
Interchangeable

Instruments
VirtualIVI

IVI-3.4: API Style Guide

March 24, 2020 Edition
Revision 2.6

IVI-3.4: API Style Specification 2 IVI Foundation

Important Information

The API Style Guide (IVI-3.4) is authored by the IVI Foundation member companies. For a vendor
membership roster list, please visit the IVI Foundation web site at www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation
through the web site at www.ivifoundation.org.

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The IVI Foundation and its member companies shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

IVI Foundation 3 IVI-3.4: API Style Specification

1. Overview of the API Style Guide ... 8

2. Approach to Designing Instrument Class Interfaces 9
2.1 Scope of an Instrument Class Specification .. 9
2.2 Attributes... 9

2.2.1 Coupled Attributes .. 9
2.2.2 Uncoupled Attributes .. 10

2.3 Functions ... 10
2.3.1 Configuration .. 10
2.3.2 Action ... 10
2.3.3 Retrieve Measurement Data .. 10

3. Naming Conventions ... 12
3.1 Instrument Class Names .. 12
3.2 Capability Group Names ... 12
3.3 Generic Function Names ... 13
3.4 Generic Attribute Names .. 13
3.5 IVI.NET .. 13

3.5.1 General Casing Rules ... 13
3.5.2 Namespaces .. 13
3.5.3 Interfaces .. 15
3.5.4 Classes and Structs ... 15
3.5.5 Enumerations and Enumeration Members .. 16
3.5.6 Method and Parameter Names .. 16
3.5.7 Properties .. 16
3.5.8 Interface Reference Properties .. 16

3.6 IVI-C ... 17
3.6.1 Acronyms .. 17
3.6.2 Functions .. 17
3.6.3 Parameter Names .. 17
3.6.4 Attributes .. 17
3.6.5 Defined Values ... 17

3.7 IVI-COM... 17
3.7.1 Acronyms .. 18
3.7.2 Interface .. 18
3.7.3 Methods .. 18
3.7.4 Parameter Names .. 18
3.7.5 Properties .. 18
3.7.6 Enumeration Members .. 18
3.7.7 Interface Reference Properties .. 19

IVI-3.4: API Style Specification 4 IVI Foundation

4. Parameter Types .. 20
4.1 Integers .. 20
4.2 Reals .. 20

4.2.1 Continuous Ranges and Discrete Values .. 20
4.2.2 Infinity and Not A Number ... 21

4.3 Enumerations .. 21
4.3.1 IVI.NET .. 21
4.3.2 IVI-C ... 21
4.3.3 IVI-COM .. 22

4.4 Strings ... 22
4.4.1 Trigger Source Specification .. 22
4.4.2 IVI.NET .. 22
4.4.3 IVI-C ... 23
4.4.4 IVI-COM .. 23

4.5 Booleans .. 23
2.4 Boolean Attribute and Parameter Values .. 23
4.6 Arrays .. 23

4.6.1 IVI.NET .. 23
4.6.2 IVI-C ... 24
4.6.3 IVI-COM .. 24

4.7 Pointers ... 24
4.8 Sessions ... 25

4.8.1 IVI.NET .. 25
4.8.2 IVI-C ... 25
4.8.3 IVI-COM .. 25

4.9 Return Values .. 25
4.9.1 IVI.NET .. 25
4.9.2 IVI-COM .. 25

5. Version Control .. 26
5.1 IVI-COM Interface Versioning ... 26
5.2 IVI-C Interface Versioning ... 26
5.3 IVI.NET Versioning.. 27

5.3.1 IVI.NET Shared Components ... 27
5.3.2 IVI.NET Shared Components Installer ... 31
5.3.3 IVI.NET Specific Drivers ... 32

6. IVI-COM IDL Style .. 33
6.1 Use of out vs. in,out .. 33
6.2 Use of SAFEARRAY as a Property .. 33
6.3 Help Strings .. 33

7. Controlling Automatic Setting Attributes 34
7.1 Functions and Automatic Settings .. 35

7.1.1 IVI.NET .. 35
7.1.2 IVI-C & IVI-COM .. 35

8. Time Representation ... 36
8.1 Absolute Time ... 36
8.2 General Time Parameters .. 36

IVI Foundation 5 IVI-3.4: API Style Specification

8.3 TimeOut Parameters ... 36
8.3.1 IVI.NET TimeOut Parameters .. 36
8.3.2 IVI-C and IVI-COM TimeOut Parameters ... 37

9. Units ... 39

10. Disable .. 40

11. Completion Codes and Error Messages 41
11.1 IVI.NET .. 41
11.2 IVI-C ... 41
11.3 IVI-COM... 42

12. Repeated Capabilities.. 43
12.1 Parameter Style ... 43
12.2 Collection Style (IVI-COM and IVI.NET) ... 43

12.2.1 Base Interfaces (IVI.NET) .. 43
12.3 Selector Style .. 44
12.4 Using the Techniques .. 44

13. Hierarchies ... 45
13.1 C Function Hierarchy .. 45

13.1.1 Sample Function Hierarchy .. 46
13.2 C Attribute Hierarchy .. 47

13.2.1 Sample Attribute Hierarchy .. 48
13.3 IVI-COM and IVI.NET Interface Hierarchy ... 49

14. Synchronization ... 51
14.1 Non-blocking .. 51
14.2 Blocking .. 51

15. Out-Of-Range Conditions .. 52

16. Direct I/O... 53
16.1 Direct I/O Properties ... 53

16.1.1 Direct I/O (IVI-COM and IVI.NET) .. 54
16.1.2 I/O Timeout .. 55
16.1.3 Session .. 55
16.1.4 System (IVI-COM and IVI.NET) ... 56

16.2 Methods .. 57
16.2.1 Read Bytes .. 57
16.2.2 Read String (IVI-COM and IVI.NET) .. 58
16.2.3 Write Bytes ... 59
16.2.4 Write String (IVI-COM and IVI.NET) ... 60

16.3 Direct I/O Interfaces.. 60
16.3.1 System (IVI-COM and IVI.NET) ... 61

IVI-3.4: API Style Specification 6 IVI Foundation

16.4 Direct I/O C Hierarchy (IVI-C) ... 61

17. Instrument Class Specification Layout .. 62
17.1 Overview Layout .. 62
17.2 Capabilities Groups Layout... 63
17.3 General Requirements Layout ... 63
17.4 Capability Group Section Layout .. 63

17.4.1 Overview: ... 63
17.4.2 Attributes: (Optional) .. 63
17.4.3 Functions: (Optional) .. 64
17.4.4 Behavior Model: ... 64
17.4.5 Group Compliance Notes: (Optional) ... 64

17.5 Attribute Section Layout ... 64
17.6 Function Section Layout ... 68
17.7 Attribute ID Definitions Layout .. 70
17.8 Attribute Value Definitions Layout... 70
17.9 Function Parameter Value Definitions Layout .. 71
17.10 Error, Completion Code, and Exception Class Definitions Layout .. 72
17.11 Hierarchies .. 73

17.11.1 IVI.NET Hierarchy ... 73
17.11.2 IVI-COM Hierarchy ... 75
17.11.3 IVI-C Function Hierarchy ... 78
17.11.4 IVI-C Attribute Hierarchy .. 79

17.12 Appendix A: IVI Specific Driver Development Guidelines Layout ... 80
17.13 Appendix B: Interchangeability Checking Rules Layout .. 80
17.14 Obsolete: Appendix C & D ... 81

18. Accessing Instrument Descriptions ... 82
18.1 Get<Format>InstrumentDescriptionLocation ... 82

19. Expressing Tone .. 84
19.1 Requirement .. 84
19.2 Recommendation .. 84
19.3 Permission ... 84
19.4 Possibility and Capability ... 85

20. Callbacks in IVI-C ... 86
20.1 Callback Example ... 86

IVI Foundation 7 IVI-3.4: API Style Specification

API Style Guide

API Style Guide Revision History

This section is an overview of the revision history of the IVI-3.4 specification.

Table 1-1. Ivi-3.4 Revisions

Revision Number
Date of Revision

Revision Notes

Revision 1.0 March 2008 First approved version.
Revision 1.1 November 17, 2008 Describe style for Absolute Time
Revision 1.2 October 20, 2009 Add support for Instrument Capability Discovery.
Revision 2.0 June 9, 2010 Incorporated IVI.NET
Revision 2.1 March 6, 2013 Clarification on coupled attributes and configuration

functions
Added Section 16: Direct I/O

Revision 2.2 October 25, 2013 Minor change - Added a new section for Asynchronous
I/O for IVI.NET drivers
Editorial changes in Direct IO section

Revision 2.3 November 14, 2013 Change Section 5.1 to apply to IVI-COM only.
Add Section 5.3 to describe IVI.NET versioning details.

Revision 2.3 December 09, 2013 Editorial change in Sections 16.1.3 and 16.1.4 to make
the Session and System attributes read-only.

Revision 2.3 February 11, 2014 Change Section 5 to clarify that both policy files and
side-by-side installation are a key part of making the
IVI.NET versioning strategy work.

Revision 2.3 March 22, 2016 Editorial change in Section 8.2 for IVI.NET to make
wording parallel to IVI-C/IVI-COM and clarify that
timeout parameters shall be TimeSpan.

Revision 2.4 June, 2017 Updates to clarify the scope of rules and requirements on
a section-by-section basis. Each section now has very
specific introductory block stating if the section contains
requirements or recommendation and if the section bears
on class specifications, all drivers, or some other scope.

Revision 2.5 October, 2018 Minor Change: Add a section on callbacks in IVI-C
Revision 2.6 March 24, 2020 Editorial Change: Correct the callback signature in

Section 20.1.

IVI-3.4: API Style Specification 8 IVI Foundation

1. Overview of the API Style Guide

This specification contains rules and recommendations that apply to:

 Instrument class APIs

 Specific driver APIs

 Instrument class specification documents

 Common component revisioning

Each section of this document begins with boxed paragraphs at the beginning of the section that

specify the scope of that section. The rules and recommendations in each section apply only to the

scope specified in the top level section.

Refer to section 19, Expressing Tone for details on how rules and recommendations are expressed in this
document.

IVI Foundation 9 IVI-3.4: API Style Specification

2. Approach to Designing Instrument Class Interfaces

Unless explicitly stated otherwise, the rules and recommendations in this section apply to:

 Instrument class APIs

2.1 Scope of an Instrument Class Specification

One of the first questions a working group should answer is "What features are appropriate to include in
this instrument class?" This answer defines the instrument class.

From this set of features, a few comprise the base capability. These features are commonly found in all
instruments of this instrument class.

The remaining features are grouped into extension groups. Creating appropriate extension groups and
allocating features to them is a difficult process which requires the insight of many experts who understand
a variety of instruments in the instrument class. Placing too many features in one extension group may
prevent a particular instrument driver from implementing that group. All the instruments in a class may
provide a large variety of triggering methods though no one instrument implements all the methods. Each
triggering method thus belongs in its own extension group. If one feature, however, fundamentally requires
another feature then both belong in the same extension group.

Features found in only a small number of instrument models should not be included in the instrument class.
No gain in interchangeability is achieved if only one or two instruments have a particular extension group.
The user should access these specialized features through driver-specific means.

During early instrument class development, features may be added or removed. They may migrate between
capability groups. As the specification matures, movement of features should decrease and finally cease.

2.2 Attributes

An instrument's state can generally be modeled with a vector of attributes. The instrument class
specification defines a set of attributes within each capability group.

Each attribute can be set separately. Groups of attributes can also be set in a single configuration function
call.

Attributes are classified as coupled if the legal range, or set of valid values, of one depends on the other.
An attribute is classified as uncoupled if the legal range, or set of valid values, of the attribute does not
depend on nor change the value of any another attributes.

2.2.1 Coupled Attributes

Coupled attributes affect each other. The legal settings for an attribute coupled to another attribute depend
on the other attribute's setting. Instrument classes provide a configuration function which sets all the
attributes which are coupled to each other. Thus the user can set all the coupled attributes at once and the
driver and instrument can sort out the coupling.

Note that more than two attributes may be coupled, such as frequency, pulse width, rise time and fall time
in a pulse generator. Also, a numeric parameter may be coupled with an enumerated parameter such as
trigger source and trigger level where certain trigger sources may have different signal conditioning.

Coupled attributes generally reflect coupled instrument state variables. For example, the function and range
in a digital multimeter are coupled. While 1e6 is often a valid range when the function is resistance, it is not

IVI-3.4: API Style Specification 10 IVI Foundation

often valid when the function is DC volts. So the IviDmm instrument class provides a function to set both
attributes in one call.

The following principles should be used to determine if attributes that reflect instrument state variables are
coupled.

 For class APIs, attributes are coupled if the corresponding instrument state variables are

“commonly” coupled in instruments to which the class applies. (Refer to section 2.1, Scope of

an Instrument Class Specification for more discussion of what is appropriate in class API

definitions.)

 For instrument specific APIs, attributes are coupled if the corresponding state variables are

coupled in the instrument behavior.

2.2.2 Uncoupled Attributes

The legal settings of an uncoupled attribute do not depend upon any other instrument settings. Uncoupled
attributes may appear in configuration functions.

For example, the trigger slope in a digital multimeter is independent of any other attribute.

2.3 Functions

The functions described by the API fall into three categories.

2.3.1 Configuration

A Configuration function sets one or more attributes that are coupled or related in some other way. Refer
to section 2.2.1, Coupled Attributes for more details.

Configuration functions are especially useful when dealing with coupled attributes. In this case, the
configuration function includes a parameter for each of the coupled attributes set by the function. The
driver resolves couplings to ensure that when the user specifies a legal state that the instrument reaches that
state without error. Sometimes this resolution is done with the assistance of processing capabilities in the
instrument itself. Other times the driver resolves any coupling conflicts itself before programming the
instrument.

Configuration functions may be used to set coupled values that are not represented as settable attributes in
the API. If two instrument or driver values are so connected that the act of setting one commonly
invalidates or changes the value of the other, it may not be desirable to provide attributes that the user can
set independently. Instead, a configuration function should be used to set coupled parameters. Read-only
attributes should be used to read back the individual values of the coupled parameters.

2.3.2 Action

An Action routine makes the instrument perform an operation which depends on the present configuration.
The operation generally does not involve changing any attribute's value. Triggering a measurement or
starting a sweep are examples of action functions.

2.3.3 Retrieve Measurement Data

Two forms of a function which retrieve measurement date are commonly found in IVI drivers:

Fetch - The instrument returns already available measurement data. If the instrument is acquiring data, the
driver waits until the acquisition is complete before returning data.

IVI Foundation 11 IVI-3.4: API Style Specification

Read - The instrument initiates a new measurement and waits for the measurement to complete before
returning data.

IVI-3.4: API Style Specification 12 IVI Foundation

3. Naming Conventions

Unless indicated otherwise, the rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

Naming things and spelling those names can be a surprisingly contentious subject. As the English language
has demonstrated, inconsistent spelling leads to frustration. The rules and recommendations here are
intended to reduce a user's frustration level when discovering how the large variety of names used in IVI
drivers are determined.

APIs should avoid abbreviations. If a name contains so many words that it becomes objectionably long,
typically more than 50 characters, abbreviations are allowed. If a word is abbreviated in one name within a
given API (such as the C, COM or .NET API), that word shall be abbreviated everywhere and in the same
way in all names within that API.

APIs should use acronyms only when they are more understandable than the complete word.

3.1 Instrument Class Names

An instrument class name may contain up to thirty-one total characters. The first three characters shall be
"Ivi" using mixed case. The remaining characters are left to the discretion of the instrument class
specification working group. The only constraint is that the resulting instrument class name cannot conflict
with any existing instrument class name.

The size limit results from the constraints on the Class Driver Prefix attribute described in Section 5.5,
Class Driver Prefix in IVI-3.2: Inherent Capabilities Specification. The string that this attribute returns
contains a maximum of 32 bytes including the NUL byte.

IMPORTANT: Since this name is prolific throughout an instrument class specification, it should be as
short as possible while leaving no ambiguity about the nature of the instruments in the class.

Two special forms of the instrument class name are used throughout this document where the instrument
class name is substituted into a name.

<ClassName> means substitute the instrument class name with mixed case. For example, “IviDCPwr”.
<InstrType> means substitute <ClassName> with the leading “Ivi” omitted. For example, “DCPwr”

<CLASS_NAME> means substitute the instrument class name in all upper-case characters. For example,
“IVIDCPWR”. <INSTR_CLASS> means substitute <CLASS_NAME> with the leading “IVI” omitted.
For example, “DCPWR”.

3.2 Capability Group Names

A capability group name may contain an arbitrary number of characters. The first characters shall be the
instrument class name, <ClassName>. The capability group is described using complete English words.
These words are appended to the instrument class name with no spaces between the words and the first
character of each word is capitalized.

For example, IviDCPwrSoftwareTrigger. The prefix, IviDCPwr, is the instrument class name. The
complete English words, Software and Trigger, describe the capability group.

IVI Foundation 13 IVI-3.4: API Style Specification

3.3 Generic Function Names

A generic (i.e., independent of the API type) function name consists of one or more complete English
words which describe the operation performed. Refer to existing instrument class specifications for
commonly used naming patterns. The first word should be a verb or at least imply performing an action.

For example, Configure Edge Trigger Source.

A generic function name shall be one or more complete words, with the first character of each word
capitalized and the words separated by a space. When functions are referenced generically, use the
generic function name in a Times font. Do not use the IVI-C, IVI-COM, or IVI.NET form of the name.

3.4 Generic Attribute Names

A generic (i.e., independent of the API type) attribute name consists of one or more complete English
words which describe what is controlled. Be concise, but include enough words to avoid ambiguity.

Be consistent with word order. If a word appears in multiple attributes, it should be put first before any
modifying words. Words which describe the core functionality should come first, followed by words which
qualify the previous word. A useful side effect of these guidelines becomes apparent when attributes are
listed alphabetically. Related attribute name and values are listed together. For example in Waveform Size
Min, waveform is the core functionality. Size qualifies waveform and Min qualifies size.

