

Interchangeable

Instruments
VirtualIVI

IVI-3.2: Inherent Capabilities Specification

February 7, 2017 Edition
Revision 2.1

Important Information

IVI Foundation 2 IVI-3.2: Inherent Capabilities Specification

The IVI-3.2: Inherent Capabilities Specification is authored by the IVI Foundation member companies. For a

vendor membership roster list, please visit the IVI Foundation web site at www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation

through the web site at www.ivifoundation.org.

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The IVI Foundation and its member companies shall not be liable for errors contained herein or for incidental

or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

IVI Foundation 3 IVI-3.2: Inherent Capabilities Specification

Inherent Capabilities Specification ... 7

1. Overview of the Inherent Capabilities Specification 9
1.1 Introduction .. 9
1.2 Inherent Capabilities Overview .. 9
1.3 References .. 9
1.4 Definitions of Terms and Acronyms .. 9

2. Specification Section Layout .. 10
2.1 Introduction .. 10

2.1.1 Attribute Section Layout ... 10
2.1.2 Function Section Layout ... 10

3. General Requirements... 12
3.1 Inherent Capabilities Compliance Rules .. 12

3.1.1 Attribute Compliance Rules .. 12
3.1.2 Function Compliance Rules .. 12

3.1.2.1 Additional Compliance Rules for C Functions with ViChar Array Output

Parameters ... 13
3.1.2.2 Additional Compliance Rules for Revision String Attributes 13

3.1.3 Boolean Attribute and Parameter Values .. 14
3.2 .NET Namespace .. 14

4. Inherent Capabilities Overview ... 15
4.1 .NET Inherent Capabilities ... 15

4.1.1 Inherent Capabilities Interfaces .. 16
4.1.1.1 IIviDriver ... 16
4.1.1.2 IIviDriverOperation ... 16
4.1.1.3 IIviComponentIdentity .. 17
4.1.1.4 IIviDriverIdentity .. 17
4.1.1.5 IIviDriverUtility .. 17
4.1.1.6 IIviDriverLock ... 17

4.1.2 Interface Reference Properties .. 17
4.1.3 IVI.NET IviDriver Session Factory .. 17

4.2 COM Inherent Capabilities .. 18
4.2.1 Inherent Capabilities Interfaces .. 20

4.2.1.1 IIviDriver ... 20

IVI Foundation 4 IVI-3.2: Inherent Capabilities Specification

4.2.1.2 IIviDriverOperation ... 20
4.2.1.3 IIviComponentIdentity .. 20
4.2.1.4 IIviDriverIdentity .. 20
4.2.1.5 IIviDriverUtility .. 20

4.2.2 Interface Reference Properties .. 20
4.2.3 IviDriver COM Category .. 21

4.3 C Inherent Capabilities ... 22
4.4 Relationship of Inherent Attributes and Different Types of IVI Driver .. 25

5. Inherent Property/Attribute Descriptions ... 26
5.1 Cache .. 26
5.2 Class Driver Class Spec Major Version (IVI-C Only) ... 27
5.3 Class Driver Class Spec Minor Version (IVI-C Only)... 28
5.4 Class Driver Description (IVI-C Only) .. 29
5.5 Class Driver Prefix (IVI-C Only) ... 30
5.6 Class Driver Revision (IVI-C Only) .. 31
5.7 Class Driver Vendor (IVI-C Only) ... 32
5.8 Class Group Capabilities (IVI-C & IVI-COM Only) ... 33
5.9 Component Class Spec Major Version (IVI-COM & IVI.NET Only) .. 34
5.10 Component Class Spec Minor Version (IVI-COM & IVI.NET Only) .. 35
5.11 Component Description (IVI-COM & IVI.NET Only).. 36
5.12 Component Identifier (IVI-COM & IVI.NET Only) ... 37
5.13 Component Revision (IVI-COM & IVI.NET Only) .. 38
5.14 Component Vendor (IVI-COM & IVI.NET Only) .. 39
5.15 Driver Setup ... 40
5.16 I/O Resource Descriptor ... 41
5.17 Initialized (IVI-COM Only) ... 42
5.18 Instrument Firmware Revision ... 43
5.19 Instrument Manufacturer .. 44
5.20 Instrument Model ... 45
5.21 Interchange Check .. 46
5.22 Logical Name ... 48
5.23 Query Instrument Status ... 49
5.24 Range Check... 50
5.25 Record Value Coercions ... 51
5.26 Simulate .. 52
5.27 Specific Driver Class Spec Major Version (IVI-C Only) .. 53
5.28 Specific Driver Class Spec Minor Version (IVI-C Only) .. 54
5.29 Specific Driver Description (IVI-C Only).. 55
5.30 Specific Driver Locator (IVI-C Only) .. 56
5.31 Specific Driver Prefix (IVI-C Only) .. 57
5.32 Specific Driver Revision (IVI-C Only) .. 58
5.33 Specific Driver Vendor (IVI-C Only) .. 59
5.34 Supported Instrument Models (IVI-C & IVI-COM Only) ... 60

6. Inherent Method/Function Descriptions ... 61
6.1 Clear Error (IVI-C Only) .. 61
6.2 Clear Interchange Warnings (IVI-C & IVI-COM Only).. 62
6.3 Close ... 63
6.4 Disable .. 65
6.5 Error Message (IVI-C Only) .. 66
6.6 Error Query... 67
6.7 Get Attribute <type> (IVI-C Only) .. 69
6.8 Get Attribute ViString (IVI-C Only) .. 71

IVI Foundation 5 IVI-3.2: Inherent Capabilities Specification

6.9 Get Error (IVI-C Only)... 72
6.10 Get Group Capabilities (IVI.NET Only) .. 74
6.11 Get Next Coercion Record (IVI-C & IVI-COM Only) .. 75
6.12 Get Next Interchange Warning (IVI-C & IVI-COM Only) ... 77
6.13 Get Specific Driver C Handle (IVI-C Only) .. 79
6.14 Get Specific Driver IUnknown Pointer (IVI-C Only) .. 80
6.15 Get Supported Instrument Models (IVI.NET Only) .. 81
6.16 Initialize (IVI-C & IVI-COM Only) .. 82
6.17 Invalidate All Attributes ... 87
6.18 Lock Session... 88
6.19 Reset ... 91
6.20 Reset Interchange Check .. 93
6.21 Reset With Defaults.. 95
6.22 Revision Query (IVI-C Only)... 96
6.23 Self Test .. 98
6.24 Set Attribute <type> (IVI-C Only) ... 101
6.25 Unlock Session ... 103

7. Specific Driver Wrapper Functions... 104
7.1 C Wrappers for IVI-COM Specific Drivers ... 105

7.1.1 Get Native IUnknown Pointer (IVI-C Only) .. 105
7.1.2 Attach To Existing COM Session (IVI-C Only)... 106

7.2 IVI-COM and IVI.NET Wrappers for IVI-C Specific Drivers .. 107
7.2.1 Native C Handle (IVI-COM Only) ... 107
7.2.2 Attach To Existing C Session (IVI-COM Only)... 108

8. IVI.NET Specific Driver Constructor ... 109

9. IVI.NET Event Descriptions ... 114
9.1 IVI.NET Events .. 114

9.1.1 Coercion Record Event (IVI.NET Only) .. 115
9.1.2 Interchange Check Warning Event (IVI.NET Only) .. 116
9.1.3 Driver Warning Event (IVI.NET Only) .. 117

10. IVI Inherent Attribute ID Definitions .. 118
10.1 Inherent Attribute ID Values .. 118
10.2 Reserved Vendor Specific Inherent Extension Attribute ID Values and Constants 119
10.3 Reserved Module Private Attribute ID Values... 120
10.4 Reserved Standard Cross Class Capabilities Attribute ID Values ... 120

11. Common IVI-C and IVI-COM Error and Completion Codes 121
11.1 IVI-C and IVI-COM Error and Completion Codes.. 121
11.2 IVI-C Error and Completion Codes ... 123
11.3 IVI-COM Error and Completion Codes ... 126
11.4 Reserved Vendor Specific Error and Completion Code Values and Constants 128
11.5 Standard COM Error Codes for Use during Driver Development ... 130
11.6 Unused Standard COM Error Codes .. 130

IVI Foundation 6 IVI-3.2: Inherent Capabilities Specification

12. Common IVI.NET Exceptions and Warnings 131
12.1 General Information About Exceptions ... 131
12.2 Mapping IVI-C and IVI-COM Error Codes to IVI.NET ... 132
12.3 Mapping IVI-COM Session Factory Error Codes to IVI.NET .. 133
12.4 Common Exceptions .. 135

12.4.1 System.ArgumentNullException (.NET Framework) .. 136
12.4.2 System.InsufficientMemoryException ... 137
12.4.3 System.IO.FileNotFoundException .. 138
12.4.4 ConfigurationServerException ... 139
12.4.5 FileFormatException... 140
12.4.6 IdQueryFailedException ... 141
12.4.7 InstrumentStatusException ... 142
12.4.8 InvalidOptionValueException .. 143
12.4.9 IOException .. 144
12.4.10 IOTimeoutException... 145
12.4.11 IviCDriverException ... 146
12.4.12 IviComDriverException .. 147
12.4.13 MaxTimeExceededException ... 148
12.4.14 OperationNotSupportedException .. 149
12.4.15 OperationPendingException ... 150
12.4.16 OptionMissingException .. 151
12.4.17 OptionStringFormatException .. 152
12.4.18 OutOfRangeException .. 153
12.4.19 ResetFailedException ... 154
12.4.20 ResetNotSupportedException ... 155
12.4.21 SelectorFormatException .. 156
12.4.22 SelectorHierarchyException ... 157
12.4.23 SelectorNameException .. 158
12.4.24 SelectorNameRequiredException ... 159
12.4.25 SelectorRangeException ... 160
12.4.26 SimulationStateException ... 161
12.4.27 TriggerNotSoftwareException .. 162
12.4.28 UnexpectedResponseException .. 163
12.4.29 UnknownOptionException ... 164
12.4.30 UnknownPhysicalNameException ... 165
12.4.31 ValueNotSupportedException .. 166

12.5 IVI.NET Session Factory Method Exceptions ... 167
12.5.1 ClassNameNotFoundException .. 168
12.5.2 ConfigurationStoreLoadException ... 170
12.5.3 DriverClassCreationException ... 171
12.5.4 InvalidClassNameException ... 172
12.5.5 SessionNotFoundException .. 173
12.5.6 SoftwareModuleNotFoundException ... 174

12.6 Warnings .. 175

13. Inherent Attribute Value Definitions ... 176

IVI-3.2: Inherent Capabilities Specification 7 IVI Foundation

Inherent Capabilities Specification

Revision History

This section is an overview of the revision history of the Inherent Capabilities specification. Specific individual

additions/modifications to the document in draft revisions are denoted with diff-marks, “|”, in the right hand column

of each line of text to which the change/modification applies.

Table 1. Inherent Capabilities Specification Revisions

Revision Number Date of Revision Revision Notes

Revision 1.0 April 15, 2002 First approved version. Accepted all changes. Removed

change tracking. Removed draft comment and changed

version to 1.0.

Revision 1.0 October 1, 2004 IVI-COM drivers do not support multithread locks on

sessions.

Revision 1.1 January 12, 2007 Added attribute accessor functions for 64-bit integers.

Revision 1.2 November 17, 2008 Added a requirement that 64-bit drivers include a specific

string (identifying the driver as 64-bit) in the values for

the following property/attributes:

IiviComponentIdentity “Description” property for IVI-

COM, CLASS_DRIVER_DESCRIPTION attribute for

IVI-C, SPECIFIC_DRIVER_DESCRIPTION attribute

for IVI-C.

Editorial change to update the IVI Foundation contact

information in the Important Information section to

remove obsolete address information and refer only to the

IVI Foundation web site.

Revision 1.3 March 23, 2009 Added a note in Sections 6.7 and 6.22 that an IVI-C

specific driver may omit the ViInt64 function if the driver

has no 64-bit attributes.

Revision 2.0 June 9, 2010 Incorporated IVI.NET

Revision 2.1 October 14, 2010 Editorial IVI.NET change.

Correct the names of two exceptions.

Revision 2.1 April 15, 2011 Editorial IVI.NET changes.

Change the IVI.NET Warning event args to include a text

field and add the GUID code parameter name, and add

IVI.NET warning messages.

Clarify the content of the IVI.NET Coercion Reporting

event messages.

Clarify the ability to throw derived exceptions from

IVI.NET drivers.

Remove instrument model information from various

exceptions.

For IVI.NET exceptions dealing with nested repeated

capabilities, clarify the repeated capability to be reported

IVI-3.2: Inherent Capabilities Specification 8 IVI Foundation

Table 1. Inherent Capabilities Specification Revisions

in the exception.

Revision 2.1 August 25, 2011 Editorial IVI.NET change.

Change references to process-wide locking to

AppDomain-wide locking.

Add documentation of the LockType enumeration.

Revision 2.1 August 6, 2012 Editorial change. Change references to Event Not

Supported exception to Operation Not Supported

exception.

Revision 2.1 July 26, 2013 Editorial change in Section 3.1.2.1. Added a note to

clarify that C functions that have a ViChar array output

parameter cannot return warnings.

Revision 2.1 January 8, 2015 Editorial change in Section 5.11 to remove the

requirement for IVI.NET drivers to include a statement in

the component description identifying it as 64-bit.

Revision 2.1 March 9, 2015 Editorial change in Section 3.1.2.1 to clarify the behavior

of the GetAttributeViString function when the buffer size

is set to zero.

Revision 2.1 February 7, 2017 Editorial change in Section 4.2.9 to clarify that

IOException is not required when the underlying I/O

software reports an error.

API Versions

Architecture Drivers that comply

with version 2.1

comply with all of the

versions below

C 1.0, 1.1, 1.2, 2.0

COM 1.0, 1.1, 1.2, 2.0

.NET 2.0

Drivers that comply with this version of the specification also comply with earlier, compatible, versions of

the specification as shown in the table above. The driver may benefit by advertising that it supports all the

API versions listed in the table above.

IVI-3.2: Inherent Capabilities Specification 9 IVI Foundation

1. Overview of the Inherent Capabilities Specification

1.1 Introduction

This section summarizes Inherent Capabilities Specification itself and contains general information that

might help the reader understand, interpret, and implement aspects of this specification. The contents of

this section include the following:

• Inherent Capabilities Overview

• The definitions of terms and acronyms

• References

1.2 Inherent Capabilities Overview

This specification defines the capabilities that all IVI instrument drivers are required to implement. This

includes IVI.NET, IVI-COM and IVI-C drivers, as well as .NET, COM and C wrappers for native

IVI.NET, IVI-C and IVI-COM drivers.

For a complete description of the various types of IVI drivers, refer to IVI-3.1: Driver Architecture

Specification.

1.3 References

Several other documents and specifications are related to this specification. These other related documents

are as follows:

• IVI-1: Charter Document

• IVI-3.1: Driver Architecture Specification

• IVI-3.5: Configuration Server Specification

• IVI-3.17: Installation Specification

• IVI-3.18: .NET Utility Classes and Interfaces

• VPP-3.3: Instrument Driver Interactive Developer Interface Specification

• VPP-4.3.2: VISA Implementation Specification for Textual Language

• VPP-4.3.4: VISA Implementation Specification for COM

1.4 Definitions of Terms and Acronyms

Refer to IVI-5: Glossary for a description of the terms and acronyms used in this specification. This

specification does not define any additional terms.

IVI-3.2: Inherent Capabilities Specification 10 IVI Foundation

2. Specification Section Layout

2.1 Introduction

This section gives an overview of the information presented for each property/attribute and

method/function that this specification defines.

2.1.1 Attribute Section Layout

Each Attribute section is composed of the following subsections. Optional subsections are noted:

Capabilities Table—A table that defines the following for the attribute:

DataType—Specifies the VXIplug&play data type of the attribute. Valid types are specified in

Section 5.14, Allowed Data Types, of IVI-3.1 Driver Architecture Specification. In some cases where

IVI.NET defines a specific type, the .NET type will be used (e.g. Ivi.Driver.PrecisionTimeSpan).

Access—Specifies the kind of access the user has to the attribute. Possible values are Read-Only,

Write-Only, and Read/Write.

RO (Read-Only)—indicates that the user can only get the value of the attribute.

WO (Write-Only)—indicates that the user can only set the value of the attribute.

R/W (Read/Write)—indicates that the user can get and set the value of the attribute.

.NET Property Name—Defines the property name, including the object hierarchy, that an IVI.NET

specific driver uses for the property. C# syntax is used.

COM Property Name—Defines the property name, including the object hierarchy, that an IVI-COM

specific driver uses for the property.

C Constant Name—Defines the attribute name that an IVI-C driver uses for the attribute. To determine

the actual C constant name for a particular IVI-C driver, replace the literal string PREFIX with the macro

prefix for the IVI-C driver.

Description—Describes the attribute and its intended use.

Defined Values (Optional)—Defines all the valid values for the attribute.

Compliance Notes (Optional)—Section 3, General Requirements, defines the general rules an IVI driver

shall follow to be compliant with an attribute specification. This section specifies additional compliance

requirements and exceptions that apply to a particular attribute.

2.1.2 Function Section Layout

Each Function section is composed of the following subsections. Optional subsections are noted:

Description—Describes the behavior and intended use of the function.

.NET Method Prototype—Defines the method prototype, including the object hierarchy, that an IVI.NET

specific driver uses for the method. C# syntax is used.

COM Method Prototype—Defines the COM method prototype, including the object hierarchy, that an

IVI-COM specific driver uses for the method.

C Function Prototype—Defines the prototype that an IVI-C driver uses for the function. To determine the

actual C function name for a particular IVI-C driver, replace the literal string Prefix with the function

prefix for the IVI-C driver.

Parameters—Describes each function parameter.

IVI-3.2: Inherent Capabilities Specification 11 IVI Foundation

Return Values—Defines the possible completion codes for the function.

Compliance Notes (Optional)—Section 3, General Requirements, defines the general rules an IVI driver

shall follow to be compliant with a function specification. This section specifies additional compliance

requirements and exceptions that apply to a particular function.

IVI-3.2: Inherent Capabilities Specification 12 IVI Foundation

3. General Requirements
This section describes the general requirements an IVI driver shall meet to be compliant with this

specification.

3.1 Inherent Capabilities Compliance Rules

To comply with this specification, an IVI driver shall comply with the following rules:

• Implement all attributes that this specification defines, except when noted otherwise.

• Implement all functions that this specification defines, except when noted otherwise.

3.1.1 Attribute Compliance Rules

To comply with a particular attribute that this specification defines, an IVI driver shall adhere to the

compliance rules defined in Section 5.6.1, Attribute Compliance Rules, of the IVI-3.1: Driver Architecture
Specification.

In addition, the IVI driver shall adhere to all of the following requirements for the attribute:

• Implement the attribute as non-channel based.

• Implement the attribute with no value coercions. Value coercions are not allowed for inherent

attributes. IVI drivers shall report an error if the IVI driver or the instrument cannot accept the value

that the user specifies for an inherent attribute.

Note: If a particular attribute has compliance rules or exceptions in addition to the rules that this section

defines, the Compliance Notes section for the attribute contains the additional rules or exceptions.

3.1.2 Function Compliance Rules

To comply with a particular function that this specification defines, an IVI driver shall adhere to the

compliance rules defined in Section 5.6.2, Function Compliance Rules, of the IVI-3.1: Driver Architecture

Specification.

Note: If a particular function has compliance rules or exceptions in addition to the rules that this section

defines, the Compliance Notes section for the function contains the additional rules or exceptions.

IVI-3.2: Inherent Capabilities Specification 13 IVI Foundation

3.1.2.1 Additional Compliance Rules for C Functions with ViChar Array Output
Parameters

This section specifies additional compliance rules for C functions that have a ViChar array output

parameter and an input parameter that specifies the size of the ViChar array. The functions in this

specification that have such parameters are the Get Attribute ViString, Get Error, Get Next Coercion

Record, and Get Next Interchange Warning functions.

• The user is responsible for allocating a ViChar array and passing the address of the array in the

ViChar array output parameter. The array serves as a buffer into which the IVI-C driver copies a

string.

• The name of the input parameter that specifies the size of the array is the name of the array followed

by BufferSize and is the parameter that immediately precedes the ViChar array output parameter.

For example if the name of the ViChar array output parameter is errorDescription, the name of

the buffer size parameter is errorDescriptionBufferSize. The user passes the number of bytes

in the buffer as the buffer size parameter.

• If the string that the function attempts to copy contains more bytes (including the terminating NUL

byte) than the user indicates in the buffer size parameter, the function does the following:

• Copies (buffer size–1) bytes into the buffer

• Places an ASCII NUL byte at the end of the buffer

• Returns in the return value a buffer size that is greater than or equal to the size of the buffer the

user must pass to be ensured of getting the entire string.

For example, if the value is 123456 and the buffer size is 4, the function places 123 followed by a

NUL byte into the buffer and returns 7. If the function encounters an error, the function returns the

corresponding error code instead of the required buffer size.

• If the user passes a negative number for the buffer size parameter, the function copies the value into

the buffer regardless of the number of bytes in the value.

• If the user passes 0 for the BufferSize parameter, the function allows the user to pass VI_NULL for

the output buffer parameter and returns a buffer size that is greater than or equal to the size of the

buffer the user must pass to be ensured of getting the entire string including the NUL byte.

Note: In the case of a string that might change between a call to GetAttributeViString with a buffer

size of zero and the second call to GetAttributeViString with the buffer size returned by the first call,

the first call should return the maximum buffer size that might be needed in the second call. If the

maximum buffer size cannot be determined, then the string should not be accessible via

GetAttributeViString; instead, the driver should provide a separate function to return the string, rather

than using an attribute.

Note: The preceding compliance rules imply that functions that have a ViChar array output parameter and

an input parameter that specifies the size of the ViChar array cannot return warnings. This is because a

positive return value indicates the buffer size needed to get the entire parameter value.

Note: The preceding compliance rules regarding ViChar array output parameters and corresponding buffer

size parameters do not apply to the Self Test, Revision Query, Error Query, and Error Message functions.

These functions do not have buffer size parameters.

3.1.2.2 Additional Compliance Rules for Revision String Attributes

This section specifies additional compliance rules for attributes that return revision strings. The attributes

in this specification that return revision strings are Component Revision, Class Driver Revision, and

Specific Driver Revision.

IVI-3.2: Inherent Capabilities Specification 14 IVI Foundation

The revision string that these attributes return is in the following format:

 revision[string]

The format of the revision shall follow the rules for FileVersion defined in Section 5.19, File Versioning,

in IVI-3.1: Driver Architecture Specification. The string is optional. If the string is present, a space

shall separate the revision from the string. The string contains additional driver specific revision

information. Multi-byte characters are not allowed in the string that this attribute returns. String characters

shall be in the range of (\x20-\x7E).

Examples of allowed revision strings are shown below:

4.00.1

02.0001.12345.1 This revision adds XYZ capability to the component

3.1.3 Boolean Attribute and Parameter Values

This specification uses True and False as the values for Boolean attributes and parameters. The following

table defines the identifiers that are used for True and False in the IVI.NET, IVI-COM, and IVI-C

architectures.

Boolean Value IVI.NET Identifier IVI-COM Identifier IVI-C Identifier

True tr ue VARI ANT_TRUE VI _TRUE

False f al se VARI ANT_FAL SE VI _FAL SE

3.2 .NET Namespace

The .NET namespace for the IVI inherent capabilities is Ivi.Driver. Note that IVI-3.18, .NET Utility

Classes and Interfaces, defines additional elements in the Ivi.Driver namespace.

IVI-3.2: Inherent Capabilities Specification 15 IVI Foundation

4. Inherent Capabilities Overview
This section gives an overview of the inherent capabilities of IVI.NET, IVI-COM, and IVI-C drivers. The

inherent capabilities for IVI.NET and IVI-COM driver consist of a set of properties and methods. The

inherent capabilities for an IVI-C driver consist of a set of attributes and functions. In most cases, COM or

.NET properties and methods have corresponding C attributes and functions, and vice versa. This section

defines a generic name for each property/attribute combination and method/function combination. The

remainder of this specification uses the generic name to refer to properties/attributes and

methods/functions.

