing IVI Virtual

Name object to create a set of virtual repeated capability identifiers.

IVI-3.5: IVI Configuration Server Specification 208 IVI Foundation

17.2.2 Min

API Technology Data Type Access

.NET int R/W

C ViInt32 R/W

COM long R/W

COM/.NET Property Name

Min

C Constant Name

IVICONFIG_VAL_VIRTUAL_RANGE_MIN

Description

The lower bound of a range of integers to be appended to the Name property of the referencing IVI Virtual

Name object to create a set of virtual repeated capability identifiers.

IVI Foundation 209 IVI-3.5: IVI Configuration Server Specification

17.2.3 Name

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Name

C Constant Name

IVICONFIG_VAL_VIRTUAL_RANGE_NAME

Description

The name of the IVI Virtual Range. This name is used to uniquely identify the range in the collection, and

is not used in creating the set of virtual identifiers.

The empty string is not a legal value for this property.

IVI-3.5: IVI Configuration Server Specification 210 IVI Foundation

17.2.4 Starting Physical Index

API Technology Data Type Access

.NET int R/W

C ViInt32 R/W

COM long R/W

COM/.NET Property Name

StartingPhysicalIndex

C Constant Name

IVICONFIG_VAL_VIRTUAL_RANGE_START_PHYSICAL_INDEX

Description

When a range of integers is appended to the Name property of the referencing IVI Virtual Name object to

create a set of virtual repeated capability identifiers, Starting Physical Index is added to each integer in the

range, and the result is appended to the Map To property to obtain the corresponding set of physical

identifiers.

IVI Foundation 211 IVI-3.5: IVI Configuration Server Specification

17.3 IVI Virtual Range Constructor (.NET Only)

The .NET IVI Virtual Range class defines one public constructor.

This section describes the behavior and requirements of the constructor.

17.3.1 VirtualRange Constructor

Description

Creates an instance of a Virtual Range.

.NET Prototype

public VirtualRange(string name, int min, int max, int startingPhysicalIndex)

.NET Parameters

Inputs Description .NET Type

name The name of the Virtual Range. string

min The lower bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

max The upper bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

startingPhysicalIndex When a range of integers is appended to the Name property

of the referencing IVI VirtualName object to create a set of

virtual repeated capability identifiers, startingPhysicalIndex

is added to each integer in the range, and the result is

appended to the VirtualName.MapTo property to obtain the

corresponding set of physical identifiers.

int

IVI-3.5: IVI Configuration Server Specification 212 IVI Foundation

18. IVI Data Component Class

18.1 IVI Data Component Overview

The IVI Data Component class is used to extend the set of properties that can be supported by other

Configuration Server classes. This class is not implemented directly – it is a virtual base class. The

following Configuration Server classes inherit from the IVI Data Component class:

• IVI API Reference

• IVI Boolean

• IVI Integer

• IVI Real

• IVI String

• IVI Structure

Each of these classes inherits Name, Description, ReadOnly, Used In Session, and Type properties from

IVI Data Component class.

All IVI Configuration Server classes that inherit from the IVI Configurable Component class include a

reference to a collection of IVI Data Components. In addition, the IVI Structure class also contains a

reference to a collection of Data Components, allowing the hierarchical definition of a data components

structure.

18.2 IVI Data Component Properties

The IVI Data Component class defines the following properties:

• Description

• Help Context ID

• Help File Path

• Name

• Read Only

• Software Module Key

• Type

• Used In Session

This section describes the behavior and requirements of each property.

IVI Foundation 213 IVI-3.5: IVI Configuration Server Specification

18.2.1 Description

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Description

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_DESCRIPTION

Description

A description of the IVI Data Component.

The empty string is a legal value for this property.

IVI-3.5: IVI Configuration Server Specification 214 IVI Foundation

18.2.2 Help Context ID

API Technology Data Type Access

.NET int R/W

C ViInt32 R/W

COM long R/W

COM/.NET Property Name

HelpContextID

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_HELP_CONTEXT_ID

Description

The help context ID for the data component.

The default value for this property shall be 0. The value of this property is not meaningful if the Help File

property does not contain a valid help file pathname. If the Help File property does contain a valid help file

pathname, Help Context ID shall return the help context ID for the topic in the help file that provides the

help for the data component.

The configuration server does not verify the content of this property. The person or tool that maintains the

field is responsible for its validity.

IVI Foundation 215 IVI-3.5: IVI Configuration Server Specification

18.2.3 Help File Path

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

HelpFilePath

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_HELP_FILE_PATH

Description

The fully qualified pathname of the help file that provides the help for the data component.

The default value for this property shall be the empty string. If Help File Path is not the empty string, it

shall contain the fully qualified pathname of a help file that conforms to one of the standard formats for

Windows help. If Help File Path is not the empty string, Help Context ID shall return the help context ID

for the topic in the help file that provides the help for the data component.

The configuration server does not verify the content of this property. The person or tool that maintains the

field is responsible for its validity.

IVI-3.5: IVI Configuration Server Specification 216 IVI Foundation

18.2.4 Name

API Technology Data Type Access

.NET string R/O

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Name

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_NAME

Description

The name of the IVI Data Component.

The empty string is not a legal value for this property.

IVI Foundation 217 IVI-3.5: IVI Configuration Server Specification

18.2.5 Read Only

API Technology Data Type Access

.NET bool R/W

C ViBoolean R/W

COM VARIANT_BOOL R/W

COM/.NET Property Name

ReadOnly

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_READ_ONLY

Description

Indicates whether the value of the data component may be changed in a configuration store GUI. If True, a

Configuration Utility must not allow the user to modify the contents of the data component object. If False,

the associated data component objects may be read or written.

IVI-3.5: IVI Configuration Server Specification 218 IVI Foundation

18.2.6 Software Module Key

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

SoftwareModuleKey

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_SW_MODULE_KEY

Description

A string that the software module uses to identify the internal software element to which the data

component applies.

IVI Foundation 219 IVI-3.5: IVI Configuration Server Specification

18.2.7 Type

API Technology Data Type Access

.NET string R/O

C ViString R/O

COM BSTR R/O

COM/.NET Property Name

Type

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_TYPE

Description

A string denoting the data type of the associated data element. Valid values for this field are “Structure”,

“Integer”, “Real”, “Boolean”, “String”, and “APIReference”.

IVI-3.5: IVI Configuration Server Specification 220 IVI Foundation

18.2.8 Used In Session

API Technology Data Type Access

.NET SessionUsage R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

UsedInSession

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_USED_IN_SESSION

Description

This property determines whether a data component associated with a software module is used in a session

that references the software module. The possible values are “Required”, “Optional”, and “None”. The

values are case insensitive.

For data components associated with software modules and sessions, Used In Session shall be “Required”,

“Optional”, or “None”. For data components associated with hardware assets, Used In Session shall be

“None”.

If the value is “Required”, the data component must be present as part of a session’s data components, with

a valid value, for the associated software module to operate correctly.

If the value is “Optional”, the data component may be present as part of a session’s data components, but is

not required for the associated software module to operate correctly. This allows the user to choose

whether to override the driver’s default value.

If the value is “None”, the data component is ignored by the software module. Its presence and value have

no effect on the operation of the software module.

The configuration server shall enforce the valid values for this field. If an invalid value is entered

manually, the configuration server shall return an Invalid Value error.

IVI Foundation 221 IVI-3.5: IVI Configuration Server Specification

18.3 IVI Data Component Constructors (.NET Only)

The Ivi Data Component class is a base class that is never constructed directly. Only the derived classes

have constructors.

IVI-3.5: IVI Configuration Server Specification 222 IVI Foundation

19. IVI Structure Class

19.1 IVI Structure Overview

The IVI Structure class allows one collection of IVI Data Components to reference another collection of

IVI Data Components. This allows data components to be structured hierarchically.

19.2 IVI Structure References

The IVI Structure class defines the following reference:

• DataComponents

This section describes the reference.

IVI Foundation 223 IVI-3.5: IVI Configuration Server Specification

19.2.1 Data Components

API Technology Data Type Access

COM IIviDataComponentCollection** R/O

C IviDataComponentCollectionHandle R/O

.NET DataComponentCollection R/O

COM/.NET Property Name

DataComponents

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetStructureDataComponentCollection

(IviDataComponentHandle

StructureHandle,

IviDataComponentCollectionHandle*

DataComponentCollectionHandle);

C Parameters

Inputs Description Datatype

StructureHandle Handle to an IviDataComponent object. IviDataComponen

tHandle

Outputs Description Datatype

DataComponentColl

ectionHandle

Handle to an IviDataComponentCollection object. IviDataComponen

tCollectionHand

le

Description

References a collection of IVI Data Component objects. Circular references or a circular series of

references are not allowed.

IVI-3.5: IVI Configuration Server Specification 224 IVI Foundation

19.3 IVI Structure Properties

The following properties are inherited from IVI Data Component - Section 0,

IVI Foundation 225 IVI-3.5: IVI Configuration Server Specification

IVI Virtual Range Constructor (.NET Only)

The .NET IVI Virtual Range class defines one public constructor.

This section describes the behavior and requirements of the constructor.

19.3.1 VirtualRange Constructor

Description

Creates an instance of a Virtual Range.

.NET Prototype

public VirtualRange(string name, int min, int max, int startingPhysicalIndex)

.NET Parameters

Inputs Description .NET Type

name The name of the Virtual Range. string

min The lower bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

max The upper bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

startingPhysicalIndex When a range of integers is appended to the Name property

of the referencing IVI VirtualName object to create a set of

virtual repeated capability identifiers, startingPhysicalIndex

is added to each integer in the range, and the result is

appended to the VirtualName.MapTo property to obtain the

corresponding set of physical identifiers.

int

IVI-3.5: IVI Configuration Server Specification 226 IVI Foundation

IVI Data Component Class

• Description

• Help Context ID

• Help File Path

• Name

• Read Only

• Software Module Key

• Type

• Used In Session

In an IVI Structure object, Type shall be set to “Structure”.