Random order frustrates. Having one attribute named Max Waveform Size and another Waveform Size
Min would be extremely annoying.

For example, TV Trigger Signal Format.

A generic attribute name shall be one or more complete words, with the first character of each word
capitalized and the words separated by a space. When attributes are referenced generically, use the generic
attribute name in a Times font. Do not use the IVI-C, IVI-COM, or IVI.NET form of the name.

3.5 IVI.NET

This section describes the naming rules for IVI.NET source.

3.5.1 General Casing Rules

IVI.NET code elements use either Pascal casing or camel casing. For camel casing, the first letter of the
name is lowercase. For Pascal casing, the first letter of the name is uppercase. Otherwise, the following
rules apply to both:

 The first characters of each word, abbreviation, or acronym in the name is uppercase.

 Both characters of a two-letter acronym are uppercase.

 For an acronym of three characters or more, only the first character is uppercase.

 There is one exception for enumeration values. Refer to the section on Enumerations and

Enumeration Values below.

3.5.2 Namespaces

All namespaces shall use Pascal casing.

The namespace for the IVI.NET inherent capabilities described in IVI-3.2: Inherent Capabilities
Specification, and additional utility classes and interfaces described in IVI-3.18: IVI.NET Utility Classes
and Interfaces Specification, shall be “Ivi.Driver”.

IVI-3.4: API Style Specification 14 IVI Foundation

The namespace for an IVI instrument class shall be “Ivi.<ClassType>”. For example, “Ivi.Dmm”. The
instrument class specification shall include the following sub-section in Section 2.

2.5 .NET Namespaces

The .NET namespace for the <ClassName> class is Ivi.<ClassType>.

IVI Foundation 15 IVI-3.4: API Style Specification

The namespace for any other IVI.NET component owned by the IVI Foundation shall start with ”Ivi.”. The
next element of the namespace shall be the name of the component. For example, “Ivi.SessionFactory”.

The namespace of IVI.NET specific instrument drivers shall be <CompanyName>.<ComponentIdentifier>
or <CompanyName>.<Technology>.<ComponentIdentifier>. For example, “Keysight.Kt34411” or
“NationalInstruments.ModularInstruments.NIDmm”. Values for <Technology> are determined by
vendors, not by the IVI Foundation.

3.5.3 Interfaces

Interfaces shall use Pascal casing.

Interfaces described in IVI-3.2: Inherent Capabilities Specification, shall begin with “IIviDriver”. The root
interface in the inherent capabilities hierarchy shall be named “IIviDriver”.

Class-compliant interfaces shall begin with “I<ClassName>”. The root interface in the class-compliant
hierarchy shall be named “I<ClassName>”.

For example:

 interface IIviScope

Interfaces defined for other IVI components, including those defined in IVI-3.18: IVI.NET Utility Intefaces
and Classes Specification, shall begin with “IIvi”.

Interfaces defined for IVI.NET specific drivers shall begin with “I” followed by one or more words that
describe the interface. If the IVI.NET specific driver has a root interface, it shall be named
“I<ComponentIdentifier>”

For example:

 interface ITrigger

 root interface IKt34410

There are two interfaces associated with a collection style repeated capability, the collection interface and
the member interface. For instrument classes, the collection interface shall be
I<ClassName><Rc>Collection, and the member interface shall be I<ClassName><Rc>, where <Rc> is the
repeated capability name. For specific driver repeated capability collections, the collection interface shall
be I<Rc>Collection, and the member interface shall be I<Rc>.

3.5.4 Classes and Structs

Classes and structs shall use Pascal casing.

Class and struct names may be prefixed with instrument class <ClassName> or specific driver <Component
Identifier> for clarity, but need not be. The main IVI driver class shall be named <ComponentIdentifier>.

IVI defined .NET exceptions are not decorated with instrument class names.

For example:

 class Waveform<T>

 struct PrecisionTimeSpan

IVI-3.4: API Style Specification 16 IVI Foundation

3.5.5 Enumerations and Enumeration Members

Enumeration type names shall use Pascal casing. In contrast to IVI-COM enumeration type names,
IVI.NET enumeration names do not include the IVI instrument class name, component identifier, or the
string “Enum”

Enumeration member names shall use Pascal casing. In contrast to IVI-COM enumeration type names,
IVI.NET enumeration names do not include the IVI instrument class name or component identifier, or the
name of the enumeration.

For example:
enum Slope
{

Negative = 0
Positive = 1,

}

Enumeration members that reference IEEE or ANSI-standard measurement units shall follow the
capitalization rules associated with the unit of measure. If there is ambiguity, the form of the unit shall be
the one used with numbers. For example, “dB in volts” would be “dBV,” rather than “Dbv.”

3.5.6 Method and Parameter Names

Method names shall use Pascal casing. Do not use the interface name or its corresponding interface
property name in the method name. For example a method in IIviDmmTrigger would be Configure rather
than ConfigureTrigger.

Parameter names shall use camel casing. Do not use the instrument class name in parameter names.

Use multiple words to make a parameter's usage obvious. Parameter names in a method prototype are a
form of documentation.

For example:
Double Fetch(TimeSpan maximumTime, out Boolean sampleOutOfRange);

If the parameter is also present in the IVI-C and IVI-COM interfaces, the same name should be used in the
IVI.NET interface, with IVI.NET casing rules unless the style guides suggest something else.

3.5.7 Properties

Property names shall use Pascal casing. Do not use the interface name or its corresponding interface
property name in the property name. For example a property in IIviDmmTemperature would be
TransducerType rather than TemperatureTransducerType.

For example:
PrecisionTimeSpan Delay { get; set; }

3.5.8 Interface Reference Properties

Properties that return references to other interfaces in the driver are called Interface Reference Properties.
The names of the these properties shall be the trailing words of the type of interface the property points to.
The “I” followed by the instrument class prefix or component identifier is omitted.

For example:
IIviDmmTrigger Trigger { get; }

IVI Foundation 17 IVI-3.4: API Style Specification

3.6 IVI-C

This section describes the naming rules for IVI-C APIs.

3.6.1 Acronyms

Acronyms shall be capitalized e.g., CW, RTD, RADAR.

3.6.2 Functions

IVI function names shall consist of <ClassName>, an underscore character, and the generic name with the
spaces removed. The only underscore character is the one after the instrument class name.

For example, the function, Configure Edge Trigger Source becomes
IviScope_ConfigureEdgeTriggerSource.

3.6.3 Parameter Names

Parameters names shall not include the instrument class names.

Capitalize each word in a parameter’s name regardless of the number of words in the name.

Use multiple words to make a parameter's usage obvious. Parameter names in a function prototype are a
form of documentation.

Use the same parameter name in both IVI-COM method prototypes and IVI-C prototypes for the same
function.

For example, InputImpedance.

3.6.4 Attributes

Since attributes names are macros they use only uppercase characters. The full attribute name begins with:

<CLASS_NAME>_ATTR_

The remainder of the IVI-C attribute name shall be the generic attribute name in all upper-case characters
with spaces replaced by underscores.

For example, TV Trigger Signal Format becomes IVISCOPE_VAL_TV_TRIGGER_SIGNAL_FORMAT

3.6.5 Defined Values

Some properties and function parameters have defined values. These defined value names are macros, so
they use only upper-case characters. A defined value name begins with:

<CLASS_NAME>_VAL_

The remainder of the name shall also be in all uppercase. If the remainder uses multiple words, they are
separated by underscore characters.

For example, IVISCOPE_VAL_NTSC.

3.7 IVI-COM

This section describes the naming rules for IVI-COM APIs.

IVI-3.4: API Style Specification 18 IVI Foundation

3.7.1 Acronyms

Acronyms shall be capitalized e.g., CW, RTD, RADAR.

3.7.2 Interface

APIs shall follow the IVI-COM interface naming standards in section 4.1.11, Interface Requirements, of
IVI-3.1: Architecture, and subsections.

3.7.3 Methods

The hierarchy context plus the method name shall communicate the same content as the generic function
name. The method name may omit some of the words in the function name if the interface pointer names
provide the same information.

IVI-COM method prototypes are of the form:

HRESULT <MethodName> (various parameters);

For example, the function, Configure Edge Trigger Source becomes Trigger.Edge.Configure.

3.7.4 Parameter Names

Do not use the instrument class name in parameter names. Capitalize each word in a parameter’s name
regardless of the number of words in the name.

Use multiple words to make a parameter's usage obvious. Parameter names in a function prototype are a
form of documentation.

Use the same parameter name in both IVI-COM method prototypes and IVI-C prototypes for the same
function.

For example, InputImpedance.

3.7.5 Properties

The hierarchy context plus the property name shall communicate the same content as the attribute name.
The property name may omit some of the words in the attribute name if the interface pointer names provide
the same information.

IVI-COM Property Names do not have any prefix. They are generally the same as the generic attribute
name with the spaces removed except when some of the words are omitted.

For example, Class Driver Major Revision becomes ClassDriverMajorRevision and TV Trigger
Signal Format becomes Trigger.TV.SignalFormat

Do not use the interface name or its corresponding interface property name in the property name. For
example a property in IIviDmmTrigger would be Count rather than TriggerCount.

3.7.6 Enumeration Members

Defined value names shall be contained within an IVI- COM enumeration. An IVI-COM enumeration
name shall be of the form:

<ClassName><descriptive words>Enum

Each word shall be capitalized with no spaces or underscores. The suffix, Enum, shall be included.

IVI Foundation 19 IVI-3.4: API Style Specification

For example, IviScopeTriggerCouplingEnum

The defined values within the enumeration shall be of the form:

<ClassName><words from enumeration name><words>

The same words from the enumeration name shall appear in every value for a particular enumeration. The
trailing word or words shall be picked to differentiate the values.

For example, IviScopeTriggerCouplingAC and IviScopeTriggerCouplingDC.

3.7.7 Interface Reference Properties

An interface reference property points to an interface. The names of the these properties shall be the trailing
words of the type of interface the property points to. The instrument class name prefix, I<ClassName>
shall be omitted.

For example, a property which points to an interface of type IIviScopeReferenceLevel is named
ReferenceLevel.

IVI-3.4: API Style Specification 20 IVI Foundation

4. Parameter Types

Unless explicitly stated otherwise, the rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

Functions and methods pass parameters which always have a type. Attributes and properties have a type.
Using the right type in the right situation helps a user intuitively know a parameter's type.

Note that the use of ref (or C# “out”) parameters is discouraged in IVI.NET. The stylistic preference is to
avoid ref parameters in favor of return values in IVI.NET, but they are allowed in situations that call for it.

The type of a parameter or an attribute may be given using a general term or a language specific type. The
other types can be inferred using Table 5-6. Compatible Data Types for IVI Drivers in IVI-3.1: Driver
Architecture Specification. Instrument class specifications often use just the ANSI C type.

4.1 Integers

Things which can be naturally counted should be integers. Parameters that can be thought of as a number of
things should be integers. The number of points in a trace or the number of triggers are naturally integers.

32-bit integer types should be the default choice for representing integers. In cases where instruments
return large arrays of bytes or 16-bit integers, 8-bit or 16-bit integer types may be used. In cases where
drivers need higher precision than 32-bit integers can provide, 64-bit integers may be used.

4.2 Reals

Any continuous value should be a real. If something can logically ever be a non-integer value it should be a
real. Anything with physical units, such as voltage, power, frequency, length, angle, etc. should be a real.

64-bit floating point types should be the default choice for representing real numbers. In cases where
instruments use large arrays of 32-bit floating point numbers, 32-bit floating point types may be used. For
IVI.NET only, the Decimal type may be used when higher precision is needed.

4.2.1 Continuous Ranges and Discrete Values

Instrument classes should specify discrete legal values for a parameter only when intermediate values are
not meaningful. In such cases, the instrument class shall specify that coercion is not allowed. .

In general, instrument classes should allow continuous ranges of values for real-valued parameters and
attributes, even if some instruments in the instrument class implement only a discrete set of values for the
setting. Some instruments that implement only a discrete set of values might accept a continuous range of
values and coerce user-specified values to the discrete set. Other instruments might accept only the discrete
set, in which case the IVI specific driver accepts a continuous range and coerces user-specified values to
the discrete set accepted by the instrument. In the latter case, the instrument class should specify whether
the value from the user should be coerced up, down, to the nearest arithmetic value, or to the nearest
geometric value.

Instrument classes should not specify a minimum or maximum value for a continuous range unless the
value reflects an inherent limitation of the setting. An example of a setting with an inherent limitation is the
vertical range on an oscilloscope, which cannot be a negative number.

IVI Foundation 21 IVI-3.4: API Style Specification

4.2.2 Infinity and Not A Number

Use the IEEE 754 representations for positive infinity (PInf), negative infinity (NInf) and not a number
(NaN). Instrument classes shall specify the exact circumstances when these values are returned. For
example, a function could be required to return NaN when a measurement value could not be generated.

For IVI.NET the System.Double and System.Single floating point types provide properties to represent
NaN, PInf, and NInf, and methods to test for each of those values. System.Decimal does not include these
properties and methods, and should be avoided if they are needed.

For IVI-C and IVI-COM, a shared component, defined in IVI-3.12: Floating Point Services Specification,
is available for driver writers to get these defined values. IVI drivers use the shared component to reduce
the possibility of incompatibility with other implementations. Don’t require the user to make comparisons
with NInf or PInf or Nan, but provide functions which do the comparison inside the driver.

4.3 Enumerations

An enumeration is a good choice for a parameter which has a natural association to several discrete
possibilities and the possibilities have no numeric content. If adding or removing a possibility is difficult,
the parameter should not be an enumeration, but rather an integer or real. For example, HIGH, MEDIUM,
and LOW are poor choices as removing High would leave Medium and Low. Likewise, adding a choice
creates a badly named value such as Medium High. In this case, the parameter should be a real or integer
with appropriate coercion to a value the instrument can handle.

4.3.1 IVI.NET

Enumerations in IVI.NET are defined by declaring an enumeration type.

For example:
enum <EnumName>
{

<EnumMember1> = 0,
<EnumMember2> = 1

}

Where <EnumName> is an IVI.NET enumeration name, and <EnumMember1> and <EnumMember2> are
enumeration values, generated using the rules in Section 3.5.5, Enumerations and Enumeration Members.

4.3.2 IVI-C

IVI-C enumerations are implemented as 32-bit integers, and enumeration values are implemented as named
32-bit constants.

For class API’s the names of the values associated with an enumeration shall have a prefix of the form

<CLASS NAME>_VAL_

For instrument-specific drivers, the names of the values associated with an enumeration shall have a prefix
of the form:

 <PREFIX>_VAL_

The remainder of the enumeration value name should be easily associated with the parameter or attribute
being set.

IVI-3.4: API Style Specification 22 IVI Foundation

4.3.3 IVI-COM

Enumerations in IVI-COM are defined using an enumeration typedef in the IDL. Every typedef for an
enumeration shall include these attributes:

 public - so the alias becomes part of the type library

 v1_enum - so the enumerated type is a 32-bit entry, rather than the 16-bit default.

The prefix below represents <ClassName> for an instrument class or <Component Identifier> for a

specific driver. The IDL for enumerations shall be of the form:

typedef [public, v1_enum, HELP("ENUM_<enum_name>")]
enum prefix<enum_name>Enum
{
 prefix<enum_name>Choice1 = 0,
 prefix<enum_name>Choice2 = 1,
} prefix<enum_name>Enum;

Where <enum_name> is the IVI-COM enumeration name generated using the rules in Section 3.7.6,
Enumeration .

4.4 Strings

Handling strings is generally cumbersome and they should be avoided especially for input parameters.
Users get spelling and word order wrong very easily. Parsing an input string is generally harder than
handling a numeric type and interchangeable parsers may be too much to expect. If only a finite, known,
choice of strings make sense, use an enumeration.

Input strings are necessary when something has a name, such as a channel or trace.

Output strings whose only use is to be read by the user are, however, a good choice. Strings elucidating an
error code are quite useful. The string is generated by the driver or forwarded from the instrument and the
user is never expected to programmatically parse it, only display it where a human can parse it.

 Input Output

.NET System.String out System.String
System.Text.StringBuilder

C ViConstString ViChar[]

COM BSTR BSTR *

4.4.1 Trigger Source Specification

IVI class and specific drivers shall implement trigger source properties and values as specified in section 3
of IVI-3.3, Cross Class Capabilities.

Triggered devices use a string property because there are many trigger sources that are potentially
available, many of which have a standard designation provided by IVI, and others may need to be defined
for an individual device. This makes it impractical to define an enumeration.

4.4.2 IVI.NET

Memory allocation for the System.String type is handled by the .NET runtime. Since new memory is
allocated every time a String variable is assigned, building a string in several steps is relatively inefficient.
Strings can be built more efficiently by using the System.StringBuilder class.

IVI Foundation 23 IVI-3.4: API Style Specification

4.4.3 IVI-C

IVI-C APIs shall include a BufferSize parameter before the string parameter. If <string> is the name of
the string parameter, the BufferSize parameter shall be ViInt32 <string>BufferSize. Since the string
is null terminated, an actual size parameter is not required.

The IVI driver can expect the user to allocate at least as many characters for the string as the value of
BufferSize. If the value of the string parameter is VI_NULL, the value of BufferSize may be zero.

Instrument class specifications and specific instrument drivers shall also follow the rules in IVI 3.2:
Inherent Capabilities Specification, section 3.1.2.1 Additional Compliance Rules for C Functions with
ViChar Array Output Parameters in .

4.4.4 IVI-COM

The IVI driver allocates the memory for a BSTR so a size parameter is not needed.

4.5 Booleans

Many parameters which might otherwise be an enumeration but could only ever have two values are often
best represented as Boolean. Specifications shall use “True” and “False” as Boolean values. Where
Booleans naturally represent On/Off or Yes/No, “On” and “Yes” shall correspond to “True”, and “Off” and
“No” shall correspond to “False”.