4.1 .NET Inherent Capabilities

The following table shows the inherent capabilities of an IVI.NET driver. The .NET Interface Hierarchy

specifies the relationship of the inherent properties, methods, and events for IVI.NET drivers. The Generic

Name column lists the generic name for each property or method. The Type column uses a P, M, or E to

specify whether the item is a property, method, or event. IVI.NET is the only IVI API type that defines

events.

There is no Initialize() method in the IVI.NET inherent capabilities API, as there is in the IVI-COM and

IVI-C APIs. Instead, the IVI.NET specific driver constructor takes the same parameters as Initialize() in

IVI-COM, and initializes the driver. The IVI.NET specific driver constructor is described in Section 8,

IVI.NET Specific Driver Constructor.

The IVI.NET inherent capabilities API includes three events, Driver Warning Event, Coercion Record

Event, and Interchange Check Warning Event. The IVI.NET events are described in Section 9, IVI.NET

Event Descriptions.

The IVI.NET inherent capabilities do not define Lock and Unlock methods. See Section 6.18, Lock

Session, for details related to the reason that COM does not implement these methods.

Table 4-1. Inherent Capabilities of an IVI.NET Driver

.NET Interface Hierarchy Generic Name Type

Driver Constructor Initialize M

Close Close M

DriverOperation

Cache Cache P

CoercionRecordEvent Coercion Record Event E

DriverSetup Driver Setup P

InterchangeCheck Interchange Check P

InterchangeCheckWarningEvent Interchange Check Warning Event E

InvalidateAllAttributes Invalidate All Attributes M

LogicalName Logical Name P

QueryInstrumentStatus Query Instrument Status P

RangeCheck Range Check P

ResetInterchangeCheck Reset Interchange Check M

IoResourceDescriptor I/O Resource Descriptor P

Simulate Simulate P

WarningEvent Driver Warning Event E

IVI-3.2: Inherent Capabilities Specification 16 IVI Foundation

Table 4-1. Inherent Capabilities of an IVI.NET Driver

.NET Interface Hierarchy Generic Name Type

Identity

Description Component Description P

Identifier Component Identifier P

Revision Component Revision P

Vendor Component Vendor P

InstrumentManufacturer Instrument Manufacturer P

InstrumentModel Instrument Model P

InstrumentFirmwareRevision Instrument Firmware Revision P

SpecificationMajorVersion Component Class Spec Major Version P

SpecificationMinorVersion Component Class Spec Minor Version P

SupportedInstrumentModels Supported Instrument Models P

GroupCapabilities Class Group Capabilities P

Utility

Disable Disable M

ErrorQuery Error Query M

Lock LockSession M

Reset Reset M

ResetWithDefaults Reset With Defaults M

SelfTest Self Test M

Unlock

Note that Unlock is not part of the IVI.NET

hierarchy, but is implemented by lock objects

associated with the driver.

Unlock Session M

4.1.1 Inherent Capabilities Interfaces

IVI.NET inherent capabilities are organized into five interfaces.

• IIviDriver

• IIviDriverOperation

• IIviComponentIdentity

• IIviDriverIdentity

• IIviDriverUtility

4.1.1.1 IIviDriver

IIviDriver is the root interface for all IVI.NET drivers. It contains a method that closes the instrument

connection. It also contains three interface reference properties. Refer to Section 4.1.2, Interface Reference

Properties, for more information. IIviDriver derives from IServiceProvider and IDisposable.

4.1.1.2 IIviDriverOperation

IIviDriverOperation contains methods and properties that manage the operation of the driver.

IVI-3.2: Inherent Capabilities Specification 17 IVI Foundation

4.1.1.3 IIviComponentIdentity

IIviComponentIdentity contains properties that return general information related to the identity of an IVI

component.

4.1.1.4 IIviDriverIdentity

IIviDriverIdentity derives from IIviComponentIdentity. It adds properties that return information related to

the identity of the driver and of the instrument.

4.1.1.5 IIviDriverUtility

IIviDriverUtility contains methods that provide a basic set of utility operations.

4.1.1.6 IIviDriverLock

The IIviDriverLock interface is returned by calls to the two overloads of the IIviDriverUtility.Lock method.

The Lock method is used by a client to obtain a multithread lock for the duration of several method calls.

The class implementing IIviDriverLock obtains the lock in its constructor. This blocks the caller of the

IIviDriverUtility.Lock method until the lock can be obtained (or the specified timeout period expires).

Once an IIviDriverLock reference is obtained from the Lock method, the client holds the driver lock until

the IIviDriverLock.Unlock method is called. IIviDriverLock derives from IDisposable so that classes

implementing IIviDriverLock can automatically call Unlock in the Dispose method. This is specifically

designed to facilitate the usage of the C# "using" and VB.NET "Using" statements.

4.1.2 Interface Reference Properties

Interface reference properties are used to navigate the .NET Inherent Capabilities hierarchy. Refer to

Section 5.17.5, IVI-COM Inherent Interfaces in IVI-3.1: Driver Architecture Specification, for more

information on interface reference properties. This section describes the interface reference properties that

the IIviDriver interface defines.

Data Type Access

IIviDriverOperation DriverOperation

IIviDriverIdentity Identity

IIviDriverUtility Utility

4.1.3 IVI.NET IviDriver Session Factory

The IviDriver .NET assembly contains a factory method called Create for creating instances of generic

specific IVI.NET drivers from driver sessions and logical names. Create is a static method accessible from

the static IviDriver class.

Refer to IVI-3.5: Configuration Server Specification for a description of how logical names and session

names are defined in the configuration store.

Refer to Section 8, IVI.NET Specific Driver Constructor for more details on how the idQuery, reset, and

options parameters affect the instantiation of the driver.

IVI-3.2: Inherent Capabilities Specification 18 IVI Foundation

.NET Method Prototype

IIviDriver IviDriver.Create(String name,

 Boolean idQuery,

 Boolean reset);

IIviDriver IviDriver.Create(String name,

 Boolean idQuery,

 Boolean reset,

 String options);

Parameters

Inputs Description Base Type

name A session name or a logical name that points to a session

that uses a generic specific IVI.NET driver.

String

idQuery Specifies whether to verify the ID of the instrument. The

default is False.

Boolean

reset Specifies whether to reset the instrument. The default is

False.

Boolean

options A string that allows the user to specify the initial values of

certain inherent attributes. The default is an empty string.

String

Outputs Description Base Type

Return Value Interface pointer to the IIviDriver interface of the driver

referenced by session.

IIviDriver

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

Usage

To create a generic specific IVI.NET driver from the logical name “My LogicalName”, use the following

code:

IIviDriver driver = IviDriver.Create(“MyLogicalName”);

In this case, the ID of the instrument will not be verified, the instrument will not be reset, and options will

be supplied from the configuration store and/or driver defaults.

4.2 COM Inherent Capabilities

The following table shows the inherent capabilities of an IVI-COM driver. The COM Interface Hierarchy

specifies the relationship of the inherent properties and methods for IVI-COM drivers. The Generic Name

column lists the generic name for each property or method. The Type column uses a P or an M to specify

whether the item is a property or method.

Table 4-1. Inherent Capabilities of an IVI-COM Driver

COM Interface Hierarchy Generic Name Type

Close Close M

DriverOperation

IVI-3.2: Inherent Capabilities Specification 19 IVI Foundation

Table 4-1. Inherent Capabilities of an IVI-COM Driver

COM Interface Hierarchy Generic Name Type

Cache Cache P

ClearInterchangeWarnings Clear Interchange Warnings M

DriverSetup Driver Setup P

GetNextCoercionRecord Get Next Coercion Record M

GetNextInterchangeWarning Get Next Interchange Warning M

InterchangeCheck Interchange Check P

InvalidateAllAttributes Invalidate All Attributes M

LogicalName Logical Name P

QueryInstrumentStatus Query Instrument Status P

RangeCheck Range Check P

RecordCoercions Record Value Coercions P

ResetInterchangeCheck Reset Interchange Check M

IoResourceDescriptor I/O Resource Descriptor P

Simulate Simulate P

Identity

Description Component Description P

Identifier Component Identifier P

Revision Component Revision P

Vendor Component Vendor P

InstrumentManufacturer Instrument Manufacturer P

InstrumentModel Instrument Model P

InstrumentFirmwareRevision Instrument Firmware Revision P

SpecificationMajorVersion Component Class Spec Major Version P

SpecificationMinorVersion Component Class Spec Minor Version P

SupportedInstrumentModels Supported Instrument Models P

GroupCapabilities Class Group Capabilities P

Initialize Initialize M

Initialized Initialized P

Utility

Disable Disable M

ErrorQuery Error Query M

LockObject Lock Session M

Reset Reset M

ResetWithDefaults Reset With Defaults M

SelfTest Self Test M

UnlockObject Unlock Session M

IVI-3.2: Inherent Capabilities Specification 20 IVI Foundation

4.2.1 Inherent Capabilities Interfaces

The IIviDriver interface contains interface reference properties for accessing the following inherent

capability interfaces:

• IIviDriverOperation

• IIviComponentIdentity

• IIviDriverIdentity

• IIviDriverUtility

Table 4-2 lists the IVI-COM interfaces and their GUIDs.

Table 4-2. Inherent Capabilities COM Interface GUIDs

Interface GUID

IIviDriver {47ed5184-a398-11d4-ba58-000064657374}

IIviDriverOperation {47ed5188-a398-11d4-ba58-000064657374}

IIviComponentIdentity {47ed5185-a398-11d4-ba58-000064657374}

IIviDriverIdentity {47ed5186-a398-11d4-ba58-000064657374}

IIviDriverUtility {47ed5189-a398-11d4-ba58-000064657374}

4.2.1.1 IIviDriver

IIviDriver is the root interface for all IVI-COM drivers. It contains methods and properties that initialize,

close, and query the state of the IVI driver session. It also contains three interface reference properties.

Refer to Section 4.1.2, Interface Reference Properties, for more information.

4.2.1.2 IIviDriverOperation

IIviDriverOperation contains methods and properties that manage the operation of the driver.

4.2.1.3 IIviComponentIdentity

IIviComponentIdentity contains properties that return general information related to the identity of an IVI

component.

4.2.1.4 IIviDriverIdentity

IIviDriverIdentity inherits from IIviComponentIdentity. It adds properties that return information related to

the identity of the driver and of the instrument.

4.2.1.5 IIviDriverUtility

IIviDriverUtility contains methods that provide a basic set of utility operations.

4.2.2 Interface Reference Properties

Interface reference properties are used to navigate the COM Inherent Capabilities hierarchy. Refer to

Section 5.15.3, IVI-COM Inherent Interfaces in IVI-3.1: Driver Architecture Specification, for more

information on interface reference properties. This section describes the interface reference properties that

the IIviDriver interface defines.

IVI-3.2: Inherent Capabilities Specification 21 IVI Foundation

Data Type Access

IIviDriverOperation DriverOperation

IIviDriverIdentity Identity

IIviDriverUtility Utility

4.2.3 IviDriver COM Category

The COM Category for inherent capabilities shall be “IviDriver”, and the Category ID (CATID) shall be

{47ed5152-a398-11d4-ba58-000064657374 }.

IVI-3.2: Inherent Capabilities Specification 22 IVI Foundation

4.3 C Inherent Capabilities

Unlike COM inherent capabilities, the C inherent capabilities consist of separate hierarchies of attributes

and functions. The hierarchy of C inherent attributes is shown in the following table.

The Category or Generic Attribute Name column shows how the various inherent attributes are divided into

categories and specifies the generic name for each attribute. The C Defined Constant column gives the C

constant name for each attribute. The COM Interface column lists the COM interface location of the

corresponding COM property. N/A in the COM Interface column specifies that the attribute does not have

a corresponding COM property.

For IVI-C drivers, the prefix.sub file must implement the attribute hierarchy as shown in this table.

Table 4-2. Hierarchy of C Inherent Attributes

Category or Generic Attribute Name

C Defined Constant

COM

Interface

Inherent IVI Attributes

User Options

Range Check PREFIX_ATTR_RANGE_CHECK DriverOperation

Query Instrument Status PREFIX_ATTR_QUERY_INSTRUMENT_STATUS DriverOperation

Cache PREFIX_ATTR_CACHE DriverOperation

Simulate PREFIX_ATTR_SIMULATE DriverOperation

Record Value Coercions PREFIX_ATTR_RECORD_COERCIONS DriverOperation

Interchange Check PREFIX_ATTR_INTERCHANGE_CHECK DriverOperation

Class Driver Identification

Class Driver Description PREFIX_ATTR_CLASS_DRIVER_DESCRIPTION N/A

Class Driver Prefix PREFIX_ATTR_CLASS_DRIVER_PREFIX N/A

Class Driver Vendor PREFIX_ATTR_CLASS_DRIVER_VENDOR N/A

Class Driver Revision PREFIX_ATTR_CLASS_DRIVER_REVISION N/A

Class Driver Class Spec Major

Version

PREFIX_ATTR_CLASS_DRIVER_CLASS_SPEC_MAJ

OR_VERSION

N/A

Class Driver Class Spec Minor

Version

PREFIX_ATTR_CLASS_DRIVER_CLASS_SPEC_MIN

OR_VERSION

N/A

Driver Identification

Specific Driver Description PREFIX_ATTR_SPECIFIC_DRIVER_DESCRIPTION N/A

Specific Driver Prefix PREFIX_ATTR_SPECIFIC_DRIVER_PREFIX N/A

Specific Driver Locator PREFIX_ATTR_SPECIFIC_DRIVER_LOCATOR N/A

Specific Driver Vendor PREFIX_ATTR_SPECIFIC_DRIVER_VENDOR N/A

Specific Driver Revision PREFIX_ATTR_SPECIFIC_DRIVER_REVISION N/A

Specific Driver Class Spec

Major Version

PREFIX_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_M

AJOR_VERSION

N/A

Specific Driver Class Spec

Minor Version

PREFIX_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_M

INOR_VERSION

N/A

Driver Capabilities

IVI-3.2: Inherent Capabilities Specification 23 IVI Foundation

Table 4-2. Hierarchy of C Inherent Attributes

Category or Generic Attribute Name

C Defined Constant

COM

Interface

Supported Instrument Models PREFIX_ATTR_SUPPORTED_INSTRUMENT_MODELS Identity

Class Group Capabilities PREFIX_ATTR_GROUP_CAPABILITIES Identity

Instrument Identification

Instrument Manufacturer PREFIX_ATTR_INSTRUMENT_MANUFACTURER Identity

Instrument Model PREFIX_ATTR_INSTRUMENT_MODEL Identity

Instrument Firmware Revision PREFIX_ATTR_INSTRUMENT_FIRMWARE_REVISION Identity

Advanced Session Information

Logical Name PREFIX_ATTR_LOGICAL_NAME DriverOperation

I/O Resource Descriptor PREFIX_ATTR_IO_RESOURCE_DESCRIPTOR DriverOperation

Driver Setup PREFIX_ATTR_DRIVER_SETUP DriverOperation

Note: IVI-C specific drivers do not implement or export the Class Driver Description, Class Driver Prefix,

Class Driver Vendor, Class Driver Revision, Class Driver Class Spec Major Version, and Class Driver

Class Spec Minor Version attributes.

IVI-3.2: Inherent Capabilities Specification 24 IVI Foundation

The hierarchy of C inherent functions is shown in the following table. The Category or Generic Function

Name column lists the generic name for each function and divides the functions into categories. The C

Function Name lists the C function names. The COM Interface column lists the COM interface location of

the corresponding COM method. N/A in the COM Interface column specifies that the function does not

have a corresponding COM method.

Note: If an IVI driver contains a Configure category in its function hierarchy, then the Attribute Access

Function category must be a sub-category of the Configure category.

Table 4-3. Hierarchy of C Inherent Functions

Category or Generic Function Name

C Function Name

COM

Interface

Initialize Prefix_init N/A

Initialize With Options Prefix_InitWithOptions Main

Attribute Access Functions

Set Attribute Functions Prefix_SetAttribute<type> N/A

Get Attribute Functions Prefix_GetAttribute<type> N/A

Invalidate All Attributes Prefix_InvalidateAllAttributes DriverOperation

Utility Functions

Self Test Prefix_self_test Utility

Reset Prefix_reset Utility

ResetWithDefaults Prefix_ResetWithDefaults Utility

Disable Prefix_Disable Utility

Revision Query Prefix_revision_query N/A

Error Query Prefix_error_query Utility

Error Message Prefix_error_message N/A

Get Specific Driver C Handle Prefix_GetSpecificDriverCHandle N/A

Get Specific Driver IUnknown

Pointer

Prefix_GetSpecificDriverIUnknownPtr N/A

Get Error Prefix_GetError N/A

Clear Error Prefix_ClearError N/A

Lock Session Prefix_LockSession Utility

Unlock Session Prefix_UnlockSession Utility

Get Next Coercion Record Prefix_GetNextCoercionRecord DriverOperation

Get Next Interchange Warning Prefix_GetNextInterchangeWarning DriverOperation

Reset Interchange Check Prefix_ResetInterchangeCheck DriverOperation

Clear Interchange Warnings Prefix_ClearInterchangeWarnings DriverOperation

Close Prefix_close Main

Note: Initialize With Options is a variation of the Initialize function and is discussed in Section 6.14,

Initialize.

Note: IVI-C specific drivers do not implement or export the Get Specific Driver C Handle and Get Specific

Driver IUnknown Pointer functions.

IVI-3.2: Inherent Capabilities Specification 25 IVI Foundation

4.4 Relationship of Inherent Attributes and Different Types of IVI Driver

Some inherent attributes are exported by all types of IVI drivers— IVI.NET specific drivers, IVI-COM

specific drivers, IVI-C specific drivers, and IVI class drivers. Other inherent attributes are exported by

only one or two types of drivers. Generally, inherent attributes fall into the following two categories:

• Attributes that are exported by IVI.NET specific drivers, IVI-COM specific drivers, IVI-C specific

drivers, and IVI class drivers. When the user accesses this type of attribute through an IVI class driver,

the IVI class driver sets or returns the value of the attribute in the IVI specific driver. Examples are

Cache, Supported Instrument Models, Instrument Manufacturer, and Logical Name.

• Attributes whose Generic names start with Component, Specific Driver, or Class Driver. These

attributes generally come in threes, for example, Component Description, Specific Driver Description,

and Class Driver Description. For this categories of attributes, the following general rules apply:

• IVI.NET specific drivers and IVI-COM specific drivers export only the attributes whose names

start with Component.

• IVI-C specific drivers export only the attributes whose names start with Specific Driver.

• IVI-C class drivers export both the attributes whose names start with Specific Driver and those

that start with Class Driver. The attributes whose names start with Class Driver return information

about the IVI-C class driver. The attributes whose names start with Specific Driver return

information about the IVI specific driver. Thus, the user of the IVI-C class driver can get

information about both the IVI-C class driver and the IVI specific driver.

In general, IVI-C specific drivers and IVI-C class drivers export the attributes whose names start with

Specific Driver. An exception is the Specific Driver Locator attribute. Only IVI-C class drivers export

this attribute, not IVI-C specific drivers because they cannot reliably determine their own location.

IVI-3.2: Inherent Capabilities Specification 26 IVI Foundation

5. Inherent Property/Attribute Descriptions

This section gives a complete description of each inherent property/attribute.

5.1 Cache

Data Type Access

ViBoolean R/W

.NET Property Name

DriverOperation.Cache

COM Property Name

DriverOperation.Cache

C Constant Name

PREFIX_ATTR_CACHE

Description

If True, the specific driver caches the value of attributes, and the IVI specific driver keeps track of the

current instrument settings so that it can avoid sending redundant commands to the instrument. If False, the

specific driver does not cache the value of attributes.

The default value is True. When the user opens an instrument session through an IVI class driver or uses a

logical name to initialize a specific driver, the user can override this value by specifying a value in the IVI

configuration store. The Initialize function allows the user to override both the default value and the value

that the user specifies in the IVI configuration store.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

Compliance Notes

1. The IVI specific driver shall accept both the True and False values for this attribute.

2. For each attribute, the IVI specific driver developer can choose whether caching is always enabled,

caching is always disabled, or whether caching is configurable by the user. If the specific driver has

attributes for which caching is configurable by the user, the specific driver caches the values of these

attributes when the Cache attribute is set to True and does not cache values when the Cache attribute is

set to False.

IVI-3.2: Inherent Capabilities Specification 27 IVI Foundation

5.2 Class Driver Class Spec Major Version (IVI-C Only)

Data Type Access

ViInt32 RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_CLASS_DRIVER_CLASS_SPEC_MAJOR_VERSION

Description

Returns the major version number of the IVI class specification in accordance with which the IVI-C class

driver was developed. The value is a positive integer value.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.

2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification 28 IVI Foundation

5.3 Class Driver Class Spec Minor Version (IVI-C Only)

Data Type Access

ViInt32 RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_CLASS_DRIVER_CLASS_SPEC_MINOR_VERSION

Description

Returns the minor version number of the IVI class specification in accordance with which the IVI-C class

driver was developed. The value is a non-negative integer value.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.

2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification 29 IVI Foundation

5.4 Class Driver Description (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_CLASS_DRIVER_DESCRIPTION

Description

Returns a brief description of the IVI-C class driver.

If the driver is compiled for use in 64-bit applications, the description shall include the following statement

at the end identifying it as 64-bit.

[Compiled for 64-bit.]

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.

2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification 30 IVI Foundation

5.5 Class Driver Prefix (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_CLASS_DRIVER_PREFIX

Description

Returns the case sensitive prefix of the user-callable functions that the IVI-C class driver exports.

The name of each user-callable function in the class driver begins with this prefix. For example, if a class

driver has a user-callable function named IviDmm_init, then IviDmm is the prefix for that driver.

The string that this attribute returns contains a maximum of 32 characters including the NULL character.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.

2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification 31 IVI Foundation

5.6 Class Driver Revision (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_CLASS_DRIVER_REVISION

Description

Returns version information about the IVI-C class driver. Refer to Section 3.1.2.2, Additional Compliance

Rules for Revision String Attributes, for additional rules regarding this attribute.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.

2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification 32 IVI Foundation

5.7 Class Driver Vendor (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_CLASS_DRIVER_VENDOR

Description

Returns the name of the vendor that supplies the IVI-C class driver.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.

2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification 33 IVI Foundation

5.8 Class Group Capabilities (IVI-C & IVI-COM Only)

Data Type Access

ViString RO

.NET Property Name

N/A

(See the Get Group Capabilities method.)

COM Property Name

Identity.GroupCapabilities

C Constant Name

PREFIX_ATTR_GROUP_CAPABILITIES

Description

Returns a comma-separated list that identifies the class capability groups that the IVI specific driver

implements. The items in the list are capability group names that the IVI class specifications define. The
string has no white space except for white space that might be embedded in a capability group name.

If the IVI specific driver does not comply with an IVI class specification, the specific driver returns an

empty string as the value of this attribute.

The string that this attribute returns does not have a predefined maximum length.

IVI-3.2: Inherent Capabilities Specification 34 IVI Foundation

5.9 Component Class Spec Major Version (IVI-COM & IVI.NET Only)

Data Type Access

ViInt32 RO

.NET Property Name

Identity.SpecificationMajorVersion

COM Property Name

Identity.SpecificationMajorVersion

C Constant Name

N/A

Description

Returns the major version number of the class specification in accordance with which the IVI-COM or

IVI.NET software component was developed. The value is a positive integer value.

If the software component is not compliant with a class specification, the software component returns zero

as the value of this attribute.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 35 IVI Foundation

5.10 Component Class Spec Minor Version (IVI-COM & IVI.NET Only)

Data Type Access

ViInt32 RO

.NET Property Name

Identity.SpecificationMinorVersion

COM Property Name

Identity.SpecificationMinorVersion

C Constant Name

N/A

Description

Returns the minor version number of the class specification in accordance with which the IVI-COM or

IVI.NET software component was developed. The value is a non-negative integer value.