IVI Foundation 227 IVI-3.5: IVI Configuration Server Specification

19.4 IVI Structure Constructors (.NET Only)

The .NET IVI Structure class defines two public constructors.

This section describes the behavior and requirements of each constructor.

19.4.1 IviStructure Constructors

Description

Creates an instance of the IVI Structure class.

DataComponents parameters may be any one of the following classes deriving from DataComponent:

• IviStructure,

• IviInteger

• IviReal

• IviBoolean

• IviString

• IviAPIReference

DataComponents parameters are added to the IVI Structure’s Data Components Collection in the order in

which they are specified.

The IVI Published Api referenced by a DataComponents IviAPIReference parameter must have been added

to the global Published API Collection before the IVI Structure is added to a global Configurable

Component Collection. (Global Configurable Components are Hardware Assets, Software Modules,

Sessions, and Driver Sessions.)

.NET Prototype

public IviStructure(

 string name,

 params DataComponent[] dataComponents)

public IviStructure(

 string name,

 bool readOnly = true,

 SessionUsage usedInSession = SessionUsage.Optional,

 params DataComponent[] dataComponents)

.NET Parameters

Inputs Description .NET Type

name The name of the Hardware Asset. This name must be

unique in any collection of Hardware Assets which

includes this one.

string

readOnly If false, the value of the data component may be changed

in a configuration store GUI.

bool

usedInSession Determines whether a data component associated with a

software module is used in a session that references the

software module.

SessionUsage

dataComponents Zero to n Data Components to be referenced by this

Hardware Asset.

DataComponent[]

IVI-3.5: IVI Configuration Server Specification 228 IVI Foundation

20. IVI Integer Class

20.1 IVI Integer Overview

The IVI Integer class defines a 32-bit integer data type for use in the IVI configuration server. This

includes an integer value and other type information. An IVI Integer object cannot exist independently of

an IVI Data Components collection.

20.2 IVI Integer Properties

The IVI Integer class defines the following properties:

• Units

• Value

The following properties are inherited from IVI Data Component - Section 0,

IVI Foundation 229 IVI-3.5: IVI Configuration Server Specification

20.3 IVI Virtual Range Constructor (.NET Only)

The .NET IVI Virtual Range class defines one public constructor.

This section describes the behavior and requirements of the constructor.

20.3.1 VirtualRange Constructor

Description

Creates an instance of a Virtual Range.

.NET Prototype

public VirtualRange(string name, int min, int max, int startingPhysicalIndex)

.NET Parameters

Inputs Description .NET Type

name The name of the Virtual Range. string

min The lower bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

max The upper bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

startingPhysicalIndex When a range of integers is appended to the Name property

of the referencing IVI VirtualName object to create a set of

virtual repeated capability identifiers, startingPhysicalIndex

is added to each integer in the range, and the result is

appended to the VirtualName.MapTo property to obtain the

corresponding set of physical identifiers.

int

IVI-3.5: IVI Configuration Server Specification 230 IVI Foundation

IVI Data Component Class

• Description

• Help Context ID

• Help File Path

• Name

• Read Only

• Software Module Key

• Type

• Used In Session

In an IVI Integer object, type shall be set to “Integer”.

This section describes the behavior and requirements of each property defined in the IVI Integer class.

IVI Foundation 231 IVI-3.5: IVI Configuration Server Specification

20.3.2 Units

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Units

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_UNITS

Description

A string that specifies the units to be applied to Value.

The empty string is a legal value for this property.

IVI-3.5: IVI Configuration Server Specification 232 IVI Foundation

20.3.3 Value

API Technology Data Type Access

.NET int R/W

C ViInt32 R/W

COM long R/W

COM/.NET Property Name

Value

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_VALUE

Description

The integer value of the data component.

IVI Foundation 233 IVI-3.5: IVI Configuration Server Specification

20.4 IVI Integer Constructor (.NET Only)

The .NET IVI Integer class defines one public constructor.

This section describes the behavior and requirements of the constructor.

20.4.1 IviInteger Constructor

Description

Creates an instance of the IVI Integer class.

.NET Prototype

public IviInteger(

 string name,

 long value,

 string units = "",

 bool readOnly = true,

 SessionUsage usedInSession = SessionUsage.Optional)

.NET Parameters

Inputs Description .NET Type

name The name of the IVI Integer. This name must be unique in any

collection of Data Components.

string

value The integer value. long

units The units associated with the integer value. string

readOnly If false, the value of the data component may be changed in a

configuration store GUI.

bool

usedInSession Determines whether a data component associated with a

software module is used in a session that references the

software module.

SessionUsage

IVI-3.5: IVI Configuration Server Specification 234 IVI Foundation

21. IVI Real Class

21.1 IVI Real Overview

The IVI Real class defines a 64-bit real data type for use in the IVI configuration server. This includes a

real value and other type information. An IVI Real object cannot exist independently of an IVI Data

Components collection.

21.2 IVI Real Properties

The IVI Real class defines the following properties:

• Units

• Value

The following properties are inherited from IVI Data Component - Section 0,

IVI Foundation 235 IVI-3.5: IVI Configuration Server Specification

21.3 IVI Virtual Range Constructor (.NET Only)

The .NET IVI Virtual Range class defines one public constructor.

This section describes the behavior and requirements of the constructor.

21.3.1 VirtualRange Constructor

Description

Creates an instance of a Virtual Range.

.NET Prototype

public VirtualRange(string name, int min, int max, int startingPhysicalIndex)

.NET Parameters

Inputs Description .NET Type

name The name of the Virtual Range. string

min The lower bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

max The upper bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

startingPhysicalIndex When a range of integers is appended to the Name property

of the referencing IVI VirtualName object to create a set of

virtual repeated capability identifiers, startingPhysicalIndex

is added to each integer in the range, and the result is

appended to the VirtualName.MapTo property to obtain the

corresponding set of physical identifiers.

int

IVI-3.5: IVI Configuration Server Specification 236 IVI Foundation

IVI Data Component Class

• Description

• Help Context ID

• Help File Path

• Name

• Read Only

• Software Module Key

• Type

• Used In Session

In an IVI Real object, type shall be set to “Real”.

This section describes the behavior and requirements of each property defined in the IVI Real class.

IVI Foundation 237 IVI-3.5: IVI Configuration Server Specification

21.3.2 Units

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Units

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_UNITS

Description

A string that specifies the units to be applied to Value.

The empty string is a legal value for this property.

IVI-3.5: IVI Configuration Server Specification 238 IVI Foundation

21.3.3 Value

API Technology Data Type Access

.NET double R/W

C ViReal64 R/W

COM double R/W

COM/.NET Property Name

Value

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_VALUE

Description

The real value of the data component.

IVI Foundation 239 IVI-3.5: IVI Configuration Server Specification

21.4 IVI Real Constructor (.NET Only)

The .NET IVI Real class defines one public constructor.

This section describes the behavior and requirements of the constructor.

21.4.1 IviReal Constructor

Description

Creates an instance of the IVI Real class.

.NET Prototype

public IviReal(

 string name,

 double value,

 string units = "",

 bool readOnly = true,

 SessionUsage usedInSession = SessionUsage.Optional)

.NET Parameters

Inputs Description .NET Type

name The name of the IVI Real. This name must be unique in any

collection of Data Components.

string

value The real value. double

units The units associated with the real value. string

readOnly If false, the value of the data component may be changed in a

configuration store GUI.

bool

usedInSession Determines whether a data component associated with a

software module is used in a session that references the

software module.

SessionUsage

IVI-3.5: IVI Configuration Server Specification 240 IVI Foundation

22. IVI Boolean Class

22.1 IVI Boolean Overview

The IVI Boolean class defines a Boolean data type for use in the IVI configuration server. This includes a

Boolean value and other type information. An IVI Boolean object cannot exist independently of an IVI

Data Components collection.

22.2 IVI Boolean Properties

The IVI Boolean class defines the following properties:

• Value

The following properties are inherited from IVI Data Component - Section 0,

IVI Foundation 241 IVI-3.5: IVI Configuration Server Specification

22.3 IVI Virtual Range Constructor (.NET Only)

The .NET IVI Virtual Range class defines one public constructor.

This section describes the behavior and requirements of the constructor.

22.3.1 VirtualRange Constructor

Description

Creates an instance of a Virtual Range.

.NET Prototype

public VirtualRange(string name, int min, int max, int startingPhysicalIndex)

.NET Parameters

Inputs Description .NET Type

name The name of the Virtual Range. string

min The lower bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

max The upper bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

startingPhysicalIndex When a range of integers is appended to the Name property

of the referencing IVI VirtualName object to create a set of

virtual repeated capability identifiers, startingPhysicalIndex

is added to each integer in the range, and the result is

appended to the VirtualName.MapTo property to obtain the

corresponding set of physical identifiers.

int

IVI-3.5: IVI Configuration Server Specification 242 IVI Foundation

IVI Data Component Class

• Description

• Help Context ID

• Help File Path

• Name

• Read Only

• Software Module Key

• Type

• Used In Session

In an IVI Boolean object, type shall be set to “Boolean”.

This section describes the behavior and requirements of the property defined in the IVI Boolean class.