The instrument class specification shall include the following sub-section in Section 2.

4.6 Arrays

When arrays are passed as parameters, the size of the array must also be passed either explicitly or
implicitly in the array data type. If the array is an in/out parameter, the input size must be passed on input,
and the output size must be passed on output.

4.6.1 IVI.NET

IVI.NET APIs shall pass arrays using .NET types that embed the size of the array so no additional
parameters are needed.

2.4 Boolean Attribute and Parameter Values

This specification uses True and False as the values for Boolean attributes and parameters. The
following table defines the identifiers that are used for True and False in the IVI.NET, IVI-COM, and
IVI-C architectures.

Boolean Value IVI.NET Identifier IVI-COM Identifier IVI-C Identifier

True true VARIANT_TRUE VI_TRUE

False false VARIANT_FALSE VI_FALSE

IVI-3.4: API Style Specification 24 IVI Foundation

In general, the driver allocates the memory for an IVI.NET output array, although there are some
circumstances where the client may allocate array memory. For examples of the latter, refer to section 6,
IMemoryWaveform<T> Interface, and section 8, IMemorySpecturm<T> Interface of IVI-3.18: .NET Utility
Interfaces and Classes.

4.6.2 IVI-C

When passing an array into a function, each array shall have two parameters: a ViInt32 which is the size of
the array and a pointer of appropriate type to the array. The size parameter immediately precedes the
pointer in the parameter list.

When retrieving an array from a function, each array shall have three parameters: a ViInt32 which is the
size of the array allocated by the caller, a pointer of appropriate type to the array, and finally a pointer to a
ViInt32 which the function fills with the actual number of values returned.

Sometimes multiple arrays of exactly the same size are passed into or out of a function. In this case,
pointers to these additional arrays shall immediately follow the first array pointer without any additional
size parameters.

If the size of the array is the same for all applications, the size parameter may be omitted. The instrument
class specification or the specific driver shall specify the size and provide a macro with its value.

Remember, the calling program is responsible for allocating any memory.

Use Vi<type> <name>[] for array parameters. The name of the parameter used to pass in the size of the
array is ViInt32 <name>ArraySize. The name of the parameter used to pass back the actual number of
elements put into the array is ViInt32* <name>ActualSize.

The function prototype for a routine which has an array as an input has the form:
ViStatus <ClassName>_ConfigureArray(ViSession vi,
 ViInt32 AbcArraySize,
 ViReal64 Abc[]);

The function prototype for a routine which has one array as an output has the form:
ViStatus <ClassName>_FetchArray(ViSession vi,
 ViInt32 AbcArraySize,
 ViReal64 Abc[],
 ViInt32* AbcActualSize);

The function prototype for a routine which has two arrays of the same size as outputs has the form:
ViStatus <ClassName>_FetchArrays(ViSession vi,
 ViInt32 AbcArraySize,
 ViReal64 AbcDEF[],
 ViReal64 AbcXYZ[],
 ViInt32* AbcActualSize);

4.6.3 IVI-COM

IVI-COM interfaces shall pass arrays using SAFEARRAY. The size is embedded in the structure so no
additional parameters are needed.

4.7 Pointers

Do not pass pointers as values. Addresses are used only when passing

 a parameter by reference,

 an array,

IVI Foundation 25 IVI-3.4: API Style Specification

 a string,

 an IVI-COM interface pointer.

For IVI.NET, addresses should not be used in public APIs. In interop situations the System.IntPtr type may
be used.

4.8 Sessions

A valid session is created when the Initialize function in an IVI driver is called. Note that it cannot be
assumed that sessions are addresses. Sessions are always 32-bit integers, even on 64-bit systems. For IVI-
C they are defined as unsigned. For IVI-COM and IVI.NET, they are defined as signed.

4.8.1 IVI.NET

Generally, IVI.NET methods do not have an explicit session parameter. Driver sessions are implied by a
driver object. I/O sessions or, in the case of IVI.NET wrappers on IVI-C drivers, underlying IVI-C
sessions, may be passed as 32-bit integers if needed.

4.8.2 IVI-C

If one of the parameters of a function in an IVI-C driver is the driver’s session, it should be the first
parameter and its type shall be ViSession.

The functions init, InitWithOptions, and AttachToExistingCOMSession are all notable exceptions.
Specific drivers, particularly wrappers, may have similar type exceptions.

4.8.3 IVI-COM

Generally, IVI-COM methods do not have an explicit session parameter. Driver sessions are implied by a
driver object. I/O sessions or, in the case of IVI-COM wrappers on IVI-C drivers, underlying IVI-C
sessions, may be passed as 32-bit integers if needed.

4.9 Return Values

4.9.1 IVI.NET

Methods that return data that can be conveniently represented by a single .NET type should return that data
as the method’s return value. If the data is best represented in the form of multiple types, consider
combining the data into a struct or class and returning the struct or class. Out and ref parameters may be
used, but should be considered a last resort.

4.9.2 IVI-COM

Many methods have a single out parameter. This parameter should also be declared as the retval for the
function. That is, the attributes for the parameter are [out, retval]. Declaring a retval parameter allows the
user to set a variable to the value of that parameter using an assignment operator. Declaring a parameter to
be a retval also avoids the problem described in Section 6.2, Use of SAFEARRAY as a Property.

If a method has multiple out parameters, typically none of the parameters is declared as the retval.

IVI-3.4: API Style Specification 26 IVI Foundation

5. Version Control

Unless explicitly stated otherwise, the rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

IVI provides interoperability of drivers from multiple vendors released at various times and without
coordination of release schedules between the vendors. At the same time, IVI must reserve the ability to
revise interfaces in the shared components.

Versioning Objective. In principle, IVI versioning is designed to make it possible to create an
application that uses different vendors’ drivers created with different versions of the shared components
provided by the IVI Foundation without requiring the application to adopt a special internal architecture to
accommodate the version changes. This objective is key to the core value proposition of IVI instrument
drivers.

The IVI Foundation may publish revised versions of the instrument class specifications. As IVI drivers are
written, the IVI Foundation may discover areas to improve the specifications including adding additional
capability groups. Unless unavoidable, these new versions shall be done in a manner which does not make
existing applications inoperable.

5.1 IVI-COM Interface Versioning

The IVI Foundation shall create a new class interfaces when any IVI standard IVI-COM interface needs to
be enhanced in any of the following ways:

 The original interface inheritance is changed.
 A method or property is added or deleted, or the spelling of a method or property name is changed.
 The parameter list of a method or property or the data type of any parameter is changed.
 Any attribute of any element of the original interface is changed.
 For enumerations,

o An enumeration is added or deleted, or the spelling of an enumeration value name or tag
is changed.

o An enumeration member is added or deleted, or the integer value associated with an
enumeration value name is changed.

o Any IDL attribute of any element of an enumeration is changed.

Each interface shall have a base name that is version independent. The original interface shall use this name
without modification. For each subsequent interface, the base name shall have an integer appended, starting
with “2” and incrementing by 1. For example, the originalIviScope trigger interface is named
IIviScopeTrigger. The second published interface would be named IIviScopeTrigger2, the third would be
named IIviScopeTrigger3, and so on.

Whenever a new IVI-COM interface is created, it shall be assigned a new IID.

5.2 IVI-C Interface Versioning

The IVI Foundation shall maintain backwards compatibility when modifying the IVI-C interface defined in
an instrument class specification. The IVI Foundation may extend an IVI-C interface, but not modify the
existing elements. Modifications that shall be avoided include:

 Changes to existing function prototypes
 For an existing attribute,

o Changes to its data type
o Changes to its association with a repeated capability
o Removing read or write access

IVI Foundation 27 IVI-3.4: API Style Specification

 Changes to existing attribute ID constant names and values
 Changes to existing value ID constant names and values
 Changes to existing error code constant names and values

The IVI-C interface may be extended by adding new functions, attributes, attribute values, read or write
attribute access, and error codes.

5.3 IVI.NET Versioning

There are two primary .NET versioning strategies for .NET assemblies. Side-by-side installation allows
multiple versions of a .NET assembly to coexist on the same machine at the same time. Publisher policy
files direct references from older versions of an assembly to a newer version of the assembly, and the
newer version of the assembly must be backwards compatible with the older versions.

 The IVI.NET Shared Component assemblies shall be versioned using a combination of side-by-
side installation and policy files when at all possible.1

 It is a strong recommendation that IVI.NET specific drivers be versioned using the same strategy
whenever possible.

5.3.1 IVI.NET Shared Components

As mentioned above, IVI versioning is designed to make it possible to create an application that uses
different vendors’ drivers created with different versions of the shared components without requiring the
application to adopt a special internal architecture to accommodate the version changes.

Note that the versioning style described in this section does not cover all of the possible ways in which the
IVI Shared Components could change from version to version, but it does describe most of the situations
that are distinctive to IVI.NET.

5.3.1.1 Versioning with Policy Files

In order to meet the Versioning Objective declared at the beginning of this subsection, the IVI.NET shared
components shall revise assemblies so that the new version of an assembly continues to provide support for
older versions of the IVI interfaces (and other APIs such as exception and class APIs), and then also
provide publisher policy files to redirect references from older versions of the assembly to the newer
version.2 (When the term “policy file” is used in this document without qualification, it refers to publisher
policy files.)

Using side-by-side versioning without policy files for shared component versioning violates the Versioning
Objective because:

 User code that references shared components data types would be exposed to different versions of
the same shared component data types.

 An application that uses multiple IVI drivers could not simultaneously use drivers that reference
different versions of the IVI.NET Shared Components without taking measures that violate the
Versioning Objective (such as isolating the calls to drivers that use different versions of the shared

1 Side-by-side versioning without policy files is only absolutely required when the target .NET Framework of the assemblies
change, and the change results in using a version of the .NET Common Language Runtime (CLR) that is not compatible with the
previous version. The IVI Foundation shall only make changes for this reason when the current target .NET Framework version
becomes unsupported. Massive changes to the IVI APIs could also trigger such a change, but this would likely be interpreted as
a completely new set of APIs, and we do not anticipate changes on this scale.
2 The following are relevant observations about .NET, and are not within the control of the IVI Foundation:
 .NET requires exactly one publisher policy file for each old major/minor version when using policy files to version up. The

old major and minor version numbers are part of the policy file name.
 Adding methods or properties to an interface will break a component built against the old interface, because the new

methods/properties will not be implemented by the component.

IVI-3.4: API Style Specification 28 IVI Foundation

components into separate DLLs).

Using publisher policy files implies that the assemblies continue to provide the older versions of the
interfaces along with new ones. If assemblies do not continue to support older versions, the Versioning
Objective is also violated because:

 If an application uses Driver A built with an older version of the shared components and Driver B
built with a newer version of the shared components that revises an Interface that Driver A uses,
Driver A would break when the shared components are loaded, because the older version of the
interface would not be available.

5.3.1.2 Maintaining Software Configurations

Some programs that use IVI drivers are rigorously qualified with a given software configuration, and once
qualified, are expected to build and run against that exact configuration. Installing publisher policy files
that redirect assembly references to new versions of an assembly might violate this expectation.

To accommodate users who need to strictly control their software configuration, multiple versions of the
IVI.NET Shared Components can be installed concurrently.

Ordinarily these versions will not be used at run time, since any run time reference to them will “policy up”
to the newest installed version. However, if a client wishes to continue using an older version of an
assembly, an application configuration file (probably most common) or machine configuration file may be
created that maintains references to the older version. IVI.NET driver vendors should be prepared to
support customers who need to use older versions of an assembly.

When developing code, references to the specific version required for the application can be added to a
project, and will be used consistently after that point for editing and building the project, as long as that
specific version is installed. Once the IVI Foundation has released a version of the IVI.NET Shared
Components, it will be available on the web site indefinitely.

5.3.1.3 Versioning and Policy Files

Any changes to an assembly require that the assembly have a new version number and that the policy
file(s) be updated to refer to the new version of the assembly.

In general, the focus on the consistent use of policy files for nearly all versioning tasks means that once an
API is published, it needs to be available as long as policy files are used to redirect references from older
assembly versions to newer assembly versions. APIs include interfaces, classes, enumerations, and events.

5.3.1.4 Naming New Versions of .NET Types

Each .NET type declared in an IVI.NET Shared Components assembly shall have a base name that is
version independent. The first version shall use this name without modification. For each subsequent
version, the base name shall have an integer appended, starting with “2” and incrementing by 1.

For example, the first version of the Ivi.Scope trigger interface is named IIviScopeTrigger. The second
published version of this interface would be named IIviScopeTrigger2, the third would be named
IIviScopeTrigger3, and so on.

5.3.1.5 Versioning Enumerations

Enumerations shall not be deleted or renamed. New enumerations may be added.

Enumeration members shall not be deleted or renamed. The numeric value of an existing enumeration
member shall not be changed, since it is the same as deleting the member with the old value and adding the
member with the new value.

IVI Foundation 29 IVI-3.4: API Style Specification

If an enumeration member must be deleted or renamed, or existing numeric values must be changed, a new
enumeration shall be created. The new enumeration shall be named as described in section 5.3.1.4, Naming
New Versions of .NET Types. Since the intent is to allow users to migrate to the new enumeration with a
minimum of change, enumeration members that are common to both the old and new enumerations shall
have the same spelling and numeric values.

Enumeration members may be added if they are added in a way that does not cause the value of any
existing members to change. For enumerations where numeric values are not specified, this means that
new members shall only be added to the end of the enumeration’s list of members.

EXAMPLE

If an enumeration named “TriggerSource” includes a trigger source called “TriggerLine0” that is no longer
needed, the following versioning strategy would be used:

 The “TriggerSource” enumeration is not modified.
 A new enumeration is created, named “TriggerSource2”, that includes all of the old members

except for “TriggerLine0”.
 The new members match the old members in spelling and value. If the “TriggerSource”

enumeration uses default values, values may need to specified for “TriggerSource2” if the removal
of the “TriggerLine0” member leaves a gap in the values.

5.3.1.6 Versioning Interfaces

Interfaces shall not be deleted or renamed. New interfaces may be added.

Interface members shall not be added or deleted, and the signatures of existing members shall not be
changed in any way, including:

 The return type of an existing member shall not be changed.
 If a member has parameters, parameters shall not be added or deleted, and
 parameter names and types shall not be changed.

If an interface member must be added, deleted, or changed in some way, a new interface shall be created.
The new interface shall be named as described in section 5.3.1.4, Naming New Versions of .NET Types.
Since the intent is to allow users to migrate to the new interface with a minimum of change, interface
members that are common to both the old and new versions of the interface shall have the same signatures.

If a new interface is created to version an older interface, it shall be created in one of two ways:

 The new interface is cloned from the older interface, and then modified within the constraints
listed above. This technique always works.

 The new interface derives from the older interface. However, derivation has pitfalls - interface
reference properties may need to return references to newer interfaces, for example, and members
from the derived interface may not be deleted. To accommodate these situations, the following
process is followed when deriving a new interface from an older one.

o New members are added to the new interface.
o Where a new method or property that matches an older method or property except for the

return type, the new method or property uses the “new” modifier to hide the older one.
(This addresses the issue with interface reference properties.)

o Obsolete members are tagged with the “Obsolete” attribute in the older interface. The
“Obsolete” attribute is constructed so that trying to build code that uses the member
generates a build warning or error (at the discretion of the IVI.NET WG). Note that the
member is still available and does not generate a runtime error for binaries built against
the older version of the interface.

EXAMPLE

IVI-3.4: API Style Specification 30 IVI Foundation

For example, assume an interface named “IWaveform2”. “ IWaveform2” is missing a property named
“Center”, and the “Configure” method is missing the corresponding “center” parameter. In addition, an
interface reference property called “Display” is modified to return a reference to the “IWaveformDisplay2”
interface instead of the “IWaveformDisplay” interface. The following versioning strategy is used:

 The “IWaveform2” interface is not modified.
 A new interface is created, named “IWaveform3”, that includes the following members

o All of the old members with the same signatures. Overloads to the Configure method
that make no sense without a “center” parameter may be omitted..

o A new overload of the “Configure” method with the “center” parameter.
o The new “Center” property.
o The modified “Display” property.

 Where new members match the old members, the signatures also match.

EXAMPLE - CLONING CODE

public interface IWaveform
{
 public void Configure(Int32[] data, Int32 span);
 // Other methods …
 public Int32[] Data { get; }
 public IWaveformDisplay Display { get; }
 public Int32 Span (get; }
 // Other properties …
}

public interface IWaveform2
{
 public void Configure(Int32[] data, Int32 center, Int32 span);
 // Other methods …
 public Int32[] Data { get; }
 public Int32 Center (get; }
 public IWaveformDisplay2 Display { get; }
 public Int32 Span (get; }
 // Other properties …
}

EXAMPLE - DERIVATION CODE

public interface IWaveform
{
 [Obsolete, false] // This generates an warning on build.
 public void Configure(Int32[] data, Int32 span);
 // Other methods …
 public Int32[] Data { get; }
 public IWaveformDisplay Display { get; }
 public Int32 Span (get; }
 // Other properties …
}

public interface IWaveform2 : IWaveform
{
 public void Configure(Int32[] data, Int32 center, Int32 span);
 public Int32 Center (get; }
 new public IWaveformDisplay2 Display { get; } // Use new to hide the
 // old Display property.

IVI Foundation 31 IVI-3.4: API Style Specification

}

5.3.1.7 Versioning Classes

Classes shall not be deleted or renamed. New classes may be added.

Class members shall not be deleted, and the signatures of existing members shall not be changed in any
way, including:

 The return type of an existing member shall not be changed.
 If a member has parameters, parameters shall not be added or deleted, and
 parameter names and types shall not be changed.
 For members derived from interfaces, implementation shall not be changed from explicit to

implicit or vice versa.

In lieu of deleting or changing the signature of a class member, a new class shall be created. The new class
shall be named as described in section 5.3.1.4, Naming New Versions of .NET Types. Since the intent is to
allow users to migrate to the new class with a minimum of change, class members that are common to both
the old and new versions of the class shall have the same signatures.