If the software component is not compliant with a class specification, the software component returns zero

as the value of this attribute.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 36 IVI Foundation

5.11 Component Description (IVI-COM & IVI.NET Only)

Data Type Access

ViString RO

.NET Property Name

Identity.Description

COM Property Name

Identity.Description

C Constant Name

N/A

Description

Returns a brief description of the IVI-COM or IVI.NET software component.

For IVI-COM, if the driver is compiled for use in 64-bit applications, the description shall include the

following statement at the end identifying it as 64-bit.

[Compiled for 64-bit.]

This is not required for IVI.NET.

For IVI-COM, the string that this attribute returns contains a maximum of 256 characters including the

NULL character. For IVI.NET, the string that this attribute returns has no maximum size.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 37 IVI Foundation

5.12 Component Identifier (IVI-COM & IVI.NET Only)

Data Type Access

ViString RO

.NET Property Name

Identity.Identifier

COM Property Name

Identity.Identifier

C Constant Name

N/A

Description

Returns the case-sensitive unique identifier of the IVI-COM or IVI.NET software component.

The string that this attribute returns contains a maximum of 32 characters including the NULL character.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 38 IVI Foundation

5.13 Component Revision (IVI-COM & IVI.NET Only)

Data Type Access

ViString RO

.NET Property Name

Identity.Revision

COM Property Name

Identity.Revision

C Constant Name

N/A

Description

Returns version information about the IVI-COM or IVI.NET software component. Refer to Section

3.1.2.2, Additional Compliance Rules for Revision String Attributes, for additional rules regarding this

attribute.

For IVI-COM, the string that this attribute returns contains a maximum of 256 characters including the

NULL character. For IVI.NET, the string that this attribute returns has no maximum size.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 39 IVI Foundation

5.14 Component Vendor (IVI-COM & IVI.NET Only)

Data Type Access

ViString RO

.NET Property Name

Identity.Vendor

COM Property Name

Identity.Vendor

C Constant Name

N/A

Description

Returns the name of the vendor that supplies the IVI-COM or IVI.NET software component.

For IVI-COM, the string that this attribute returns contains a maximum of 256 characters including the

NULL character. For IVI.NET, the string that this attribute returns has no maximum size.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 40 IVI Foundation

5.15 Driver Setup

Data Type Access

ViString RO

.NET Property Name

DriverOperation.DriverSetup

COM Property Name

DriverOperation.DriverSetup

C Constant Name

PREFIX_ATTR_DRIVER_SETUP

Description

Returns the driver setup string that the user specified in the IVI configuration store when the instrument

driver session was initialized or passes in the OptionString parameter of the Initialize function. Refer to

Section 6.14, Initialize, for the restrictions on the format of the driver setup string.

The string that this attribute returns does not have a predefined maximum length.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 41 IVI Foundation

5.16 I/O Resource Descriptor

Data Type Access

ViString RO

.NET Property Name

DriverOperation.IoResourceDescriptor

COM Property Name

DriverOperation.IoResourceDescriptor

C Constant Name

PREFIX_ATTR_IO_RESOURCE_DESCRIPTOR

Description

Returns the resource descriptor that the user specified for the physical device. The user specifies the

resource descriptor by editing the IVI configuration store or by passing a resource descriptor to the

Initialize function of the specific driver. Refer to Section 6.14, Initialize, for the restrictions on the contents
of the resource descriptor string.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

Compliance Notes

1. If the resource descriptor is not available while simulating, the IVI specific driver returns an empty

string.

2. If the resource descriptor is available while simulating, the IVI specific driver returns it.

IVI-3.2: Inherent Capabilities Specification 42 IVI Foundation

5.17 Initialized (IVI-COM Only)

Data Type Access

ViBoolean RO

.NET Property Name

N/A

(An IVI.NET specific driver is always initialized. See section 4.1, .NET Inherent Capabilities, and section

8, IVI.NET Specific Driver Constructor for details.)

COM Property Name

Initialized

C Constant Name

N/A

Description

Returns a value that indicates whether the IVI-COM specific driver is in the initialized state. After the

specific driver is instantiated and before the Initialize function successfully executes, this attribute returns

False. After the Initialize function successfully executes and prior to the execution of the Close function,

this attribute returns True. After the Close function executes, this attribute returns False.

The Initialized attribute is one of the few IVI-COM specific driver attributes that can be accessed while the

specific driver is not in the initialized state. All the attributes of an IVI-COM specific driver that can be

accessed while the specific driver is not in the initialized state are listed below.

• Component Class Spec Major Version

• Component Class Spec Minor Version

• Component Description

• Component Prefix

• Component Identifier

• Component Revision

• Component Vendor

• Initialized

• Supported Instrument Models

IVI-3.2: Inherent Capabilities Specification 43 IVI Foundation

5.18 Instrument Firmware Revision

Data Type Access

ViString RO

.NET Property Name

Identity.InstrumentFirmwareRevision

COM Property Name

Identity.InstrumentFirmwareRevision

C Constant Name

PREFIX_ATTR_INSTRURMENT_FIRMWARE_REVISION

Description

Returns an instrument specific string that contains the firmware revision information of the physical

instrument. The IVI specific driver returns the value it queries from the instrument as the value of this

attribute or a string indicating that it cannot query the instrument identity.

In some cases, it is not possible for the specific driver to query the firmware revision of the instrument.

This can occur when the Simulate attribute is set to True or if the instrument is not capable of returning the

firmware revision. For these cases, the specific driver returns defined strings for this attribute. If the

Simulate attribute is set to True, the specific driver returns “Not available while simulating” as

the value of this attribute. If the instrument is not capable of returning the firmware version and the

Simulate attribute is set to False, the specific driver returns “Cannot query from instrument” as the

value of this attribute.

The string that this attribute returns does not have a predefined maximum length.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 44 IVI Foundation

5.19 Instrument Manufacturer

Data Type Access

ViString RO

.NET Property Name

Identity.InstrumentManufacturer

COM Property Name

Identity.InstrumentManufacturer

C Constant Name

PREFIX_ATTR_INSTRUMENT_MANUFACTURER

Description

Returns the name of the manufacturer of the instrument. The IVI specific driver returns the value it queries

from the instrument as the value of this attribute or a string indicating that it cannot query the instrument

identity.

In some cases, it is not possible for the IVI specific driver to query the manufacturer of the instrument.

This can occur when the Simulate attribute is set to True or if the instrument is not capable of returning the

manufacturer’s name. For these cases, the specific driver returns defined strings for this attribute. If the

Simulate attribute is set to True, the specific driver returns “Not available while simulating” as

the value of this attribute. If the instrument is not capable of returning the manufacturer name and the

Simulate attribute is set to False, the specific driver returns “Cannot query from instrument” as the

value of this attribute.

For IVI-C and IVI-COM, the string that this attribute returns contains a maximum of 256 characters

including the NULL character. For IVI.NET, the string that this attribute returns has no maximum size.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 45 IVI Foundation

5.20 Instrument Model

Data Type Access

ViString RO

.NET Property Name

Identity.InstrumentModel

COM Property Name

Identity.InstrumentModel

C Constant Name

PREFIX_ATTR_INSTRUMENT_MODEL

Description

Returns the model number or name of the physical instrument. The IVI specific driver returns the value it

queries from the instrument or a string indicating that it cannot query the instrument identity.

In some cases, it is not possible for the IVI specific driver to query the model number of the instrument.
This can occur when the Simulate attribute is set to True or if the instrument is not capable of returning the

model number. For these cases, the specific driver returns defined strings for this attribute. If the Simulate

attribute is set to True, the specific driver returns “Not available while simulating” as the value of

this attribute. If the instrument is not capable of returning the model number and the Simulate attribute is

set to False, the specific driver returns “Cannot query from instrument” as the value of this attribute.

For IVI-C and IVI-COM, the string that this attribute returns contains a maximum of 256 characters

including the NULL character. For IVI.NET, the string that this attribute returns has no maximum size.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 46 IVI Foundation

5.21 Interchange Check

Data Type Access

ViBoolean R/W

.NET Property Name

NA

See the IVI.NET Interchange Check Warning Event.

COM Property Name

DriverOperation.InterchangeCheck

C Constant Name

PREFIX_ATTR_INTERCHANGE_CHECK

Description

If True, the specific driver performs interchangeability checking. For C and COM, if the Interchange

Check attribute is enabled, the specific driver maintains a record of each interchangeability warning that it
encounters. The user calls the Get Next Interchange Warning function to extract and delete the oldest

interchangeability warning from the list. Refer to Section 6.11, Get Next Interchange Warning, Section

6.2, Clear Interchange Warnings, and Section 6.18, Reset Interchange Check, for more information. For

.NET, if the Interchange Check attribute is enabled, the specific driver raises an Interchange Check

Warning Event if any user has registered for the event. Refer to Section 9.1.2, Interchange Check Warning

Event (IVI.NET Only), for more information. If False, the specific driver does not perform

interchangeability checking.

If the user opens an instrument session through an IVI class driver and the Interchange Check attribute is

enabled, the IVI class driver may perform additional interchangeability checking. The IVI class driver

maintains a list of the interchangeability warnings that it encounters. The user can retrieve both class driver

interchangeability warnings and specific driver interchangeability warnings by calling the Get Next

Interchange Warning function on the class driver session.

If the IVI specific driver does not implement interchangeability checking, the specific driver returns the

Value Not Supported error when the user attempts to set the Interchange Check attribute to True. If the

specific driver does implement interchangeability checking and the user opens an instrument session

through an IVI class driver, the IVI class driver accepts True as a valid value for the Interchange Check

attribute even if the class driver does not implement interchangeability checking capabilities of its own.

The default value is False. If the user opens an instrument session through an IVI class driver or initializes

an IVI specific driver with a logical name, the user can override this value in the IVI configuration store.

The Initialize function allows the user to override both the default value and the value that the user

specifies in the IVI configuration store.

IVI-3.2: Inherent Capabilities Specification 47 IVI Foundation

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

Compliance Notes

1. An IVI specific driver shall accept False as a valid value for this attribute.

2. If an IVI specific driver implements True as a valid value for this attribute, then the specific driver

shall implement the interchangeability checking rules that the corresponding class specification

defines.

3. If an IVI specific driver implements True as a valid value for this attribute, then the specific driver

shall implement the Get Next Interchange Warning, Reset Interchange Check, and Clear Interchange

Warnings functions.

4. An IVI driver can impose a restriction on the number of interchangeability warnings that the driver

records in the list. If the driver imposes a restriction, the driver shall throw away the oldest

interchangeability warning in the list when the driver attempts to record a new interchangeability

warning and the list is full.

IVI-3.2: Inherent Capabilities Specification 48 IVI Foundation

5.22 Logical Name

Data Type Access

ViString RO

.NET Property Name

DriverOperation.LogicalName

COM Property Name

DriverOperation.LogicalName

C Constant Name

PREFIX_ATTR_LOGICAL_NAME

Description

Returns the IVI logical name that the user passed to the Initialize function. If the user initialized the IVI

specific driver directly and did not pass a logical name, then this attribute returns an empty string. Refer to

IVI-3.5: Configuration Server Specification for restrictions on the format of IVI logical names.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

IVI-3.2: Inherent Capabilities Specification 49 IVI Foundation

5.23 Query Instrument Status

Data Type Access

ViBoolean R/W

.NET Property Name

DriverOperation.QueryInstrumentStatus

COM Property Name

DriverOperation.QueryInstrumentStatus

C Constant Name

PREFIX_ATTR_QUERY_INSTRUMENT_STATUS

Description

If True, the IVI specific driver queries the instrument status at the end of each user operation. If False, the

IVI specific driver does not query the instrument status at the end of each user operation.

Querying the instrument status is very useful for debugging. After validating the program, the user can set
this attribute to False to disable status checking and maximize performance. The user specifies this value

for the entire IVI driver session.

The default value is False. When the user opens an instrument session through an IVI class driver or uses a

logical name to initialize an IVI specific driver, the user can override this value by specifying a value in the

IVI configuration store. The Initialize function allows the user to override both the default value and the

value that the user specifies in the IVI configuration store.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

Compliance Notes

1. The IVI specific driver shall implement both the True and False values for this attribute.

2. If the instrument status can be queried for its status and this attribute is set to True, then the IVI

specific driver checks the instrument status at the end of every call by the user to a function that

accesses the instrument.

3. If the instrument status cannot be queried independently of user operations, then this attribute has no

effect on the behavior of the IVI specific driver.

IVI-3.2: Inherent Capabilities Specification 50 IVI Foundation

5.24 Range Check

Data Type Access

ViBoolean R/W

.NET Property Name

DriverOperation.RangeCheck

COM Property Name

DriverOperation.RangeCheck

C Constant Name

PREFIX_ATTR_RANGE_CHECK

Description

If True, the IVI specific driver validates attribute values and function parameters. If False, the IVI specific

driver does not validate attribute values and function parameters.

If range check is enabled, the specific driver validates the parameter values that users pass to driver
functions. Validating attribute values and function parameters is useful for debugging. After validating the

program, the user can set this attribute to False to disable range checking and maximize performance.

The default value is True. When the user opens an instrument session through an IVI class driver or uses a

logical name to initialize an IVI specific driver, the user can override this value by specifying a value in the

IVI configuration store. The Initialize function allows the user to override both the default value and the

value that the user specifies in the IVI configuration store.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

Compliance Notes

1. The IVI specific driver shall implement both the True and False values for this attribute.

2. Regardless of the value to which the user sets this attribute, the IVI specific driver is not required to

duplicate all range checking operations that the instrument firmware performs.

3. If this attribute is set to False, the IVI specific driver does not perform range-checking operations that

the specific driver developer considers non-essential and time consuming.

IVI-3.2: Inherent Capabilities Specification 51 IVI Foundation

5.25 Record Value Coercions

Data Type Access

ViBoolean R/W

.NET Property Name

N/A

See the IVI.NET Coercion Record Event.

COM Property Name

DriverOperation.RecordCoercions

C Constant Name

PREFIX_ATTR_RECORD_COERCIONS

Description

If True, the IVI specific driver keeps a list of the value coercions it makes for ViInt32 and ViReal64

attributes. If False, the IVI specific driver does not keep a list of the value coercions it makes for ViInt32

and ViReal64 attributes.

If the Record Value Coercions attribute is enabled, the specific driver maintains a record of each coercion.

The user calls the Get Next Coercion Record function to extract and delete the oldest coercion record from

the list. Refer to Section 6.10, Get Next Coercion Record, for more information.

If the IVI specific driver does not implement coercion recording, the specific driver returns the Value Not

Supported error when the user attempts to set the Record Value Coercions attribute to True.

The default value is False. When the user opens an instrument session through an IVI class driver or uses a

logical name to initialize a IVI specific driver, the user can override this value by specifying a value in the

IVI configuration store. The Initialize function allows the user to override both the default value and the

value that the user specifies in the IVI configuration store.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

Compliance Notes

1. The IVI specific driver shall accept False as a valid value for this attribute.

2. If an IVI specific driver implements True as a valid value for this attribute, then the specific driver

shall implement the Get Next Coercion Record function.

3. The IVI specific driver can impose a restriction on the number of coercion records that the specific

driver records in the list. If the specific driver imposes a restriction, the specific driver shall throw

away the oldest coercion record in the list when the specific driver attempts to record a new coercion

record and the list is full.

IVI-3.2: Inherent Capabilities Specification 52 IVI Foundation

5.26 Simulate

Data Type Access

ViBoolean R/W

.NET Property Name

DriverOperation.Simulate

COM Property Name

DriverOperation.Simulate

C Constant Name

PREFIX_ATTR_SIMULATE

Description

If True, the IVI specific driver simulates instrument driver I/O operations. If False, the IVI specific driver

communicates directly with the instrument.

If simulation is enabled, the specific driver functions do not perform instrument I/O. For output parameters
that represent instrument data, the specific driver functions return simulated values.

The default value is False. When the user opens an instrument session through an IVI class driver or uses a

logical name to initialize an IVI specific driver, the user can override this value by specifying a value in the

IVI configuration store. The Initialize function allows the user to override both the default value and the

value that the user specifies in the IVI configuration store.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

Compliance Notes

1. The IVI specific driver shall implement both the True and False values for this attribute.

2. When Simulate is set to True, the IVI specific driver may perform less rigorous range checking

operations than when Simulate is set to False.

3. If the IVI specific driver is initialized with Simulate set to True, the specific driver shall return the

Cannot Change Simulation State error if the user attempts to set Simulate to False prior to calling the

Close function.

IVI-3.2: Inherent Capabilities Specification 53 IVI Foundation

5.27 Specific Driver Class Spec Major Version (IVI-C Only)

Data Type Access

ViInt32 RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MAJOR_VERSION

Description

Returns the major version number of the class specification in accordance with which the IVI specific

driver was developed. The value is a positive integer value.

If the IVI specific driver is not compliant with a class specification, the specific driver returns zero as the

value of this attribute.

IVI-3.2: Inherent Capabilities Specification 54 IVI Foundation

5.28 Specific Driver Class Spec Minor Version (IVI-C Only)

Data Type Access

ViInt32 RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MINOR_VERSION

Description

Returns the minor version number of the class specification in accordance with which the IVI specific

driver was developed. The value is a non-negative integer value.

If the IVI specific driver is not compliant with a class specification, the specific driver returns zero as the

value of this attribute.

IVI-3.2: Inherent Capabilities Specification 55 IVI Foundation

5.29 Specific Driver Description (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_SPECIFIC_DRIVER_DESCRIPTION

Description

Returns a brief description of the IVI specific driver.

If the driver is compiled for use in 64-bit applications, the description shall include the following statement

at the end identifying it as 64-bit.

[Compiled for 64-bit.]

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

IVI-3.2: Inherent Capabilities Specification 56 IVI Foundation

5.30 Specific Driver Locator (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_SPECIFIC_DRIVER_LOCATOR

Description

Returns the location of the IVI specific driver software module. The user identifies the specific driver by

passing a logical name to the Initialize function of the class driver. The user configures the location of the

specific driver in the IVI configuration store.

If the class driver instantiates an underlying IVI-COM class-compliant specific driver, the value of this

property is the COM class ID (CLSID) of the underlying IVI-COM specific driver object that implements

the root class-compliant interface. The string returned always has exactly 36 characters, with a format of

'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX', where X is a valid hexadecimal digit.

If the class driver instantiates an underlying IVI-C class-compliant specific driver, the value of this

property is the full DLL pathname of underlying IVI-C specific driver that implements the root class-

compliant interface. The string returned in this case may be of arbitrary length.

If the underlying IVI-COM class-compliant specific driver does not implement a class-compliant interface

that is recognized by the IVI-C class driver, the IVI-C class driver returns an empty string for this attribute.

Refer to IVI-3.5: Configuration Server Specification for more information regarding the possible values of

this attribute.

Compliance Notes

1. IVI specific drivers shall not implement or export this attribute.

2. IVI-C class drivers shall set the value of this attribute.

IVI-3.2: Inherent Capabilities Specification 57 IVI Foundation

5.31 Specific Driver Prefix (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_SPECIFIC_DRIVER_PREFIX

Description

Returns the case-sensitive prefix of the user-callable functions that the IVI-C specific driver exports. For an

IVI-C specific driver, the name of each user-callable function in the specific driver begins with this prefix.

For example, if the Fluke 45 driver has a user-callable function named fl45_init, then fl45 is the prefix

for that driver.

The string that this attribute returns contains a maximum of 32 characters including the NULL character.

IVI-3.2: Inherent Capabilities Specification 58 IVI Foundation

5.32 Specific Driver Revision (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_SPECIFIC_DRIVER_REVISION

Description

Returns version information about the IVI specific driver. Refer to Section 3.1.2.2, Additional Compliance

Rules for Revision String Attributes, for additional rules regarding this attribute.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

IVI-3.2: Inherent Capabilities Specification 59 IVI Foundation

5.33 Specific Driver Vendor (IVI-C Only)

Data Type Access

ViString RO

.NET Property Name

N/A

COM Property Name

N/A

C Constant Name

PREFIX_ATTR_SPECIFIC_DRIVER_VENDOR

Description

Returns the name of the vendor that supplies the IVI specific driver.

The string that this attribute returns contains a maximum of 256 characters including the NULL character.

IVI-3.2: Inherent Capabilities Specification 60 IVI Foundation

5.34 Supported Instrument Models (IVI-C & IVI-COM Only)

Data Type Access

ViString RO

.NET Property Name

N/A

(See the Get Supported Instrument Models method.)

COM Property Name

Identity.SupportedInstrumentModels

C Constant Name

PREFIX_ATTR_SUPPORTED_INSTRUMENT_MODELS

Description

Returns a comma-separated list of names of instrument models with which the IVI specific driver is

compatible. The string has no white space except possibly embedded in the instrument model names. An

example of a string that this attribute might return is TKTDS3012,TKTDS3014,TKTDS3016.

It is not necessary for the string to include the abbreviation for the manufacturer if it is the same for all

models. In the example above, it is valid for the attribute to return the string

TDS3012,TDS3014,TDS3016.

The string that this attribute returns does not have a predefined maximum length.

IVI-3.2: Inherent Capabilities Specification 61 IVI Foundation

6. Inherent Method/Function Descriptions
This section gives a complete description of each inherent method/function.

6.1 Clear Error (IVI-C Only)

Description

This function clears the error code and error description for the current execution thread and for the IVI

session. If the user specifies a valid IVI session for the Vi parameter, this function clears the error

information for the session. If the user passes VI_NULL for the Vi parameter, this function clears the error

information for the current execution thread. If the Vi parameter is an invalid session, the function does

nothing and returns an error.

The function clears the error code by setting it to IVI_SUCCESS. If the error description string is non-

NULL, the function de-allocates the error description string and sets the address to VI_NULL.

Maintaining the error information separately for each thread is useful if the user does not have a session

handle to pass to the Prefix_GetError, Prefix_ClearError, or Prefix_error_message

function, which occurs when a call to Initialize fails.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC Prefix_ClearError (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. The user can pass

VI_NULL.

ViSession

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

IVI-3.2: Inherent Capabilities Specification 62 IVI Foundation

6.2 Clear Interchange Warnings (IVI-C & IVI-COM Only)

Description

This function clears the list of interchangeability warnings that the IVI specific driver maintains.

When this function is called on an IVI class driver session, the function clears the list of interchangeability

warnings that the class driver and the specific driver maintain.

Refer to the Interchange Check attribute for more information on interchangeability checking.

.NET Method Prototype

N/A.

(See the Interchange Check Warning Event.)

COM Method Prototype

HRESULT DriverOperation.ClearInterchangeWarnings();

C Function Prototype

ViStatus _VI_FUNC Prefix_ClearInterchangeWarnings (ViSession Vi);

Parameters

Inputs Description Datatype

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

Compliance Notes

1. If an IVI-COM specific driver does not accept True as a valid value for the Interchange Check

attribute, then the IVI-COM specific driver shall return the Function Not Supported error when the

user calls this function.

2. If an IVI-C specific driver does not accept True as a valid value for the Interchange Check attribute,

then the IVI-C specific driver shall not export this function.

IVI-3.2: Inherent Capabilities Specification 63 IVI Foundation

6.3 Close

Description

When the user finishes using an IVI driver session in IVI-C and IVI-COM, the user must call the Close

function. This function closes the I/O session to the instrument. This function may put the instrument into

an idle state before closing the I/O session.

When the user finishes using an IVI.NET driver, the user should call either the Close method or

IDisposable.Dispose. The IVI.NET Close method shall call IDisposable.Dispose and take no other action.

Note that this implies that the I/O connection is closed in IDisposable.Dispose rather than Close. In

addition, all IVI.NET drivers shall implement Object.Finalize, which shall call Dispose. Refer to Microsoft

documentation for IDisposable.Dispose for additional responsibilities and suggested implementation

patterns of IDisposable.Dispose.

For IVI-COM specific drivers, this function also does the following:

• Prevents the user from calling other functions in the driver that access the instrument until the user

calls the Initialize function again.