IVI Foundation 243 IVI-3.5: IVI Configuration Server Specification

22.3.2 Value

API Technology Data Type Access

.NET bool R/W

C ViBoolean R/W

COM VARIANT_BOOL R/W

COM/.NET Property Name

Value

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_VALUE

Description

The Boolean value of the data component.

IVI-3.5: IVI Configuration Server Specification 244 IVI Foundation

22.4 IVI Boolean Constructors (.NET Only)

The .NET IVI Boolean class defines one public constructor.

This section describes the behavior and requirements of the constructor.

22.4.1 IviBoolean Constructor

Description

Creates an instance of the IVI Boolean class.

.NET Prototype

public IviBoolean(

 string name,

 bool value,

 bool readOnly = true,

 SessionUsage usedInSession = SessionUsage.Optional)

.NET Parameters

Inputs Description .NET Type

name The name of the IVI Boolean. This name must be unique in

any collection of Data Components.

string

value The Boolean value. bool

readOnly If false, the value of the data component may be changed in a

configuration store GUI.

bool

usedInSession Determines whether a data component associated with a

software module is used in a session that references the

software module.

SessionUsage

IVI Foundation 245 IVI-3.5: IVI Configuration Server Specification

23. IVI String Class

23.1 IVI String Overview

The IVI String class defines a string data type for use in the IVI configuration server. This includes a string

value and other type information. An IVI String object cannot exist independently of an IVI Data

Components collection.

23.2 IVI String Properties

The IVI String class defines the following properties:

• Value

The following properties are inherited from IVI Data Component - Section 0,

IVI-3.5: IVI Configuration Server Specification 246 IVI Foundation

23.3 IVI Virtual Range Constructor (.NET Only)

The .NET IVI Virtual Range class defines one public constructor.

This section describes the behavior and requirements of the constructor.

23.3.1 VirtualRange Constructor

Description

Creates an instance of a Virtual Range.

.NET Prototype

public VirtualRange(string name, int min, int max, int startingPhysicalIndex)

.NET Parameters

Inputs Description .NET Type

name The name of the Virtual Range. string

min The lower bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

max The upper bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

startingPhysicalIndex When a range of integers is appended to the Name property

of the referencing IVI VirtualName object to create a set of

virtual repeated capability identifiers, startingPhysicalIndex

is added to each integer in the range, and the result is

appended to the VirtualName.MapTo property to obtain the

corresponding set of physical identifiers.

int

IVI Foundation 247 IVI-3.5: IVI Configuration Server Specification

IVI Data Component Class

• Description

• Help Context ID

• Help File Path

• Name

• Read Only

• Software Module Key

• Type

• Used In Session

In an IVI String object, Type shall be set to “String”.

This section describes the behavior and requirements of the property defined in the IVI String class.

IVI-3.5: IVI Configuration Server Specification 248 IVI Foundation

23.3.2 Value

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Value

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_VALUE

Description

The string value of the data component.

The empty string is a legal value for this property.

IVI Foundation 249 IVI-3.5: IVI Configuration Server Specification

23.4 IVI String Constructors (.NET Only)

The .NET IVI String class defines one public constructor.

This section describes the behavior and requirements of the constructor.

23.4.1 IviString Constructor

Description

Creates an instance of the IVI String class.

.NET Prototype

public IviString(

 string name,

 string value,

 bool readOnly = true,

 SessionUsage usedInSession = SessionUsage.Optional)

.NET Parameters

Inputs Description .NET Type

name The name of the IVI String. This name must be unique in any

collection of Data Components.

string

value The string value. string

readOnly If false, the value of the data component may be changed in a

configuration store GUI.

bool

usedInSession Determines whether a data component associated with a

software module is used in a session that references the

software module.

SessionUsage

IVI-3.5: IVI Configuration Server Specification 250 IVI Foundation

24. IVI API Reference Class

24.1 IVI API Reference Overview

The IVI API Reference class defines a reference to a Published API data type for use in the Configuration

Server. An IVI API Reference object cannot exist independently of an IVI Data Components collection.

All API references are configurable initial settings for either a software module or a session.

An IVI Software Module uses IVI API Reference objects to describe the published APIs that it uses (not

the ones that it implements). A software module (the “using” software module) “uses” an API when it

makes API calls to another software module (the “used” software module) that implements the API. When

an IVI API Reference object is created at install time in a software module’s data components collection,

the value of the Published API reference is set and may not be subsequently changed.

When an IVI Session includes an IVI API Reference object, it associates the Published API with a session

or driver session. This session configures the “used” software module chosen to implement the published

API. The Value property is a session name or logical name. Get Session and Get Driver Session may be

used to resolve the name to a session. Refer to Section 7.4.3, Get Session and Section 7.4.2, Get Driver

Session for more details.

Figure 24-1 Typical API Reference Configuration Store Entries

Figure 24-1 shows two typical uses of the API reference data component. The first shows the set of

configuration store entries for a software module that uses an API reference. The second shows the set of

configuration store entries for a session that configures the software module.

While an API Reference may be used by IVI Drivers, the typical use is for IVI-MSS components.

Attempts to add an IVI API Reference object will fail with an Invalid Data Component error if one of the

following conditions is true:

• The data components collection to which is being added is referenced by an IVI Hardware Asset

object.

• Its Used In Session property is “None”.

Software

Module

Data

Components

API

Reference

Published

API

Using

Session

Data

Components

API

Reference

Published

API

Used

Session

Used

Software

Module

Using

Software

Module

Typical Software Module Entries

Typical Session Configuration

Value

Pu
bl

ish
ed

A
PI

Pu
bl

ish
ed

A
PI

PublishedAPIs

IVI Foundation 251 IVI-3.5: IVI Configuration Server Specification

24.2 IVI API Reference References

The IVI API Reference class defines the following reference:

• Published API

This section describes the reference.

IVI-3.5: IVI Configuration Server Specification 252 IVI Foundation

24.2.1 Published API

API Technology Data Type Access

COM IIviPublishedsAPI** R/O

C IviPublishedAPIsHandle R/O

.NET PublishedAPI R/O

COM/.NET Property Name

PublishedAPI

C Function Prototype

ViStatus _VI_FUNC IviConfig_GetAPIReferencePublishedAPIReference

(IviDataComponentHandle

ApiReferenceHandle,

IviPublishedAPIsHandle*

PublishedAPIsHandle);

ViStatus _VI_FUNC IviConfig_SetAPIReferencePublishedAPIReference

(IviDataComponentHandle

ApiReferenceHandle,

IviPublishedAPIsHandle

PublishedAPIsHandle);

C Parameters

Inputs Description Datatype

APIReferenceHandl

e

Handle to an IviDataComponent object. IviDataComponen

tHandle

Outputs Description Datatype

PublishedAPIHandl

e

Handle to an IviPublishedAPI object. IviPublishedAPI

sHandle

Description

The Published API property references a published API to be associated with the client role identified by

the Name property. The Value property designates a session name that implements the published API.

IVI Foundation 253 IVI-3.5: IVI Configuration Server Specification

24.3 IVI API Reference Properties

The IVI API Reference class defines the following properties:

• Value

The following properties are inherited from IVI Data Component - Section 0,

IVI-3.5: IVI Configuration Server Specification 254 IVI Foundation

24.4 IVI Virtual Range Constructor (.NET Only)

The .NET IVI Virtual Range class defines one public constructor.

This section describes the behavior and requirements of the constructor.

24.4.1 VirtualRange Constructor

Description

Creates an instance of a Virtual Range.

.NET Prototype

public VirtualRange(string name, int min, int max, int startingPhysicalIndex)

.NET Parameters

Inputs Description .NET Type

name The name of the Virtual Range. string

min The lower bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

max The upper bound of a range of integers to be appended to

the Name property of the referencing IVI Virtual Name

object to create a set of physical repeated capability

identifiers.

int

startingPhysicalIndex When a range of integers is appended to the Name property

of the referencing IVI VirtualName object to create a set of

virtual repeated capability identifiers, startingPhysicalIndex

is added to each integer in the range, and the result is

appended to the VirtualName.MapTo property to obtain the

corresponding set of physical identifiers.

int

IVI Foundation 255 IVI-3.5: IVI Configuration Server Specification

IVI Data Component Class

• Description

• Help Context ID

• Help File Path

• Name

• Read Only

• Software Module Key

• Type

• Used In Session

In an IVI API Reference object, Type shall be set to “APIReference”.

This section describes the behavior and requirements of the property defined in the IVI API Reference

class.

IVI-3.5: IVI Configuration Server Specification 256 IVI Foundation

24.4.2 Value

API Technology Data Type Access

.NET string R/W

C ViString R/W

COM BSTR R/W

COM/.NET Property Name

Value

C Constant Name

IVICONFIG_VAL_DATA_COMPONENT_VALUE

Description

A logical name or session name. Value can be passed to GetSession() or GetDrverSession() in the Name

parameter. A session reference is returned according to the semantics defined for GetSession() and

GetDriverSession().

The empty string is a legal value for this property.

IVI Foundation 257 IVI-3.5: IVI Configuration Server Specification

24.5 IVI API Reference Constructor (.NET Only)

The .NET IVI API Reference class defines one public constructor.

This section describes the behavior and requirements of the constructor.

24.5.1 IviAPIReference Constructor

Description

Creates an instance of an IVI API Reference.

Children parameters are added to the corresponding collections in the order in which they are specified.

Before a Published API object may be added to an IVI API Reference, that Published API object must have

already been added to the global Published APIs Collection.

.NET Prototype

public IviAPIReference(

 string name,

 string value,

 PublishedApi publishedApi,

 bool readOnly = true,

 SessionUsage usedInSession = SessionUsage.Optional

.NET Parameters

Inputs Description .NET Type

name The name of the IVI String. This name must be unique in any

collection of Data Components.

string

value A logical name, session name, or driver session name. string

publishedApi A reference to a single PublishedAPI object that is already a

member of the parent ConfigStore's PublishedAPIs collection.