New class members may be added to existing classes.

In general, the range of behavioral changes that don’t affect the class API is fairly broad, and the decision
to implement a new class or not in response to a particular behavioral change is left to the discretion of the
IVI.NET Working Group.

The only significant difference between versioning interfaces and classes is the way that new members are
treated. Therefore, the techniques used to version classes are nearly the same as those used to version
interfaces, with the exception that if the only change to a class is to add new members, the new members
may be added to the existing class.

Exceptions are just a specialization of a class, and are versioned like classes.

5.3.1.8 Other Considerations

All API changes shall be considered major or minor changes. The decision is left to the discretion of the
appropriate working group of the Technical Committee.

Behavioral changes may be considered major, minor, or build changes. The decision is left to the
discretion of the appropriate working group of the Technical Committee.

XML comments may be changed freely. The changes are considered build changes.

When any of the IVI.NET Shared Component assemblies is changed, all of the assembly versions shall be
changed to the identical version. If a new version of the IVI.NET Shared Components installer includes a
mix of major, minor, and build level revisions, the highest version needed to correctly version the
individual assemblies shall be the version used for all of the assemblies. Note that this implies that the
policy file(s) for each assembly must be updated every time any of the assemblies change.

5.3.2 IVI.NET Shared Components Installer

The installer major/minor version shall be the same as the version of the assemblies it installs. In some
cases where the only changes are to the installer, the installer build number may be greater than the
assembly build numbers.

IVI-3.4: API Style Specification 32 IVI Foundation

5.3.3 IVI.NET Specific Drivers

It is recommended that IVI.NET specific drivers use the versioning style for the IVI.NET Shared
Components, except that interface members may be added to an interface without creating a new version of
the interface if the vendor does not support any other interface implementations outside of the assembly
that defines the interface.

IVI Foundation 33 IVI-3.4: API Style Specification

6. IVI-COM IDL Style

Unless explicitly stated otherwise, the rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

6.1 Use of out vs. in,out

Microsoft Visual Basic has a defect which causes a memory leak if a parameter is declared to be only [out].
It does not free the memory allocated by the server. To work around this defect, no parameters in IVI IDL
shall be declared as just [out]. They shall always be either [out, retval] or [in, out].

If a parameter is declared as [in, out] when it truly is just an output, the instrument class specification
shall state so.

This defect is known to exist up through version 6.0. If the defect is repaired in future revisions of Visual
Basic, this requirement may be amended.

6.2 Use of SAFEARRAY as a Property

Properties shall never be a SAFEARRAY of any type since Microsoft Visual Basic does not gracefully
handle SAFEARRAYS as properties.

6.3 Help Strings

The IDL file for an instrument class specification shall contain the following help string.

 "<ClassName> <Revision> Type Library"

Where <Revision> is the revision of the instrument class specification.

This help string appears prominently in various tools that browse for available type libraries. The IDL file
shall contain help context IDs and help strings for every interface, method, property, and enumeration.

IVI-3.4: API Style Specification 34 IVI Foundation

7. Controlling Automatic Setting Attributes

The rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

Note that some drivers and instrument classes may support dynamic calculations of related values that are
not represented with a simple single auto setting. Such drivers and instrument classes need not follow the
rules in this section, however they should follow the pattern established by these rules.

All of the requirements in this section and its sub-sections apply to class specifications approved after
January 1, 2010, and to instrument specific interfaces for drivers released after January 1, 2010. If an
instrument specific driver mirrors a class API that does not observe the requirements described in this
section, the instrument specific API may mirror the class API.

Instruments and drivers contain algorithms which automatically adjust settings based on other settings or
characteristics of input signals. Typically, these algorithms can be enabled and disabled. For example, a
DMM can adjust its voltage range based on the amplitude of the input signal. The setting which enables or
disables the algorithm is separate from the setting which represents the actual value. For example, even
with autoranging on, the DMM range has an actual value. Another example is automatic coupling of
frequency span to resolution bandwidth, video bandwidth, and sweep time in a spectrum analyzer.

Automatic settings shall be reflected in IVI drivers using two attributes – the primary attribute and the
automatic setting attribute. These attributes shall conform to the following description:

 The primary attribute corresponds to an instrument setting.

 The primary attribute is read/write.

 The primary attribute may be manually set to one of a variety of values, which in turn sets the
instrument to the corresponding value.

 If the primary attribute is manually set, the automatic setting attribute is set to Off or False.

 When read, the primary attribute always returns the actual value from the instrument. The actual
value may be set by the API or, if the automatic setting attribute is On or Once, determined by the
instrument’s automatic algorithm.

 The automatic setting attribute determines whether or not the instrument sets the value of the

primary attribute automatically.

 The automatic setting attribute is read/write.

 If the automatic setting attribute includes On (True) and Off (False) choices, it is a 2-state
automatic setting attribute, and is implemented as a Boolean

 If the automatic setting attribute also include a value that indicates that the instrument should set
the value of the first attribute automatically one time only (“Once”),, it is a 3-state automatic
setting attribute, and is implemented as type Ivi.Driver.Auto.

 If the automatic setting is to be turned off, the instrument shall revert to the manual setting mode
and retain the current value for the primary attribute. If the instrument does not support this
behavior, an exception should be thrown (IVI.NET) or an error returned (IVI-C and IVI-COM).

 The name of the automatic setting property shall be constructed by concatenating the name of the
primary attribute with the string “Auto”. For example, if the name of the primary property is
“Resolution Bandwidth”, the name of the corresponding automatic setting attribute would be
“Resolution Bandwidth Auto”. If placing Auto first is a recognized domain convention (for
example, Auto Range or Auto Zero), then the Auto may be placed before the primary attribute

IVI Foundation 35 IVI-3.4: API Style Specification

name.

 The semantics are the same across the IVI.NET, IVI-C, and IVI-COM APIs.

An instrument class specification shall not use special, out-of-range values for primary attributes. For
example, for a primary attribute called Range, do not define a special value of –1 for Range that turns
autoranging on. Instead use two attributes: Range and Auto Range, as described above.

7.1 Functions and Automatic Settings

7.1.1 IVI.NET

For methods that include the primary attribute as a parameter, IVI.NET shall provide overloads that allow
the function to set either the primary attribute or the automatic setting parameter (but not both). Functions
that include the primary parameter shall set the automatic setting attribute to Off or False.

For example:

void ConfigureRange(Ivi.Driver.Auto autoRange);

void ConfigureRange(Double range);

The user may call the overload with the auto parameter and specify the automatic setting is to be turned off.
In this case, the instrument shall revert to the manual setting mode and retain the current value. If the
instrument does not support this behavior, an exception should be thrown (IVI.NET) or an error returned
(IVI-C and IVI-COM).

Methods may provide overloads for more than one automatic setting. In this case, there shall be an
overload for each permutation of automatic setting parameters. If there is one automatic setting, there are
two overloads. If there are two automatic settings, there are four overloads. If there are three automatic
settings, there are eight overloads. The overload approach works well for 1-3 automatic settings, and
would be bulky but workable for four. For instances of methods with four or more automatic settings,
other approaches to overloads may be considered. For example:

SpeedResolution(Double Resolution, Double ReadingRate)

SpeedResolution(Ivi.Driver.Auto Resolution, Double ReadingRate)

SpeedResolution(Double Resolution, Ivi.Driver.Auto ReadingRate)

SpeedResolution(Ivi.Driver.Auto Resolution, Ivi.Driver.Auto ReadingRate)

7.1.2 IVI-C & IVI-COM

For functions that include the primary attribute as a parameter, IVI-C and IVI-COM shall include
parameters for both the primary attribute and the automatic setting attribute.

For example:

ViStatus IviDmm_ConfigureRange(ViSession Vi,
 ViReal64 Range
 ViInt32 AutoRange);

HRESULT ConfigureRange([in] DOUBLE Range
 [in] IviDmmRangeAutoEnum AutoRange);

If the auto parameter is set to False or Auto Off, the function uses the value manually passed in by the
primary parameter. If the auto parameter is set to True, Auto On or Auto Once, the primary parameter is
ignored and the instrument is set to automatically determine the value of the primary attribute.

IVI-3.4: API Style Specification 36 IVI Foundation

8. Time Representation

Unless specified otherwise, the rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

8.1 Absolute Time

It is sometimes necessary for drivers to include a means of setting and retrieving the absolute time. Refer
to Section 6, Absolute Time of IVI-3.3: Standard Cross Class Capabilities for a description of mechanisms
which are used in instrument classes for this purpose. These mechanisms may be needed in a driver’s
instrument specific API if, for example, the instrument class(es) implemented by the driver does not
include them, or if the driver is a custom driver. In such cases, the placement of these methods within the
hierarchy of an IVI driver is at the discretion of the driver developer. The function/method/property
signatures shall match the signatures in IVI-3.3.

8.2 General Time Parameters

For IVI.NET instrument class APIs, all time parameters, except timeout parameters, shall be
PrecisionTimeSpan or PrecisionDateTime. The PrecisionTimeSpan and PrecisionDateTime classes are
defined in IVI-3.18: IVI.NET Utility Classes and Interfaces.

All time parameters in instrument class APIs and specific driver APIs for IVI-C and IVI-COM, except
timeout parameters, shall be real and have units of seconds. This rule is consistent with Section 4.2, Reals.

8.3 TimeOut Parameters

A timeout parameter indicates the maximum amount of time an operation is expected to take. When
operations exceed this time, the driver returns control to the client program. There are two special cases
requiring special defined values:

 The driver should return immediately.

 The driver should wait indefinitely.

The subsections below describe how to handle these cases.

8.3.1 IVI.NET TimeOut Parameters

IVI.NET timeout parameters shall be named maximumTime, and shall be of type TimeSpan. Note that
units are implicit in the definition of the TimeSpan class, and do not need to be specified.

If maximumTime is TimeSpan.Zero, the driver should return immediately. If maximumTime is
TimeSpan.MaxValue, the driver should wait indefinitely.

Class specifications shall place a table of this form in the method section.

IVI Foundation 37 IVI-3.4: API Style Specification

8.3.2 IVI-C and IVI-COM TimeOut Parameters

IVI-C and IVI-COM, timeout parameters shall be named MaxTimeMilliseconds, and shall be 32-bit
integers. Units shall be milliseconds.

When an instrument class specification defines a value for timeout parameter, its IVI-C name shall be of
the form <CLASS_NAME>_VAL_MAX_TIME_<WORD> and its IVI-COM name shall be of the form
<ClassName>MaxTime<Word>. The two most common values are “Immediate” and “Infinite”.

Class specifications shall place a table of this form in the function section. Note that this table should not
be combined with the IVI.NET table, as the parameter names are different.

Class specifications shall place a table of this form in the Function Parameter Value Definitions section.

Defined Values for the maximumTime Parameter (.NET)

Name Description

 Language Identifier

Zero The method returns immediately. If no valid measurement value exists, the method
returns an error.

 .NET TimeSpan.Zero

MaxValue The method waits indefinitely for the measurement to complete.

 .NET TimeSpan.MaxValue

Defined Values for the MaxTimeMilliseconds Parameter (C and COM)

Name Description

 Language Identifier

Max Time Immediate The function returns immediately. If the operation had not already
completed, the function returns an error.

 C <CLASS_NAME>_VAL_MAX_TIME_IMMEDIATE

COM <ClassName>MaxTimeImmediate

Max Time Infinite The function waits indefinitely for the operation to complete.

 C <CLASS_NAME>_VAL_MAX_TIME_INIFINITE

COM <ClassName>MaxTimeInfinite

IVI-3.4: API Style Specification 38 IVI Foundation

Value Name Language Identifier Actual Value

Max Time
Immediate

C <CLASS_NAME>_VAL_MAX_TIME_IMMEDIATE 0

COM <ClassName>MaxTimeImmediate 0

Max Time Infinite C <CLASS_NAME>_VAL_MAX_TIME_INIFINITE 0xFFFFFFFFUL

COM <ClassName>MaxTimeInfinite 0xFFFFFFFFUL

IVI Foundation 39 IVI-3.4: API Style Specification

9. Units

Unless specified otherwise, the rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

Most likely every parameter or attribute which is real, and even some integers, has a unit associated with it.
The instrument class specification shall specify what that unit is. Instrument classes may provide
mechanisms to change the unit of a value.

Instrument class and driver APIs should avoid units with a multiplier. For example, the unit meter is
preferred over kilometer.

Units should, in general, be SI primary units. IEEE 488.2 Table 7-1 <suffix unit> Elements provides a list
of commonly used units.

IVI-3.4: API Style Specification 40 IVI Foundation

10. Disable

Unless specified otherwise, the rules and recommendations in this section apply to:

 Instrument class specifications

The instrument class specification shall include a statement about how IVI specific drivers implement the
Disable function for that instrument class. The statement shall appear in Section 3.1.1. Refer to Section 6.4,
Disable in IVI-3.2: Inherent Capabilities Specification for a general description of the function.

IVI Foundation 41 IVI-3.4: API Style Specification

11. Completion Codes and Error Messages

The rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

IVI-3.2: Inherent Capabilities Specification describes IVI-C and IVI-COM completion codes, IVI.NET
exceptions, and error messages which are applicable to most of the error conditions in IVI drivers and other
components. They cannot, however, cover all cases.

Instrument class APIs shall use the codes and exceptions in IVI-3.2 as appropriate. When those codes or
exceptions are not sufficient, the instrument class may define additional codes and/or exceptions. Along
with each code or exception, the instrument class specification shall define an error message which the IVI
driver returns in Error Message, in IVI-C, in ErrorInfo in IVI-COM, or in the exception message in
IVI.NET.

Specific driver APIs shall use the codes and exceptions in IVI-3.2 as appropriate as well as codes and
exceptions defined by instrument classes which it implements. When those codes or exceptions are not
sufficient, the driver API may define additional codes and/or exceptions.

11.1 IVI.NET

The IVI.NET name for an exception shall end with “Exception”. The name shall begin with a series of
words, in Pascal casing. This portion of the name shall use exactly the same words as the error-specific
portion of the IVI-C and IVI-COM error constant name. All IVI.NET exceptions shall derive from
System.Exception.

IVI.NET drivers may use exceptions defined by the .NET Framework, and in general this is encouraged. In
these cases, the IVI specification or specific driver may define error messages that reflects the specific error
conditions.

IVI.NET warnings are assigned a GUID. If warnings are defined for a class, the class shall implement a
static class with a static, read only property of type GUID for each warning. The property name for a
warning shall consist of exactly the same words as the warning-specific portion of the IVI-C and IVI-COM
warning constant name.

11.2 IVI-C

The C constant name for an error shall begin with:

<CLASS_NAME>_ERROR_ (for class specifications)

<PREFIX>_ERROR (for specific-driver defined errors)

The C constant name for a warning shall begin with:

<CLASS_NAME>_WARN_ (for class specifications)

<PREFIX>_WARN (for specific-driver defined warnings)

The remainder of the name shall be a series of words, all in uppercase, separated by underscore characters.
This portion of the name shall exactly match the equivalent portion of the IVI-COM constant name.

IVI-3.4: API Style Specification 42 IVI Foundation

11.3 IVI-COM

The IVI-COM constant name for an error shall begin with:

E_<CLASS_NAME>_ (for class-defined errors)

E_<Component Identifier> (for specific driver-defined errors)

The IVI-COM constant name for a warning shall begin with:

S_<CLASS_NAME>_ (for class-defined warnings)

S_<Component Identifier> (for specific driver-defined warnings)

The remainder of the name shall be a series of words, all in uppercase, separated by underscore characters.
This portion of the name shall exactly match the equivalent portion of the IVI-C constant name.

IVI Foundation 43 IVI-3.4: API Style Specification

12. Repeated Capabilities

The rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

Many instruments have capabilities which are duplicated. For example, an oscilloscope might have several
channels with identical functionality. A power supply may have several outputs.

Several styles are available to provide consistent access to the repeated capabilities.

 Parameter Style

 Collection Style (IVI-COM and IVI.NET)

 Selector Style

12.1 Parameter Style

For a given repeated capability, class and specific APIs may add a parameter to every function or attribute
which uses that repeated capability, The parameter shall be a string parameter, referred to as the repeated
capability selector, that “selects” the repeated capability instance(s) to be used.

Most of the current class specifications with repeated capabilities use this technique for the IVI-C class API
through the use of Set Attribute and Get Attribute functions. For specific drivers, parameter style is
preferred for IVI-C.

Only the IVI Fgen specification uses this technique for IVI-COM and IVI.NET class APIs.

In general IVI-COM and IVI.NET specific drivers should not use parameter style repeated capabilities.
However, parameter style repeated capabilities provide a straightforward way to perform operations on
multiple repeated capabilities at once. For example an operation may be performed on multiple channels. In
such cases, parameter style is appropriate in IVI-COM and IVI.NET.

IVI.NET does not allow parameterized properties since they are not .NET CLS compliant. When using
parameter style repeated capabilities for an IVI.NET attribute,, set and get methods must be created for the
attribute, and each method must have the repeated capability selector as a parameter.

12.2 Collection Style (IVI-COM and IVI.NET)

In IVI-COM and IVI.NET, repeated capabilities can be organized into collections. Repeated capabilities
can then be selected and manipulated via the collection.

It is not possible to use this approach with IVI-C. Most of the current class specifications with repeated
capabilities use this technique for the IVI-COM and IVI.NET APIs.

This is the preferred technique for IVI-COM and IVI.NET.

12.2.1 Base Interfaces (IVI.NET)

In IVI.NET, all repeated capability collections shall implement IIviRepeatedCapabilityCollection, which
includes the Count property and the indexer.

In IVI.NET, all classes that represent instances of a collection style repeated capability shall implement
IIviRepeatedCapabilityIdentification, which includes the Name property.