• May deallocate internal resources used by the IVI session.

For IVI-C specific drivers, this function also does the following:

• Destroys the IVI session and all its attributes.

• Deallocates any memory resources used by the IVI session.

.NET Method Prototype

void Close();

COM Method Prototype

HRESULT Close();

C Function Prototype

ViStatus _VI_FUNC Prefix_close (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

Compliance Notes

1. It is possible for a user to perform the following sequence of operations on an IVI specific driver:

• Call the Initialize function with Simulate set to False

IVI-3.2: Inherent Capabilities Specification 64 IVI Foundation

• Programmatically set Simulate to True

• Call the Close function with Simulate still set to True

If this sequence occurs, the IVI specific driver shall execute the Close function as if Simulate was set

to False.

IVI-3.2: Inherent Capabilities Specification 65 IVI Foundation

6.4 Disable

Description

The Disable operation places the instrument in a quiescent state as quickly as possible. In a quiescent state,

an instrument has no or minimal effect on the external system to which it is connected.

The Disable operation might be similar to the Reset operation in that it places the instrument in a known

state. However, the Disable operation does not perform the other operations that the Reset operation

performs such as configuring the instrument options on which the IVI specific driver depends. For some

instruments, the disable function may do nothing.

The IVI class specifications define the exact behavior of this function for each instrument class. Refer to

the IVI class specifications for more information on the behavior of this function.

.NET Method Prototype

void Utility.Disable();

COM Method Prototype

HRESULT Utility.Disable();

C Function Prototype

ViStatus _VI_FUNC Prefix_Disable (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI-3.2: Inherent Capabilities Specification 66 IVI Foundation

6.5 Error Message (IVI-C Only)

Description

Translates the error return value from an IVI driver function to a user-readable string. This function returns

the string that corresponds to the error code that the user passes in the ErrorCode parameter. The user can

call this function at any time, without relation to a particular error occurrence.

The Error Message function shall accept a value of VI_NULL for the Vi input parameter. This allows the

user to call the function even when Initialize fails.

When calling the Error Message function through a C interface, the user should pass a buffer with at least

256 bytes for the ErrorMessage parameter.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC Prefix_error_message (ViSession Vi,

ViStatus ErrorCode,

ViChar ErrorMessage[]);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

ErrorCode Instrument driver status code ViStatus

Outputs Description Data Type

ErrorMessage Instrument driver error message ViChar[]

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

Compliance Notes

1. IVI-C specific drivers shall not write more than 256 characters, including the NULL character, into the

ErrorMessage output parameter.

IVI-3.2: Inherent Capabilities Specification 67 IVI Foundation

6.6 Error Query

Description

Queries the instrument and returns instrument specific error information.

Generally, the user calls this function after another function in the IVI driver returns the Instrument Status

error. The IVI specific driver returns the Instrument Status error when the instrument indicates that it

encountered an error and its error queue is not empty. Error Query extracts an error out of the instrument’s

error queue.

For instruments that have status registers but no error queue, the IVI specific driver emulates an error queue

in software.

For IVI.NET, the method returns an object of type ErrorQueryResult, which is a struct that includes an

Int32 Code property and a String Message property that correspond to the IVI-COM and IVI-C ErrorCode

and ErrorMessage parameters, respectively.

When calling the Error Query function through a C interface, the user should pass a buffer with at least 256

bytes for the ErrorMessage parameter.

.NET Method Prototype

struct ErrorQueryResult

{

Int32 Code {get}

String Message {get}

}

ErrorQueryResult Utility.ErrorQuery();

COM Method Prototype

HRESULT Utility.ErrorQuery([in,out] long* ErrorCode,

[in,out] BSTR* ErrorMessage);

C Function Prototype

ViStatus _VI_FUNC Prefix_error_query (ViSession Vi,

ViInt32 * ErrorCode,

ViChar ErrorMessage[]);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Outputs Description Data Type

ErrorCode (C/COM) Instrument error code ViInt32

ErrorMessage(C/COM) Instrument error message ViChar[]

Return Value (.NET) A struct that includes the instrument error

code and error message.

ErrorQueryResult

IVI-3.2: Inherent Capabilities Specification 68 IVI Foundation

Return Values (C/COM)

The table below defines specific status codes that this function returns. Section 11, Common IVI-C and IVI-

COM Error and Completion Codes, defines general status codes that this function can return.

Name COM Identifier C Identifier

Error Query Not

Supported

S_IVI_NSUP_ERROR_QUERY IVI_WARN_NSUP_ERROR_QUERY

Unexpected Response E_IVI_UNEXPECTED_RESPONSE IVI_ERROR_UNEXPECTED_RESPONSE

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

The table below defines specific exceptions for this method.

Exception Description

Unexpected Response Unexpected response from instrument.

The table below defines specific warning events for this method.

Warning Description

Error Query Not Supported The instrument does not support an error query operation.

Compliance Notes

1. IVI-C specific drivers shall not write more than 256 characters, including the NULL character, into the

ErrorMessage output parameter.

2. The setting of the Query Instrument Status attribute shall have no effect on the operation of the Error

Query function.

IVI-3.2: Inherent Capabilities Specification 69 IVI Foundation

6.7 Get Attribute <type> (IVI-C Only)

 Get Attribute ViInt32
 Get Attribute ViInt64
 Get Attribute ViReal64
 Get Attribute ViBoolean
 Get Attribute ViSession

Description

Obtains the current value of an attribute. A separate typesafe function exists for each possible attribute data

type.

Notes:

1. A separate function description exists for Get Attribute ViString.

2. A specific driver may omit the ViInt64 function if the driver has no 64-bit attributes.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC Prefix_GetAttributeViInt32 (ViSession vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViInt32 *AttributeValue);

ViStatus _VI_FUNC Prefix_GetAttributeViInt64 (ViSession vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViInt64 *AttributeValue);

ViStatus _VI_FUNC Prefix_GetAttributeViReal64 (ViSession Vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViReal64 *AttributeValue);

ViStatus _VI_FUNC Prefix_GetAttributeViBoolean (ViSession Vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViBoolean *AttributeValue);

ViStatus _VI_FUNC Prefix_GetAttributeViSession (ViSession Vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViSession *AttributeValue);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

RepCapIdentifier If the attribute is applies to a repeated capability, the

user passes a physical or virtual repeated capability

identifier. Otherwise, the user passes VI_NULL or an

empty string.

ViConstString

AttributeID The ID of the attribute. ViAttr

IVI-3.2: Inherent Capabilities Specification 70 IVI Foundation

AttributeValue Returns the current value of the attribute. The user must

specify the address of a variable that has the same data

type as the attribute.

depends on the

data type of the

attribute

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

IVI-3.2: Inherent Capabilities Specification 71 IVI Foundation

6.8 Get Attribute ViString (IVI-C Only)

Description

Obtains the current value of a ViString attribute.

Refer to Section 3.1.2.1, Additional Compliance Rules for C Functions with ViChar Array Output

Parameters, for additional rules regarding this function.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC Prefix_GetAttributeViString (ViSession Vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViInt32 AttributeValueBufferSize,

ViChar AttributeValue[]);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

RepCapIdentifier If the attribute applies to a repeated capability, the user

passes a physical or virtual repeated capability

identifier. Otherwise, the user passes VI_NULL or an

empty string.

ViConstString

AttributeID The ID of the attribute. ViAttr

AttributeValueBu

fferSize

The number of bytes in the ViChar array that the user

specifies for the AttributeValue parameter.

ViInt32

Outputs Description Data Type

AttributeValue The buffer in which the function returns the current

value of the attribute. Can be VI_NULL if

AttributeValueBufferSize is 0.

ViChar[]

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

IVI-3.2: Inherent Capabilities Specification 72 IVI Foundation

6.9 Get Error (IVI-C Only)

Description

This function retrieves and then clears the IVI error information for the session or the current execution

thread.

If the user specifies a valid IVI session for the Vi parameter, Get Error retrieves and then clears the error

information for the session. If the user passes VI_NULL for the Vi parameter, Get Error retrieves and then

clears the error information for the current execution thread. If the Vi parameter is an invalid session, the

function does nothing and returns an error. Normally, the error information describes the first error that

occurred since the user last called the Get Error or Clear Error function.

One exception exists: If the ErrorDescriptionBufferSize parameter is zero, the function does not

clear the error information. By passing 0 for the buffer size, the caller can ascertain the buffer size required

to get the entire error description string and then call the function again with a sufficiently large buffer.

The precedence of errors and warnings is as follows:

• If there are no errors and no warnings, the IVI specific driver returns IVI_SUCCESS in the ErrorCode

parameter and empty string in the ErrorDescription parameter.

• If there are warnings and no errors, the IVI specific driver returns the information regarding the first

warning that it encountered.

• If there are errors, the IVI specific driver returns the information regarding the first error that it

encountered.

The function complies with the rules in Section 3.1.2.1, Additional Compliance Rules for C Functions with

ViChar Array Output Parameters.

Note: IVI-COM specific drivers do not have a Get Error function because the information that the Get

Error function returns is part of the COM error object.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC Prefix_GetError (ViSession Vi,

ViStatus *ErrorCode,

ViInt32 ErrorDescriptionBufferSize,

ViChar ErrorDescription[]);

IVI-3.2: Inherent Capabilities Specification 73 IVI Foundation

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. The user can pass

VI_NULL.

ViSession

ErrorDescription

BufferSize

The number of bytes in the ViChar array that the user

specifies for the ErrorDescription parameter.

ViInt32

Outputs Description Data Type

ErrorCode Returns the error code. Zero indicates that no error

occurred. A positive value indicates a warning. A

negative value indicates an error. The user can pass

VI_NULL if the user does not want to retrieve this value.

ViStatus

ErrorDescription Buffer into which the function copies the full formatted

error string. The string describes the error code and any

extra information regarding the error or warning

condition. The buffer shall contain at least as many

bytes as the user specifies in the

ErrorDescriptionBufferSize parameter. The user

can pass VI_NULL if the

ErrorDescriptionBufferSize parameter is zero.

ViChar[]

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

IVI-3.2: Inherent Capabilities Specification 74 IVI Foundation

6.10 Get Group Capabilities (IVI.NET Only)

Description

Returns a list of names of class capability groups that the IVI specific driver implements. The items in the

list are capability group names that the IVI class specifications define. The list is returned as an array of

strings.

If the IVI specific driver does not comply with an IVI class specification, the specific driver returns an

array with zero elements.

.NET Method Prototype

String[] Identity.GetGroupCapabilities();

COM Method Prototype

N/A

(See the Class Group Capabilities attribute.)

C Function Prototype

N/A

(See the Class Group Capabilities attribute.)

Parameters

Outputs Description Data Type

Return Value The list of class capability groups that the IVI specific

driver implements.

String[]

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI-3.2: Inherent Capabilities Specification 75 IVI Foundation

6.11 Get Next Coercion Record (IVI-C & IVI-COM Only)

Description

If the Record Value Coercions attribute is set to True, the IVI specific driver keeps a list of all value

coercions it makes on ViInt32 or ViReal64 attributes. This function obtains the coercion information

associated with the IVI session. It retrieves and clears the oldest instance in which the specific driver

coerced a value the user specified to another value.

The function returns an empty string in the CoercionRecord parameter if no coercion records remain for

the session.

The following rules apply to the C interface of the Get Next Coercion Record function:

• The function complies with the rules in Section 3.1.2.1, Additional Compliance Rules for C Functions

with ViChar Array Output Parameters.

• If the user passes 0 for the CoercionRecordBufferSize parameter, the function does not clear a

coercion record from the list.

The coercion record string shall contain the following information:

• The name of the attribute that was coerced. This can be the generic name, the COM property name, or

the C defined constant.

• If the attribute applies to a repeated capability, the name of the virtual or physical repeated capability

identifier.

• The value that the user specified for the attribute.

• The value to which the attribute was coerced.

A recommended format for the coercion record string is as follows:

"Attribute " + <attribute name> + [" on <repeated capability> " + <repeated capability

identifier>] + " was coerced from " + <desiredVal> + " to " + <coercedVal>.

And example coercion record string is as follows:

Attribute TKTDS500_ATTR_VERTICAL_RANGE on channel ch1 was coerced from 9.0

to 10.0.

IVI-3.2: Inherent Capabilities Specification 76 IVI Foundation

.NET Method Prototype

N/A.

(See the Coercion Record Event.)

COM Method Prototype

HRESULT DriverOperation.GetNextCoercionRecord([out, retval] BSTR*

CoercionRecord);

C Function Prototype

ViStatus _VI_FUNC Prefix_GetNextCoercionRecord (ViSession Vi,

ViInt32 CoercionRecordBufferSize,

ViChar CoercionRecord[]);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

CoercionRecordBu

fferSize

The number of bytes in the ViChar array that the user

specifies for the CoercionRecord parameter.

ViInt32

Outputs Description Data Type

CoercionRecord The buffer in which the function returns the oldest

coercion record. Can be VI_NULL if

CoercionRecordBufferSize is 0.

ViChar[]

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

Compliance Notes

1. If an IVI-COM specific driver does not accept True as a valid value for the Record Value Coercions

attribute, then the IVI-COM specific driver shall return the Function Not Supported error when the

user calls this function.

2. If an IVI-C specific driver does not accept True as a valid value for the Record Value Coercions

attribute, then the IVI-C specific driver shall not export this function.

IVI-3.2: Inherent Capabilities Specification 77 IVI Foundation

6.12 Get Next Interchange Warning (IVI-C & IVI-COM Only)

Description

If the Interchange Check attribute is set to True, the IVI specific driver keeps a list of all interchangeability

warnings that it encounters. This function returns the interchangeability warnings associated with the IVI

session. It retrieves and clears the oldest interchangeability warning from the list. Interchangeability

warnings indicate that using the application with a different instrument might cause different behavior.

When this function is called on an IVI class driver session, it may return interchangeability warnings

generated by the IVI class driver as well as interchangeability warnings generated by the IVI specific

driver. The IVI class driver determines the relative order in which the IVI class driver warnings are

returned in relation to the IVI specific driver warnings.

The function returns an empty string in the InterchangeWarning parameter if no interchangeability

warnings remain for the session.

The following rules apply to the C interface of the Get Next Interchange Warning function:

• The function complies with the rules in Section 3.1.2.1, Additional Compliance Rules for C Functions

with ViChar Array Output Parameters.

• If the user passes 0 for the InterchangeabilityWarningBufferSize parameter, the function does

not clear the oldest interchangeability warning from the list.

Refer to the Interchange Check attribute for more information on interchangeability checking.

.NET Method Prototype

N/A.

(See the Interchange Check Warning Event.)

COM Method Prototype

HRESULT DriverOperation.GetNextInterchangeWarning([out, retval] BSTR*

InterchangeWarning);

C Function Prototype

ViStatus _VI_FUNC Prefix_GetNextInterchangeWarning (ViSession Vi,

ViInt32 InterchangeWarningBufferSize,

ViChar InterchangeWarning[]);

IVI-3.2: Inherent Capabilities Specification 78 IVI Foundation

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

InterchangeWarni

ngBufferSize

The number of bytes in the ViChar array that the user

specifies for the InterchangeWarning parameter.

ViInt32

Outputs Description Data Type

InterchangeWarni

ng
The buffer in which the function returns the oldest

interchange warning. Can be VI_NULL if

InterchangeWarningBufferSize is 0.

ViChar[]

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

Compliance Notes

1. If an IVI-COM specific driver does not accept True as a valid value for the Interchange Check

attribute, then the IVI-COM specific driver shall return the Function Not Supported error when the

user calls this function.

2. If an IVI-C specific driver does not accept True as a valid value for the Interchange Check attribute,

then the IVI-C specific driver shall not export this function.

IVI-3.2: Inherent Capabilities Specification 79 IVI Foundation

6.13 Get Specific Driver C Handle (IVI-C Only)

Description

Returns a C session handle for the IVI specific driver that the IVI class driver is currently using. After the

user retrieves the C session handle from the from the class driver, the user can pass the handle as the IVI

session to the IVI-C specific driver. This enables the user to access the class driver for the portions of the

program that are interchangeable and then access instrument specific functions or attributes in the IVI-C

specific driver for the portions of the program that require instrument specific functionality.

If the class driver currently has a C session handle for the specific driver, the class driver returns that

handle.

If the class driver does not have a C session handle for the specific driver and the specific driver has an IVI-

C wrapper, the class driver attempts to open a C session through the C wrapper. If successful, the class

driver returns the C session handle that it obtains from the wrapper.

If the IVI specific driver cannot be accessed through a C interface, the IVI class driver returns zero as the

value of the handle.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC Prefix_GetSpecificDriverCHandle (ViSession Vi,

ViSession *SpecificDriverCHandle);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Outputs Description Data Type

SpecificDriverCH

andle
Returns the C session handle of the IVI-C specific driver

that the IVI class driver is currently using.

ViSession

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

Compliance Notes

1. IVI specific drivers shall not implement or export this function.

IVI-3.2: Inherent Capabilities Specification 80 IVI Foundation

6.14 Get Specific Driver IUnknown Pointer (IVI-C Only)

Description

Returns an IUnknown pointer for the IVI specific driver that the IVI class driver is currently using. After

the user retrieves the IUnknown pointer from the class driver, the user can use this value to access the IVI-

COM specific driver. This enables the user to access the class driver for the portions of the program that

are interchangeable and then access instrument specific functions or attributes in the IVI-COM specific

driver for the portions of the program that require instrument specific functionality.

If the class driver currently has an IUnknown pointer for the specific driver, the class driver returns that

pointer.

If the class driver does not have an IUnknown pointer for the specific driver and the specific driver has an

IVI-COM wrapper, the class driver attempts to create a COM object through the IVI-COM wrapper. If

successful, the class driver returns the IUnknown pointer that it obtains from the wrapper.

If the IVI specific driver cannot be accessed through a COM interface, the IVI class driver returns zero as

the value of the IUnknown pointer.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC Prefix_GetSpecificDriverIUnknownPtr (ViSession Vi,

IUnknown **SpecificDriverIUnknownPtr);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Outputs Description Data Type

SpecificDriverIU

nknownPtr

Returns the IUnknown pointer to the IVI specific driver

that the class driver is currently using.

IUnknown

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

Compliance Notes

1. IVI specific drivers shall not implement or export this function.

IVI-3.2: Inherent Capabilities Specification 81 IVI Foundation

6.15 Get Supported Instrument Models (IVI.NET Only)

Description

Returns a list of names of instrument models with which the IVI specific driver is compatible. The list is

returned as an array of strings. For example, this attribute might return the strings “TKTDS3012”,

“TKTDS3014”, and “TKTDS3016”.

It is not necessary for the string to include the abbreviation for the manufacturer if it is the same for all

models. In the example above, it is valid for the attribute to return the strings “TDS3012”, “TDS3014”,

and “TDS3016”.

.NET Method Prototype

String[] Identity.GetSupportedInstrumentModels();

COM Method Prototype

N/A

(See the Supported Instrument Models attribute.)

C Function Prototype

N/A

(See the Supported Instrument Models attribute.)

Parameters

Outputs Description Data Type

Return Value The list of supported instrument models with which the

IVI specific driver is compatible.

String[]

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI-3.2: Inherent Capabilities Specification 82 IVI Foundation

6.16 Initialize (IVI-C & IVI-COM Only)

Description

For IVI.NET, refer to section 8, IVI.NET Specific Driver Constructor, for details of driver initialization.

The user must call the Initialize function prior to calling other IVI driver functions that access the

instrument. When using an IVI-C specific driver, the user must call the Initialize function prior to calling

any other instrument driver functions. A few exceptions exist. The user can call the Error Message, Get

Error, and Clear Error functions and pass VI_NULL for the Vi parameter prior to calling the Initialize

function.

If simulation is disabled when the user calls the Initialize function, the function performs the following

actions:

• Opens and configures an I/O session to the instrument.

• If the user passes True for the IdQuery parameter, the function queries the instrument for its ID and

verifies that the IVI specific driver supports the particular instrument model. If the instrument cannot

return its ID, the specific driver returns the ID Query Not Supported warning.

• If the user passes True for the Reset parameter, the function places the instrument in a known state. In

an IEEE 488.2 instrument, the function sends the command string “*RST” to the instrument. If the

instrument cannot perform a reset, the IVI specific driver returns the Reset Not Supported warning.

• Configures instrument options on which the IVI specific driver depends. For example, a specific

driver might enable or disable headers or enable binary mode for waveform transfers.

• Performs the following operations in the given order:

• Disables the class extension capability groups that the IVI specific driver does not implement.

• If the class specification with which the IVI specific driver is compliant defines initial values for

attributes, this function sets the attributes to the values that the class specification defines.

• If the ResourceName parameter is a logical name, the IVI specific driver configures the initial

settings for the specific driver and instrument based on the configuration of the logical name in the

IVI configuration store.

• If the user accesses the IVI specific driver through its C interface, then the specific driver performs the

following additional operations.

• Creates a new IVI driver session.

• Returns a ViSession handle that identifies the session in subsequent calls to the IVI driver.

If simulation is enabled when the user calls the Initialize function, the function performs the following

actions:

• If the user passes True for the IdQuery parameter and the instrument cannot return its ID, the IVI

specific driver returns the ID Query Not Supported warning.

• If the user passes True for the Reset parameter and the instrument cannot perform a reset, the IVI

specific driver returns the Reset Not Supported warning.

• If the ResourceName parameter is a logical name, the IVI specific driver configures the initial settings

for the specific driver based on the configuration of the logical name in the IVI configuration store.

• If the user accesses the IVI specific driver through its C interface, then the specific driver performs the

following additional operations.

• Creates a new IVI driver session.

IVI-3.2: Inherent Capabilities Specification 83 IVI Foundation

• Returns a ViSession handle that identifies the session in subsequent calls to the IVI driver.

Some instrument driver operations require or take into account information from the IVI configuration

store. Examples of such information are virtual repeated capability name mappings and the value of certain

inherent attributes. An IVI driver shall retrieve all the information for a session from the IVI configuration

store during the Initialization function. The IVI driver shall not read any information from the IVI

configuration store for a session after the Initialization function completes. Refer to Section 3.2.3,

Instantiating the Right Configuration Store From Software Modules, of IVI-3.5: Configuration Server

Specification for details on how to correctly instantiate the configuration store.

The ResourceName parameter must contain either a logical name that is defined in the IVI configuration

store or an instrument specific string that identifies the I/O address of the instrument, such as a VISA

resource descriptor string. Refer to IVI-3.5: Configuration Server Specification for restrictions on the

format of IVI logical names. Refer to the VXIplug&play specifications for the grammar of VISA resource

descriptor strings. Valid values for the ResourceName parameter depend on how the user initializes the

session:

• After instantiating an IVI-COM specific driver through the IVI Factory, the user is expected to pass to

the Initialize function the same logical name that the user passed to the IVI Factory. If the user passes a

different logical name, the behavior of the driver is undefined.

• After instantiating an IVI-COM specific driver directly, the user can pass either a logical name or a

resource descriptor to the Initialize function.

• When using the Initialize function to open a session to an IVI-C class driver, the user must pass a

logical name.

• When using the Initialize function to open a session to an IVI-C specific driver, the user can pass either

a logical name or a resource descriptor.

The user can use the OptionsString parameter to specify the initial values of certain IVI inherent

attributes for the session. Table 6-1 lists the inherent attributes that the user can set through the

OptionsString parameter. The user does not have to specify all or any of the attributes in the options

string. If the user does not specify the initial value of an inherent attribute in the OptionsString

parameter, the initial value of the attribute depends on the value of the ResourceName parameter:

• If the ResourceName parameter contains an IVI logical name, the IVI specific driver configures the

initial settings based on the configuration of the logical name in the IVI configuration store.

• If the ResourceName parameter contains a resource descriptor string that identifies the I/O address of

the instrument, the IVI specific driver sets inherent attributes to their default initial values. Table 6-1

shows the default initial value for each attribute.

The following table lists the IVI inherent attributes that the user can set through the OptionsString

parameter, their default initial values, and the name that represents each attribute in the options string.