PublishedApi

readOnly If false, the value of the data component may be changed in a

configuration store GUI.

bool

usedInSession Determines whether a data component associated with a

software module is used in a session that references the

software module.

SessionUsage

IVI-3.5: IVI Configuration Server Specification 258 IVI Foundation

25. Configuration Server Error and Completion Codes

The Configuration Server specification defines the following error codes in addition to the generic IVI error

codes defined in IVI-3.2: Inherent Capabilities.

Table 25-1 Configuration Server Completion Codes

Error Name Description

 Language Identifier Value(hex)

Deserialize Failed The specified configuration store file could not be deserialized.

 C IVICONFIG_ERROR_DESERIALIZE_FAILED 0xBFFA1200

 COM E_IVICONFIG_DESERIALIZE_FAILED 0x80041200

Already Deserialized A deserialize was attempted after a previous deserialize had already succeeded.

 C IVICONFIG_ERROR_ALREADY_DESERIALIZED 0xBFFA1201

 COM E_IVICONFIG_ALREADY_DESERIALIZED 0x80041201

Serialize Failed The specified configuration store file could not be serialized.

 C IVICONFIG_ERROR_SERIALIZE_FAILED 0xBFFA1202

 COM E_IVICONFIG_SERIALIZE_FAILED 0x80041202

Session Not Found The session name or logical name could not be resolved to a session or driver

session.

 C IVICONFIG_ERROR_SESSION_NOT_FOUND 0xBFFA1203

 COM E_IVICONFIG_SESSION_NOT_FOUND 0x80041203

Not In Global

Collection

The item does not exist in the global collection.

 C IVICONFIG_ERROR_NOT_IN_GLOBAL 0xBFFA1204

 COM E_IVICONFIG_NOT_IN_GLOBAL 0x80041204

Duplicate Entry An entry with name already exists in the collection.

 C IVICONFIG_ERROR_ALREADY_EXIST 0xBFFA1205

 COM E_IVICONFIG_ALREADY_EXIST 0x80041205

Master Not Found The registry entry for the master configuration store does not exist or the file could

not be found.

 C IVICONFIG_ERROR_MASTER_NOT_FOUND 0xBFFA1206

 COM E_IVICONFIG_MASTER_NOT_FOUND 0x80041206

Does Not Exist The item does not exist in the collection.

 C IVICONFIG_ERROR_NOT_EXIST 0xBFFA1207

 COM E_IVICONFIG_NOT_EXIST 0x80041207

Invalid Data

Component

The data component is not a valid data component.

 C IVICONFIG_ERROR_INVALID_DATA_COMPONENT 0xBFFA1208

 COM E_IVICONFIG_INVALID_DATA_COMPONENT 0x80041208

Invalid Handle The specified handle is invalid or of an incorrect type.

 C IVICONFIG_ERROR_INVALID_HANDLE 0xBFFA1220

IVI Foundation 259 IVI-3.5: IVI Configuration Server Specification

 COM N/A

Invalid Property ID The specified property ID is not valid for this function.

 C IVICONFIG_ERROR_INVALID_PROPERTY_ID 0xBFFA1221

 COM N/A

Reference Still Exists The element cannot be removed from the global collection when it is referenced in

the local collections.

 C IVICONFIG_ERROR_LOCAL_REFERENCE_EXIST 0xBFFA1209

 COM E_IVICONFIG_LOCAL_REFERENCE_EXIST 0x80041209

Not Supported The operation is not supported.

 C 0xBFFA1222

 COM 0x80041222

Master Store Registry

Conflict

The locations of the master configuration store in the 32-bit and 64-bit registry

hives are not the same.

 C IVICONFIG_ERROR_MASTER_REGISTRY_CONFLICT 0xBFFA1223

 COM E_IVICONFIG_MASTER_REGISTRY_CONFLICT 0x80041223

Table 25-2 defines the format of the message string associated with the error. In C, this string is returned by

the Error Message function. In COM, this string is the description contained in the ErrorInfo object.

Table 25-2. Configuration Server Error Message Strings

Name Message String

Deserialize Failed “IviConfigServer.IviConfigStore.1: Deserialize failed. %1”

Already Deserialized “IviConfigServer.IviConfigStore.1: A previous deserialize has

already succeeded.”

Serialize Failed “IviConfigServer.IviConfigStore.1: Serialize failed. %1”

Session Not Found “IviConfigServer.IviConfigStore.1: Get%1 failed. Name %2 could

not be resolved to a %1.”

Not In Global Collection “IviConfigServer.IviConfigStore.1: %1 failed. %2 does not exist in

the global collection or the object is not the same as in the global

collection.”

Duplicate Entry “IviConfigServer.IviConfigStore.1: %1 failed. %2 already exists in

the collection.”

Master Not Found “IviConfigServer.IviConfigStore.1: get_MasterLocation failed. The

registry key does not exist or the file can not be found.”

Does Not Exist “IviConfigServer.IviConfigStore.1: %1 failed. %2 does not exist in

the collection.”

Invalid Data Component “IviConfigServer.IviConfigStore.1: : %1 failed. The data

component is not a valid data component. %2”

Invalid Handle “IviConfigServer: %1: The specified handle is either invalid or is

of an incorrect type.”

Invalid Property ID “IviConfigStore: %1: The specified property ID is not a valid ID for

this function.”

Reference Still Exists “IviConfigStore: %1: %2 failed. The element cannot be removed

from the global collection when it is referenced in the local

IVI-3.5: IVI Configuration Server Specification 260 IVI Foundation

Name Message String

collections.”

Not Supported The operation is not supported.

Master Store Registry

Conflict

“IviConfigServer.IviConfigStore.1: get_MasterLocation failed. The

locations of the master configuration store in the 32-bit and 64-bit

registry hives are not the same.”

IVI Foundation 261 IVI-3.5: IVI Configuration Server Specification

26. Configuration Store Data Format

Configuration Store data is stored in an XML file. The format is specified by a schema file,

IviConfigurationStore_1-6.xsd which is installed in the same directory as the master configuration store

file.

IVI-3.5: IVI Configuration Server Specification 262 IVI Foundation

27. Configuration Utility Implementation Guidelines

Configuration utilities facilitate the process of “manually” editing of the configuration store. They are not

specified by the IVI Foundation, and so discussion of implementation is confined to these guidelines.

Users will prefer using a configuration utility to either manually editing the configuration store XML file

using a text editor, or using an IVI configuration server API to edit the configuration store as needed, since

this requires programming. To provide this ease of use, configuration utilities may use a graphical user

interface designed to perform the tasks that users must perform to review configuration store content and

configure IVI instrument drivers and/or IVI-MSS role control modules. Vendors may choose to tailor the

functionality of a configuration utility to particular business needs, or to develop a broadly applicable

utility that performs many general configuration server tasks.

Configuration utilities should make it clear to the user that virtual names should be sufficiently specific to

the application that they are unlikely to conflict with physical names.

27.1 General

Configuration utilities should always use an IVI configuration server to make any modifications to any

configuration store.

Configuration utilities should preserve the data integrity of the configuration store as described in this

specification. While the configuration server API handles quite a bit of the data integrity as described in

this specification, some items must be handled by the configuration utility and those are described in the

following guidelines.

27.2 Hardware Assets

The configuration utility should allow users to add, modify, and delete hardware assets.

The configuration utility should not limit the format of the IO Resource Descriptor so as to limit future

potential formats for I/O addresses.

27.3 Published APIs

The installation of a Software Module may add a Published API to the global collection. Configuration

utilities may also add Published APIs, but they should be very careful about modifying or deleting them.

27.4 Software Modules

Configuration utilities should not add or delete software modules to the master configuration store.

Software modules are added to the configuration store when they are installed, and are deleted when they

are uninstalled.

Configuration utilities should not modify any of the data referenced directly or indirectly by software

modules. The only exception is that they may add, modify, and delete documentation data components

referenced by the software module.

Configuration utilities may copy software modules to, and delete software modules from “slave”

configuration stores. When they do, all of the referenced data should also be copied or deleted.

27.5 Sessions

The configuration utility should allow users to add, modify, and delete sessions.

IVI Foundation 263 IVI-3.5: IVI Configuration Server Specification

Configuration utilities should be able to configure the configurable initial settings of a session accurately.

That means modifying the Value property. Users should not be able to modify the following properties in a

configurable initial setting: Description, Help Context ID, Help File Path, Name, Read Only, Software

Module Key, Type, Used In Session or Units.

27.6 Documentation Data Components

Configuration utilities should add, modify, or delete documentation data components for a hardware asset,

software module, or session accurately. In general, users may modify any property of documentation data

components.

IVI-3.5: IVI Configuration Server Specification 264 IVI Foundation

28. Limitations

28.1 Distributed Systems

Remote access to the Configuration Server has not been validated to work. Specifying this support will

introduce new issues related to DCOM security and system configuration.

28.2 Concurrent Reading and Writing

The Configuration Server does not support multiple concurrent writers or concurrent readers and writers. It

does support multiple concurrent readers.

IVI Foundation 265 IVI-3.5: IVI Configuration Server Specification

Appendix A: COM Configuration Server API and IVI-COM Driver
Example

This example is written using the COM Configuration Server.

The subject of this example is an imaginary IVI-COM instrument specific driver. The driver supports a

family of oscilloscopes from GizmoTronics , Inc. The driver supports the IVI inherent interfaces and the

IVI scope class-compliant interfaces. In addition to the standard IVI configuration properties, the driver

can be configured from the configuration server to turn tracing on and off. The driver supports four

channels that it knows as “C1” through “C4”.