IVI-3.4: API Style Specification 44 IVI Foundation

12.3 Selector Style

For a given repeated capability, class and specific APIs may provide a string property or a function with a
single string parameter which selects the currently active repeated capability instance(s). All subsequent
repeated capability specific operations are applied across the active repeated capability instance(s). The
selected repeated capability instance(s) remains active until another instance(s) is selected.

In general, this technique is not preferred for representing repeated capabilities in IVI-C, IVI-COM, or
IVI.NET. However, in some circumstances it is useful. For example, selector repeated capabilities are
appropriate when there is only one instance of the repeated capability for most instruments of a class, but
class designers want to accommodate more than one instance, such as in the IviUpConverter specification.

12.4 Using the Techniques

The following table shows the attributes and functions that are used to implement each of the techniques
described above, in each of the supported IVI APIs.

The table uses the notation <RC> to indicate a repeated capability name. Instrument class specification
specify the actual name of the repeated capability.

Technique API Type IVI.NET IVI-C IVI-COM

Parameter Style Attributes <RC> Count <RC> Count <RC> Count
<RC> Name (Index)

Functions Get <RC> Name Get <RC> Name

Collection Style Attributes <RC> Item
<RC> Count
<RC> Name (on the
element interface)

N/A

<RC> Item
<RC> Count
<RC> Name(Index)

Selector Style Attributes <RC> Count
Active <RC>

<RC> Count
Active <RC>

<RC> Count
Active <RC>
<RC> Name

Functions Get <RC> Name
Set Active <RC>

Get <RC> Name

Refer to Section 3, Repeated Capability Group in IVI 3.3: Standard Cross-Class Capabilities Specification,
for a complete description of the attributes and functions shown in the table above.

IVI Foundation 45 IVI-3.4: API Style Specification

13. Hierarchies

Unless explicitly stated otherwise, the recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

Instrument class specifications and the resulting IVI drivers present many functions and attributes to the
user. In an effort to reduce the perceived complexity, these items are organized into hierarchies. Creating
hierarchies with different styles is confusing. Instrument class specification writers and IVI specific driver
developers should follow these guidelines when designing hierarchies.

13.1 C Function Hierarchy

IVI-C drivers include a function panel file that contains and a function hierarchy of the exported functions.
A function hierarchy assists the user in finding functions by organizing the functions into categories.

The function panel file format is specified in Section 6, Function Panel File Format, of the VXIplug&play
specification VPP-3.3: Instrument Driver Interactive Developer Interface Specification.

Instrument class specifications provide guidelines for organizing functions defined by the instrument class
specification. IVI-C specific drivers should follow the hierarchy for the instrument class defined functions
and extend the hierarchy to include instrument specific functions.

General principles to follow when creating a function hierarchy:

1. The Initialize, Initialize With Options, and Close functions should appear at the top level of the
function tree hierarchy.

2. Functions should be organized into class types according to usage. Common categories include
Application, Configuration, Measurement, and Action/Status.

- Application functions are created from a lower-level set of IVI driver functions.
Typically, these are provided with IVI specific drivers, but are not defined within an
instrument class specification.

- Configuration functions change the state of instrument settings.

- Action/Status functions include two types of functions. Action functions, such as Initiate
and Abort, cause the instrument to initiate or terminate test and measurement operations.
These operations can include arming the triggering system or generating a stimulus.
These functions are different from the configuration functions because they do not
change the instrument settings, but only order the instrument to carry out an action based
on its current configuration. Status functions obtain the current status of the instrument or
the status of pending operations.

- Measurement functions capture single-point and multi-point measurement data.
Functions that initiate and transfer data to and from the instrument appear within the
Measurement category. If a Measurements category exists for a class, low-level action
functions should not appear under a separate Action/Status category. Instead, low-level
action and measurement functions, such as Initiate, Fetch, Abort, and Sent Software
Trigger should appear in a Low-Level Measurements sub-category below the
Measurements category. If the instrument operation includes more than scalar
measurements, this category might be more appropriately named. For example, the

IVI-3.4: API Style Specification 46 IVI Foundation

IviScope specification defines a Waveform Acquisition category that includes both
waveform and measurement functions.

- Utility functions perform operations that are auxiliary to the operation of the instrument.
These utility functions include inherent functions specified by IVI 3.2: Inherent
Capabilities Specifications. Other functions that appear under the Utility category include
functions for reading/writing to the instrument and calibration functions.

3. Within a given category, place the functions in the natural order in which they will be used.
Functions that should be called first appear higher in the hierarchy than those that are called later.
For example, Initialize appears before Close.

4. If a category contains many functions, divide the category into sub-categories. For example, the
Configuration category could contain a sub-category called Trigger Configuration.

5. All attribute accessor functions should appear in a Set/Get Attribute sub-category of the
Configuration category.

13.1.1 Sample Function Hierarchy

A sample function hierarchy appears in Table 13-1. IVI Class and IVI specific drivers should follow this
hierarchy as closely as possible.

Table 13-1 Prefix Function Hierarchy

Name or Class Function Name

Initialize <ClassName>_init

Initialize with Options <ClassName>_InitWithOptions

Configuration…

 <Configure sub-categories and
functions>

 Set/Get Attribute…

 Set Attribute… <ClassName>_SetAttribute<type>

 Get Attribute… <ClassName>_GetAttribute<type>

Measurement…

 Read <Measurement> <ClassName>_Read<Measurement>

 <Measurement sub-categories and
functions>

 Low-Level Measurement…

 Initiate <Measurement> <ClassName>_Initiate<Measurement>

 <Measurement> Status <ClassName>_<Measurement>Status

 Fetch <Measurement> <ClassName>_Fetch<Measurement>

 Abort <ClassName>_Abort

Utility…

 Reset <ClassName>_reset

 ResetWithDefaults <ClassName>_ResetWithDefaults

 Disable <ClassName>_Disable

 Self-Test <ClassName>_self_test

IVI Foundation 47 IVI-3.4: API Style Specification

Table 13-1 Prefix Function Hierarchy

Name or Class Function Name

 Revision Query <ClassName>_revision_query

 Error-Query <ClassName>_error_query

 Error Message <ClassName>_error_message

 Get Next Coercion Record <ClassName>_GetNextCoercionRecord

 Get Next Interchange Warning <ClassName>_GetNextInterchangeWarning

 Clear Interchange Warnings <ClassName>_ClearInterchangeWarnings

 Reset Interchange Check <ClassName>_ResetInterchangeCheck

 Invalidate All Attributes <ClassName>_InvalidateAllAttributes

 Error Info…

 Get Error <ClassName>_GetError

 Clear Error <ClassName>_ClearError

 Locking…

 Lock Session <ClassName>_LockSession

 Unlock Session <ClassName>_UnlockSession

Close <ClassName>_close

13.2 C Attribute Hierarchy

IVI-C drivers include a sub file that contains an attribute hierarchy of the exported attributes. An attribute
hierarchy assists the user in finding attributes by organizing attributes into logical groups.

The sub file format is specified in Section 7, Function Panel Sub File Format, of the VXIplug&play
specification VPP-3.3: Instrument Driver Interactive Developer Interface Specification.

Instrument class specifications provide guidelines for organizing attributes defined by the instrument class
specification. IVI-C specific drivers should follow the hierarchy for the instrument class defined functions
and extend the hierarchy to include instrument specific functions.

General principles to follow when creating an attribute hierarchy:

1. The Inherent IVI Attributes category appears before instrument class-defined attribute categories.

2. Place attributes in a natural order in which they will be set. Attributes that should be set first
appear higher in the hierarchy than those that are set later. For example, in the IviDmm class,
Range should always be set before Resolution. Therefore, the Range attribute appears before
Resolution in the hierarchy.

3. Attributes should be grouped by extension capability groups.

4. Attributes specific to a particular trigger type should be grouped together. For example, in the
IviScope class, each trigger type appears as a level 2 category. Each trigger category includes the
attributes unique to that trigger type.

5. Attributes that are necessary to fully specify the state of the instrument appear higher in the
hierarchy than those that are optional or included in an extension capability group. For example,
for the IviDmm class-specification, the Function and Range attributes are at level 2 while the

IVI-3.4: API Style Specification 48 IVI Foundation

Thermocouple Type attribute, which is used only when taking temperature measurements, appears
at level 3.

13.2.1 Sample Attribute Hierarchy

A sample attribute hierarchy appears in Table 13-2. Insofar as it is practical, IVI Class and IVI specific
drivers should follow this hierarchy.

Table 13-2. <ClassName> C Attributes Hierarchy

Category or Generic Attribute Name

C Defined Constant

Inherent IVI Attributes

User Options

Range Check <CLASS_NAME>_ATTR_RANGE_CHECK

Query Instrument Status <CLASS_NAME>_ATTR_QUERY_INSTRUMENT_STATUS

Cache <CLASS_NAME>_ATTR_CACHE

Simulate <CLASS_NAME>_ATTR_SIMULATE

Record Value Coercions <CLASS_NAME>_ATTR_RECORD_COERCIONS

Interchange Check <CLASS_NAME>_ATTR_INTERCHANGE_CHECK

Class Driver Identification

Class Driver Description <CLASS_NAME>_ATTR_CLASS_DRIVER_DESCRIPTION

Class Driver Prefix <CLASS_NAME>_ATTR_CLASS_DRIVER_PREFIX

Class Driver Vendor <CLASS_NAME>_ATTR_CLASS_DRIVER_VENDOR

Class Driver Revision <CLASS_NAME>_ATTR_CLASS_DRIVER_REVISION

Class Driver Class Spec Major Version <CLASS_NAME>_ATTR_

CLASS_DRIVER_CLASS_SPEC_MAJOR_VERSION

Class Driver Class Spec Minor Version <CLASS_NAME>_ATTR_

CLASS_DRIVER_CLASS_SPEC_MINOR_VERSION

Driver Identification

Specific Driver Description <CLASS_NAME>_ATTR_SPECIFIC_DRIVER_DESCRIPTIO

N

Specific Driver Prefix <CLASS_NAME>_ATTR_SPECIFIC_DRIVER_PREFIX

Specific Driver Locator <CLASS_NAME>_ATTR_SPECIFIC_DRIVER_LOCATOR

Specific Driver Vendor <CLASS_NAME>_ATTR_SPECIFIC_DRIVER_VENDOR

Specific Driver Revision <CLASS_NAME>_ATTR_SPECIFIC_DRIVER_REVISION

Specific Driver Class Spec Major Version <CLASS_NAME>_ATTR_

SPECIFIC_DRIVER_CLASS_SPEC_MAJOR_VERSION

Specific Driver Class Spec Minor Version <CLASS_NAME>_ATTR_

SPECIFIC_DRIVER_CLASS_SPEC_MINOR_VERSION

Driver Capabilities

Supported Instrument Models <CLASS_NAME>_ATTR_SUPPORTED_INSTRUMENT_MODEL

S

IVI Foundation 49 IVI-3.4: API Style Specification

Table 13-2. <ClassName> C Attributes Hierarchy

Category or Generic Attribute Name

C Defined Constant

Class Group Capabilities <CLASS_NAME>_ATTR_GROUP_CAPABILITIES

Instrument Identification

Instrument Manufacturer <CLASS_NAME>_ATTR_INSTRUMENT_MANUFACTURER

Instrument Model <CLASS_NAME>_ATTR_INSTRUMENT_MODEL

Instrument Firmware Revision <CLASS_NAME>_ATTR_INSTRUMENT_FIRMWARE_REVISI

ON

Advanced Session Information

Logical Name <CLASS_NAME>_ATTR_LOGICAL_NAME

I/O Resource Descriptor <CLASS_NAME>_ATTR_IO_RESOURCE_DESCRIPTOR

Driver Setup <CLASS_NAME>_ATTR_DRIVER_SETUP

Basic Operation

<Base Capability Attributes and sub-categories>

Trigger

<Trigger attributes and sub-categories>

<Other Capability Groups/Operations>

<Attributes and sub-categories>

13.3 IVI-COM and IVI.NET Interface Hierarchy

The following general principles should be used when defining IVI-COM and IVI.NET interface
hierarchies:

1. Use nouns for interface names, not verbs. These nouns may be instrument subsystem names.
Extension group names may also be good choices.

2. Create large interfaces only when the items are all read-only or seldom used. A user’s level of
discomfort seems to be around fifteen. Never exceed 30 as this many items requires scrolling.

3. Create interfaces with at least three items. One interface with one or two items is acceptable, but
rare.

4. Separate multiple, mutually exclusive options into separate sub-interfaces. For example, with
scope triggers only one of the several trigger options can be used at any one time so they were
split into their own sub-interfaces.

5. Whenever possible, use collection style to represent repeated capabilities. If a design seems to
indicate that selector style or parameter style are a better choice, try re-designing to allow the use
of collection style.

6. Put only the items that are truly repeated in the repeated capability interface, the interface with the
singular name, to minimize redundancy.

7. Avoid adding other methods and properties to the collections interfaces (the interface with the
plural name). Any additional methods and properties beyond the standard three should apply to all
the items in the collection.

IVI-3.4: API Style Specification 50 IVI Foundation

8. Separate or combine optional elements depending on factors such as the number of methods and
properties, the depth of hierarchy, etc. Examples are multi-point trigger on DMM, which is
separated, and AMInternal in the Fgen, which is not separated.

9. Represent cross-class capabilities in the same way.

10. Keep in mind the potential for future evolution of the design and potential ways that specific
instruments might extend the instrument class capabilities when designing the hierarchy.

11. Keep logical siblings at the same depth in the hierarchy. Either put the elements in one interface or
in sibling interfaces.

12. Hide seldom used, read-only item lower in the hierarchy, particularly if it serves to highlight more
commonly used properties and methods.

13. Avoid adding properties and methods to the root. Instrument class specifications should generally
add only interface reference properties to the root. Some instruments classes, however, have a
small number of methods and properties which are so fundamental to the operation of the
instrument class that the only logical place in the hierarchy is at the root. Range, function, and
resolution for the Dmm are examples.

14. Maintain parallelism between like elements with respect to the level in the hierarchy and interface
names.

These principles may lead to conflicting results. Instrument class writers and driver developers should use
good judgment.

IVI Foundation 51 IVI-3.4: API Style Specification

14. Synchronization

The rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

Instrument class APIs and driver APIs that include operations that can take an appreciable amount of time
to complete should have non-blocking and/or blocking functions associated with the operation.

IVI.NET, class and specific APIs should use one of the Microsoft-defined patterns for asynchronous. The
subsequent sections only apply to IVI-C and IVI-COM APIs.

14.1 Non-blocking

For IVI-C this function should be of the form:

ViStatus Is<operation complete> (
 ViSession Vi,
 ViBoolean *Done)

For IVI-COM, this function should be of the form:

HRESULT Is<operation complete>([out,retval] VARIANT_BOOL* Done)

The words in <operation complete> are related to the operation being performed. For example, the function
to determine if settled would be IsSettled.

The function should return immediately. The parameter, Done, is false if the operation is still being
performed and it is true if the operation has completed.

14.2 Blocking

For IVI-C this function should be of the form:

ViStatus WaitUntil<operation complete> (
 ViSession Vi,
 ViInt32 MaxTimeMilliseconds)

For IVI-COM, this function should be of the form:

HRESULT WaitUntil<operation complete> (
 [in]long MaxTimeMilliseconds,
 [out,retval] VARIANT_BOOL* TimedOut)

The words in <operation complete> are identical to those in the non-blocking function.

Refer to section 8.3, TimeOut Parameters for information on how to document and implement the
MaxTimeMilliseconds and maxTime parameters.

IVI-3.4: API Style Specification 52 IVI Foundation

15. Out-Of-Range Conditions

The rules and recommendations in this section apply to:

 Instrument class APIs

 Specific driver APIs

Functions that return floating point numbers may indicate that the number is not in the expected range for
the measurement by returning NaN (not a number), negative infinity, or positive infinity to indicate that the
value is out-of-range.

IVI-C and IVI-COM drivers that use special floating point values to indicate out-of-range, should also
provide a function to test values for out-of-range.

No additional APIs are necessary for IVI.NET since the .NET framework includes tests to determine if
values are NaN or infinity.

For waveforms and spectrums, the IWaveform and ISpectrum interfaces have special properties that
indicate whether or not there is an out-of-range value in the waveform or array. Refer to section 4.3.4,
ContainsOutOfRangeElement, in IVI-3.18: IVI.NET Utility Classes and Interfaces Specification for details.

IVI Foundation 53 IVI-3.4: API Style Specification

16. Direct I/O

The rules and recommendations in this section apply to:

 Specific driver APIs for devices that use message-based communication

Per IVI 3.1, specific drivers for devices that used message-based communication shall provide Direct IO
APIs. These are defined in this section.

Direct I/O for IVI specific drivers consists of two elements:

 Basic read and write functions that are limited to sending whole commands and reading whole

responses from the connected device, along with a Timeout attribute to allow the calling program

to set appropriate timeouts for those read and write functions, if necessary. These functions are

required for drivers that use message-based communication.

 A reference to the driver’s underlying I/O that allows the calling program to use the underlying

I/O directly to perform I/O to the connected device. This reference takes different forms

depending on the API of the driver and the API of the underlying I/O. Since it is not always

possible to expose the API of the underlying I/O in this way, this reference is optional.

Though simple, the basic read and write functions are flexible enough to handle a wide variety of
instrument commands and responses, but do not provide many of the capabilities of a full I/O library such
as VISA or VISA.NET.

 A single instrument command cannot be spread over multiple write function calls, and a single

instrument response cannot be read with multiple read function calls. This keeps the complexity

of managing termination characters and END signals out of the driver API.

 The read and write functions do not format or parse data to be sent to the instrument. The

burden of formatting and parsing data when using the standard driver read and write functions

falls to the calling program.

 The read and write functions do not support asynchronous I/O.

 The standard driver API does not include functions or attributes that are specific to particular

protocols such as GPIB, USB, or LAN.