Table 6-1. IVI Inherent Attribute Initial Values and Options String Name

Attribute Default Initial Value Options String Name

Range Check True RangeCheck

Query Instrument Status False QueryInstrStatus

Cache True Cache

Simulate False Simulate

Record Value Coercions False RecordCoercions

Interchange Check False InterchangeCheck

Driver Setup "" an empty string DriverSetup

IVI-3.2: Inherent Capabilities Specification 84 IVI Foundation

The format of an assignment in the OptionsString parameter is "Name=Value", where Name is one of

the option string names in the table above. Initialize interprets the Name and Value fields in a case-

insensitive manner.

For the attributes of type ViBoolean, Value can be any of the following:

• To set the attribute to True, use VI_TRUE, True, or 1.

• To set the attribute to False, use VI_FALSE, False, or 0.

The user can set multiple attributes by separating assignments with commas. If the Options String

parameter contains an assignment for the Driver Setup attribute, the Initialize function assumes that

everything following “DriverSetup=” is part of the assignment. Therefore, the user is expected to place

the Driver Setup assignment at the end of the Options String parameter. The value that the user passes in

the Options String parameter for the Driver Setup attribute must contain only ASCII characters.

Each IVI specific driver defines it own meaning and valid values for the Driver Setup attribute. Many

specific drivers ignore the value of the Driver Setup attribute. Other specific drivers use the Driver Setup

string to configure instrument specific features at initialization. For example, if a specific driver supports a

family of instrument models, the driver can use the Driver Setup attribute to allow the user to specify a

particular instrument model to simulate.

The IVI specific driver ignores all white space in the OptionsString parameter outside the Driver Setup

string.

If the user attempts to initialize the instrument a second time without first calling the Close function, the

behavior of the Initialize function depends on whether the user accesses the instrument driver through a

COM or a C interface.

• If the user accesses the IVI driver through a COM interface and attempts to initialize the instrument a

second time without first calling the Close function, the Initialize function returns the Already

Initialized error.

• If the user accesses the IVI driver through a C interface and attempts to initialize the instrument a

second time without first calling the Close function, the Initialize function performs all operations that

this section defines and returns a new IVI session.

IVI-3.2: Inherent Capabilities Specification 85 IVI Foundation

.NET Method Prototype

N/A

(See section 8, IVI.NET Specific Driver Constructor for .NET initialization.)

COM Method Prototype

HRESULT Initialize([in] BSTR ResourceName,

[in] VARIANT_BOOL IdQuery,

[in] VARIANT_BOOL Reset,

[in,optional] BSTR OptionString);

C Function Prototype

ViStatus _VI_FUNC Prefix_InitWithOptions (ViRsrc ResourceName,

ViBoolean IdQuery,

ViBoolean Reset,

ViConstString OptionsString,

ViSession *Vi);

ViStatus _VI_FUNC Prefix_init (ViRsrc ResourceName,

ViBoolean IdQuery,

ViBoolean Reset,

ViSession *Vi);

Note: Prefix_init exists for compatibility with VXIplug&play. Calling Prefix_init is equivalent to

calling Prefix_InitWithOptions with VI_NULL or an empty string for the OptionsString parameter.

Parameters

Inputs Description Data Type

ResourceName An IVI logical name or an instrument specific string that

identifies the address of the instrument, such as a VISA

resource descriptor string.

ViRsrc

IdQuery Specifies whether to verify the ID of the instrument. ViBoolean

Reset Specifies whether to reset the instrument. ViBoolean

OptionsString A string that allows the user to specify the initial values of

certain inherent attributes.

ViConstStri

ng

Outputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

IVI-3.2: Inherent Capabilities Specification 86 IVI Foundation

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

Name COM Identifier C Identifier

ID Query Not Supported S_IVI_WARN_NSUP_ID_QUERY IVI_WARN_NSUP_ID_QUERY

Reset Not Supported S_IVI_WARN_NSUP_RESET IVI_WARN_NSUP_RESET

ID Query Failed E_IVI_ID_QUERY_FAILED IVI_ERROR_ID_QUERY_FAILED

Resource Unknown E_IVI_RESOURCE_UNKNOWN IVI_ERROR_RESOURCE_UNKNOWN

Missing Option Name E_IVI_MISSING_OPTION_NAME IVI_ERROR_MISSING_OPTION_NAME

Missing Option Value E_IVI_MISSING_OPTION_VALUE IVI_ERROR_MISSING_OPTION_VALUE

Bad Option Name E_IVI_BAD_OPTION_NAME IVI_ERROR_BAD_OPTION_NAME

Bad Option Value E_IVI_BAD_OPTION_VALUE IVI_ERROR_BAD_OPTION_VALUE

Compliance Notes

1. IVI class drivers shall accept only IVI logical names as valid values for the ResourceName parameter.

IVI-3.2: Inherent Capabilities Specification 87 IVI Foundation

6.17 Invalidate All Attributes

Description

This function invalidates the cached values of all attributes for the session.

.NET Method Prototype

void DriverOperation.InvalidateAllAttributes();

COM Method Prototype

HRESULT DriverOperation.InvalidateAllAttributes();

C Function Prototype

ViStatus _VI_FUNC Prefix_InvalidateAllAttributes (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that
this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

Compliance Notes

1. If the IVI specific driver does not implement state caching, this function shall perform no operations

and return Success.

IVI-3.2: Inherent Capabilities Specification 88 IVI Foundation

6.18 Lock Session

Description

For IVI-COM specific drivers, this function shall return the Function Not Supported error when the user

calls this function. Because of the way thread ownership inherently works in COM, a COM object cannot

reliably establish ownership of a lock by relying on the identity of the calling thread. Thus, it is impossible

to associate the lock with any single thread. Since this function is already included in the IviDriver.idl

and removing it from IviDriver.idl introduces new versioning and compatibility issues, the specified

behavior of this function was changed to return Function Not Supported instead of removing the function

from the driver implementation.

For IVI-C specific drivers, this function obtains a multithread lock on the instrument session. Before it does

so, Lock Session waits until all other execution threads have released their locks on the instrument session.

This capability is useful for developing programs that share the same session among multiple threads.

For IVI.NET specific drivers, this function obtains a multithread lock for this instance of the driver. Before

it does so, Lock Session waits until all other execution threads have released their locks or for the length of

time specified by the maximum time parameter, whichever come first. The type of lock obtained depends

upon the parameters passed to the specific driver constructor. See Section 8, IVI.NET Specific Driver

Constructor for details.

The user can use Lock Session with IVI-C or IVI.NET specific drivers to protect a section of code that

requires exclusive access to the instrument. This occurs when the user takes multiple actions that affect the

instrument and the user wants to ensure that other execution threads do not disturb the instrument state until

all the actions execute. For example, if the user sets various instrument attributes and then triggers a

measurement, the user must ensure no other execution thread modifies the attribute values until the user

finishes taking the measurement. For IVI-C drivers, the protection that this lock provides only applies to

this instance of the driver. Multiple instances of the driver will not be protected from simultaneously

accessing the instrument. For IVI.NET drivers, the scope of the lock is determined by the constructor

parameters used to instantiate the driver.

It is important to note that this lock is not related to I/O locks such as the VISA resource locking

mechanism.

With IVI-C and IVI.NET drivers, the user can safely make nested calls to Lock Session within the same

thread. To completely unlock the session, the user must balance each call to Lock Session with a call to

Unlock Session.

For IVI.NET, calls to Lock Session must always obtain the same lock that is used internally by the

IVI.NET driver to guard individual method calls.

The C function has an additional parameter, CallerHasLock. If the user uses the CallerHasLock

parameter in all calls to Lock Session and Unlock Session within a function, the session is locked only once

within the function regardless of the number of calls to Lock Session. This allows the user to call Unlock

Session just once at the end of the function.

The CallerHasLock parameter is useful in complex functions to keep track of whether the user has

obtained a lock and therefore needs to unlock the session. The user passes the address of a local variable for

the CallerHasLock parameter. The user initializes the local variable to False in the declaration of the

local variable. The user passes the address of the local variable to all other calls to Lock Session or Unlock

Session in the same function. Lock Session and Unlock Session each inspect the current value of

CallerHasLock and take the following actions:

• If the value is True, Lock Session does not lock the session again. If the value is False, Lock

Session obtains the lock and sets the value of the parameter to True.

IVI-3.2: Inherent Capabilities Specification 89 IVI Foundation

• If the value is False, Unlock Session does not attempt to unlock the session. If the value is True,

Unlock Session releases the lock and sets the value of the parameter to False.

If the user passes VI_NULL as the CallerHasLock parameter from the C interface of the IVI driver, the

driver ignores the CallerHasLock parameter.

.NET Method Prototype

IIviDriverLock Lock();

IIviDriverLock Lock(PrecisionTimeSpan maximumTime);

COM Method Prototype

HRESULT Utility.LockObject ();

C Function Prototype

ViStatus _VI_FUNC Prefix_LockSession (ViSession Vi, ViBoolean *CallerHasLock);

IVI-3.2: Inherent Capabilities Specification 90 IVI Foundation

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

maximumTime

(.NET)

Specifies the maximum length of time for the function to

wait to acquire the lock before failing.

PrecisionTime

Span

Input/Output Description Data Type

CallerHasLock

(C)

Indicates whether the calling function currently has a

lock on the IVI session.

ViBoolean

Defined Values for the MaximumTime Parameter (.NET)

Name Description

 Language Identifier

Zero The function returns immediately. If If the lock is not immediately available, the

function throws an exception.

 .NET PrecisionTimeSpan.Zero

MaxValue The function waits indefinitely to acquire the lock.

 .NET PrecisionTimeSpan.MaxValue

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

Note that the .NET MaxTimeExceededException is defined in IVI-3.2: Inherent Capabilities Specification.

IVI-3.2: Inherent Capabilities Specification 91 IVI Foundation

6.19 Reset

Description

This function performs the following actions:

• Places the instrument in a known state. In an IEEE 488.2 instrument, the Reset function sends the

command string "*RST" to the instrument.

• Configures instrument options on which the IVI specific driver depends. A specific driver might

enable or disable headers or enable binary mode for waveform transfers.

The user can either call the Reset function separately or specify that it be called from the Initialize function.

The Initialize function performs additional operations after performing the reset operation to place the

instrument in a state more suitable for interchangeable programming. To reset the device and perform

these additional operations, call the Reset With Defaults function instead of the Reset function.

.NET Method Prototype

void Utility.Reset();

COM Method Prototype

HRESULT Utility.Reset();

C Function Prototype

ViStatus _VI_FUNC Prefix_reset (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

The table below defines specific status codes that this function returns. Section 11, Common IVI-C and IVI-

COM Error and Completion Codes, defines general status codes that this function can return.

Name COM Identifier C Identifier

Reset Not Supported S_IVI_NSUP_RESET IVI_WARN_NSUP_RESET

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

The table below defines specific exceptions for this method.

Exception Description

Reset Not Supported The instrument does not support the reset operation.

IVI-3.2: Inherent Capabilities Specification 92 IVI Foundation

Compliance Notes

1. If an IVI specific driver performs interchangeability checking, the specific driver shall record an

interchangeability warning when the user calls the Reset function.

IVI-3.2: Inherent Capabilities Specification 93 IVI Foundation

6.20 Reset Interchange Check

Description

This function resets the interchangeability checking algorithms of the IVI specific driver so that specific

driver functions that execute prior to calling this function have no effect on whether future calls to the

specific driver generate interchangeability warnings.

When developing a complex test system that consists of multiple test modules, it is generally a good idea to

design the test modules so that they can run in any order. To do so requires ensuring that each test module

completely configures the state of each instrument it uses. If a particular test module does not completely

configure the state of an instrument, the state of the instrument depends on the configuration from a

previously executed test module. If the test modules execute in a different order, the behavior of the

instrument and therefore the entire test module is likely to change. This change in behavior is generally

instrument specific and represents an interchangeability problem.

Users can use this function to test for such cases. By calling this function at the beginning of a test module,

users can determine whether the test module has dependencies on the operation of previously executed test

modules. Any interchangeability warnings that occur after the user calls this function indicate that the

section of the test program that executes after this function and prior to the generation of the warning does

not completely configure the instrument and that the user is likely to experience different behavior if the

user changes the execution order of the test modules or if the user changes instruments.

Note: This function does not clear interchangeability warnings from the list of interchangeability warnings.

To guarantee that the Get Next Interchange Warning function returns interchangeability warnings that

occur only after the program calls function, the user must clear the list of interchangeability warnings by

calling the Clear Interchange Warnings function.

Refer to the Interchange Check attribute for more information on interchangeability checking.

.NET Method Prototype

void DriverOperation.ResetInterchangeCheck();

COM Method Prototype

HRESULT DriverOperation.ResetInterchangeCheck();

C Function Prototype

ViStatus _VI_FUNC Prefix_ResetInterchangeCheck (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI-3.2: Inherent Capabilities Specification 94 IVI Foundation

Compliance Notes

1. If an IVI-COM specific driver does not accept True as a valid value for the Interchange Check

attribute, then the IVI-COM specific driver shall return the Function Not Supported error when the

user calls this function.

2. If an IVI-C specific driver does not accept True as a valid value for the Interchange Check attribute,

then the IVI-C specific driver shall not export this function.

IVI-3.2: Inherent Capabilities Specification 95 IVI Foundation

6.21 Reset With Defaults

Description

The Reset With Defaults function performs the same operations that the Reset function performs and then

performs the following additional operations in the specified order:

• Disables the class extension capability groups that the IVI specific driver implements.

• If the class specification with which the IVI specific driver is compliant defines initial values for

attributes, this function sets those attributes to the initial values that the class specification defines.

• Configures the initial settings for the specific driver and instrument based on the information retrieved

from the IVI configuration store when the instrument driver session was initialized.

Notice that the Initialize function also performs these functions. To place the instrument and the IVI

specific driver in the exact same state that they attain when the user calls the Initialize function, the user

must first call the Close function and then the Initialize function.

.NET Method Prototype

void Utility.ResetWithDefaults ();

COM Method Prototype

HRESULT Utility.ResetWithDefaults ();

C Function Prototype

ViStatus _VI_FUNC Prefix_ResetWithDefaults (ViSession Vi);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Return Values (C/COM)

The table below defines specific status codes that this function returns. Section 11, Common IVI-C and IVI-

COM Error and Completion Codes, defines general status codes that this function can return.

Name COM Identifier C Identifier

Reset Not Supported S_IVI_NSUP_RESET IVI_WARN_NSUP_RESET

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

The table below defines specific exceptions for this method.

Exception Description

Reset Not Supported The instrument does not support the reset operation.

IVI-3.2: Inherent Capabilities Specification 96 IVI Foundation

6.22 Revision Query (IVI-C Only)

Description

Obtains the following information:

• The revision of the IVI specific driver

• The firmware revision of the instrument

When calling the Revision Query function through a C interface, the user should pass a buffer with at least

256 bytes for the DriverRev parameter.

When calling the Revision Query function through a C interface, the user should pass a buffer with at least

256 bytes for the InstrRev parameter.

.NET Method Prototype

N/A

(See the Component Revision and Instrument Firmware Revision attributes.)

COM Method Prototype

N/A

(See the Component Revision and Instrument Firmware Revision attributes.)

C Function Prototype

ViStatus _VI_FUNC Prefix_revision_query (ViSession Vi,

ViChar DriverRev[],

ViChar InstrRev[])

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Outputs Description Data Type

DriverRev Returns the revision of the IVI specific driver, which is the

value held in the Specific Driver Revision attribute. Refer

to the Specific Driver Revision attribute for more

information.

ViChar[]

InstrRev Returns the firmware revision of the instrument, which is
the value held in the Instrument Firmware Revision

attribute. Refer to the Instrument Firmware Revision

attribute for more information.

ViChar[]

Return Values (C)

The table below defines specific status codes that this function returns. Section 11, Common IVI-C and IVI-

COM Error and Completion Codes, defines general status codes that this function can return.

Name COM Identifier C Identifier

Revision Query Not S_IVI_NSUP_REV_QUERY IVI_WARN_NSUP_REV_QUERY

IVI-3.2: Inherent Capabilities Specification 97 IVI Foundation

Supported

Unexpected Response E_IVI_UNEXPECTED_RESPONSE IVI_ERROR_UNEXPECTED_RESPONSE

Compliance Notes

1. IVI-C specific drivers shall not write more than 256 characters, including the NULL character, into the

DriverRev output parameter.

2. IVI-C specific drivers shall not write more than 256 characters, including the NULL character, into the

InstrRev output parameter.

IVI-3.2: Inherent Capabilities Specification 98 IVI Foundation

6.23 Self Test

Description

Causes the instrument to perform a self test. Self Test waits for the instrument to complete the test. It then

queries the instrument for the results of the self test and returns the results to the user.

If the instrument passes the self test, this function returns zero in the TestResult parameter and “Self

test passed” in the TestMessage parameter.

For IVI.NET, the method returns an object of type SelfTestResult, which is a struct that includes an Int32

Code property and a String Message property that correspond to the IVI-COM and IVI-C TestResult and

TestMessage parameters, respectively.

When calling the Self Test function through a C interface, the user should pass a buffer with at least 256

bytes for the TestMessage parameter.

.NET Method Prototype

struct SelfTestResult

{

Int32 Code { get }

String Message { get }

}

SelfTestResult Utility.SelfTest();

COM Method Prototype

HRESULT Utility.SelfTest([in,out] long* TestResult,

[in,out] BSTR* TestMessage);

C Function Prototype

ViStatus _VI_FUNC Prefix_self_test(ViSession Vi,

ViInt16 * TestResult,

ViChar TestMessage[]);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Outputs Description Data Type

TestResult (C/COM) Returns the numeric result from the self test operation (0 =

no error, e.g. the test passed)

ViInt16

TestMessage (C/COM) Returns the self test status message. ViChar[]

Return Value (.NET) A struct that includes the numeric result from the self test

operation (0 = no error, e.g. the test passed) and self test

status message.

SelfTestResult

IVI-3.2: Inherent Capabilities Specification 99 IVI Foundation

Return Values (C/COM)

The table below defines specific status codes that this function returns. Section 11, Common IVI-C and IVI-

COM Error and Completion Codes, defines general status codes that this function can return.

Name COM Identifier C Identifier

Self Test Not Supported S_IVI_NSUP_SELF_TEST IVI_WARN_NSUP_SELF_TEST

Unexpected Response E_IVI_UNEXPECTED_RESPONSE IVI_ERROR_UNEXPECTED_RESPO

NSE

IVI-3.2: Inherent Capabilities Specification 100 IVI Foundation

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

The table below defines specific exceptions for this method.

Exception Description

Unexpected Response Unexpected response from instrument.

The table below defines specific warning events for this method.

Warning Description

Self Test Not Supported The instrument does not support a self test operation.

Compliance Notes

1. If the instrument does not return a self test status message, the IVI specific driver shall create and

return a message that corresponds to the numeric result that the specific driver returns in the

TestResult parameter.

2. IVI-C specific drivers shall not write more than 256 characters, including the NULL character, into the

TestMessage output parameter.

IVI-3.2: Inherent Capabilities Specification 101 IVI Foundation

6.24 Set Attribute <type> (IVI-C Only)

 Set Attribute ViInt32
 Set Attribute ViInt64
 Set Attribute ViReal64
 Set Attribute ViString
 Set Attribute ViBoolean
 Set Attribute ViSession

Description

Sets an attribute to a value. A separate typesafe function exists for each possible attribute data type.

Note: A specific driver may omit the ViInt64 function if the driver has no 64-bit attributes.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC Prefix_SetAttributeViInt32 (ViSession Vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViInt32 AttributeValue);

ViStatus _VI_FUNC Prefix_SetAttributeViInt64 (ViSession Vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViInt64 AttributeValue);

ViStatus _VI_FUNC Prefix_SetAttributeViReal64 (ViSession Vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViReal64 AttributeValue);

ViStatus _VI_FUNC Prefix_SetAttributeViBoolean (ViSession Vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViBoolean AttributeValue);

ViStatus _VI_FUNC Prefix_SetAttributeViString (ViSession Vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViConstString AttributeValue);

ViStatus _VI_FUNC Prefix_SetAttributeViSession (ViSession Vi,

ViConstString RepCapIdentifier,

ViAttr AttributeID,

ViSession AttributeValue);

IVI-3.2: Inherent Capabilities Specification 102 IVI Foundation

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

RepCapIdentifier If the attribute applies to a repeated capability, the user

passes a virtual or physical repeated capability

identifier.

ViConstString

AttributeID The ID of the attribute. ViAttr

AttributeValue The value to which to set the attribute. depends on the

data type of the

attribute

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

IVI-3.2: Inherent Capabilities Specification 103 IVI Foundation

6.25 Unlock Session

Description

For IVI-COM specific drivers, this function shall return the Function Not Supported error when the user

calls this function.

For IVI-C and IVI.NET specific drivers, this function releases a lock that the Lock Session function

acquires. Refer to Lock Session for additional information on IVI session locks.

.NET Method Prototype

void IIviDriverLock.Unlock();

COM Method Prototype

HRESULT Utlity.UnlockObject ();

C Function Prototype

ViStatus _VI_FUNC Prefix_UnlockSession (ViSession Vi, ViBoolean

*CallerHasLock);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Input/Output Description Data Type

CallerHasLock

(C)

Indicates if the calling function currently has a lock on

the IVI session. Refer to function description for Lock

Session for more information.

ViBoolean

Return Values (C/COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI-3.2: Inherent Capabilities Specification 104 IVI Foundation

7. Specific Driver Wrapper Functions
This section defines additional IVI inherent capabilities that IVI-COM and IVI-C specific driver wrappers

are required to implement. An IVI specific driver wrapper works with a particular IVI specific driver. An

IVI specific driver wrapper provides an interface type that is different from the native interface type of the

specific driver. For example, if the native interface type of a specific driver is COM, the specific driver

developer can create a wrapper that gives the specific driver a C interface, or vice versa. Wrappers allow

specific driver developers to place the majority of the instrument control code in the native driver using one

interface type and then build a relatively small wrapper that presents another type of IVI driver interface.

The specific driver developer can choose whether the native driver interface is COM or C and then provide

a wrapper that presents the alternate interface, C or COM.

The additional capabilities that this section defines are not intended for users and are typically used only by

IVI class drivers. Therefore, the additional functions in the C wrappers for IVI-COM drivers should not

appear in the function panel file or help information for the specific driver wrapper.

When used in conjunction with an IVI class driver, IVI specific drivers that have wrappers with the

additional capabilities that this section defines enable the following scenarios:

• A user calling an IVI class driver through a C interface can call the underlying IVI specific driver

through a C interface regardless of whether the C interface is the native interface of the specific

driver and regardless of whether the class driver calls the specific driver’s COM interface or C

interface.

• A user calling an IVI class driver through a COM interface can call the underlying IVI specific

driver through a COM interface regardless of whether the COM interface is the native interface of

the specific driver and regardless of whether the class driver calls the specific driver’s COM

interface or C interface.

This section defines a property and a method for COM wrappers and two functions for C wrappers that

enable these two scenarios.

C wrappers for IVI-COM specific drivers export the following functions:

• Prefix_GetNativeIUnknownPtr

• Prefix_AttachToExistingCOMSession

COM wrappers for IVI-C specific drivers export the following property and method:

• NativeCHandle

• AttachToExistingCSession

IVI-3.2: Inherent Capabilities Specification 105 IVI Foundation

7.1 C Wrappers for IVI-COM Specific Drivers

This section defines additional functions that C wrappers for IVI-COM specific drivers are required to

export.

7.1.1 Get Native IUnknown Pointer (IVI-C Only)

This function returns the IUnknown interface pointer that the C wrapper is currently using to communicate

with an IVI-COM specific driver.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC Prefix_GetNativeIUnknownPtr (ViSession Vi,

IUnknown **NativeIUnknownPtr);

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. ViSession

Outputs Description Data Type

NativeIUnknownPt

r

The IUnknown interface pointer that the C wrapper is

currently using to communicate with an IVI-COM

specific driver.