All examples are in Visual Basic, and may be abbreviated to emphasize configuration server use.

The configuration server code that needs to be run when the driver is installed looks like this.

Option Explicit

Private Sub AddSoftwareModule()

Dim cs As New IviConfigStore

Dim sm As IviSoftwareModule

Dim pa As IviPublishedAPI

Dim pn As IviPhysicalName

Dim pr As IviPhysicalRange

Dim dcb As IviBoolean

'// Deserialize the master configuration store.

On Error GoTo DeserializeError

cs.Deserialize cs.MasterLocation

On Error GoTo 0

'// Delete the old version of the driver

On Error Resume Next

cs.SoftwareModules.Remove "gt40xx"

On Error GoTo 0

'// Make sure that the Published API entries used by the software module

'// exist in the global Published API collection.

Set pa = New IviPublishedAPI

pa.Name = "IviDriver"

pa.Type = "IVI-COM"

pa.MajorVersion = 2

pa.MinorVersion = 0

 '// If the API is already in the collection, what follows will return

 '// an error, but it doesn't need to be trapped because the API

 '// exists in the collection, which is what we want.

On Error Resume Next

cs.PublishedAPIs.Add pa

On Error GoTo 0

Set pa = New IviPublishedAPI

pa.Name = "IviScope"

pa.Type = "IVI-COM"

pa.MajorVersion = 2

pa.MinorVersion = 0

 '// If the API is already in the collection, what follows will return

IVI-3.5: IVI Configuration Server Specification 266 IVI Foundation

 '// an error, but it doesn't need to be trapped because the API

 '// exists in the collection, which is what we want.

On Error Resume Next

cs.PublishedAPIs.Add pa

On Error GoTo 0

'// Create the new software module entry

Set sm = New IviSoftwareModule

sm.Name = "gt40xx"

sm.Description = "IVI-COM Specific Instrument Driver for GT40xx family of

oscilloscopes"

sm.Prefix = "gt40xx"

sm.ProgId = "gt40xx.gt40xx"

sm.ModulePath = ""

sm.SupportedInstrumentModels = "gt4000,gt4001,gt4010,gt4011,gt4012"

'// Add the Published API entries to the software module

sm.PublishedAPIs.Add cs.PublishedAPIs.Item("IviDriver", 2, 0, "IVI-COM")

sm.PublishedAPIs.Add cs.PublishedAPIs.Item("IviScope", 2, 0, "IVI-COM")

'// Add the physical name and physical range entries

Set pn = New IviPhysicalName

pn.Name = "C"

pn.RCName = "Channel"

sm.PhysicalNames.Add pn

Set pr = New IviPhysicalRange

pr.Name = "C Range 1"

pr.Max = 4

pr.Min = 1

pn.PhysicalRanges.Add pr

'// Add the data components

Set dcb = New IviBoolean

dcb.Name = "Trace"

dcb.Description = "If True, tracing is on, otherwise off"

'// dcb.Type automatically set to "Boolean" by the API

dcb.ReadOnly = True

dcb.UsedInSession = "Required" '// Software module will default to False

dcb.Value = False '// False is the default configuration value

sm.DataComponents.Add dcb

cs.SoftwareModules.Add sm

Exit Sub

DeserializeError:

'// Handle the error appropriately.

End Sub

Now create a session for the driver. A logical name (“Bob”) will refer to the session. The session will

refer to a hardware asset whose resource descriptor is “GPIB0::12::INSTR”. It will also provide logical

names for the software modules physical names and configure the values of the trace data component.

The configuration server code that needs to be run when a session is created for the driver software module

follows. Bear in mind that most end-users will use a GUI to edit the configuration store, but some users

may choose to write code like this – for example, as part of a test system. In any case, this example code is

IVI Foundation 267 IVI-3.5: IVI Configuration Server Specification

meant to illustrate the kinds of configuration server entries that must be made. It is not meant to be

bulletproof copy and paste code.

Private Sub AddDriverSession()

Dim cs As New IviConfigStore

Dim ha As IviHardwareAsset

Dim hadup As IviHardwareAsset

Dim ds As IviDriverSession

Dim vn As IviVirtualName

Dim vr As IviVirtualRange

Dim dc As IviDataComponent

Dim dcb As IviBoolean

Dim ln As IviLogicalName

'// Deserialize the master configuration store.

'On Error GoTo DeserializeError

cs.Deserialize (cs.MasterLocation)

On Error GoTo 0

'// Create the Hardware Asset and add it to the global hardware asset

'// collection

Set ha = New IviHardwareAsset

ha.Name = "Scope 5"

ha.Description = "GT4010 Scope, test station 5"

ha.IOResourceDescriptor = "GPIB0::12::INSTR"

On Error GoTo DuplicateHardwareAsset

cs.HardwareAssets.Add ha

On Error GoTo 0

'// Create the Session fill in the Session object properties

Set ds = New IviDriverSession

ds.Name = "Scope5"

ds.Description = "Driver session forscope at test station 5"

ds.Cache = False

ds.DriverSetup = ""

ds.InterchangeCheck = True

ds.QueryInstrStatus = False

ds.RangeCheck = False

ds.RecordCoercions = False

ds.Simulate = True

'// Add the Hardware Asset reference to the Session

Set ds.HardwareAsset = cs.HardwareAssets.Item("Scope 5")

'// Create the Virtual names for the Session. The creates the following

'// mappings: Analog -> C1, 1 -> C2, 2 -> C3, and 3 -> C4.

Set vn = New IviVirtualName

vn.Name = "Analog"

vn.MapTo = "C1"

ds.VirtualNames.Add vn

Set vn = New IviVirtualName

vn.MapTo = "C"

vn.Name = ""

Set vr = New IviVirtualRange

vr.Name = "Virt CH 1-3"

vr.Max = 3

vr.Min = 1

vr.StartingPhysicalIndex = 2

vn.VirtualRanges.Add vr

ds.VirtualNames.Add vn

IVI-3.5: IVI Configuration Server Specification 268 IVI Foundation

'// Add the Software Module reference to the Session. The configuration

'// server will automatically copy all data components with UsedInSession

'// = "Required" or "Optional" to the session's data components, and

'// change the ReadOnly property to False.

Set ds.SoftwareModule = cs.SoftwareModules.Item("gt40xx")

'// Change the default values for Data Components for the Session, if needed

Set dcb = ds.DataComponents.Item("Trace")

dcb.Value = True

cs.DriverSessions.Add ds

'// Create the Logical Name and add it to the global logical name collection

Set ln = New IviLogicalName

ln.Name = "Bob"

ln.Description = "Logical name for Scope at test station 5"

Set ln.Session = ds

On Error GoTo DuplicateLogicalNames

cs.LogicalNames.Add ln

On Error GoTo 0

Exit Sub

'// Error handler for duplicate hardware assets

DuplicateHardwareAsset:

Set hadup = cs.HardwareAssets.Item("Scope 5")

If ha.IOResourceDescriptor = hadup.IOResourceDescriptor _

 Then

 Resume Next '// The hardware asset already exists - we just move forward

 End If

'// The hardware asset "Scope 5" refers to a different IO Resource.

'// Handle this error appropriately.

Exit Sub

'// Error handler for duplicate Logical Names

DuplicateLogicalNames:

'// The logical name "Bob" already exists.

'// Handle this error appropriately.

Exit Sub

End Sub

The XML file created by this example, with extra line breaks, looks like:

<IviConfigStore xmlns:dt="urn:schemas-microsoft-com:datatypes">

<Name>IVI Configuration Server</Name>

<Description>The IVI Configuration Server allows access to and modification of

an IVI configuration store</Description>

<Vendor>IVI Foundation, Inc</Vendor>

<Revision>1.3.0.3</Revision>

<SpecificationMajorVersion>1</SpecificationMajorVersion>

<SpecificationMinorVersion>0</SpecificationMinorVersion>

<MasterLocation>C:\Program

Files\IVI\Data\IviConfigurationStore.xml</MasterLocation>

<ProcessDefaultLocation>

</ProcessDefaultLocation>

<ActualLocation>

</ActualLocation>

<PublishedAPIs>

<IviPublishedAPI id="p1">

IVI Foundation 269 IVI-3.5: IVI Configuration Server Specification

<Name>IviDriver</Name>

<MajorVersion>2</MajorVersion>

<MinorVersion>0</MinorVersion>

<Type>IVI-COM</Type>

</IviPublishedAPI>

<IviPublishedAPI id="p2">

<Name>IviScope</Name>

<MajorVersion>2</MajorVersion>

<MinorVersion>0</MinorVersion>

<Type>IVI-COM</Type>

</IviPublishedAPI>

</PublishedAPIs>

<SoftwareModules>

<IviSoftwareModule id="p3">

<Name>gt40xx</Name>

<Description>IVI-COM Specific Instrument Driver for GT40xx family of

oscilloscopes</Description>

<DataComponents>

<IviBoolean id="p4">

<Name>Trace</Name>

<Description>If True, tracing is on, if False, tracing is off</Description>

<ReadOnly>1</ReadOnly>

<UsedInSession>Required</UsedInSession>

<Type>Boolean</Type>

<HelpContextID>0</HelpContextID>

<HelpFilePath>

</HelpFilePath>

<SoftwareModuleKey>

</SoftwareModuleKey>

<Value>0</Value>

</IviBoolean>

</DataComponents>

<ModulePath>

</ModulePath>

<Prefix>gt40xx</Prefix>

<ProgID>gt40xx.gt40xx</ProgID>

<SupportedInstrumentModels>gt4000,gt4001,gt4010,gt4011,gt4012</SupportedInstrum

entModels>

<PhysicalNames>

<IviPhysicalName id="p5">

<Name>C</Name>

<RCName>Channel</RCName>

<PhysicalNames/>

<PhysicalRanges>

<IviPhysicalRange id="p6">

<Name>C Range 1</Name>

<Max>4</Max>

<Min>1</Min>

</IviPhysicalRange>

</PhysicalRanges>

</IviPhysicalName>

</PhysicalNames>

<PublishedAPIs>

<IviPublishedAPI idref="p1"/>

<IviPublishedAPI idref="p2"/>

</PublishedAPIs>

</IviSoftwareModule>

</SoftwareModules>

<HardwareAssets>

<IviHardwareAsset id="p7">

<Name>Scope 5</Name>

<Description>GT4010 Scope, test station 5</Description>

IVI-3.5: IVI Configuration Server Specification 270 IVI Foundation

<DataComponents/>

<IOResourceDescriptor>GPIB0::12::INSTR</IOResourceDescriptor>

</IviHardwareAsset>

</HardwareAssets>

<DriverSessions>

<IviDriverSession id="p8">

<Name>Scope5</Name>

<Description>Driver session forscope at test station 5</Description>

<DataComponents>

<IviBoolean id="p9">

<Name>Trace</Name>

<Description>If True, tracing is on, if False, tracing is off</Description>

<ReadOnly>0</ReadOnly>

<UsedInSession>Required</UsedInSession>

<Type>Boolean</Type>

<HelpContextID>0</HelpContextID>

<HelpFilePath>

</HelpFilePath>

<SoftwareModuleKey>

</SoftwareModuleKey>

<Value>1</Value>

</IviBoolean>

</DataComponents>

<IviHardwareAsset idref="p7"/>

<IviSoftwareModuleRef idref="p3"/>

<VirtualNames>

<IviVirtualName id="p10">

<Name>

</Name>

<MapTo>C</MapTo>

<VirtualRanges>

<IviVirtualRange id="p11">

<Name>Virt CH 1-3</Name>

<Max>3</Max>

<Min>1</Min>

<StartingPhysicalIndex>2</StartingPhysicalIndex>

</IviVirtualRange>

</VirtualRanges>

</IviVirtualName>

<IviVirtualName id="p12">

<Name>Analog</Name>

<MapTo>C1</MapTo>

<VirtualRanges/>

</IviVirtualName>

</VirtualNames>

<SoftwareModuleName>gt40xx</SoftwareModuleName>

<Cache>0</Cache>

<DriverSetup>

</DriverSetup>

<InterchangeCheck>1</InterchangeCheck>

<QueryInstrStatus>0</QueryInstrStatus>

<RangeCheck>0</RangeCheck>

<RecordCoercions>0</RecordCoercions>

<Simulate>1</Simulate>

</IviDriverSession>

</DriverSessions>

<Sessions>

<IviDriverSession idref="p8"/>

</Sessions>

<LogicalNames>

<IviLogicalName id="p13">

<Name>Bob</Name>

IVI Foundation 271 IVI-3.5: IVI Configuration Server Specification

<Description>Logical name for Scope at test station 5</Description>

<IviDriverSession idref="p8"/>

</IviLogicalName>

</LogicalNames>

</IviConfigStore>

IVI-3.5: IVI Configuration Server Specification 272 IVI Foundation

Appendix B: .NET Configuration Server API and IVI-COM Driver
Example

This example is written using the native .NET Configuration Server.

The subject of this example is an imaginary IVI-COM instrument specific driver. The driver supports a

family of oscilloscopes from GizmoTronics , Inc. The driver supports the IVI inherent interfaces and the

IVI scope class-compliant interfaces. In addition to the standard IVI configuration properties, the driver

can be configured from the configuration server to turn tracing on and off. The driver supports four

channels that it knows as “C1” through “C4”.

All examples are in C#. They may be abbreviated to emphasize configuration server use.

B.1 Assembly References

After creating a source file for the example code, add the native IVI.NET Configuration Server to the

example project, and add the following references to the code:

using System;

using System.IO;

using System.Text;

using Ivi.ConfigServer;

B.2 Creating an Empty Configuration Store for the Example

Do not use the configuration store file that is installed with the IVI Shared Components. Instead, create a

file just for use with the example: This section shows a method that creates a new file in the temp folder.

private static string exampleStore { get; } = Path.Combine(

 @”C:\Temp”,

 "ExampleStore.xml");

private void CreateEmptyConfigStore()

{

 if (File.Exists(exampleStore))

 File.Delete(exampleStore);

 var server = new ConfigStore();

 server.Save(exampleStore);

}

B.3 Adding a Software Module

This section shows the configuration server code to install a software module (in this case, an IVI-COM

specific instrument driver).

private void AddSoftwareModule()

{

 const string moduleName = "gt40xx";

 ConfigStore server;

IVI Foundation 273 IVI-3.5: IVI Configuration Server Specification

 PublishedApi apiDriver;

 PublishedApi apiScope;

 try

 {

 server = ConfigStore.Load(exampleStore);

 }

 catch (ArgumentException)

 {

 // Handle the exception appropriately.

 throw;

 }

 if (server.SoftwareModules.ContainsKey(moduleName))

 server.SoftwareModules.Remove(moduleName);

 if (server.PublishedApis.ContainsKey(

 IviPublishedApiName.IviDriver,

 IviPublishedApiType.IviCom,

 2, 0))

 {

 apiDriver = server.PublishedApis[

 IviPublishedApiName.IviDriver,

 IviPublishedApiType.IviCom,

 2, 0];

 }

 else

 {

 apiDriver = new PublishedApi(

 IviPublishedApiName.IviDriver,

 IviPublishedApiType.IviCom,

 2, 0);

 server.PublishedApis.Add(apiDriver);

 }

 if (server.PublishedApis.ContainsKey(

 IviPublishedApiName.IviScope,

 IviPublishedApiType.IviCom,

 2, 0))

 {

 apiScope = server.PublishedApis[

 IviPublishedApiName.IviScope,

 IviPublishedApiType.IviCom,

 2, 0];

 }

 else

 {

 apiScope = new PublishedApi(

 IviPublishedApiName.IviScope,

 IviPublishedApiType.IviCom,

 2, 0);

 server.PublishedApis.Add(apiScope);

 }

 server.SoftwareModules.Add(

 new IviComSoftwareModule(

 moduleName,

IVI-3.5: IVI Configuration Server Specification 274 IVI Foundation

 moduleName,

 moduleName + "." + moduleName,

 apiDriver,

 apiScope,

 new PhysicalName("C",

 new PhysicalRange("C Range 1", 1, 4))

 { RCName = "Channel" },

 new IviBoolean("Trace", false, true, SessionUsage.Required)

 { Description = "If True, tracing is on, otherwise off" })

 {

 Description = "IVI-COM Specific Instrument Driver for"

 + " GT40xx family of oscilloscopes",

 SupportedInstrumentModels = "gt4000,gt4001,gt4010,gt4011,gt4012"

 });

 server.Save(exampleStore);

}

B.4 Adding a Driver Session

The section shows the configuration server code to add a driver session that uses the previously added

software module. A logical name (“Scope5”) will refer to the session. The session will refer to a hardware

asset whose resource descriptor is “GPIB0::12::INSTR”. It will also provide logical names for the software

modules physical names and configure the values of the trace data component.

Bear in mind that most end-users will use a GUI to edit the configuration store, but some users may choose

to write code like this – for example, as part of a test system. In any case, this example code is meant to

illustrate the kinds of configuration server entries that must be made. It is not meant to apply to every

Driver Session definition.

private void AddDriverSession()

{

 ConfigStore server;

 try

 {

 server = ConfigStore.Load(exampleStore);

 }

 catch (ArgumentException)

 {

 // Handle the exception appropriately.

 throw;

 }

 if (!server.HardwareAssets.ContainsKey("Scope 5"))

 {

 server.HardwareAssets.Add(

 new HardwareAsset("Scope 5", "GPIB0::12::INSTR")

 { Description = "GT4010 Scope, test station 5" });

 }

 else if (server.HardwareAssets["Scope 5"].IOResourceDescriptor !=

 "GPIB0::12::INSTR")

 {

 // Handle this condition appropriately.

 }

IVI Foundation 275 IVI-3.5: IVI Configuration Server Specification

 if (server.DriverSessions.ContainsKey("Scope 5"))

 server.DriverSessions.Remove("Scope 5");

 server.DriverSessions.Add(

 new DriverSession(

 "Scope5",

 server.HardwareAssets["Scope 5"],

 new VirtualName("Analog", "C1"),

 new VirtualName("Digital", "C",

 new VirtualRange("Virt CH 1-3", 1, 3, 2)),

 server.SoftwareModules["gt40xx"])

 {

 Description = "Driver session for scope at test station 5",

 DriverSetup = "",

 Cache = false,

 InterchangeCheck = true,

 QueryInstrStatus = false,

 RangeCheck = false,

 RecordCoercions = false,

 Simulate = true

 });

 var trace = (IviBoolean)

 server.DriverSessions["Scope5"].DataComponents["Trace"];

 trace.Value = true;

 if (!server.LogicalNames.ContainsKey("Bob"))

 {

 server.LogicalNames.Add(

 new LogicalName("Bob",

 server.DriverSessions["Scope5"]));

 }

 else

 {

 // Handle this condition appropriately.