Addressing these limitations in a driver standard would involve duplicating much of the functionality of a
full-featured I/O library, which is not practical either for the IVI Foundation or for driver developers.
Instead, drivers can expose the driver’s underlying I/O by providing references to it in the driver’s
instrument specific interface. VISA C sessions can be exposed by providing the session ID. VISA COM
and VISA.NET sessions can be exposed by providing a reference to the session in the form of an interface
reference property.

References to other I/O libraries can also be exposed using similar techniques if VISA is not the underlying
I/O.

Once the calling program has a reference to the underlying I/O, it can perform any I/O operation that is
available to the driver. If the underlying I/O is VISA, all the capabilities listed above as missing from the
basic read and write API are available to the calling program via the VISA reference.

When simulating, it is at the discretion of the driver supplier whether to return an error for Direct I/O
operations.

16.1 Direct I/O Properties

This section gives a complete description of each Direct I/O attribute.

IVI-3.4: API Style Specification 54 IVI Foundation

 Direct I/O (IVI-COM and IVI.NET)

 I/O Timeout

 Session

 System (IVI-COM and IVI.NET)

16.1.1 Direct I/O (IVI-COM and IVI.NET)

Data Type Access

<I/O Interface> RO

.NET Property Name

System.DirectIO

COM Property Name

System.DirectIO

C Attribute Name

N/A

The Direct I/O property is reserved for cases where the underlying form of I/O is implemented in COM or
.NET. In an IVI-C driver, there is no practical way to expose the underlying I/O if it is implemented in
COM or .NET.

Description

Returns a reference to the <I/O Interface> interface, which is a .NET or COM interface supported by the
driver’s underlying I/O. This interface should allow the client program to access broad functionality in the
driver’s underlying I/O.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, in IVI-3.2 Inherent Capabilities Specification,
defines general exceptions that may be thrown, and warning events that may be raised, by this property.

Compliance Notes

1. This property is optional, but if a specific driver exposes the underlying I/O with an interface reference
property, the property shall have the name DirectIO and must be an element of the
I<DriverName>System interface.

2. If the underlying I/O does not expose a .NET interface, this property shall not be implemented in a specific
IVI.NET driver.

3. If the underlying I/O does not expose a COM interface, this property shall not be implemented in a specific
IVI-COM driver.

4. If the underlying I/O is VISA-COM, this property shall return a reference to the IFormattedIO488 interface
used by the underlying VISA-COM object.

5. If the underlying I/O is VISA.NET, this property shall return a reference to the
IMessageBasedFormattedIO interface used by the underlying VISA.NET object.

IVI Foundation 55 IVI-3.4: API Style Specification

When simulating, this property always returns an Operation Not Supported error (COM) or throws an
Operation Not Supported exception (.NET).

16.1.2 I/O Timeout

Data Type Access

PrecisionTimeSpan (.NET)

Long (COM)

ViInt32 (C)

R/W

.NET Property Name

System.IOTimeout

COM Property Name

System. IOTimeout

C Property Name

<PREFIX>_ATTR_SYSTEM_IO_TIMEOUT

Description

The I/O timeout.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, in IVI-3.2 Inherent Capabilities Specification,
defines general exceptions that may be thrown, and warning events that may be raised, by this property.

16.1.3 Session

Data Type Access

viSession (C)

UInt32 (COM, .NET)
RO

.NET Property Name

System.Session

COM Property Name

System.Session

C Property Name

<PREFIX>_ATTR_SYSTEM_IO_SESSION

IVI-3.4: API Style Specification 56 IVI Foundation

Description

An integer that identifies the session in the underlying I/O that implements the I/O connection to the
device. This session ID should allow the client program to access broad functionality in the driver’s
underlying I/O.

This property applies only to drivers that use C message-based communications to communicate with
devices, and it is optional for such drivers.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, in IVI-3.2 Inherent Capabilities Specification,
defines general exceptions that may be thrown, and warning events that may be raised, by this property.

Compliance Notes

1. This property is optional in an IVI-COM or IVI.NET specific driver, but if the driver exposes the
underlying I/O with a session ID, the property shall have the name Session and must be defined in the
I<DriverName>System interface.

2. This property is optional in an IVI-C specific driver, but if the driver exposes the underlying I/O with a
session ID, the attribute shall have the name <PREFIX>_ATTR_SYSTEM_IO_SESSION and must be defined
in the System level of the attribute hierarchy.

3. If the underlying I/O does not expose a session ID, this property shall not be implemented in a specific
IVI.NET, IVI-COM, or IVI-C driver.

4. The value for <PREFIX>_ATTR_SYSTEM_IO_SESSION shall be IVI_INHERENT_ATTR_BASE +
322.

5. When simulating, this property returns zero. It should not be assumed that this is a valid session.

16.1.4 System (IVI-COM and IVI.NET)

Data Type Access

I<DriverName>System RO

.NET Property Name

<root>.System

where <root> is the root interface of the instrument specific interface hierarchy.

COM Property Name

<root>.System

where <root> is the root interface of the instrument specific interface hierarchy.

C Attribute Name

N/A

There is no System interface in IVI-C.

IVI Foundation 57 IVI-3.4: API Style Specification

Description

An interface reference pointer to the I<Class>System instrument specific interface. This provides access
to the System interface from the root level of the driver’s main class.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, in IVI-3.2 Inherent Capabilities Specification,
defines general exceptions that may be thrown, and warning events that may be raised, by this property.

Compliance Notes

1. This property is optional in an IVI-COM or IVI.NET specific driver, but if the driver defines the
I<DriverName>System interface, the root instrument specific interface shall contain an interface
reference property named System that returns a reference to the interface.

2. When simulating, this property always returns a reference to a valid system interface.

16.2 Methods

This section gives a complete description of each Direct I/O method/function.

 Read Bytes

 Read String (IVI-COM and IVI.NET)

 Write Bytes

 Write String (IVI-COM and IVI.NET)

16.2.1 Read Bytes

Description

Reads a complete response from the instrument.

.NET Method Prototype

Byte[] System.ReadBytes ();

COM Method Prototype

HRESULT ReadBytes([out, retval] SAFEARRAY(BYTE) *pBuffer);

C Function Prototype

ViStatus _VI_FUNC <PREFIX>_viRead (ViSession DriverSession, ViInt64 BufferSize,
 ViByte Buffer[], ViInt64* ReturnCount);

Parameters

Inputs Description Data Type

DriverSession

(C)
Unique identifier for an IVI session. ViSession

IVI-3.4: API Style Specification 58 IVI Foundation

BufferSize (C) The size of the array, in bytes, passed into the function
to hold the results.

viInt64

pBuffer

(COM, retval)
An array allocated by the method to hold the bytes
returned by the device.

SAFEARRAY

(BYTE)

Buffer (C) An array allocated by the calling program and passed
into the function to hold the bytes returned by the
device.

ViByte[]

ReturnCount (C) The number of bytes in the array that were filled in by
the function.

viInt64*

<Return Value>

(.NET)
An array of bytes returned by the device. Byte[]

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, in IVI-3.2 Inherent Capabilities Specification,
defines general exceptions that may be thrown, and warning events that may be raised, by this property.

Compliance Notes

1. This method reads a complete response from the connected device. It reads data from the device until it
encounters an END indicator or termination character. If the device sends an END indicator or termination
character that the underlying I/O cannot detect, the method times out.

2. For IVI-C, if the number of bytes read exceeds the capacity of the array, the extra bytes are discarded.

16.2.2 Read String (IVI-COM and IVI.NET)

Description

Reads a complete response from the instrument and returns it as a string.

.NET Method Prototype

String System.ReadString();

COM Method Prototype

HRESULT ReadString([out, retval] BSTR *pBuffer);

C Function Prototype

N/A

Parameters

Inputs Description Data Type

pBuffer

(COM, retval)
The array allocated by the method to hold the data read
from the instrument.

BSTR

<Return Value>

(.NET)

A string returned by the device. String

IVI Foundation 59 IVI-3.4: API Style Specification

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, in IVI-3.2 Inherent Capabilities Specification,
defines general exceptions that may be thrown, and warning events that may be raised, by this property.

Compliance Notes

1. This method reads a complete response from the connected device. It reads data from the device until it
encounters an END indicator or termination character. If the device sends an END indicator or termination
character that the underlying I/O cannot detect, the method times out.

2. The string received from the instrument is converted to a .NET (Unicode) string before it is returned to the
calling program.

16.2.3 Write Bytes

Description

Write an array of bytes to the device.

.NET Method Prototype

System.WriteBytes(Byte[] buffer);

COM Method Prototype

HRESULT WriteBytes([in] SAFEARRAY(BYTE) *buffer,
 [out, retval] longlong *ReturnCount);

C Function Prototype

ViStatus _VI_FUNC <prefix>_viWrite (ViSession DriverSession, ViByte Buffer[],
 ViInt64 Count, ViInt64* ReturnCount);

Parameters

Inputs Description Data Type

DriverSession

(C)
Unique identifier for an IVI driver session. ViSession

Buffer The array of bytes to be written to the device. ViByte[]

Count (C) The number of bytes to write to the device. Count must
be less than or equal to the size of the data array.

ViInt64

ReturnCount (C,
COM)

The number of bytes actually written. ViInt64

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, in IVI-3.2 Inherent Capabilities Specification,
defines general exceptions that may be thrown, and warning events that may be raised, by this property.

IVI-3.4: API Style Specification 60 IVI Foundation

Compliance Notes

1. After writing the bytes in the array to the instrument, the driver appends any necessary termination
characters or END signals needed to terminate the write. This implies that data must contain a complete
command to be written to the connected device.

16.2.4 Write String (IVI-COM and IVI.NET)

Description

Write a string to the device.

.NET Method Prototype

System.WriteString(String data);

COM Method Prototype

HRESULT WriteString([in] BSTR data);

C Function Prototype
N/A

Parameters

Inputs Description Data Type

Data The string to be written to the device. String

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, in IVI-3.2 Inherent Capabilities Specification,
defines general exceptions that may be thrown, and warning events that may be raised, by this property.

Compliance Notes

1. After writing the bytes in the array to the instrument, the driver appends any necessary termination
characters or END signals needed to terminate the write. This implies that data must contain a complete
command to be written to the connected device.

2. The .NET (Unicode) string is converted to the correct format for the connected device before it is sent to
the instrument.

16.3 Direct I/O Interfaces

This section gives a complete description of each Direct I/O interface.

 System (IVI-COM and IVI.NET)

IVI Foundation 61 IVI-3.4: API Style Specification

16.3.1 System (IVI-COM and IVI.NET)

Description

Contains elements related to the system operation of a connected device, including direct I/O
communication to/from the device.

.NET Interface

interface I<driverName>System;

COM Interface

interface I<driverName>System : IUnknown;

Compliance Notes

1. An IVI-COM or IVI.NET specific driver that uses message-based communication shall implement the
System interface. That interface shall include all implemented standard Direct I/O methods and properties
described in this document.

16.4 Direct I/O C Hierarchy (IVI-C)

An IVI-C specific driver that uses message-based communication shall include a level 1 System level in
both attribute and function hierarchies. That hierarchy level shall include all implemented standard Direct
I/O functions and attributes described in this document.

IVI-3.4: API Style Specification 62 IVI Foundation

17. Instrument Class Specification Layout

The rules and recommendations in this section apply to:

 Instrument class specification documents.

Each instrument class specification shall contain the sections in Table 17-1.

Table 17-1 Section Labeling

Section
Number

Section Topic

1 Overview

2 <ClassName> Class Capabilities

3 General Requirements

4 Base Capability Group

5 First Extension Group

…

n Last Extension Group

n+1 Attribute ID Definitions

n+2 Attribute Value Definitions

n+3 Function Parameter Value Definitions

n+4 Error and Completion Code Value Definitions

n+5 Hierarchies

Each instrument class specification shall contain the appendixes in Table 17-2.

Table 17-2 Appendix Labeling

Appendix
Letter

Appendix Topic

A Specific Driver Development Guidelines

B Interchangeability Checking Guidelines

Tables and figures are numbered <main section>-<sequential number>. Numbers re-start at one in each
major section.

Insert a page break before every first level section.

17.1 Overview Layout

Each Overview section shall contain the subsections:

1.1 Introduction

1.2 <ClassName> Class Overview

1.3 References

IVI Foundation 63 IVI-3.4: API Style Specification

1.4 Definitions of Terms and Acronyms

Include only terms which are specific to the instrument class. Terms of more general interest are defined in
IVI-5: Glossary. When an instrument class specification working group discovers a term of general interest,
it should submit the term to the glossary working group.

17.2 Capabilities Groups Layout

Each Capability Group section shall contain the subsections:

2.1 Introduction

2.2 <ClassName> Group Names

2.3 Repeated Capability Names

If the instrument class does not define any repeated capabilities, section 2.3 shall contain the text “The
<ClassName> Class Specification does not define any repeated capabilities.” If it does define one or more
repeated capabilities, they shall be listed in section 2.3 and section 2.3 shall contain a sub-section for each
different repeated capability describing how the name appears in the Configuration Store.

2.4 Boolean Attribute and Parameter Values

2.5 .NET Namespace

17.3 General Requirements Layout

Each General Requirements section shall contain the subsections:

3.1 Minimum Class Compliance

 3.1.1 Disable Function

3.2 Capability Group Compliance

Section 3.1 shall include a statement that an IVI specific driver shall comply with the instrument class
specification, IVI-3.1, and IVI-3.2.

If an instrument class needs to describe additional compliance rules for inherent capabilities beyond the
requirements in IVI-3.2: Inherent Capabilities Specification, they shall appear in Sections 3.1.x. A section
is added for each inherent capability with additional requirements.

17.4 Capability Group Section Layout

Each capability group, base and extensions, section shall contain thesubsections contained herein.

17.4.1 Overview:

An overview of the capability group that describes its purpose and general use.

17.4.2 Attributes: (Optional)

Defines the attributes that are a part of the capability group. For each attribute the capability group defines
the name of the attribute, the data type, the access (read and write - R/W, or read only - RO), a description,
defined values, and additional compliance requirements. Refer to Section 17.5, Attribute Section Layout,

IVI-3.4: API Style Specification 64 IVI Foundation

for more information regarding the layout of attribute subsections. There is one attribute section for each
attribute in a capability group.

If the instrument class capability group does not contain any attributes, the section is omitted.

The title of section shall be <Capability Group Name> Attributes.

After the list of attributes, include this paragraph:

This section describes the behavior and requirements of each attribute. The actual value for each attribute
ID is defined in Section n+1, <ClassName> Attribute ID Definitions.

17.4.3 Functions: (Optional)

Defines the functions that are part of the capability group. For each function the capability group defines
the function name, description, input parameters, output parameters, completion codes, and additional
compliance requirements. Refer to Section 17.6, Function Section Layout for more information regarding
the layout of function subsections. There is one function section for each function in a capability group.

If the instrument class capability group does not contain any functions, the section is omitted.

The title of section shall be <Capability Group Name> Functions.

After the list of functions, include this paragraph:

This section describes the behavior and requirements of each function.

17.4.4 Behavior Model:

Defines the relationships between IVI driver attributes and functions with instrument behavior.

The title of section shall be <Capability Group Name> Behavior Model.

17.4.5 Group Compliance Notes: (Optional)

Section 3, General Requirements defines the general rules an IVI specific driver must follow to be
compliant with a capability group. This section specifies additional compliance requirements and
exceptions that apply to a particular capability group.

If the instrument class capability group does not contain any additional compliance requirements, the
section is omitted.

The title of section shall be <Capability Group Name> Compliance Notes.

Adjust the section numbers as needed. If an optional section does not exist do not skip a level 2 heading
number. For example, if a capability has no attributes, the Functions section is numbered n.2.

17.5 Attribute Section Layout

Insert a page break before each attribute section.

If the Attribute is only defined for a subset of the covered APIs, add a parenthetical note to the title of the
attribute section indicating the APIs for which the attribute is defined. For example:

4.2.6 Measurement State (IVI.NET)

IVI Foundation 65 IVI-3.4: API Style Specification

Each Attribute section shall contain the following subsections:

Capabilities Table:

A table with five columns with the following titles:

Data Type:

Specifies the data type of the attribute. Refer to Table 5-6, Compatible Data Types for IVI Drivers in IVI-
3.1: Driver Architecture Specification for a complete list of allowed data types.

Whenever possible, the IVI-C API type name shall be used. For attributes where a IVI.NET prototype
exists and the .NET data type has no IVI-C API equivalent, the IVI.NET API type name shall be listed. In
some cases it may be necessary to list both the IVI-C API type name and the IVI.NET API type name. If
the IVI.NET type name is listed, and it is (1) not a .NET Framework type, and (2) not defined in the
Ivi.<InstrType> namespace, then the type name shall be qualified with the namespace name.

Access:

Specifies the kind of access the user has to the attribute. Possible values are RO, WO, and R/W.

 R/W (read/write) – indicates that the user can get and set the value of the attribute.

 RO (read-only) – indicates that the user can only get the value of the attribute.

 WO (write-only) – indicates that the user can only set the value of the attribute.

Applies to:

Specifies whether the attribute applies to the instrument as a whole or applies to a repeated capability. The
field contains either the name of the repeated capability or N/A. Examples of repeated capability names are
Trace, Display, and Channel.

Coercion:

Some attributes represent a continuous range of values, but allow the IVI specific driver to coerce the value
that the user requests to a value that is more appropriate for the instrument. For these cases the specification
defines the direction in which the IVI specific driver is allowed to coerce a value. Possible values are Up,
Down, and None.

 Up – indicates that an IVI specific driver is allowed to coerce a user-requested value to the

nearest value that the instrument supports that is greater than or equal to the user-requested

value.

 Down – indicates that an IVI specific driver is allowed to coerce a user-requested value to

the nearest value that the instrument supports that is less than or equal to the user-requested

value.

 None – indicates that the IVI specific driver is not allowed to coerce a user-requested value.

If the instrument cannot be set to the user-requested value, the IVI specific driver must

return an error.

Any other kind of coercion is indicated with a documentation note.

 High Level Function(s):

Lists all high level functions that access the attribute.