IUnknown *

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

Compliance Notes

1. Only C wrappers for native IVI-COM specific drivers export this function.

IVI-3.2: Inherent Capabilities Specification 106 IVI Foundation

7.1.2 Attach To Existing COM Session (IVI-C Only)

Description

This function creates and returns a C wrapper session that can be used to communicate with an existing

IVI-COM specific driver session.

.NET Method Prototype

N/A

COM Method Prototype

N/A

C Function Prototype

ViStatus _VI_FUNC Prefix_AttachToExistingCOMSession (IUnknown

*ExistingIUnknownPtr,

ViSession *Vi);

ViStatus _VI_FUNC Prefix_AttachToExistingServiceProvider (

 size_t ExistingIUnknownPtr,

 ViSession *Vi);

Parameters

Inputs Description Data Type

ExistingIUnknown

Ptr

The IUnknown pointer that corresponds to an existing

IVI-COM specific driver session.

IUnknown *

Outputs Description Data Type

Vi The C wrapper session that can be used to communicate

with an existing IVI-COM specific driver session.

ViSession

Return Values (C)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

Compliance Notes

1. Only C wrappers for native IVI-COM specific drivers export this function.

IVI-3.2: Inherent Capabilities Specification 107 IVI Foundation

7.2 IVI-COM and IVI.NET Wrappers for IVI-C Specific Drivers

This section defines an additional interface that IVI-COM and IVI.NET wrappers for IVI-C specific drivers

are required to implement. The name of the additional interface is IIviClassWrapper. The

IIviClassWrapper interface is reachable only through QueryInterface (IVI-COM) or

GetServiceProvider (.NET) and contains a property named NativeCHandle and a method named

AttachToExistingCSession.

The following table lists the COM GUID for the IIviClassWrapper interface.

Interface GUID

IIviClassWrapper {47ed518a-a398-11d4-ba58-000064657374}

The following table shows the property and method of the IIviClassWrapper interface. The Generic Name

column lists the generic name for the property and method. The Type column uses a “P” or an “M” to

specify whether the item is a property or method.

COM Interface Hierarchy Generic Name Type

AttachToExistingCSession Attach To Existing C Session M

NativeCHandle Native C Handle P

7.2.1 Native C Handle (IVI-COM Only)

Data Type Access

ViSession RO

.NET Property Name

NativeCHandle

COM Property Name

NativeCHandle

C Constant Name

N/A

Description

This property returns the IVI-C session handle that the IVI-COM or IVI.NET wrapper is currently using to

communicate with an IVI-C specific driver.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be

thrown, and warning events that may be raised, by this property.

Compliance Notes

1. Only IVI-COM and IVI.NET wrappers for native IVI-C specific drivers export this property.

IVI-3.2: Inherent Capabilities Specification 108 IVI Foundation

7.2.2 Attach To Existing C Session (IVI-COM Only)

Description

This method binds an IVI-COM or IVI.NET wrapper object to an existing IVI-C specific driver session.

.NET Method Prototype

void AttachToExistingCSession (Int32 Vi);

COM Method Prototype

HRESULT AttachToExistingCSession ([in] long Vi);

C Function Prototype

N/A

Parameters

Inputs Description Data Type

Vi Unique identifier for an IVI session. long

Return Values (COM)

Section 11, Common IVI-C and IVI-COM Error and Completion Codes, defines general status codes that

this function can return.

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

Compliance Notes

1. Only IVI-COM and IVI.NET wrappers for native IVI-C specific drivers export this method.

IVI-3.2: Inherent Capabilities Specification 109 IVI Foundation

8. IVI.NET Specific Driver Constructor
This section gives a complete description of the IVI.NET specific driver constructor.

Description

IVI.NET drivers do not have an Initialize method. Instead, IVI.NET drivers are initialized in the

constructor for the main driver class of the driver.

The driver constructor performs the following actions:

• Opens and configures an I/O session to the instrument.

• If the user passes True for the idQuery parameter, the function queries the instrument for its ID and

verifies that the IVI specific driver supports the particular instrument model. If it is not possible to

query the instrument for its identity, the driver ignores the parameter.

• If the user passes True for the reset parameter, the function places the instrument in a known state. In

an IEEE 488.2 instrument, the function sends the command string “*RST” to the instrument. If the

instrument cannot perform a reset, the IVI specific driver throws the Reset Not Supported exception.

• Configures instrument options on which the IVI specific driver depends. For example, a specific

driver might enable or disable headers or enable binary mode for waveform transfers.

• Performs the following operations in the given order:

1. Disables the class extension capability groups that the IVI specific driver does not implement.

2. If the class specification(s) with which the IVI specific driver is compliant defines initial values

for attributes, this function sets the attributes to the values that the class specification defines.

3. If the resourceName parameter is a logical name, the IVI specific driver configures the initial

settings for the specific driver and instrument based on the configuration of the logical name in the

IVI configuration store.

If simulation is enabled in the configuration store or by the driverSetup parameter, the constructor performs

the following actions:

• If the user passes True for the idQuery parameter and the instrument cannot return its ID, the IVI

specific driver returns without taking any action.

• If the user passes True for the reset parameter and the instrument cannot perform a reset, the IVI

specific driver throws the Reset Not Supported exception.

• If the resourceName parameter is a logical name, the IVI specific driver configures the initial settings

for the specific driver based on the configuration of the logical name in the IVI configuration store.

Some instrument driver operations require or take into account information from the IVI configuration

store. Examples of such information are virtual repeated capability name mappings and the value of certain

inherent attributes. An IVI.NET driver constructor shall retrieve all the information for a session from the

IVI configuration store. The IVI driver shall not read any information from the IVI configuration store for a

session after the constructor completes. Refer to Section 3.2.3, Instantiating the Right Configuration Store

From Software Modules, of IVI-3.5: Configuration Server Specification for details on how to correctly

instantiate the configuration store.

The resourceName parameter must contain either a logical name that is defined in the IVI configuration

store or an instrument specific string that identifies the I/O address of the instrument, such as a VISA

resource descriptor string. Refer to IVI-3.5: Configuration Server Specification for restrictions on the

format of IVI logical names. Refer to the VXIplug&play specifications for the grammar of VISA resource

descriptor strings.

IVI-3.2: Inherent Capabilities Specification 110 IVI Foundation

The user can use the options parameter to specify the initial values of certain IVI inherent attributes for

the session. Table 6-1 lists the inherent attributes that the user can set through the options parameter. The

user does not have to specify all or any of the attributes in the options string. If the user does not specify the

initial value of an inherent attribute in the options parameter, the initial value of the attribute depends on

the value of the ResourceName parameter:

• If the resourceName parameter contains an IVI logical name, the IVI specific driver configures the

initial settings based on the configuration of the logical name in the IVI configuration store.

• If the resourceName parameter contains a resource descriptor string that identifies the I/O address of

the instrument, the IVI specific driver sets inherent attributes to their default initial values. Table 6-1

shows the default initial value for each attribute.

The following table lists the IVI inherent attributes that the user can set through the options parameter,

their default initial values, and the name that represents each attribute in the options string.

Table 8-1. IVI Inherent Attribute Initial Values and Option Name

Attribute Default Initial Value Option Name

Range Check True RangeCheck

Query Instrument Status False QueryInstrStatus

Cache True Cache

Simulate False Simulate

Record Value Coercions False RecordCoercions

Interchange Check False InterchangeCheck

Driver Setup "" an empty string DriverSetup

The format of an assignment in the options parameter is "Name=Value", where Name is one of the option

names in the table above. Initialize interprets the Name and Value fields in a case-insensitive manner.

For the attributes of type Boolean, Value can be any of the following:

• To set the attribute to True, use VI_TRUE, True, or 1.

• To set the attribute to False, use VI_FALSE, False, or 0.

The user can set multiple attributes by separating assignments with commas. If the Options parameter

contains an assignment for the Driver Setup attribute, the Initialize function assumes that everything

following “DriverSetup=” is part of the assignment. Therefore, the user is expected to place the Driver

Setup assignment at the end of the options parameter. The value that the user passes in the options

parameter for the Driver Setup attribute must contain only ASCII characters.

Each IVI specific driver defines it own meaning and valid values for the Driver Setup attribute. Many

specific drivers ignore the value of the Driver Setup attribute. Other specific drivers use the Driver Setup

string to configure instrument specific features at initialization. For example, if a specific driver supports a

family of instrument models, the driver can use the Driver Setup attribute to allow the user to specify a

particular instrument model to simulate.

Note that the constructor shall not raise warning events, including interchange check and coercion warning

events, in the constructor.

The IVI specific driver ignores all white space in the options parameter outside the Driver Setup string.

IVI-3.2: Inherent Capabilities Specification 111 IVI Foundation

.NET Constructor Prototypes

The IVI.NET specific driver shall implement two constructors with the following prototypes.

<DriverClassName> (String resourceName,

Boolean idQuery,

Boolean reset,

String options);

<DriverClassName> (String resourceName,

Boolean idQuery,

Boolean reset);

If the IVI.NET specific driver supports machine-wide multithread locking or AppDomain-wide locking

across multiple driver instances, the specific driver shall also implement the following prototype.

<DriverClassName> (String resourceName,

Boolean idQuery,

Boolean reset,

LockType lockType,

String accessKey,

String options);

IVI.NET specific drivers may implement additional constructors. Any additional instrument specific

constructors must include the resourceName parameter as the first parameter to the constructor.

Parameters

Inputs Description Data Type

resourceName An IVI logical name or an instrument specific string that

identifies the address of the instrument, such as a VISA

resource descriptor string.

String

idQuery Specifies whether to verify the ID of the instrument. Boolean

reset Specifies whether to reset the instrument. Boolean

lockType Specifies whether to use AppDomain-wide locking or

machine-wide locking. Table 6.2 below explains how the

value specified here is used in conjunction with the

accessKey parameter to determine the kind of

multithreaded lock to use for the driver instance. Refer to

Section 4.3.11, Multithread Safety, of IVI-3.1: Driver

Architecture Specification for a complete description of

IVI.NET driver locking.

Ivi.Driver.

LockType

accessKey Specifies a user-selectable access key to identify the lock.

Driver instances that are created with the same accessKey

will be protected from simultaneous access by multiple

threads within an AppDomain or across AppDomains,

depending upon the value of the lockType parameter.

Table 6.2 below explains how the accessKey is used in

conjunction with the lockType parameter to determine the

kind of multithreaded lock to use for the driver instance.

Refer to Section 4.3.11, Multithread Safety, of IVI-3.1:

Driver Architecture Specification for a complete

description of IVI.NET driver locking.

String

IVI-3.2: Inherent Capabilities Specification 112 IVI Foundation

options A string that allows the user to specify the initial values of

certain inherent attributes.

String

It is possible that different client applications or different threads within an application may attempt to

create instances of IVI.NET drivers with locking requirements that conflict with other instances of the

driver. These conflicts occur if the driver is instantiated with the same value for the accessKey parameter

but different values for the lockType parameter. Table 6-2 below explains how IVI.NET drivers are

required to resolve these conflicts. In all cases, the resulting lock type must not change over the lifetime of

the driver instance.

Table 8-2. Required Lock Type Behavior for Drivers With the Same Access Key

Requested Lock Type Existing Lock Type Resulting Lock Type

AppDomain AppDomain AppDomain

Machine Machine Machine

AppDomain Machine Machine

Machine AppDomain Error

Driver throws

InvalidOperationException.

As the table shows, there are two cases in which a conflict occurs. If a driver requests an AppDomain-wide

lock and a machine-wide lock has already been created by a different instance of the IVI.NET driver (with

the same access key), then the IVI.NET driver shall "promote" the lock requested by the client and create a

machine-wide lock instead of the requested AppDomain-wide lock. This ensures that the degree of locking

established by existing driver instances is honored.

The second conflict occurs if a machine-wide lock is requested by the client but another instance of the

same IVI.NET driver (with the same access key) has already been created with an AppDomain-wide lock.

Since the type of lock used by an IVI.NET driver cannot change over the lifetime of the driver instance,

there is no way to "promote" the lock type of the existing driver instance and, thus no way to comply with

the new instance's requested degree of locking. Consequently, the constructor of the newly created instance

must throw an InvalidOperationException.

Defined Values

Name Description

 Language Identifier

AppDomain The lock is AppDomain-wide.

 .NET LockType.AppDomain

Machine The lock is machine-wide.

 .NET LockType.Machine

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

The table below defines specific exceptions for this constructor.

IVI-3.2: Inherent Capabilities Specification 113 IVI Foundation

Exception Description

Bad Option Name An option name in the option string is unknown.

Bad Option Value An value in the option string is invalid.

ID Query Failed Instrument ID query failed.

Missing Option Name The option string is missing an option name.

Missing Option Value The option string is missing an option value.

Reset Failed Instrument reset failed.

Reset Not Supported The instrument does not support the reset operation.

Resource Unknown Unknown resource.

IVI-3.2: Inherent Capabilities Specification 114 IVI Foundation

9. IVI.NET Event Descriptions
This section gives a complete description of each IVI.NET inherent event.

9.1 IVI.NET Events

IVI.NET defines the following events in support of the inherent capabilities

• Coercion Record Event (IVI.NET Only).

• Interchange Check Warning Event (IVI.NET Only).

• Driver Warning Event (IVI.NET Only).

IVI-3.2: Inherent Capabilities Specification 115 IVI Foundation

9.1.1 Coercion Record Event (IVI.NET Only)

Description

This event is fired whenever the driver creates a coercion record. Clients who have registered as listeners

will receive the event.

The Text property of the CoercionEventArgs shall contain the following information:

• The name of the property that was coerced. This can be the generic name or the .NET property name.

• If the property applies to a repeated capability, the name of the virtual or physical repeated capability

identifier.

• The value that the user specified for the property.

• The value to which the property was coerced.

A recommended format for the Text property of the CoercionEventArgs is as follows:

"Property " + <property name> + [" on <repeated capability> " + <repeated capability

identifier>] + " was coerced from " + <desiredVal> + " to " + <coercedVal>.

And example Text property of the CoercionEventArgs is as follows:

Property VerticalRange on channel ch1 was coerced from 9.0 to 10.0.

.NET Event Prototype

 class CoercionEventArgs : EventArgs

 {

 String Text { get }

 }

event EventHandler<CoercionEventArgs> Coercion;

C & COM Prototypes

N/A

(See the Record Value Coercions property/attribute and the Get Next Coercion Record method/function.)

Event Arguments

(The name of the event arguments type for this event is CoercionEventArgs.)

Member Description Data Type

Text The text of a coercion record.. String

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, when the event handler is registered.

If the driver does not support Coercion events, the driver throws an Operation Not Supported exception

when the client tries to register to receive Coercion events.

IVI-3.2: Inherent Capabilities Specification 116 IVI Foundation

9.1.2 Interchange Check Warning Event (IVI.NET Only)

Description

This event is fired whenever the driver creates an interchange check warning. Clients who have registered

as listeners will receive the event.

.NET Event Prototype

 class InterchangeCheckWarningEventArgs : EventArgs

 {

 String Text { get }

 }

event EventHandler<InterchangeCheckWarningEventArgs> InterchangeCheckWarning;

C & COM Prototypes

N/A

See the Interchange Check property/attribute, the Get Next Interchange Warning method/function, and the

Clear Interchange Warnings method/function.

Event Arguments

The name of the event arguments type for this event is InterchangeCheckWarningEventArgs.

Member Description Data Type

Text The text of an interchange check warning. String

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown,

and warning events that may be raised, when the event handler is registered.

If the driver does not support Interchange events, the driver throws an Operation Not Supported exception

when the client tries to register to receive Interchange events.

IVI-3.2: Inherent Capabilities Specification 117 IVI Foundation

9.1.3 Driver Warning Event (IVI.NET Only)

Description

This event is fired whenever the driver creates a driver warning. Clients who have registered as listeners

will receive the event.

.NET Event Prototype

 class WarningEventArgs : EventArgs

 {

 Guid Code { get }

 String Text { get }

 }

event EventHandler<WarningEventArgs> Warning;

C & COM Prototypes

N/A

In IVI-C and IVI-COM, warnings are returned as positive return values.

Event Arguments

The name of the event arguments type for this event is WarningEventArgs.

Member Description Data Type

Code A GUID that uniquely identifies the warning. Guid

Text The text of a driver warning. String

.NET Exceptions

Section 12, Common IVI.NET Exceptions and Warnings, defines general exceptions that may be thrown

when the event handler is registered.

If the driver does not support Warning events, the driver throws an Operation Not Supported exception

when the client tries to register to receive Warning events.

IVI-3.2: Inherent Capabilities Specification 118 IVI Foundation

10. IVI Inherent Attribute ID Definitions
This section defines the ID values that IVI-C class drivers and IVI-C specific drivers use for IVI inherent

attributes.

Refer to IVI-3.1: Driver Architecture Specification for a complete list of the ranges of values that IVI-C

drivers use for attribute IDs.

Section 8.1 lists the attribute IDs for the IVI inherent attributes that this specification defines. Sections 8.2,

8.3, and 8.4 list certain values within the IVI_INHERENT_ATTR_BASE range that are reserved to retain

compatibility with drivers developed before this specification was completed.

10.1 Inherent Attribute ID Values

The following table defines the ID values for the IVI Inherent attributes.

Attribute Name ID Value

PREFIX_ATTR_RANGE_CHECK IVI_INHERENT_ATTR_BASE + 2

PREFIX_ATTR_QUERY_INSTRUMENT_STATUS IVI_INHERENT_ATTR_BASE + 3

PREFIX_ATTR_CACHE IVI_INHERENT_ATTR_BASE + 4

PREFIX_ATTR_SIMULATE IVI_INHERENT_ATTR_BASE + 5

PREFIX_ATTR_RECORD_COERCIONS IVI_INHERENT_ATTR_BASE + 6

PREFIX_ATTR_DRIVER_SETUP IVI_INHERENT_ATTR_BASE + 7

PREFIX_ATTR_INTERCHANGE_CHECK IVI_INHERENT_ATTR_BASE + 21

PREFIX_ATTR_CLASS_DRIVER_PREFIX IVI_INHERENT_ATTR_BASE + 301

PREFIX_ATTR_SPECIFIC_DRIVER_PREFIX IVI_INHERENT_ATTR_BASE + 302

PREFIX_ATTR_SPECIFIC_DRIVER_LOCATOR IVI_INHERENT_ATTR_BASE + 303

PREFIX_ATTR_IO_RESOURCE_DESCRIPTOR IVI_INHERENT_ATTR_BASE + 304

PREFIX_ATTR_LOGICAL_NAME IVI_INHERENT_ATTR_BASE + 305

PREFIX_ATTR_SUPPORTED_INSTRUMENT_MODELS IVI_INHERENT_ATTR_BASE + 327

PREFIX_ATTR_GROUP_CAPABILITIES IVI_INHERENT_ATTR_BASE + 401

PREFIX_ATTR_INSTRUMENT_FIRMWARE_REVISION IVI_INHERENT_ATTR_BASE + 510

PREFIX_ATTR_INSTRUMENT_MANUFACTURER IVI_INHERENT_ATTR_BASE + 511

PREFIX_ATTR_INSTRUMENT_MODEL IVI_INHERENT_ATTR_BASE + 512

PREFIX_ATTR_SPECIFIC_DRIVER_VENDOR IVI_INHERENT_ATTR_BASE + 513

PREFIX_ATTR_SPECIFIC_DRIVER_DESCRIPTION IVI_INHERENT_ATTR_BASE + 514

PREFIX_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MAJOR_VE

RSION

IVI_INHERENT_ATTR_BASE + 515

PREFIX_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MINOR_VE

RSION

IVI_INHERENT_ATTR_BASE + 516

PREFIX_ATTR_CLASS_DRIVER_VENDOR IVI_INHERENT_ATTR_BASE + 517

PREFIX_ATTR_CLASS_DRIVER_DESCRIPTION IVI_INHERENT_ATTR_BASE + 518

PREFIX_ATTR_CLASS_DRIVER_CLASS_SPEC_MAJOR_VERSI

ON

IVI_INHERENT_ATTR_BASE + 519

PREFIX_ATTR_CLASS_DRIVER_CLASS_SPEC_MINOR_VERSI

ON

IVI_INHERENT_ATTR_BASE + 520

PREFIX_ATTR_SPECIFIC_DRIVER_REVISION IVI_INHERENT_ATTR_BASE + 551

IVI-3.2: Inherent Capabilities Specification 119 IVI Foundation

Attribute Name ID Value

PREFIX_ATTR_CLASS_DRIVER_REVISION IVI_INHERENT_ATTR_BASE + 552

10.2 Reserved Vendor Specific Inherent Extension Attribute ID Values and
Constants

The following attribute ID values and C defined constants are reserved for vendor specific inherent

attribute extensions. An IVI-C class driver or IVI-C specific driver may export an attribute with one of

these ID values only if the driver uses the corresponding C defined constant for the attribute. For vendor

specific inherent attribute extensions with C defined constant names that are not listed below, the driver

shall use ID values in the range starting at IVI_VENDOR_INHERENT_EXT_ATTR_BASE.

Attribute Name ID Value

IVI_ATTR_NONE -1

IVI_ATTR_ALL IVI_INHERENT_ATTR_BASE + 1

IVI_ATTR_SPY IVI_INHERENT_ATTR_BASE + 22

IVI_ATTR_USE_SPECIFIC_SIMULATION IVI_INHERENT_ATTR_BASE + 23

IVI_ATTR_DEFER_UPDATE IVI_INHERENT_ATTR_BASE + 51

IVI_ATTR_RETURN_DEFERRED_VALUES IVI_INHERENT_ATTR_BASE + 52

IVI_ATTR_PRIMARY_ERROR IVI_INHERENT_ATTR_BASE + 101

IVI_ATTR_SECONDARY_ERROR IVI_INHERENT_ATTR_BASE + 102

IVI_ATTR_ERROR_ELABORATION IVI_INHERENT_ATTR_BASE + 103

IVI_ATTR_IO_SESSION IVI_INHERENT_ATTR_BASE + 322

IVI_ATTR_IO_SESSION_TYPE IVI_INHERENT_ATTR_BASE + 324

IVI_ATTR_FUNCTION_CAPABILITIES IVI_INHERENT_ATTR_BASE + 402

IVI_ATTR_ATTRIBUTE_CAPABILITIES IVI_INHERENT_ATTR_BASE + 403

IVI_ATTR_ENGINE_MAJOR_VERSION IVI_INHERENT_ATTR_BASE + 501

IVI_ATTR_ENGINE_MINOR_VERSION IVI_INHERENT_ATTR_BASE + 502

IVI_ATTR_SPECIFIC_DRIVER_MAJOR_VERSION IVI_INHERENT_ATTR_BASE + 503

IVI_ATTR_SPECIFIC_DRIVER_MINOR_VERSION IVI_INHERENT_ATTR_BASE + 504

IVI_ATTR_CLASS_DRIVER_MAJOR_VERSION IVI_INHERENT_ATTR_BASE + 505

IVI_ATTR_CLASS_DRIVER_MINOR_VERSION IVI_INHERENT_ATTR_BASE + 506

IVI_ATTR_ENGINE_REVISION IVI_INHERENT_ATTR_BASE + 553

IVI-3.2: Inherent Capabilities Specification 120 IVI Foundation

10.3 Reserved Module Private Attribute ID Values

The following attribute ID values are reserved for module private attributes. IVI software modules can use

these attribute ID values only for private or hidden attributes. It is recommended that IVI software modules

avoid using these attribute ID values and use the IVI_MODULE_PRIVATE_ATTR_BASE to define private

attributes instead.

ID Value

IVI_INHERENT_ATTR_BASE + 321

IVI_INHERENT_ATTR_BASE + 601

IVI_INHERENT_ATTR_BASE + 602

IVI_INHERENT_ATTR_BASE + 603

IVI_INHERENT_ATTR_BASE + 704

IVI_INHERENT_ATTR_BASE + 708

IVI_INHERENT_ATTR_BASE + 801

10.4 Reserved Standard Cross Class Capabilities Attribute ID Values

The following attribute ID values are reserved for use by IVI-3.3: Standard Cross Class Capabilities

Specification.