 }

 server.Save(exampleStore);

}

	Important Information
	Warranty
	Trademarks
	1. Overview of the IVI Configuration Server Specification
	1.1 Introduction
	1.2 Typical Use Scenario of the Configuration Server
	1.2.1 Repeated Capabilities

	1.3 References
	1.4 Definitions of Terms and Acronyms
	1.5 Implementation

	2. IVI Configuration Server Design
	2.1 UML Design
	2.2 Types of Classes and Objects
	2.3 Notation
	2.4 IVI Configuration Store
	2.5 IVI Configurable Components
	2.5.1 IVI Configurable Component
	2.5.2 IVI Software Module
	2.5.3 IVI Session and IVI Driver Session
	2.5.4 IVI Hardware Asset

	2.6 IVI Logical Name
	2.7 IVI Published API
	2.8 IVI Data Components
	2.8.1 IVI Data Component
	2.8.2 IVI Structure
	2.8.3 IVI Boolean
	2.8.4 IVI Real
	2.8.5 IVI Integer
	2.8.6 IVI String
	2.8.7 IVI API Reference

	2.9 Repeated Capabilities
	2.9.1 Repeated Capabilities in the Configuration Server
	2.9.2 IVI Physical Name and IVI Physical Range
	2.9.2.1 Nested Repeated Capabilities
	2.9.2.2 Symmetrical and Asymmetrical Nested Capabilities
	2.9.2.3 Uniqueness of IVI Physical Names

	2.9.3 IVI Virtual Name and IVI Virtual Range

	3. Instantiation and execution of the IVI Configuration Servers
	3.1 Installing the Configuration Server
	3.1.1 Packaging
	3.1.2 Data File Installation
	3.1.3 First Installation
	3.1.4 Subsequent Installations

	3.2 Accessing the Configuration Store
	3.2.1 Master Configuration Store
	3.2.2 Process Default Configuration Store
	3.2.3 Instantiating the Right Configuration Store from Software Modules
	3.2.4 Serializing to a Different Configuration Store

	3.3 Adding Entries to Collections
	3.4 Installing Software Modules
	3.4.1 Data Components In Software Modules
	3.4.1.1 Defining Initial Settings
	3.4.1.2 Documenting the Software Module

	3.4.2 Un-installing Software Modules
	3.4.3 Re-installing Software Modules

	3.5 Maintaining Configuration Data
	3.5.1 Configuring Hardware Assets
	3.5.1.1 Data Components in Hardware Assets

	3.5.2 Configuring Sessions and Driver Sessions
	3.5.2.1 Virtual Names

	3.5.3 The collection of IVI Virtual Names identifies the repeated capabilities as defined in the client, and maps these names to physical identifiers that are recognized by the software module. Refer to Section 2.9.2.3, Uniqueness of IVI Physical N...
	3.5.3.1 Configurable Initial Settings
	3.5.3.2 Documenting the Session

	3.5.4 Configuring Logical Names
	3.5.5 Documentation Data Components
	3.5.5.1 IVI Hardware Assets
	3.5.5.2 IVI Sessions and IVI Driver Sessions

	3.6 Using Configuration Data
	3.6.1 IVI Class Drivers and the IVI Session Factory
	3.6.2 Software Module Initialization
	3.6.3 Interchanging Instruments

	3.7 Additional Instances of the Configuration Store
	3.8 Avoiding the Configuration Server
	3.9 Copying Elements

	4. Collections
	4.1 Collections in COM
	4.2 Collections in C
	4.3 Properties in C
	4.4 Return Codes
	4.5 Collections in .NET
	4.5.1 Collection Base Classes

	5. C & .NET API Special Features
	5.1 C API Special Features Overview
	5.2 C API Special Functions
	5.2.1 Clear Error
	5.2.2 Close
	5.2.3 Dispose Handle
	5.2.4 Get Error
	5.2.5 Initialize

	5.3 .NET API Special Features Overview
	5.3.1 .NET Data Types
	5.3.2 .NET Entity Class
	5.3.2.1 The Entity.Name property.

	5.3.3 .NET Enumerations
	5.3.3.1 Config Store Location
	5.3.3.2 IVI Published API Name
	5.3.3.3 IVI Published API Type
	5.3.3.4 Session Usage

	5.3.4 Collections in .NET
	5.3.5 .NET Constructors
	5.3.5.1 Constructors and Property Access
	5.3.5.2 Params Parameters in Constructors
	5.3.5.3 Collection Constructors

	5.3.6 .NET Static Methods and Properties
	5.3.7 .NET Schema Validation
	5.3.8 .NET Exceptions

	6. IVI Configurable Components Class (Virtual)
	6.1 IVI Configurable Components Overview
	6.2 IVI Configurable Components References
	6.2.1 Data Components

	6.3 IVI Configurable Components Properties
	6.3.1 Description
	6.3.2 Name

	7. IVI Configuration Store Class
	7.1 IVI Configuration Store Overview
	7.2 IVI Configuration Store References
	7.2.1 Driver Sessions
	7.2.2 Hardware Assets
	7.2.3 Logical Names
	7.2.4 Published APIs
	7.2.5 Sessions
	7.2.6 Software Modules

	7.3 IVI Configuration Store Properties
	7.3.1 Actual Location
	7.3.2 Description
	7.3.3 Master Location
	7.3.4 Name
	7.3.5 Process Default Location
	7.3.6 Revision
	7.3.7 Specification Major Version
	7.3.8 Specification Minor Version
	7.3.9 Vendor

	7.4 IVI Configuration Store Functions
	7.4.1 Deserialize (C and COM Only)
	7.4.2 Get Driver Session
	7.4.3 Get Session
	7.4.4 Serialize (C and COM Only)
	7.4.5 Add (.NET Only)
	7.4.6 Save (.NET Only)

	7.5 IVI Configuration Store Constructor (.NET Only)
	7.5.1 ConfigStore Constructor

	7.6 IVI Configuration Store Static Property (.NET Only)
	7.6.1 Schema Location

	7.7 IVI Configuration Store Static Methods (.NET Only)
	7.7.1 Load
	7.7.2 Load Without Validation
	7.7.3 Validate

	8. IVI Hardware Asset Class
	8.1 IVI Hardware Asset Overview
	8.1.1 Documentation Data Components

	8.2 IVI Hardware Asset Reference
	8.2.1 .NET Data Types
	8.2.2 .NET Entity Class
	8.2.2.1 The Entity.Name property.

	8.2.3 .NET Enumerations
	8.2.3.1 Config Store Location
	8.2.3.2 IVI Published API Name
	8.2.3.3 IVI Published API Type
	8.2.3.4 Session Usage

	8.2.4 Collections in .NET
	8.2.5 .NET Constructors
	8.2.5.1 Constructors and Property Access
	8.2.5.2 Params Parameters in Constructors
	8.2.5.3 Collection Constructors

	8.2.6 .NET Static Methods and Properties
	8.2.7 .NET Schema Validation
	8.2.8 .NET Exceptions

	8.3 IVI Hardware Asset Properties
	8.3.1 .NET Data Types
	8.3.2 .NET Entity Class
	8.3.2.1 The Entity.Name property.

	8.3.3 .NET Enumerations
	8.3.3.1 Config Store Location
	8.3.3.2 IVI Published API Name
	8.3.3.3 IVI Published API Type
	8.3.3.4 Session Usage

	8.3.4 Collections in .NET
	8.3.5 .NET Constructors
	8.3.5.1 Constructors and Property Access
	8.3.5.2 Params Parameters in Constructors
	8.3.5.3 Collection Constructors

	8.3.6 .NET Static Methods and Properties
	8.3.7 .NET Schema Validation
	8.3.8 .NET Exceptions
	8.3.9 I/O Resource Descriptor

	8.4 IVI Hardware Asset Constructor (.NET Only)
	8.4.1 HardwareAsset Constructor

	9. IVI Published API Class
	9.1 IVI Published API Overview
	9.2 IVI Published API Properties
	9.2.1 Major Version
	9.2.2 Minor Version
	9.2.3 Name
	9.2.4 Type

	9.3 IVI Published API Static Methods (.NET Only)
	9.3.1 Parse Name
	9.3.2 Parse Type
	9.3.3 Try Parse Name
	9.3.4 Try Parse Type
	9.3.5 Type To String

	9.4 IVI Published API Constructors (.NET Only)
	9.4.1 PublishedAPI Constructors

	9.5 IVI Published API Collection Methods and Operators (.NET Only)

	10. IVI Software Module Class
	10.1 IVI Software Module Overview
	10.1.1 Configurable Initial Settings
	10.1.2 Documentation Data Components
	10.1.3 API Type-Specific Software Module Classes (.NET Only)
	10.1.3.1 IviComSoftwareModule
	10.1.3.2 IviCSoftwareModule
	10.1.3.3 IviNetSoftwareModule

	10.2 IVI Software Module References
	10.2.1 .NET Data Types
	10.2.2 .NET Entity Class
	10.2.2.1 The Entity.Name property.

	10.2.3 .NET Enumerations
	10.2.3.1 Config Store Location
	10.2.3.2 IVI Published API Name
	10.2.3.3 IVI Published API Type
	10.2.3.4 Session Usage

	10.2.4 Collections in .NET
	10.2.5 .NET Constructors
	10.2.5.1 Constructors and Property Access
	10.2.5.2 Params Parameters in Constructors
	10.2.5.3 Collection Constructors

	10.2.6 .NET Static Methods and Properties
	10.2.7 .NET Schema Validation
	10.2.8 .NET Exceptions
	10.2.9 Physical Names
	10.2.10 Published APIs

	10.3 IVI Software Module Properties
	10.3.1 .NET Data Types
	10.3.2 .NET Entity Class
	10.3.2.1 The Entity.Name property.