For example,

IVI-3.4: API Style Specification 66 IVI Foundation

Data Type Access Applies to Coercion High Level Functions

ViReal64 R/W N/A None Configure Acquisition Record

.NET Property Name:

The name of the IVI.NET property as it appears in the IVI.NET interface or class definition file. The name
of the property is preceded by all the interface reference pointers, separated by dots, needed to reach this
method in the hierarchy. Collections are indicated by plural – for example, Channels. Items in a collection
are indicated by the collection name followed by [] – for example, Channels[].

If an IVI.NET property does not exist, use N/A here and refer to any function or attribute that provides
equivalent functionality.

.NET Enumeration Name:

If the value of the IVI.NET property is an enumeration, its name appears here. If it is not an enumeration,
then this section should be omitted. The namespace shall be added before the enumeration name unless the
enumeration is a .NET framework enumeration, or the namespace of the enumeration is “Ivi.<InstrType>”.
If the namespace is “Ivi.<InstrType>”, it may be omitted.

COM Property Name:

The name of the IVI-COM property as it appears in the IDL file. The name of the property is preceded by
all the interface reference pointers, separated by dots, needed to reach this method in the hierarchy.

If an IVI-COM property does not exist, use N/A here and refer to any function or attribute that provides
equivalent functionality.

COM Enumeration Name:

If the value of the IVI-COM property is an enumeration, its name appears here. If it’s not an enumeration,
then this section should be omitted.

C Constant Name:

The constant identifier used to access the attribute and defined in the include file.

If an IVI-C attribute does not exist, use N/A here and refer to any function or attribute that provides
equivalent functionality.

Description:

Describes the attribute and its intended use.

Defined Values: (Optional)

Defines all the attribute values that the instrument class specifies for the attribute using a table with two
main columns. The left column is labeled Name and contains the generic name for a value and the right
column Description. Under the Description column are entries for the Identifier used in every language of
interest to IVI. Note that namespaces should be omitted for .NET values.

For example,

Name Description

IVI Foundation 67 IVI-3.4: API Style Specification

 Language Identifier

Current Trip The power supply disables the output when the output current is equal to or
greater than the value of the Current Limit attribute.

 .NET CurrentLimit.Trip

 C IVIDCPWR_VAL_CURRENT_TRIP

 COM IviDcPwrCurrentLimitTrip

Current Regulate The power supply restricts the output voltage such that the output current is not
greater than the value of the Current Limit attribute.

 .NET CurrentLimit.Regulate

 C IVIDCPWR_VAL_CURRENT_REGULATE

 COM IviDcPwrCurrentLimitRegulate

The actual numeric value associated with a defined value is specified in the Attribute Value Definitions
section at the back of the specification.

Do not include a Defined Values subsection for Boolean attributes.

If the attribute does not have any defined values, the section is omitted.

.NET Exceptions

Defines the possible exceptions that may be thrown by the property. This section shall contain at least the
text "The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and
warning events that may be raised, by this property."

If the property can return additional instrument class specific exceptions or warnings, they shall be listed in
tables as appropriate, as shown:

“The table below specifies additional class-defined exceptions for this property.”

Exception Name Description

Waveform In Use Exception The function generator is currently configured to
produce the specified waveform or the waveform is part
of an existing sequence.

“The table below specifies additional class-defined warnings for this property.”

Exception Name Description

Invalid Waveform Element One of the elements in the waveform array is invalid.

Compliance Notes: (Optional)

The General Requirements section defines the general rules an IVI specific driver must follow to be
compliant with an attribute. This section specifies additional compliance requirements and exceptions that
apply to a particular attribute.

If the attribute does not contain any additional compliance requirements, the section is omitted.

IVI-3.4: API Style Specification 68 IVI Foundation

17.6 Function Section Layout

Insert a page break before each function section.

If the function is only defined for a subset of the covered APIs, add a parenthetical note to the title of the
attribute section indicating the APIs for which the attribute is defined. For example:

4.3.2 Configure Measurement (IVI-C Only)

Each function section shall contain the following parts:

Description

Describes the behavior and intended use of the function.

.NET Method Prototype:

Defines the IVI.NET prototype. The name of the method is preceded by all the interface reference pointers,
separated by dots, needed to reach this method in the hierarchy. Each parameter is preceeded by its type. If
applicable, each parameter is preceded by an indication of whether it is out, or ref. Collections are
indicated by plural – for example, Channels. Items in a collection are indicated by the collection name
followed by [] – for example, Channels[]. For example,

void Channel[].Range.Configure (Double lower,
 Double upper);

If a parameter type is not defined within the “Ivi.<ClassType>” namespace or in the .NET Framework
classes, the type shall be qualified with the namespace.

If an IVI.NET method does not exist, use N/A here and refer to any function or attribute that provides
equivalent functionality.

COM Method Prototype:

Defines the IVI-COM prototype. The name of the method is preceded by all the interface reference
pointers, separated by dots, needed to reach this method in the hierarchy. As in IDL, each parameter is
preceded by an indication of whether it is in, out, or retval as well as its type. For example,

HRESULT Measurements.IsWaveformElementInvalid ([in] DOUBLE MeasurementValue,
 [out, retval] VARIANT_BOOL *IsInvalid);

If an IVI-COM method does not exist, use N/A here and refer to any function or attribute that provides
equivalent functionality.

C Prototype:

Defines the IVI-C Language prototype. For example,

ViStatus IviScope_IsInvalidWfmElement (ViSession Vi,
 ViReal64 MeasurementValue,
 ViBoolean *IsOverrange);

If an IVI-C function does not exist, use N/A here and refer to any function or attribute that provides
equivalent functionality.

Parameters:

IVI Foundation 69 IVI-3.4: API Style Specification

Describes each function parameter using one or two tables. The first table is for input parameters. It has
three columns. The left column is labeled Inputs and the middle column is labeled Description. The right
column is labeled Base Type.

For example:

Inputs Description Base Type

Vi Instrument handle ViSession

MeasurementValue Pass the measurement value you obtain from one of the
Read or Fetch functions.

ViReal64

If the function generates one or more outputs, this section contains a second table for output parameters. It
also has three columns. The left column is labeled Outputs and the middle column is labeled Description.
The right column is labeled Base Type.

For example:

Outputs Description Base Type

IsOverrange Returns whether the MeasurementValue is a valid

measurement or an overrange condition.

Valid Return values:

True - overrange condition occurred.

False - valid measurement.

ViBoolean

Whenever possible, the IVI-C API type name shall be used. For parameters where an IVI.NET prototype
exists and the .NET data type has no IVI-C API equivalent, the IVI.NET API type name shall be listed. In
some cases it may be necessary to list both the IVI-C API type name and the IVI.NET API type name.

If a parameter is only defined for a subset of the covered APIs, add a parenthetical note in the first column
indicating the APIs for which the attribute is defined.

Defined Values for a Parameter: (Optional)

Occasionally, function parameters are enumerations without a corresponding attribute. In this case, the
enumeration shall be described using a table of the form used to describe the defined values for an
enumerated attribute. The title of this part shall use the actual name of the parameter in place of the words
"a Parameter".

Do not include a Defined Values subsection for Boolean parameters.

Return Values (C/COM)

Defines the possible completion codes for the function. This section shall contain at least the text "The IVI-
3.2: Inherent Capabilities Specification defines general status codes that this function can return."

If the function can return additional instrument class specific values, they shall be listed in a table as
appropriate, as shown:

“The table below specifies additional instrument class-defined status codes for this function.”

IVI-3.4: API Style Specification 70 IVI Foundation

Completion Codes Description

Waveform In Use The function generator is currently configured to
produce the specified waveform or the waveform is part
of an existing sequence.

.NET Exceptions

Defines the possible exceptions that may be thrown by the IVI.NET method. This section shall contain at
least the text "The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be
thrown, and warning events that may be raised, by this method."

If the function can return additional instrument class specific exceptions or warnings, they shall be listed in
tables as appropriate, as shown:

“The table below specifies additional class-defined exceptions for this method.”

Completion Codes Description

Waveform In Use Exception The function generator is currently configured to
produce the specified waveform or the waveform is part
of an existing sequence.

“The table below specifies additional class-defined warnings for this method.”

Completion Codes Description

Invalid Waveform Element One of the elements in the waveform array is invalid.

Compliance Notes: (Optional)

The General Requirements section defines the general rules an IVI specific driver must follow to be
compliant with a function. This section specifies additional compliance requirements and exceptions that
apply to a particular function.

If the function does not contain any additional compliance requirements, the section shall be omitted.

17.7 Attribute ID Definitions Layout

This section shall contain a table titled, “<ClassName> Attribute ID Values”, with two columns. The left
column is titled "Attribute Name" and under it are all the attributes defined in the instrument class
specification. The right column is titled "ID Definition" and under it is a numerical value for the attribute.
This value may be in terms of other defined values.

17.8 Attribute Value Definitions Layout

This section shall contain a table for each attribute which has defined values. These tables each have four
columns. The left column is titled "Value Name" and under it are all the values defined in the instrument
class specification. The second column is titled "Language" and under it are entries for every languages of
interest to IVI. The third column is titled "Identifier" and under it are the identifiers used in the various

IVI Foundation 71 IVI-3.4: API Style Specification

languages. The right column is titled "Actual Value" and under it is a numerical value for the value. This
value may be in terms of other defined values.

All IVI.NET enumerations shall be zero-based. Note that extension bases are not used in IVI.NET.

For example,

Current Limit Behavior

Value Name Language Identifier Actual
Value

Current Regulate .NET CurrentLimit.Regulate 0

 C IVIDCPWR_VAL_CURRENT_LIMIT_REGULATE 0

 COM IviDCPwrCurrentLimitRegulate 0

Current Trip .NET CurrentLimit.Trip 1

 C IVIDCPWR_VAL_CURRENT_LIMIT_TRIP 1

 COM IviDCPwrCurrentLimitTrip 1

Current Limit Behavior
Class Ext Base

C IVIDCPWR_VAL_CURRENT_LIMIT_BEHAVIOR_C

LASS_EXT_BASE

100

COM N/A

Current Limit Behavior
Specific Ext Base

C IVIDCPWR_VAL_CURRENT_LIMIT_BEHAVIOR_S

PECIFIC_EXT_BASE

1000

COM N/A

17.9 Function Parameter Value Definitions Layout

This section contains a subsection for each function which has one or more parameters which have defined
values. The title of the subsection is the generic name of the function.

Each subsection shall contain a table for each parameter in the function which has defined values. The table
has the same format at the tables in Attribute Value Definitions Layout with an additional top row
containing Parameter and the parameter name.

All IVI.NET enumerations shall be zero-based.

For example,

IVI-3.4: API Style Specification 72 IVI Foundation

Configure Output Range

Parameter: RangeType

COM Enumeration Name: IviDcPwrRangeTypeEnum

Value Name Language Identifier Actual
Value

Current .NET Range.Current 0

 C IVIDCPWR_VAL_RANGE_CURRENT 0

 COM IviDCPwrRangeCurrent 0

Voltage .NET Range.Voltage 1

 C IVIDCPWR_VAL_RANGE_VOLTAGE 1

 COM IviDCPwrRangeVoltage 1

Configure Output Range
Class Ext Base

C IVIDCPWR_VAL_RANGE_TYPE_CLASS_EXT_BASE 500

COM N/A

Configure Output Range
Specific Ext Base

C IVIDCPWR_VAL_RANGE_TYPE_SPECIFIC_EXT_B

ASE

1000

COM N/A

17.10 Error, Completion Code, and Exception Class Definitions Layout

Defines all the IVI-C and IVI-COM error and completion codes, and IVI.NET exceptions and warning
GUIDs that the instrument class specifies. This section contains two tables. The first table lists the error
name as it is used throughout the instrument class specification, a more complete description of the error,
the identifiers used in languages of interest to IVI with an associated value. The table has this form:

Table 17-3. IviScope Error and Completion Codes

Error Name Description

 Language Identifier Value (hex)

Invalid
Waveform
Element

One of the elements in the waveform array is invalid.

.NET N/A N/A

C IVISCOPE_WARN_INVALID_WFM_ELEMENT 0x3FFA2001

COM S_IVISCOPE_INVALID_WFM_ELEMENT 0x80042001

Channel Not
Enabled

Specified channel is not enabled.

.NET ChannelNotEnabledException N/A

C IVISCOPE_ERROR_CHANNEL_NOT_ENABLED 0xBFFA2001

COM E_IVISCOPE_CHANNEL_NOT_ENABLED 0x80042001

Max Time
Exceeded

Maximum time exceeded before the operation completed.

 .NET Ivi.Driver.MaxTimeExceededException IVI defined exception (see
IVI-3.2)

C IVISCOPE_ERROR_MAX_TIME_EXCEEDED 0xBFFA2003

COM E_IVISCOPE_MAX_TIME_EXCEEDED 0x80042003

IVI Foundation 73 IVI-3.4: API Style Specification

The second table defines the format of the message string associated with the error. In IVI-C, this string is
returned by the Error Message function. In IVI-COM, this string is the description contained in the
ErrorInfo object. In IVI.NET, this string is returned in the exception’s Message property. The second table
has this form:

Note: In the description string table entries listed below, %s is always used to represent the component
name.

Table 17-4. IviScope Error Message Strings

Name Message String

Invalid Waveform Element “%s: Invalid waveform element

Channel Not Enabled “%s: Channel not enabled

Unable To Perform
Measurement

“%s: Unable to perform measurement

Max Time Exceeded “%s: Maximum time exceeded”

Invalid Acquisition Type “%s: Invalid acquisition type

17.11 Hierarchies

Each Hierarchies section shall contain the subsections: IVI.NET Hierarchy, IVI-COM Hierarchy, IVI-C
Function Hierarchy, and IVI-C Attribute Hierarchy.

17.11.1 IVI.NET Hierarchy

This section shall contain a table with three columns showing which properties and methods are in each
interface. The sample table shown here lists the inherent methods and properties though individual
instrument class specifications shall not include them. The following paragraph shall be included before the
table:

“The full <ClassName> .NET Hierarchy includes the Inherent Capabilities Hierarchy as defined in Section
4.1, .NET Inherent Capabilities of IVI-3.2: Inherent Capabilities Specification. To avoid redundancy, the
Inherent Capabilities are omitted here.”

The table shall have the form:

Table n+4-1. <ClassName> .NET Hierarchy

.NET Interface Hierarchy Generic Name Type

DriverOperation

Cache Cache P

ClearInterchangeWarnings Clear Interchange Warnings M

DriverSetup Driver Setup P

GetNextCoercionRecord Get Next Coercion Record M

GetNextInterchangeWarning Get Next Interchange Warning M

InterchangeCheck Interchange Check P

InvalidateAllAttributes Invalidate All Attributes M

LogicalName Logical Name P

IVI-3.4: API Style Specification 74 IVI Foundation

.NET Interface Hierarchy Generic Name Type

QueryInstrumentStatus Query Instrument Status P

RangeCheck Range Check P

RecordCoercions Record Value Coercions P

ResetInterchangeCheck Reset Interchange Check M

IoResourceDescriptor Resource Descriptor P

Simulate Simulate P

Identity

Description Component Description P

Locator Component Locator P

Prefix Component Prefix P

Revision Component Revision P

Vendor Component Vendor P

InstrumentFirmwareRevision Instrument Firmware Revision P

GroupCapabilities Class Group Capabilities P

InstrumentManufacturer Instrument Manufacturer P

InstrumentModel Instrument Model P

SpecificationMajorVersion Component Class Spec Major Version P

SpecificationMinorVersion Component Class Spec Minor Version P

SupportedInstrumentModels Supported Instrument Models P

Utility

Disable Disable M

ErrorQuery Error Query M

Reset Reset M

ResetWithDefaults Reset With Defaults M

SelfTest Self Test M

This section shall also contain two addition subsections: Interfaces and Interface Reference Properties.

17.11.1.1 <ClassName> IVI.NET Interfaces

This section list all of the interfaces, and describes all the interface reference properties used to navigate the
IVI.NET hierarchy.

Starting with root I<ClassName> interface, the section contains a list of each interface that contains
interface reference properties, with a list of interfaces referenced. For example:

“In addition to implementing IVI inherent capabilities interfaces, IviPwrMeter-interfaces contain interface
reference properties for accessing the following IviPwrMeter interfaces:

 “IIviPwrMeterChannels

 “IIviPwrMeterMeasurement

 “IIviPwrMeterReferenceOscillator

IVI Foundation 75 IVI-3.4: API Style Specification

 “IIviPwrMeterTrigger

“The IIviPwrMeterChannels interface contains methods and properties for accessing a collection of objects
that implement the IIviPwrMeterChannel interface.

“The IIviPwrMeterChannel interface contains interface reference properties for accessing additional the
following IviPwrMeter interfaces:

 “IIviPwrMeterAveraging

 “IIviPwrMeterDutyCycleCorrection

 “IIviPwrMeterRange”

17.11.1.2 Interface Reference Properties

This section list all of the interface reference property names, and their correspondence to interface names,
in table form. The following paragraph shall be included before the table:

“Interface reference properties are used to navigate the <ClassName> .NET hierarchy. This section
describes the interface reference properties that the [list of interfaces from previous section] interfaces
define. All interface reference properties are read-only.”

The table shall have the form:

Interface Data Type Access

IIviPwrMeterReferenceOscillator ReferenceOscillator

IIviPwrMeterMeasurement Measurement

IIviPwrMeterChannels Channels

IIviPwrMeterChannel Channels[]

IIviPwrMeterTrigger Trigger

IIviPwrMeterInternalTrigger InternalTrigger

IIviPwrMeterAveraging Channels[].Averaging

IIviPwrMeterRange Channels[].Range

IIviPwrMeterDutyCycleCorrection Channels[].DutyCycleCorrection

The Access may be via an interface reference property name or via IVI.NET collection indexer operators.
Note that hierarchy information is shown.