ID Value

IVI_INHERENT_ATTR_BASE + 203

IVI-3.2: Inherent Capabilities Specification 121 IVI Foundation

11. Common IVI-C and IVI-COM Error and Completion Codes
This section defines the list of IVI error and completion codes. For information on standard error code

formats and ranges, refer to IVI-3.1: Driver Architecture Specification.

11.1 IVI-C and IVI-COM Error and Completion Codes

The following table lists error and completion codes returned by IVI-C and IVI-COM drivers. The last

column provides a generic description for the error.

Refer to IVI-3.1: Driver Architecture Specification for a complete list of the base values for the error code

bases.

Table 9-1. Error and Completion Codes

Actual Value Name Description String

0x0 Success No message

Inherent Error Base + 0x00 Cannot Recover Unrecoverable failure

Inherent Error Base + 0x01 Instrument Status Instrument error detected

Inherent Error Base + 0x02 Cannot Open File File could not be opened

Inherent Error Base + 0x03 Error Reading File File is being read

Inherent Error Base + 0x04 Error Writing File File is being modified

Inherent Error Base + 0x0B Invalid Path Name The path name is invalid

Inherent Error Base + 0x0C Invalid Attribute Attribute ID not recognized

Inherent Error Base + 0x0D Attribute Not Writeable Attribute is read-only

Inherent Error Base + 0x0E Attribute Not Readable Attribute is write-only

Inherent Error Base + 0x10 Invalid Value Invalid value for parameter or property

Inherent Error Base + 0x11 Function Not Supported Function or method not supported

Inherent Error Base + 0x12 Attribute Not Supported Attribute or property not supported

Inherent Error Base + 0x13 Value Not Supported The enumeration value for the parameter

is not supported

Inherent Error Base + 0x15 Types Do Not Match The attribute and function parameter

types do not match

Inherent Error Base + 0x1D Not Initialized A connection to the instrument has not

been initialized

Inherent Error Base + 0x20 Unknown Channel Name Channel name specified is not valid for

the instrument.

Inherent Error Base + 0x23 Too Many Open Files Too many files opened

Inherent Error Base + 0x44 Channel Name Required Channel name required

Inherent Error Base + 0x45 Channel Name Not Allowed The channel name is not allowed

Inherent Error Base + 0x49 Missing Option Name The option string contains an entry

without a name.

Inherent Error Base + 0x4A Missing Option Value The option string contains an entry

without a value.

Inherent Error Base + 0x4B Bad Option Name The option string contains an entry with

an unknown option name.

IVI-3.2: Inherent Capabilities Specification 122 IVI Foundation

Table 9-1. Error and Completion Codes

Actual Value Name Description String

Inherent Error Base + 0x4C Bad Option Value The option string contains an entry with

an unknown option value.

Inherent Error Base + 0x56 Out of Memory The necessary memory could not be

allocated

Inherent Error Base + 0x57 Operation Pending Operation in progress

Inherent Error Base + 0x58 Null Pointer Null pointer passed for parameter or

property

Inherent Error Base + 0x59 Unexpected Response Unexpected response from the

instrument

Inherent Error Base + 0x5B File Not Found File not found

Inherent Error Base + 0x5C Invalid File Format The file format is invalid

Inherent Error Base + 0x5D Status Not Available The instrument status is not available

Inherent Error Base + 0x5E ID Query Failed Instrument ID query failed

Inherent Error Base + 0x5F Reset Failed Instrument reset failed

Inherent Error Base + 0x60 Resource Unknown Insufficient location information or

resource not present in the system.

Inherent Error Base + 0x61 Already Initialized The driver is already initialized.

Inherent Error Base + 0x62 Cannot Change Simulation

State

The simulation state cannot be changed.

Inherent Error Base + 0x63 Invalid Number of Levels in

Selector

Invalid number of levels in selector

Inherent Error Base + 0x64 Invalid Range in Selector Invalid range in selector

Inherent Error Base + 0x65 Unknown Name in Selector Unknown name in selector

Inherent Error Base + 0x66 Badly-Formed Selector Badly-formed selector

Inherent Error Base + 0x67 Unknown Physical Identifier Unknown physical identifier

Inherent Warn Base + 0x65 ID Query Not Supported Identification query not supported

Inherent Warn Base + 0x66 Reset Not Supported Reset operation not supported

Inherent Warn Base + 0x67 Self Test Not Supported Self test operation not supported

Inherent Warn Base + 0x68 Error Query Not Supported Error query operation not supported

Inherent Warn Base + 0x69 Revision Query Not Supported Revision query not supported

IVI-3.2: Inherent Capabilities Specification 123 IVI Foundation

11.2 IVI-C Error and Completion Codes

The following table lists the C Identifiers and the recommended format of the error description string for

the Error and Completion Codes defined in Table 9-1.

Note: In the message string column entries listed below, %s is always used to represent the component

name that returned the error. Additional format strings parameters are specified as %s1, %s2 etc.

Table 9-2. IVI-C Error and Completion Codes

Name C Identifier C Message String

Success VI_SUCCESS

IVI_SUCCESS

No message

Cannot Recover IVI_ERROR_CANNOT_RECOVER “%s: Failure – cannot recover.”

Instrument Status IVI_ERROR_INSTRUMENT_STATUS “%s: Instrument error detected. Use

ErrorQuery() to determine the error(s).”

Cannot Open File IVI_ERROR_CANNOT_OPEN_FILE “%s: Cannot open file.”

Error Reading File IVI_ERROR_READING_FILE “%s: Error reading file.”

Error Writing File IVI_ERROR_WRITING_FILE “%s: Error writing file.”

Invalid Path Name IVI_ERROR_INVALID_PATHNAME “%s: The pathname is invalid.”

Invalid Attribute IVI_ERROR_INVALID_ATTRIBUTE “%s: Attribute ID %s1 not recognized.”

%s1 = Attribute ID

Attribute Not

Writeable

IVI_ERROR_ATTR_NOT_WRITEABLE “%s: Attribute %s1 is read only.”

%s1 = Attribute name

Attribute Not Readable IVI_ERROR_ATTR_NOT_READABLE “%s: Attribute %s1 is write only.”

%s1 = Attribute name

Invalid Value IVI_ERROR_INVALID_VALUE “%s: Invalid value (%s1) for function %s2,

parameter %s3.”

%s1 = out-of-range value

%s2 = function name

%s3 = parameter name

Function Not

Supported

IVI_ERROR_FUNCTION_NOT_SUPPORTED “%s: Does not support this class-compliant

feature: function %s1.”

%s1 = function name

Attribute Not

Supported

IVI_ERROR_ATTRIBUTE_NOT_SUPPORTED “%s: Does not support this class-compliant

feature: attribute %s1.”

%s1 = attribute name

IVI-3.2: Inherent Capabilities Specification 124 IVI Foundation

Table 9-2. IVI-C Error and Completion Codes

Name C Identifier C Message String

Value Not Supported IVI_ERROR_VALUE_NOT_SUPPORTED “%s: Does not support this class-compliant

feature: (enumeration) value %s1 passed as

the value for parameter %s2 in function

%s3.”

%s1 = enumeration value name or value

%s2 = parameter name

%s3 = function name

“%s: Does not support this class-compliant

feature: (enumeration) value %s1 passed as

the value for attribute %s2.”

%s1 = enumeration value name or value

%s2 = attribute name

Types Do Not Match IVI_ERROR_TYPES_DO_NOT_MATCH “%s: SetAttribute%s1 called for attribute of

type %s2.”

“%s: GetAttribute%s1 called for attribute of

type %s2.”

%s1 =data type of attribute access function

%s2 =data type of attribute

Not Initialized IVI_ERROR_NOT_INITIALIZED “%s: A connection to the instrument has not

been established.”

Unknown Channel

Name

IVI_ERROR_UNKNOWN_CHANNEL_NAME “%s: Unknown channel name.”

Too Many Open Files IVI_ERROR_TOO_MANY_OPEN_FILES “%s: Too many files are open.”

Channel Name

Required

IVI_ERROR_CHANNEL_NAME_REQUIRED “%s: A channel name is required.”

Channel Name Not

Allowed

IVI_ERROR_CHANNEL_NAME_NOT_ALLOWED “%s: The channel name is not allowed.”

Missing Option Name IVI_ERROR_MISSING_OPTION_NAME “%s: The option string is missing an option

name.”

Missing Option Value IVI_ERROR_MISSING_OPTION_VALUE “%s: The option string is missing an option

value.”

Bad Option Name IVI_ERROR_BAD_OPTION_NAME “%s: The %s1 name in the option string is

unknown.”

%s1 = bad option name

Bad Option Value IVI_ERROR_BAD_OPTION_VALUE “%s: The %s1 value in the option string is

unknown.”

%s1 = bad option value

Out of Memory IVI_ERROR_OUT_OF_MEMORY “%s: Could not allocate necessary memory.”

Operation Pending IVI_ERROR_OPERATION_PENDING “%s: Operation in progress.”

IVI-3.2: Inherent Capabilities Specification 125 IVI Foundation

Table 9-2. IVI-C Error and Completion Codes

Name C Identifier C Message String

Null Pointer IVI_ERROR_NULL_POINTER “%s: Null pointer passed for function %s1,

parameter %s2.”

%s1 = function name

%s2 = parameter name

Unexpected Response IVI_ERROR_UNEXPECTED_RESPONSE “%s: Unexpected response from instrument.”

File Not Found IVI_ERROR_FILE_NOT_FOUND “%s: File not found.”

Invalid File Format IVI_ERROR_INVALID_FILE_FORMAT “%s: Invalid file format.”

Status Not Available IVI_ERROR_STATUS_NOT_AVAILABLE “%s: The instrument status is not available.”

ID Query Failed IVI_ERROR_ID_QUERY_FAILED “%s: Instrument ID query failed.”

Reset Failed IVI_ERROR_RESET_FAILED “%s: Instrument reset failed.”

Resource Unknown IVI_ERROR_RESOURCE_UNKNOWN “%s: Unknown resource.”

Cannot Change

Simulation State

IVI_ERROR_CANNOT_CHANGE_SIMULATION

_STATE

“%s: The simulation state cannot be

changed.”

Invalid Number of

Levels in Selector

IVI_ERROR_INVALID_NUMBER_OF_LEVELS

_IN_SELECTOR

“%s: The number of levels in the selector is

not valid for the %s1 repeated capability.”

%s1 = repeated capability name

Invalid Range in

Selector

IVI_ERROR_INVALID_RANGE_IN_SELECTO

R

“%s: The range %s1 is not valid for the

repeated capability %s2.”

%s1 = range

%s2 = repeated capability name

Unknown Name in

Selector

IVI_ERROR_UNKNOWN_NAME_IN_SELECTOR “%s: Unknown name in selector.”

Badly-Formed Selector IVI_ERROR_BADLY_FORMED_SELECTOR “%s: The repeated capability selector is

badly-formed.”

Unknown Physical

Identifier

IVI_ERROR_UNKNOWN_PHYSICAL_IDENTIF

IER

“%s: Unknown physical repeated capability

selector”

ID Query Not

Supported

IVI_WARN_NSUP_ID_QUERY “%s: ID Query is not supported by this

instrument.”

Reset Not Supported IVI_WARN_NSUP_RESET “%s: Reset is not supported by this

instrument.”

Self Test Not

Supported

IVI_WARN_NSUP_SELF_TEST “%s: Self test is not supported by this

instrument.”

Error Query Not

Supported

IVI_WARN_NSUP_ERROR_QUERY “%s: Error query is not supported by this

instrument.”

Revision Query Not

Supported

IVI_WARN_NSUP_REV_QUERY “%s: Firmware revision query is not

supported by this instrument.”

IVI-3.2: Inherent Capabilities Specification 126 IVI Foundation

11.3 IVI-COM Error and Completion Codes

The following table specifies the COM Identifiers and the recommended format of the error description

string for the Error and Completion Codes defined in Table 9-1.

Note: In the description string table entries listed below, %s is always used to represent the component

name. Additional format strings parameters are specified as %s1, %s2 etc.

Table 9-3. IVI-COM Error and Completion Codes

Name COM Identifier COM Message String

Success S_OK

S_IVI_SUCCESS

No message

Cannot Recover E_IVI_CANNOT_RECOVER “%s: Failure – cannot recover.”

Instrument Status E_IVI_INSTRUMENT_STATUS “%s: Instrument error detected. Use

ErrorQuery() to determine the error(s).”

Cannot Open File E_IVI_CANNOT_OPEN_FILE “%s: Cannot open file.”

Error Reading File E_IVI_READING_FILE “%s: Error reading file.”

Error Writing File E_IVI_WRITING_FILE “%s: Error writing file.”

Invalid Path Name E_IVI_INVALID_PATHNAME “%s: The pathname is invalid.”

Invalid Value E_IVI_INVALID_VALUE “%s: Invalid value (%s1) for method %s2,

parameter %s3.”

%s1 = out-of-range value

%s2 = method name

%s3 = parameter name

Function Not Supported E_IVI_METHOD_NOT_SUPPORTED “%s: Does not support this class-

compliant feature: method %s1.”

%s1 = method name

Attribute Not Supported E_I VI _PROPERTY_ NOT_ SUPP ORTE

D

“%s: Does not support this class-

compliant feature: property %s1.”

%s1 = property name

Value Not Supported E_IVI_VALUE_NOT_SUPPORTED “%s: Does not support this class-

compliant feature: (enumeration) value

%s1 passed as the value for parameter

%s2 in method %s3.”

%s1 = enumeration value name or value

%s2 = parameter name

%s3 = method name

“%s: Does not support this class-

compliant feature: (enumeration) value

%s1 passed as the value for property

%s2.”

%s1 = enumeration value name or value

%s2 = property name

Not Initialized E_IVI_NOT_INITIALIZED “%s: A connection to the instrument has

not been established.”

IVI-3.2: Inherent Capabilities Specification 127 IVI Foundation

Table 9-3. IVI-COM Error and Completion Codes

Name COM Identifier COM Message String

Unknown Channel Name E_IVI_UNKNOWN_CHANNEL_NAME “%s: Unknown channel name.”

Too Many Open Files E_IVI_TOO_MANY_OPEN_FILES “%s: Too many files are open.”

Channel Name Required E_IVI_CHANNEL_NAME_REQUIRED “%s: A channel name is required.”

Missing Option Name E_IVI_MISSING_OPTION_NAME “%s: The option string is missing an

option name.”

Missing Option Value E_IVI_MISSING_OPTION_VALUE “%s: The option string is missing an

option value.”

Bad Option Name E_IVI_BAD_OPTION_NAME “%s: The %s1 name in the option string is

unknown.”

%s1 = bad option name

Bad Option Value E_IVI_BAD_OPTION_VALUE “%s: The %s1 value in the option string is

unknown.”

%s1 = bad option value

Out of Memory E_IVI_OUT_OF_MEMORY “%s: Could not allocate necessary

memory.”

Operation Pending E_IVI_OPERATION_PENDING “%s: Operation in progress.”

Null Pointer E_IVI_NULL_POINTER “%s: Null pointer passed for method %s1,

parameter %s2.”

%s1 = method name

%s2 = parameter name

Unexpected Response E_IVI_UNEXPECTED_RESPONSE “%s: Unexpected response from

instrument.”

File Not Found E_IVI_FILE_NOT_FOUND “%s: File not found.”

Invalid File Format E_IVI_INVALID_FILE_FORMAT “%s: Invalid file format.”

Status Not Available E_IVI_STATUS_NOT_AVAILABLE “%s: The instrument status is not

available.”

ID Query Failed E_IVI_ID_QUERY_FAILED “%s: Instrument ID query failed.”

Reset Failed E_IVI_RESET_FAILED “%s: Instrument reset failed.”

Resource Unknown E_IVI_RESOURCE_UNKNOWN “%s: Unknown resource.”

Already Initialized E_IVI_ALREADY_INITIALIZED “%s: The driver is already initialized.”

Cannot Change Simulation

State

E_IVI_CANNOT_CHANGE_SIMULATIO

N_STATE

“The simulation state cannot be changed.”

Invalid Number of Levels

in Selector

E_IVI_INVALID_NUMBER_OF_LEVEL

S_IN_SELECTOR

“%s: The number of levels in the selector

is not valid for the %s1 repeated

capability.”

%s1 = repeated capability name

Invalid Range in Selector E_IVI_INVALID_RANGE_IN_SELECT

OR

“%s: The range %s1 is not valid for the

repeated capability %s2.”

%s1 = range

%s2 = repeated capability name

IVI-3.2: Inherent Capabilities Specification 128 IVI Foundation

Table 9-3. IVI-COM Error and Completion Codes

Name COM Identifier COM Message String

Unknown Name in

Selector

E_IVI_UNKNOWN_NAME_IN_SELECTO

R

“%s: Unknown name in selector.”

Badly-Formed Selector E_IVI_BADLY_FORMED_SELECTOR “%s: The repeated capability selector is

badly-formed.”

Unknown Physical

Identifier

E_IVI_UNKNOWN_PHYSICAL_IDENTI

FIER

“%s: Unknown physical repeated

capability selectory”

ID Query Not Supported S_IVI_NSUP_ID_QUERY “%s: ID Query is not supported by this

instrument.”

Reset Not Supported S_IVI_NSUP_RESET “%s: Reset is not supported by this

instrument.”

Self Test Not Supported S_IVI_NSUP_SELF_TEST “%s: Self test is not supported by this

instrument.”

Error Query Not

Supported

S_IVI_NSUP_ERROR_QUERY “%s: Error query is not supported by this

instrument.”

Revision Query Not

Supported

S_IVI_NSUP_REV_QUERY “%s: Firmware revision query is not

supported by this instrument.”

11.4 Reserved Vendor Specific Error and Completion Code Values and Constants

The following error and completion code values and C defined constants are reserved for vendor specific

error and completion code extensions. An IVI-C class driver or IVI-C specific driver may export an error

or completion code with one of these ID values only if the driver uses the corresponding C defined constant

for the error or completion code. For vendor specific error and completion code extensions with C defined

constant names that are not listed below, the driver shall use ID values in the range starting at

IVI_VENDOR_SPECIFIC_ERROR_BASE.

Error or Completion Code ID Value

IVI_ERROR_DRIVER_MODULE_NOT_FOUND IVI_INHERENT_ERROR_BASE + 0x05

IVI_ERROR_CANNOT_OPEN_DRIVER_MODULE IVI_INHERENT_ERROR_BASE + 0x06

IVI_ERROR_INVALID_DRIVER_MODULE IVI_INHERENT_ERROR_BASE + 0x07

IVI_ERROR_UNDEFINED_REFERENCES IVI_INHERENT_ERROR_BASE + 0x08

IVI_ERROR_FUNCTION_NOT_FOUND IVI_INHERENT_ERROR_BASE + 0x09

IVI_ERROR_LOADING_DRIVER_MODULE IVI_INHERENT_ERROR_BASE + 0x0A

IVI_ERROR_INVALID_PARAMETER IVI_INHERENT_ERROR_BASE + 0x0F

IVI_ERROR_INVALID_TYPE IVI_INHERENT_ERROR_BASE + 0x14

IVI_ERROR_MULTIPLE_DEFERRED_SETTING IVI_INHERENT_ERROR_BASE + 0x16

IVI_ERROR_ITEM_ALREADY_EXISTS IVI_INHERENT_ERROR_BASE + 0x17

IVI_ERROR_INVALID_CONFIGURATION IVI_INHERENT_ERROR_BASE + 0x18

IVI_ERROR_VALUE_NOT_AVAILABLE IVI_INHERENT_ERROR_BASE + 0x19

IVI_ERROR_ATTRIBUTE_VALUE_NOT_KNOWN IVI_INHERENT_ERROR_BASE + 0x1A

IVI_ERROR_NO_RANGE_TABLE IVI_INHERENT_ERROR_BASE + 0x1B

IVI_ERROR_INVALID_RANGE_TABLE IVI_INHERENT_ERROR_BASE + 0x1C

IVI-3.2: Inherent Capabilities Specification 129 IVI Foundation

Error or Completion Code ID Value

IVI_ERROR_NON_INTERCHANGEABLE_BEHAVIOR IVI_INHERENT_ERROR_BASE + 0x1E

IVI_ERROR_NO_CHANNEL_TABLE IVI_INHERENT_ERROR_BASE + 0x1F

IVI_ERROR_SYS_RSRC_ALLOC IVI_INHERENT_ERROR_BASE + 0x21

IVI_ERROR_ACCESS_DENIED IVI_INHERENT_ERROR_BASE + 0x22

IVI_ERROR_UNABLE_TO_CREATE_TEMP_FILE IVI_INHERENT_ERROR_BASE + 0x24

IVI_ERROR_NO_UNUSED_TEMP_FILENAMES IVI_INHERENT_ERROR_BASE + 0x25

IVI_ERROR_DISK_FULL IVI_INHERENT_ERROR_BASE + 0x26

IVI_ERROR_CONFIG_FILE_NOT_FOUND IVI_INHERENT_ERROR_BASE + 0x27

IVI_ERROR_CANNOT_OPEN_CONFIG_FILE IVI_INHERENT_ERROR_BASE + 0x28

IVI_ERROR_ERROR_READING_CONFIG_FILE IVI_INHERENT_ERROR_BASE + 0x29

IVI_ERROR_BAD_INTEGER_IN_CONFIG_FILE IVI_INHERENT_ERROR_BASE + 0x2A

IVI_ERROR_BAD_DOUBLE_IN_CONFIG_FILE IVI_INHERENT_ERROR_BASE + 0x2B

IVI_ERROR_BAD_BOOLEAN_IN_CONFIG_FILE IVI_INHERENT_ERROR_BASE + 0x2C

IVI_ERROR_CONFIG_ENTRY_NOT_FOUND IVI_INHERENT_ERROR_BASE + 0x2D

IVI_ERROR_DRIVER_DLL_INIT_FAILED IVI_INHERENT_ERROR_BASE + 0x2E

IVI_ERROR_DRIVER_UNRESOLVED_SYMBOL IVI_INHERENT_ERROR_BASE + 0x2F

IVI_ERROR_CANNOT_FIND_CVI_RTE IVI_INHERENT_ERROR_BASE + 0x30

IVI_ERROR_CANNOT_OPEN_CVI_RTE IVI_INHERENT_ERROR_BASE + 0x31

IVI_ERROR_CVI_RTE_INVALID_FORMAT IVI_INHERENT_ERROR_BASE + 0x32

IVI_ERROR_CVI_RTE_MISSING_FUNCTION IVI_INHERENT_ERROR_BASE + 0x33

IVI_ERROR_CVI_RTE_INIT_FAILED IVI_INHERENT_ERROR_BASE + 0x34

IVI_ERROR_CVI_RTE_UNRESOLVED_SYMBOL IVI_INHERENT_ERROR_BASE + 0x35

IVI_ERROR_LOADING_CVI_RTE IVI_INHERENT_ERROR_BASE + 0x36

IVI_ERROR_CANNOT_OPEN_DLL_FOR_EXPORTS IVI_INHERENT_ERROR_BASE + 0x37

IVI_ERROR_DLL_CORRUPTED IVI_INHERENT_ERROR_BASE + 0x38

IVI_ERROR_NO_DLL_EXPORT_TABLE IVI_INHERENT_ERROR_BASE + 0x39

IVI_ERROR_UNKNOWN_DEFAULT_SETUP_ATTR IVI_INHERENT_ERROR_BASE + 0x3A

IVI_ERROR_INVALID_DEFAULT_SETUP_VAL IVI_INHERENT_ERROR_BASE + 0x3B

IVI_ERROR_UNKNOWN_MEMORY_PTR IVI_INHERENT_ERROR_BASE + 0x3C

IVI_ERROR_EMPTY_CHANNEL_LIST IVI_INHERENT_ERROR_BASE + 0x3D

IVI_ERROR_DUPLICATE_CHANNEL_STRING IVI_INHERENT_ERROR_BASE + 0x3E

IVI_ERROR_DUPLICATE_VIRT_CHAN_NAME IVI_INHERENT_ERROR_BASE + 0x3F

IVI_ERROR_MISSING_VIRT_CHAN_NAME IVI_INHERENT_ERROR_BASE + 0x40

IVI_ERROR_BAD_VIRT_CHAN_NAME IVI_INHERENT_ERROR_BASE + 0x41

IVI_ERROR_UNASSIGNED_VIRT_CHAN_NAME IVI_INHERENT_ERROR_BASE + 0x42

IVI_ERROR_BAD_VIRT_CHAN_ASSIGNMENT IVI_INHERENT_ERROR_BASE + 0x43

IVI_ERROR_ATTR_NOT_VALID_FOR_CHANNEL IVI_INHERENT_ERROR_BASE + 0x46

IVI_ERROR_ATTR_MUST_BE_CHANNEL_BASED IVI_INHERENT_ERROR_BASE + 0x47

IVI_ERROR_CHANNEL_ALREADY_EXCLUDED IVI_INHERENT_ERROR_BASE + 0x48

IVI_ERROR_NOT_CREATED_BY_CLASS IVI_INHERENT_ERROR_BASE + 0x4D

IVI-3.2: Inherent Capabilities Specification 130 IVI Foundation

Error or Completion Code ID Value

IVI_ERROR_IVI_INI_IS_RESERVED IVI_INHERENT_ERROR_BASE + 0x4E

IVI_ERROR_DUP_RUNTIME_CONFIG_ENTRY IVI_INHERENT_ERROR_BASE + 0x4F

IVI_ERROR_INDEX_IS_ONE_BASED IVI_INHERENT_ERROR_BASE + 0x50

IVI_ERROR_INDEX_IS_TOO_HIGH IVI_INHERENT_ERROR_BASE + 0x51

IVI_ERROR_ATTR_NOT_CACHEABLE IVI_INHERENT_ERROR_BASE + 0x52

IVI_ERROR_ADDR_ATTRS_MUST_BE_HIDDEN IVI_INHERENT_ERROR_BASE + 0x53

IVI_ERROR_BAD_CHANNEL_NAME IVI_INHERENT_ERROR_BASE + 0x54

IVI_ERROR_BAD_PREFIX_IN_CONFIG_FILE IVI_INHERENT_ERROR_BASE + 0x55

11.5 Standard COM Error Codes for Use during Driver Development

The following table lists the standard COM error codes that IVI driver developers may use during driver

development. It also specifies the recommended format of the error description string for those error codes.