	10.3.3 .NET Enumerations
	10.3.3.1 Config Store Location
	10.3.3.2 IVI Published API Name
	10.3.3.3 IVI Published API Type
	10.3.3.4 Session Usage

	10.3.4 Collections in .NET
	10.3.5 .NET Constructors
	10.3.5.1 Constructors and Property Access
	10.3.5.2 Params Parameters in Constructors
	10.3.5.3 Collection Constructors

	10.3.6 .NET Static Methods and Properties
	10.3.7 .NET Schema Validation
	10.3.8 .NET Exceptions
	10.3.9 Assembly Qualified Class Name
	10.3.10 Module Path
	10.3.11 Module Path 32
	10.3.12 Module Path 64
	10.3.13 Prefix
	10.3.14 ProgID
	10.3.15 Supported Instrument Models

	10.4 IVI Software Module Constructors (.NET Only)
	10.4.1 SoftwareModule Constructor
	10.4.2 IviComSoftwareModule Constructor
	10.4.3 IviCSoftwareModule Constructor
	10.4.4 IviNetSoftwareModule Constructor

	11. IVI Physical Name Class
	11.1 IVI Physical Name Overview
	11.2 IVI Physical Name References
	11.2.1 Physical Names
	11.2.2 Physical Ranges

	11.3 IVI Physical Name Properties
	11.3.1 Name
	11.3.2 RC Name

	11.4 IVI Physical Name Constructor (.NET Only)
	11.4.1 PhysicalName Constructors

	12. IVI Physical Range Class
	12.1 IVI Physical Range Overview
	12.2 IVI Physical Range Properties
	12.2.1 Max
	12.2.2 Min
	12.2.3 Name

	12.3 IVI Physical Range Constructors (.NET Only)
	12.3.1 PhysicalRange Constructors

	13. IVI Logical Name Class
	13.1 IVI Logical Name Overview
	13.2 IVI Logical Name Reference
	13.2.1 Session

	13.3 IVI Logical Name Properties
	13.3.1 Name
	13.3.2 Description

	13.4 IVI Logical Name Constructors (.NET Only)
	13.4.1 LogicalName Constructors

	14. IVI Session Class
	14.1 IVI Session Overview
	14.1.1 Configurable Initial Settings
	14.1.2 Documentation Data Components

	14.2 IVI Session References
	14.2.1 .NET Data Types
	14.2.2 .NET Entity Class
	14.2.2.1 The Entity.Name property.

	14.2.3 .NET Enumerations
	14.2.3.1 Config Store Location
	14.2.3.2 IVI Published API Name
	14.2.3.3 IVI Published API Type
	14.2.3.4 Session Usage

	14.2.4 Collections in .NET
	14.2.5 .NET Constructors
	14.2.5.1 Constructors and Property Access
	14.2.5.2 Params Parameters in Constructors
	14.2.5.3 Collection Constructors

	14.2.6 .NET Static Methods and Properties
	14.2.7 .NET Schema Validation
	14.2.8 .NET Exceptions
	14.2.9 Hardware Asset
	14.2.10 Software Module
	14.2.11 Virtual Names

	14.3 IVI Session Properties
	14.3.1 .NET Data Types
	14.3.2 .NET Entity Class
	14.3.2.1 The Entity.Name property.

	14.3.3 .NET Enumerations
	14.3.3.1 Config Store Location
	14.3.3.2 IVI Published API Name
	14.3.3.3 IVI Published API Type
	14.3.3.4 Session Usage

	14.3.4 Collections in .NET
	14.3.5 .NET Constructors
	14.3.5.1 Constructors and Property Access
	14.3.5.2 Params Parameters in Constructors
	14.3.5.3 Collection Constructors

	14.3.6 .NET Static Methods and Properties
	14.3.7 .NET Schema Validation
	14.3.8 .NET Exceptions
	14.3.9 Software Module Name

	14.4 IVI Session Constructor (.NET Only)
	14.4.1 Session Constructor

	15. IVI Driver Session Class
	15.1 IVI Driver Session Overview
	15.2 IVI Driver Session References
	15.3 IVI Logical Name Constructors (.NET Only)
	15.3.1 LogicalName Constructors
	15.3.2 .NET Data Types
	15.3.3 .NET Entity Class
	15.3.3.1 The Entity.Name property.

	15.3.4 .NET Enumerations
	15.3.4.1 Config Store Location
	15.3.4.2 IVI Published API Name
	15.3.4.3 IVI Published API Type
	15.3.4.4 Session Usage

	15.3.5 Collections in .NET
	15.3.6 .NET Constructors
	15.3.6.1 Constructors and Property Access
	15.3.6.2 Params Parameters in Constructors
	15.3.6.3 Collection Constructors

	15.3.7 .NET Static Methods and Properties
	15.3.8 .NET Schema Validation
	15.3.9 .NET Exceptions

	15.4 IVI Driver Session Properties
	15.4.1 .NET Data Types
	15.4.2 .NET Entity Class
	15.4.2.1 The Entity.Name property.

	15.4.3 .NET Enumerations
	15.4.3.1 Config Store Location
	15.4.3.2 IVI Published API Name
	15.4.3.3 IVI Published API Type
	15.4.3.4 Session Usage

	15.4.4 Collections in .NET
	15.4.5 .NET Constructors
	15.4.5.1 Constructors and Property Access
	15.4.5.2 Params Parameters in Constructors
	15.4.5.3 Collection Constructors

	15.4.6 .NET Static Methods and Properties
	15.4.7 .NET Schema Validation
	15.4.8 .NET Exceptions
	15.4.9 Cache
	15.4.10 Driver Setup
	15.4.11 Interchange Check
	15.4.12 Query Instrument Status
	15.4.13 Range Check
	15.4.14 Record Value Coercions
	15.4.15 Simulate

	15.5 IVI Driver Session Constructor (.NET Only)
	15.5.1 DriverSession Constructor

	16. IVI Virtual Name Class
	16.1 IVI Virtual Name Overview
	16.2 IVI Virtual Name Reference
	16.2.1 Virtual Ranges

	16.3 IVI Virtual Name Properties
	16.3.1 Map To
	16.3.2 Name

	16.4 IVI Virtual Name Constructors (.NET Only)
	16.4.1 VirtualName Constructors

	17. IVI Virtual Range Class
	17.1 IVI Virtual Range Overview
	17.2 IVI Virtual Range Properties
	17.2.1 Max
	17.2.2 Min
	17.2.3 Name
	17.2.4 Starting Physical Index

	17.3 IVI Virtual Range Constructor (.NET Only)
	17.3.1 VirtualRange Constructor

	18. IVI Data Component Class
	18.1 IVI Data Component Overview
	18.2 IVI Data Component Properties
	18.2.1 Description
	18.2.2 Help Context ID
	18.2.3 Help File Path
	18.2.4 Name
	18.2.5 Read Only
	18.2.6 Software Module Key
	18.2.7 Type
	18.2.8 Used In Session

	18.3 IVI Data Component Constructors (.NET Only)

	19. IVI Structure Class
	19.1 IVI Structure Overview
	19.2 IVI Structure References
	19.2.1 Data Components

	19.3 IVI Structure Properties
	19.3.1 VirtualRange Constructor

	19.4 IVI Structure Constructors (.NET Only)
	19.4.1 IviStructure Constructors

	20. IVI Integer Class
	20.1 IVI Integer Overview
	20.2 IVI Integer Properties
	20.3 IVI Virtual Range Constructor (.NET Only)
	20.3.1 VirtualRange Constructor
	20.3.2 Units
	20.3.3 Value

	20.4 IVI Integer Constructor (.NET Only)
	20.4.1 IviInteger Constructor

	21. IVI Real Class
	21.1 IVI Real Overview
	21.2 IVI Real Properties
	21.3 IVI Virtual Range Constructor (.NET Only)
	21.3.1 VirtualRange Constructor
	21.3.2 Units
	21.3.3 Value

	21.4 IVI Real Constructor (.NET Only)
	21.4.1 IviReal Constructor

	22. IVI Boolean Class
	22.1 IVI Boolean Overview
	22.2 IVI Boolean Properties
	22.3 IVI Virtual Range Constructor (.NET Only)
	22.3.1 VirtualRange Constructor
	22.3.2 Value

	22.4 IVI Boolean Constructors (.NET Only)
	22.4.1 IviBoolean Constructor

	23. IVI String Class
	23.1 IVI String Overview
	23.2 IVI String Properties
	23.3 IVI Virtual Range Constructor (.NET Only)
	23.3.1 VirtualRange Constructor
	23.3.2 Value

	23.4 IVI String Constructors (.NET Only)
	23.4.1 IviString Constructor

	24. IVI API Reference Class
	24.1 IVI API Reference Overview
	24.2 IVI API Reference References
	24.2.1 Published API

	24.3 IVI API Reference Properties
	24.4 IVI Virtual Range Constructor (.NET Only)
	24.4.1 VirtualRange Constructor
	24.4.2 Value

	24.5 IVI API Reference Constructor (.NET Only)
	24.5.1 IviAPIReference Constructor

	25. Configuration Server Error and Completion Codes
	26. Configuration Store Data Format
	27. Configuration Utility Implementation Guidelines
	27.1 General
	27.2 Hardware Assets
	27.3 Published APIs
	27.4 Software Modules
	27.5 Sessions
	27.6 Documentation Data Components

	28. Limitations
	28.1 Distributed Systems
	28.2 Concurrent Reading and Writing

	Appendix A: COM Configuration Server API and IVI-COM Driver Example
	Appendix B: .NET Configuration Server API and IVI-COM Driver Example
	B.1 Assembly References
	B.2 Creating an Empty Configuration Store for the Example
	B.3 Adding a Software Module
	B.4 Adding a Driver Session