17.11.2 IVI-COM Hierarchy

This section shall contain a table with three columns showing which properties and methods are in each
interface. The sample table shown here lists the inherent methods and properties though individual
instrument class specifications shall not include them. Do include a paragraph of the form:

“The full <ClassName> COM Hierarchy includes the Inherent Capabilities Hierarchy as defined in Section
4.2, COM Inherent Capabilities of IVI-3.2: Inherent Capabilities Specification. To avoid redundancy, the
Inherent Capabilities are omitted here.”

IVI-3.4: API Style Specification 76 IVI Foundation

The table shall have the form:

Table n+4-1. <ClassName> COM Hierarchy

COM Interface Hierarchy Generic Name Type

Close Close M

DriverOperation

Cache Cache P

ClearInterchangeWarnings Clear Interchange Warnings M

DriverSetup Driver Setup P

GetNextCoercionRecord Get Next Coercion Record M

GetNextInterchangeWarning Get Next Interchange Warning M

InterchangeCheck Interchange Check P

InvalidateAllAttributes Invalidate All Attributes M

LogicalName Logical Name P

QueryInstrumentStatus Query Instrument Status P

RangeCheck Range Check P

RecordCoercions Record Value Coercions P

ResetInterchangeCheck Reset Interchange Check M

IoResourceDescriptor Resource Descriptor P

Simulate Simulate P

Identity

Description Component Description P

Locator Component Locator P

Prefix Component Prefix P

Revision Component Revision P

Vendor Component Vendor P

InstrumentFirmwareRevision Instrument Firmware Revision P

GroupCapabilities Class Group Capabilities P

InstrumentManufacturer Instrument Manufacturer P

InstrumentModel Instrument Model P

SpecificationMajorVersion Component Class Spec Major Version P

SpecificationMinorVersion Component Class Spec Minor Version P

SupportedInstrumentModels Supported Instrument Models P

Initialize Initialize With Options M

Initialized Initialized P

Utility

Disable Disable M

ErrorQuery Error Query M

LockSession Lock Session M

IVI Foundation 77 IVI-3.4: API Style Specification

COM Interface Hierarchy Generic Name Type

Reset Reset M

ResetWithDefaults Reset With Defaults M

SelfTest Self Test M

UnlockSession Unlock Session M

This section shall also contain two addition subsections: Interfaces and Interface Reference Properties.

17.11.2.1 Interfaces

This section describes all the IVI-COM interfaces exposed by the IVI-COM driver. It contains a subsection
for each interface. It includes a table of the form:

Table n+4-5. <ClassName> Interface GUIDs

Interface GUID

I<ClassName> {00000000-0000-0000-0000-000000000000}

I<ClassName><Itf1> {00000000-0000-0000-0000-000000000000}

I<ClassName><Itf2> {00000000-0000-0000-0000-000000000000}

I<ClassName><Itf3> {00000000-0000-0000-0000-000000000000}

The GUIDs in the table are the actual GUIDs associated with the interface in the IDL. Class developers
shall obtain GUIDs for interfaces and type libraries from the IVI Shared Components Working Group
chairman.

17.11.2.2 <ClassName> IVI-COM Interfaces

This section list all of the interfaces, describes all the interface reference properties used to navigate the
IVI-COM hierarchy, and includes a list of interface GUIDs.

Starting with root I<ClassName> interface, the section contains a list of each interface that contains
interface reference properties, with a list of interfaces referenced. For example:

“In addition to implementing IVI inherent capabilities interfaces, IviPwrMeter-interfaces contain interface
reference properties for accessing the following IviPwrMeter interfaces:

 “IIviPwrMeterChannels

 “IIviPwrMeterMeasurement

 “IIviPwrMeterReferenceOscillator

 “IIviPwrMeterTrigger

“The IIviPwrMeterChannels interface contains methods and properties for accessing a collection of objects
that implement the IIviPwrMeterChannel interface.

“The IIviPwrMeterChannel interface contains interface reference properties for accessing additional the
following IviPwrMeter interfaces:

 “IIviPwrMeterAveraging

 “IIviPwrMeterDutyCycleCorrection

 “IIviPwrMeterRange”

IVI-3.4: API Style Specification 78 IVI Foundation

This section also includes a table of the form:

Table n+4-6. <ClassName> Interface GUIDs

Interface GUID

I<ClassName> {00000000-0000-0000-0000-000000000000}

I<ClassName><Itf1> {00000000-0000-0000-0000-000000000000}

I<ClassName><Itf2> {00000000-0000-0000-0000-000000000000}

I<ClassName><Itf3> {00000000-0000-0000-0000-000000000000}

The GUIDs in the table are the actual GUID associated with the interface in the IDL.

17.11.2.3 Interface Reference Properties

This section list all of the interface reference property names, and their correspondence to interface names,
in table form. The following paragraph shall be included before the table:

“Interface reference properties are used to navigate the <ClassName> COM hierarchy. This section
describes the interface reference properties that the [list of interfaces from previous section] interfaces
define. All interface reference properties are read-only.”

The table shall have the form:

Interface Data Type Access

IIviPwrMeterReferenceOscillator ReferenceOscillator

IIviPwrMeterMeasurement Measurement

IIviPwrMeterChannels Channels

IIviPwrMeterChannel Channels.Item()

IIviPwrMeterTrigger Trigger

IIviPwrMeterInternalTrigger InternalTrigger

IIviPwrMeterAveraging Channels.Item().Averaging

IIviPwrMeterRange Channels.Item().Range

IIviPwrMeterDutyCycleCorrection Channels.Item().DutyCycleCorrection

17.11.2.4 IVI-COM Category

This section specifies the IVI-COM Category and Category ID (CATID). For example,

The IviFgen class IVI-COM Category shall be “IviFgen”, and the Category ID (CATID) shall be
{47ed5156-a398-11d4-ba58-000064657374}.

Class developers shall obtain CATIDs for categories from the IVI Shared Components Working Group
chairman.

17.11.3 IVI-C Function Hierarchy

This section shall contain a table. The table shall follow the form of Table 13-1 Prefix Function Hierarchy.
Section 13.1 describes the contents of this table.

IVI Foundation 79 IVI-3.4: API Style Specification

The table shall not include any of the inherent functions. Instead the section shall contain a paragraph of the
form:

“The <ClassName> class function hierarchy is shown in the following table. The full <ClassName> C
Function Hierarchy includes the Inherent Capabilities Hierarchy as defined in Section 4.3, C Inherent
Capabilities of IVI-3.2: Inherent Capabilities Specification. To avoid redundancy, the Inherent
Capabilities are omitted here.”

17.11.4 IVI-C Attribute Hierarchy

This section shall contain a single table with two columns. The sample table shown here lists the inherent
attributes though individual instrument class specifications shall not include them. Do include a paragraph
of the form:

The <ClassName> class attribute hierarchy is shown in the following table. The full <ClassName> C
Attribute Hierarchy includes the Inherent Capabilities Hierarchy as defined in Section 4.3, C Inherent
Capabilities of IVI-3.2: Inherent Capabilities Specification. To avoid redundancy, the Inherent
Capabilities are omitted here.

The table has the form:

Table n+4-5. <ClassName> IVI-C Attributes Hierarchy

Category or Generic Attribute Name C Defined Constant

Inherent IVI Attributes

User Options

Range Check <CLASS_NAME>_ATTR_RANGE_CHECK

Query Instrument Status <CLASS_NAME>_ATTR_QUERY_INSTRUMENT_STATUS

Cache <CLASS_NAME>_ATTR_CACHE

Simulate <CLASS_NAME>_ATTR_SIMULATE

Record Value Coercions <CLASS_NAME>_ATTR_RECORD_COERCIONS

Interchange Check <CLASS_NAME>_ATTR_INTERCHANGE_CHECK

Class Driver Identification

Class Driver Description <CLASS_NAME>_ATTR_CLASS_DRIVER_DESCRIPTION

Class Driver Prefix <CLASS_NAME>_ATTR_CLASS_DRIVER_PREFIX

Class Driver Vendor <CLASS_NAME>_ATTR_CLASS_DRIVER_VENDOR

Class Driver Revision <CLASS_NAME >_ATTR_CLASS_DRIVER_REVISION

Class Driver Class Spec Major Version <CLASS_NAME >_ATTR_

CLASS_DRIVER_CLASS_SPEC_MAJOR_VERSION

Class Driver Class Spec Minor Version <CLASS_NAME >_ATTR_

CLASS_DRIVER_CLASS_SPEC_MINOR_VERSION

Driver Identification

Specific Driver Description <CLASS_NAME >_ATTR_SPECIFIC_DRIVER_DESCRIPTION

Specific Driver Prefix <CLASS_NAME >_ATTR_SPECIFIC_DRIVER_PREFIX

Specific Driver Locator <CLASS_NAME >_ATTR_SPECIFIC_DRIVER_LOCATOR

IVI-3.4: API Style Specification 80 IVI Foundation

Table n+4-5. <ClassName> IVI-C Attributes Hierarchy

Category or Generic Attribute Name C Defined Constant

Specific Driver Vendor <CLASS_NAME >_ATTR_SPECIFIC_DRIVER_VENDOR

Specific Driver Revision <CLASS_NAME >_ATTR_SPECIFIC_DRIVER_REVISION

Specific Driver Class Spec Major
Version

<CLASS_NAME >_ATTR_

SPECIFIC_DRIVER_CLASS_SPEC_MAJOR_VERSION

Specific Driver Class Spec Minor
Version

<CLASS_NAME >_ATTR_

SPECIFIC_DRIVER_CLASS_SPEC_MINOR_VERSION

Driver Capabilities

Supported Instrument Models <CLASS_NAME >_ATTR_SUPPORTED_INSTRUMENT_MODELS

Class Group Capabilities <CLASS_NAME >_ATTR_GROUP_CAPABILITIES

Instrument Identification

Instrument Manufacturer <CLASS_NAME >_ATTR_INSTRUMENT_MANUFACTURER

Instrument Model <CLASS_NAME >_ATTR_INSTRUMENT_MODEL

Instrument Firmware Revision <CLASS_NAME >_ATTR_INSTRUMENT_FIRMWARE_REVISION

Advanced Session Information

Logical Name <CLASS_NAME >_ATTR_LOGICAL_NAME

I/O Resource Descriptor <CLASS_NAME >_ATTR_IO_RESOURCE_DESCRIPTOR

Driver Setup <CLASS_NAME >_ATTR_DRIVER_SETUP

17.12 Appendix A: IVI Specific Driver Development Guidelines Layout

Each IVI Specific Driver Development Guidelines appendix shall contain the subsections:

A.1 Introduction

A.2 Disabling Unused Extension Groups

A.3 through n Special Considerations for ... (optional)

Section A.2 contains an entry for each extension group. The special consideration sections contain
information about any topic of interest to IVI driver writers. For example, how to implement instrument
class required features for instruments that do not follow the model assumed in the specification.

17.13 Appendix B: Interchangeability Checking Rules Layout

Each Interchangeability Checking Guidelines appendix shall contain the subsections:

B.1 Introduction

B.2 When to Perform Interchangeability Checking

B.3 Interchangeability Checking Rules

Section B.3 shall contain the names of every base and extension in bold on a separate. Each of these names
shall be followed by one or more paragraphs describing the driver’s behavior for that group.

IVI Foundation 81 IVI-3.4: API Style Specification

17.14 Obsolete: Appendix C & D

Specifications previously included IVI-C and IVI-COM source for the API. These shall no longer be
included in class specifications.

IVI-3.4: API Style Specification 82 IVI Foundation

18. Accessing Instrument Descriptions

The rules and recommendations in this section apply to:

 Specific driver APIs

Instruments vendors might provide instrument descriptions conforming to a specific standard format such
as ATML Instrument Description IEEE Std. 1671.2. In some cases a vendor might provide such a
description for each model of an instrument. For users to locate the instrument description for a particular
instrument, it is necessary for instrument drivers to include a means of retrieving the location of instrument
descriptions.

Methods to locate instrument descriptions may be included in a driver’s instrument specific API. If
methods that provide this functionality are needed in an instrument specific API, the method signatures
shall match the signatures in this section. The methods in this section provide the location in the form of a
URL (Universal Resource Locator). This allows flexibility for retrieving the information.

The placement of these methods within the hierarchy of the IVI driver is at the discretion of the driver
supplier. However, the methods should be located with other instrument-specific, system-related attributes
and methods in the instrument-specific portion of the driver hierarchy.

The instrument driver should document the model description strings and format version strings that it
recognizes.

18.1 Get<Format>InstrumentDescriptionLocation

Description

Get< Format >InstrumentDescriptionLocation represents a template for the name of the function that
returns the URL for the instrument descriptor in the relevant format.

For IEEE Std 1671.2™ the function shall be called GetATMLInstrumentDescriptionLocation.

If ModelDescription is non-NULL and not empty, the function returns the URI of the description of the
specified instrument model. If no description is found, the function returns an empty string in C/COM.

If the ModelDescription is NULL or empty and the driver is not connected to an instrument, the function
shall return a NULL URI or an empty string.

.NET Method Prototype

String Get<Format>InstrumentDescriptionLocation(String formatVersion,
 String modelDescription)

COM Method Prototype

HRESULT Get<Format>InstrumentDescriptionLocation([In] BSTR FormatVersion,
[In] BSTR ModelDescription,
[Out] BSTR* Location)

C Prototype

ViStatus Get<Format>InstrumentDescriptionLocation (ViSession Vi,
ViConstString FormatVersion,
ViConstString ModelDescription,

IVI Foundation 83 IVI-3.4: API Style Specification

ViChar LocationBuffer[],
ViInt32 LocationBufferSize)

Parameters

Inputs Description Base Type

Vi Instrument handle ViSession

FormatVersion FormatVersion specifies the version of the format
requested. Empty string or NULL requests the latest
version available.

ViConstString

ModelDescription ModelDescription identifies the instrument model. If
empty string or NULL, the function returns the location of
the description for the instrument to which the driver is
connected.

ViConstString

LocationBufferSize The number of bytes in the ViChar array that the user
specifies for the LocationBuffer parameter.

ViInt32

Outputs Description Base Type

Return value (.NET)

Location (COM)
URL of Instrument Description or empty string if not
available

BSTR*

LocationBuffer (C) URL of Instrument Description or empty string if not
available

viChar[]

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and
warning events that may be raised, by this method.

IVI-3.4: API Style Specification 84 IVI Foundation

19. Expressing Tone

Grammatically, auxiliaries are added before verbs to express tone. This section specifies how auxiliaries
are used in the IVI specifications, including this specification.

Specifications shall be precise when using auxiliaries so the reader is never confused about the intent of the
specification. Omitting an appropriate auxiliary can be as confusing as using the wrong one.

19.1 Requirement

The auxiliaries shown in Table 19-1 shall be used to indicate requirements strictly to be followed in order
to conform to the specification and from which no deviation is permitted.

Table 19-1 Requirement

Auxiliary Equivalent expressions for use in exceptional cases

shall is to
 is required to
 it is required that
 has to
 only … is permitted
 it is necessary

shall not is not allowed [permitted] [acceptable] [permissible]
 is required to be not
 is required that … be not
 is not to be

Do not use “must” as an alternative for “shall”. Do not use “may not” instead of “shall not” to express a
prohibition. To express a direct instruction, for example referring to steps to be taken in a test method, use
the imperative mood in English.

19.2 Recommendation

The auxiliaries shown in Table 19-2 shall be used to indicate that among several possibilities one is
recommended as particularly suitable, without mentioning or excluding others, or that a certain course of
action is preferred but not necessarily required, or that (in the negative form) a certain possibility or course
of action is deprecated but not prohibited.

Table 19-2 Recommendation

Auxiliary Equivalent expressions for use in exceptional cases

should or
preferred

it is recommended that

 ought to

should not it is not recommended that
 ought not to

19.3 Permission

The auxiliaries shown in Table 19-3 are used to indicate a course of action permissible within the limits of
the specification.

IVI Foundation 85 IVI-3.4: API Style Specification

Table 19-3 Permission

Auxiliary Equivalent expressions for use in exceptional cases

may is permitted
 is allowed
 is permissible

need not it is not required that
 no … is required

Do not use “possible” or “impossible” in this context. Do not use “can” instead of “may” in this context.

“May” signifies permission expressed by the standard, whereas “can” refers to the ability of a user of the
standard or to a possibility open to him.

19.4 Possibility and Capability

The auxiliaries shown in Table 19-4 are used for statements of possibility and capability, whether material,
physical or causal.

Table 19-4 Possibility and Capability

Auxiliary Equivalent expressions for use in exceptional cases

can be able to
 there is a possibility of
 it is possible to

cannot be unable to
 there is no possibility of
 it is not possible to

IVI-3.4: API Style Specification 86 IVI Foundation

20. Callbacks in IVI-C

The rules and recommendations in this section apply to:

 Specific driver APIs

A callback mechanism is a useful capability within an instrument driver. It allows for an event handling
function within the application to be called directly when that event is detected. This provides a very
efficient mechanism for handling events such as interrupts. The symbolic name
IVI_INSTR_CALLBACKS is used to conditionally include the callback definitions. This symbol should be
defined only for ADEs that can implement a callback mechanism.

If an IVI-C instrument driver header file includes type definitions and function prototypes that provide a
callback mechanism, THEN it SHALL conditionally include those definitions only if the symbol
IVI_INSTR_CALLBACKS has been defined.

If an IVI-C instrument driver includes a function that provides a callback mechanism, then similar
functionality could be provided to the non-call-backable client using polling or blocking.

In a multithreaded operating system, the callback may occur in a different thread than the one from which
the callback is established.

20.1 Callback Example

The following code segment shows an example of the definition of a callback function type and an
instrument driver function that provides a callback mechanism.

#ifdef IVI_INSTR_CALLBACKS
typedef void (_VI_FUNCH * xxx123_ReadHandler)

(void *args);
ViStatus _VI_FUNC xxx123_readAndCallback(ViSession vi,

xxx123_ReadHandler readCallback);
#endif