Note: In the description string table entries listed below, %s is always used to represent the component

name.

Table 9-4. Standard COM Error Codes

Standard COM Error Code Description String

E_ABORT “%s: Operation aborted.”

E_NOTIMPL “%s: Not implemented.”

Use E_IVI_METHOD_NOT_SUPPORTED or E_IVI_PROPERTY_NOT_SUPPORTED instead of E_NOTIMPL

for methods or properties that the IVI specifications define but that you do not intend to support in the

driver. Use E_NOTIMPL for methods or properties you intend to implement but have not yet done so.

11.6 Unused Standard COM Error Codes

The following table lists standard COM error codes that you should avoid using. Instead, use the

recommended IVI error codes listed in the second column.

Table 9-5. Recommended IVI Error Codes for Standard COM Errors

Standard COM Error Code Recommended IVI Error Code

E_INVALIDARG E_IVI_INVALID_VALUE

E_OUTOFMEMORY E_IVI_OUT_OF_MEMORY

E_PENDING E_IVI_OPERATION_PENDING

E_POINTER E_IVI_NULL_POINTER

E_UNEXPECTED E_IVI_CANNNOT_RECOVER

IVI-3.2: Inherent Capabilities Specification 131 IVI Foundation

12. Common IVI.NET Exceptions and Warnings

This section defines the list of IVI.NET exceptions and warnings. For general information on IVI.NET

exceptions and warnings, refer to IVI-3.1: Driver Architecture Specification.

12.1 General Information About Exceptions

All IVI defined exceptions derive from System.Exception. The public constructors from System.Exception

are preserved, including parameter names and semantics.

Constructors with additional, exception specific parameters are added when appropriate. All parameters

that are not inherited from System.Exception are documented with the exception. In general, constructors

that provide additional parameters are recommended for use in IVI.NET native drivers. Including

parameter information with exceptions provides users with additional useful information about exceptions

that is consistent across drivers.

IVI defined exceptions implement read-only properties for all constructor parameters that are added for the

exception.

Constructors that take a string ‘message’ parameter are recommended for use when the default message is

not sufficient, or when the code calling the excpetion can provide better information. For example, when

creating an IVI.NET driver that wraps an IVI-C driver, the .NET wrapper may not have access to additional

parameters, and use the error message created by the IVI-C driver instead.

Depending on the constructor used by to create the exception, the value of the additional parameters may or

may not have been set. Clients should not write code that assumes that additional parameters have been

set.

The exception’s Message property concatenates (1) either a default message or the value from the

constructor’s ‘message’ parameter, and (2) the name and value of each additional parameter that has been

set, one parameter per line. The default message string documented in this specification includes a line for

each parameter that could possibly be set, but if a parameter is not set, that parameter name and value are

not included in the message.

Because the exception message content may vary, clients should not assume a standard format for message

strings. For common uses of exceptions, users should be able to tell what they need to know from the

exception type, so that parsing the message string is unnecessary.

IVI.NET drivers may throw exceptions that are derived from inherent or class-compliant exceptions from

inherent, class-compliant or instrument specific interfaces.

IVI-3.2: Inherent Capabilities Specification 132 IVI Foundation

12.2 Mapping IVI-C and IVI-COM Error Codes to IVI.NET

IVI.NET exceptions are designed to reflect IVI.NET paradigms. For this reason, there is not a one-to-one

mapping from IVI-C and IVI-COM exceptions to IVI.NET exceptions. The following table describes the

mapping and the reasons for significant differences.

IVI-C/IVI-COM Name IVI.NET Exception

Success N/A – Success exceptions do not exist.

Cannot Recover N/A – IVI.NET drivers that wrap IVI-C or IVI-COM drivers should use

Ivi.Driver.IviCDriverException or

Ivi.Driver.IviComDriverException.

Instrument Status Ivi.Driver.InstrumentStatusException

Cannot Open File N/A - Let the framework exceptions thrown when opening a file filter up to the user.

Error Reading File N/A - Let the framework exceptions thrown when reading a file filter up to the user.

Error Writing File N/A - Let the framework exceptions thrown when writing a file filter up to the user.

Invalid Path Name N/A - Let the framework exceptions thrown when using a file path filter up to the

user.

Invalid Value Ivi.Driver.OutOfRangeException

Function Not Supported Ivi.Driver.OperationNotSupportedException

Attribute Not Supported Ivi.Driver.OperationNotSupportedException

Value Not Supported Ivi.Driver.ValueNotSupportedException

Not Initialized N/A – IVI.NET drivers are always initialized in the constructor.

Unknown Channel Name Ivi.Driver.SelectorNameException

Too Many Open Files N/A - Let the framework exceptions thrown when opening a file filter up to the user.

Channel Name Required Ivi.Driver.SelectorNameRequiredException

Missing Option Name Ivi.Driver.OptionMissingException

Missing Option Value Ivi.Driver.InvalidOptionValueException

Bad Option Name Ivi.Driver.UnknownOptionException

Bad Option Value Ivi.Driver.InvalidOptionValueException

Out of Memory System.InsufficientMemoryException

Operation Pending Ivi.Driver.OperationPendingException

Null Pointer System.ArgumentNullException

Unexpected Response Ivi.Driver.UnexpectedResponseException

File Not Found System.IO.FileNotFoundException

Invalid File Format Ivi.Driver.FileFormatException

Status Not Available N/A - Use either Ivi.Driver.OperationPendingException or
Ivi.Driver.OperationNotSupportedException

ID Query Failed Ivi.Driver.IdQueryFailedException

Reset Failed Ivi.Driver.ResetFailedException

Resource Unknown N/A – If the VISA Open (or similar I/O call) does not succeed, throw an

Ivi.Driver.IOException.

Already Initialized N/A – IVI.NET drivers are always initialized in the constructor.

IVI-3.2: Inherent Capabilities Specification 133 IVI Foundation

IVI-C/IVI-COM Name IVI.NET Exception

Cannot Change Simulation

State

Ivi.Driver.SimulationStateException

Invalid Number of Levels

in Selector

Ivi.Driver.SelectorHierarchyException

Invalid Range in Selector Ivi.Driver.SelectorRangeException

Unknown Name in

Selector

Ivi.Driver.SelectorNameException

Badly-Formed Selector Ivi.Driver.SelectorFormatException

Unknown Physical

Identifier

Ivi.Driver.UnknownPhysicalNameException

ID Query Not Supported N/A (warning)

Reset Not Supported Ivi.Driver.ResetNotSupportedException

Self Test Not Supported N/A (warning)

Error Query Not

Supported

N/A (warning)

Revision Query Not

Supported

N/A (warning)

N/A Ivi.Driver.ConfigurationServerException

N/A Ivi.Driver.IOException

N/A Ivi.Driver.IOTimeoutException

N/A Ivi.Driver.IviCDriverException

N/A Ivi.Driver.OptionStringFormatException

Max Time Exceeded (IVI-

3.3)

Ivi.Driver.MaxTimeExceededException

TriggerNotSoftware (IVI-

3.3)

Ivi.Driver.TriggerNotSoftwareException

12.3 Mapping IVI-COM Session Factory Error Codes to IVI.NET

IVI.NET exceptions are designed to reflect IVI.NET paradigms. For this reason, there is not a one-to-one

mapping from IVI-COM Session Factory exceptions to IVI.NET exceptions. The following table describes

the mapping, bearing in mind that some mapped items (for instance, Driver Session Not Registered and the

InvalidClassNameException) really have different meanings in COM and .NET, although the roles they

play are analogous.

Refer to Section 3, Error and Completion Code Value Definitions, of IVI-3.6: COM Session Factory

Specification, for a list of IVI-COM session factory error codes.

IVI-COM Name IVI.NET Exception

No Prog ID Ivi.Driver.ClassNameNotFoundException

No Config Store Ivi.Driver.ConfigurationStoreLoadException

Driver Session Not

Registered

Ivi.Driver.InvalidClassNameException

No Driver Session Ivi.Driver.SessionNotFoundException

IVI-3.2: Inherent Capabilities Specification 134 IVI Foundation

IVI-COM Name IVI.NET Exception

No Software Module Ivi.Driver.SoftwareModuleNotFoundException

N/A Ivi.Driver.DriverClassCreationException

IVI-3.2: Inherent Capabilities Specification 135 IVI Foundation

12.4 Common Exceptions

The following .NET Framework exceptions may be explicitly thrown by IVI.NET drivers where

applicable.

• System.Argument NullException

• System.FileNotFoundException

• System.InsufficientMemoryException

Other exceptions defined by the .NET Framework may be explicitly thrown by IVI.NET drivers if IVI

specifications do not specify a suitable exception. Other exceptions defined by the .NET Framework may

be thrown by IVI.NET drivers by the .NET runtime or other libraries used by the drivers.

Common IVI.NET exceptions are defined in this specification and declared in the Ivi.Driver namespace.

• ConfigurationServerException

• FileFormatException

• IdQueryFailedException

• InstrumentStatusException

• InvalidOptionValueException

• IOException

• IOTimeoutException

• IviCDriverException

• IviComDriverException (Reserved)

• MaxTimeExceededException

• OperationNotSupportedException

• OperationPendingException

• OptionMissingException

• OptionStringFormatException

• OutOfRangeException

• ResetFailedException

• ResetNotSupportedException

• SelectorFormatException

• SelectorHierarchyException

• SelectorNameException

• SelectorNameRequiredException

• SelectorRangeRequiredException

• SimulationStateException

• TriggerNotSoftwareException

• UnexpectedResponseException

• UnknownOptionException

• UnknownPhysicalNameException

• ValueNotSupportedException

IVI-3.2: Inherent Capabilities Specification 136 IVI Foundation

12.4.1 System.ArgumentNullException (.NET Framework)

Description

See the MSDN documentation for System.ArgumentNullException.

Exception

System.ArgumentNullException

Default Message String

Value cannot be null.

Parameter name: <paramName>.

Parameters

See the MSDN documentation for System.ArgumentNullException.

IVI-3.2: Inherent Capabilities Specification 137 IVI Foundation

12.4.2 System.InsufficientMemoryException

Description

See the MSDN documentation for System.InsufficientMemoryException.

Exception

System.InsufficientMemoryException

Default Message String

Insufficient memory to continue the execution of the program.

Parameters

See the MSDN documentation for System.InsufficientMemoryException.

Usage

Note that System.OutOfMemoryException should only be thrown by the .NET runtime – it should

never be thrown by IVI.NET drivers.

IVI-3.2: Inherent Capabilities Specification 138 IVI Foundation

12.4.3 System.IO.FileNotFoundException

Description

See the MSDN documentation for System.IO.FileNotFoundException.

Exception

System.IO.FileNotFoundException

Default Message String

Unable to find the specified file.

File name: <fileName>.

Parameters

See the MSDN documentation for System.IO.FileNotFoundException.

IVI-3.2: Inherent Capabilities Specification 139 IVI Foundation

12.4.4 ConfigurationServerException

Description

An error occurred while using the Configuration Server.

When accessing the IVI-COM Configuration Server using the primary interop assembly (PIA), this

exception is used to relay an exception thrown by the configuration server PIA (for example, an

Unauthorized Access exception or an IO exception). The exception thrown by the Configuration Server is

the inner exception for this one.

When accessing the IVI-COM or IVI-C Configuration Server using other forms of interop, this exception is

used to relay the error return code reported by the Configuration Server.

Exception

Ivi.Driver.ConfigurationServerException

Constructors

Ivi.Driver.ConfigurationServerException(System.Exception innerException);

Ivi.Driver.ConfigurationServerException(Int32 errorCode);

Ivi.Driver.ConfigurationServerException();

Ivi.Driver.ConfigurationServerException(String message);

Ivi.Driver.ConfigurationServerException(String message,

 System.Exception innerException);

Default Message String

An error occurred while using the Configuration Server.

Error code: <errorCode>

Parameters

Inputs Description Base Type

errorCode The error code returned from the Configuration Server

property or method when a .NET Configuration Server or

PIA is not used.

Int32

innerException The exception thrown by the Configuration Server (or

Configuration Server PIA) that is the cause of the current

exception. If the innerException parameter is not null, the

current exception is raised in a catch block that handles

the inner exception.

System.Exception

Usage

Since the driver is required to read all relevant configuration store information in the constructor, this

exception shall only be thrown by the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 140 IVI Foundation

12.4.5 FileFormatException

Description

A file does not conform to it’s expected format.

Exception

Ivi.Driver.FileFormatException

Constructors

Ivi.Driver.FileFormatException(Uri sourceUri);

Ivi.Driver.FileFormatException(Uri sourceUri,

 System.Exception innerException);

Ivi.Driver.FileFormatException();

Ivi.Driver.FileFormatException(String message);

Ivi.Driver.FileFormatException(String message,

 System.Exception innerException);

Default Message String

The file does not conform to the expected file format.

File URI: <sourceURI>

Parameters

Inputs Description Base Type

sourceUri The URI of the file which is not formatted correctly. System.Uri

Usage

If the driver catches an exception that prompted this exception (for example, a system File Not Found

exception), that exception should be made the inner exception for this one.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 141 IVI Foundation

12.4.6 IdQueryFailedException

Description

The instrument ID query failed.

Exception

Ivi.Driver.IdQueryFailedException

Constructors

Ivi.Driver.IdQueryFailedException();

Ivi.Driver.IdQueryFailedException(String message);

Ivi.Driver.IdQueryFailedException(String message,

 System.Exception innerException);

Default Message String

The instrument ID query failed.

Usage

Under normal circumstances, an ID query is done once, either up-front in the constructor, or in the first get

for a property that returns ID Query information. Class compliant properties that potentially return ID

query information are InstrumentManufacturer, InstrumentModel, and InstrumentFirmwareRevision, which

are all in the IiviDriverIdentity interface. Instrument specific properties, such as a property that returns

serial number, may also do an ID query.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 142 IVI Foundation

12.4.7 InstrumentStatusException

Description

The driver detected an instrument error.

Exception

Ivi.Driver.InstrumentStatusException

Constructors

Ivi.Driver.InstrumentStatusException();

Ivi.Driver.InstrumentStatusException(String message);

Ivi.Driver.InstrumentStatusException(String message,

 System.Exception innerException);

Default Message String

Instrument error detected. Use ErrorQuery() to determine the error(s).

Usage

Avoid using this exception to relay another exception. As a general rule, just let the original exception

propagate up.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 143 IVI Foundation

12.4.8 InvalidOptionValueException

Description

An invalid value is assigned to an option.

Exception

Ivi.Driver.InvalidOptionValueException

Constructors

Ivi.Driver.InvalidOptionValueException(String optionName,

 String optionValue);

Ivi.Driver.InvalidOptionValueException();

Ivi.Driver.InvalidOptionValueException(String message);

Ivi.Driver.InvalidOptionValueException(String message,

 System.Exception innerException);

Default Message String

The option string contains an invalid option value.

Option name: <optionName>.

Option value: <optionValue>.

Parameters

Inputs Description Base Type

optionName The name of the option. String

optionValue The invalid value assigned to the option. String

Usage

Since the driver is required to process option strings in the constructor, this exception shall only be thrown

from the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 144 IVI Foundation

12.4.9 IOException

Description

A call to the underlying I/O mechanism being used by the driver to communicate with the instrument has

failed.

When accessing .NET I/O libraries or COM I/O libraries using a primary interop assembly (PIA), this

exception may be used to relay an exception thrown by the I/O library. The exception thrown by the I/O

library is the inner exception for this one.

When accessing a native C or COM I/O library using other forms of interop, this exception may be used to

relay the error return code reported by the Configuration Server.

If the underlying I/O library reports a timeout, use the IOTimeoutException.

Exception

Ivi.Driver.IOException

Constructors

Ivi.Driver.IOException(System.Exception innerException);

Ivi.Driver.IOException(Int32 errorCode);

Ivi.Driver.IOException();

Ivi.Driver.IOException(String message);

Ivi.Driver.IOException(String message,

 System.Exception Innerxception);

Default Message String

An instrument I/O error occurred.

Parameters

Inputs Description Base Type

errorCode The error code returned from the I/O library property or

method when a .NET I/O library or PIA is not used.

Int32

innerException The exception thrown by the I/O library (or I/O library

PIA) that is the cause of the current exception. If the

innerException parameter is not null, the current

exception is raised in a catch block that handles the inner

exception.

System.Exception

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 145 IVI Foundation

12.4.10 IOTimeoutException

Description

A call to the underlying IO mechanism being used by the driver to communicate with the instrument has

timed out.

Exception

Ivi.Driver.IOTimeoutException

Constructors

Ivi.Driver.IOTimeoutException(String message,

 String timeout);

Ivi.Driver.IOTimeoutException();

Ivi.Driver.IOTimeoutException(String message);

Ivi.Driver.IOTimeoutException(String message,

 System.Exception innerException);

Default Message String

An I/O timeout occurred.

Timeout: 2000mS.

Parameters

Inputs Description Base Type

timeout The timeout that was exceeded, including units. For

example, '2000 ms'

String

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 146 IVI Foundation

12.4.11 IviCDriverException

Description

When an underlying IVI-C driver was called to perform an action, the IVI-C driver action did not succeed.

Exception

Ivi.Driver.IviCInteropException

Constructors

Ivi.Driver.IviCInteropException(String message

 Int32 errorCode);

Ivi.Driver.IviCDriverException();

Ivi.Driver.IviCInteropException(String message);

Ivi.Driver.IviCInteropException(String message,

 System.Exception innerException);

Default Message String

The call to the IVI-C driver did not succeed.

Parameters

Inputs Description Base Type

errorCode The status code returned by the IVI-C driver call. String

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 147 IVI Foundation

12.4.12 IviComDriverException

Description

Reserved for future use.

IVI-3.2: Inherent Capabilities Specification 148 IVI Foundation

12.4.13 MaxTimeExceededException

Description

The operation implemented by the method did not complete within the maximum time allowed.

Use this exception, rather than the IOTimeoutException, whenever a method includes a parameter (for

example, maximumTime) that specifies maximum time allowed for the method’s operation to complete.

Exception

Ivi.Driver.MaxTimeExceededException

Constructors

Ivi.Driver.MaxTimeExceededException(String message,

 String timeout);

Ivi.Driver.MaxTimeExceededException();

Ivi.Driver.MaxTimeExceededException(String message);

Ivi.Driver.MaxTimeExceededException(String message,

 System.Exception innerException);

Default Message String

The operation did not complete within the maximum time allowed.

Timeout: 2000mS.

Parameters

Inputs Description Base Type

timeout The timeout that was exceeded, including units. For

example, '2000 ms'

String

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 149 IVI Foundation

12.4.14 OperationNotSupportedException

Description

A driver feature (for this exception, a method, property, or event) is not supported by the driver.

Exception

Ivi.Driver.OperationNotSupportedException

Constructors

Ivi.Driver.OperationNotSupportedException(String message,

 String methodOrPropertyName);

Ivi.Driver.OperationNotSupportedException();

Ivi.Driver.OperationNotSupportedException(String message);

Ivi.Driver.OperationNotSupportedException(String message,

 System.Exception innerException);

Default Message String

The method or property is not supported.

Method or property name: <methodOrPropertyName>.

Parameters

Inputs Description Base Type

methodOrPropertyName The name of the unsupported feature. String

Usage

This exception should not be used for parameters. Use ValueNotSupportedException for enumeration

values or discrete values from a list of defined values that aren’t supported by the driver, and

OutOfRangeException for other invalid values.

This exception should not be used for the Reset method. Use ResetNotSupportedException if the

instrument does not support resets.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 150 IVI Foundation

12.4.15 OperationPendingException

Description

An operation is in progress that prevents the method or property from being executed.

Exception

Ivi.Driver.OperationPendingException

Constructors

Ivi.Driver.OperationPendingException();

Ivi.Driver.OperationPendingException(String message);

Ivi.Driver.OperationPendingException(String message,

 System.Exception innerException);

Default Message String

Operation in progress.

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 151 IVI Foundation

12.4.16 OptionMissingException

Description

A required option is missing from the option string.

Exception

Ivi.Driver.OptionMissingException

Constructors

Ivi.Driver.OptionMissingException(String message,

 String optionName);

Ivi.Driver.OptionMissingException();

Ivi.Driver.OptionMissingException(String message);

Ivi.Driver.OptionMissingException(String message,

 System.Exception innerException);

Default Message String

The option string is missing a required option.

Option name: <optionName>

Parameters

Inputs Description Base Type

optionName The name of the missing option. String

Usage

Since the driver is required to process option strings in the constructor, this exception shall only be thrown

from the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 152 IVI Foundation

12.4.17 OptionStringFormatException

Description

The driver cannot parse the option string.

Exception

Ivi.Driver.OptionStringFormatException

Constructors

Ivi.Driver.OptionStringFormatException();

Ivi.Driver.OptionStringFormatException(String message);

Ivi.Driver.OptionStringFormatException(String message,

 System.Exception innerException);

Default Message String

The option string is not formatted correctly.

Usage

Since the driver is required to process option strings in the constructor, this exception shall only be thrown

from the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 153 IVI Foundation

12.4.18 OutOfRangeException

Description

The driver detected an argument whose value is out or range.

Exception

Ivi.Driver.OutOfRangeException

Constructors

Ivi.Driver.OutOfRangeException(String paramName,

 String actualValue

 String range);

Ivi.Driver.OutOfRangeException();

Ivi.Driver.OutOfRangeException(String message);

Ivi.Driver.OutOfRangeException(String message,

 System.Exception innerException);

Default Message String

The specified argument was out of the range of valid values.

Parameter name: <paramName>.

Actual value: <actualValue>.

Allowable range: <range>.

Parameters

Inputs Description Base Type

paramName The name of the parameter to which the out of range value

is assigned.

String

actualValue The out of range value. String

range The allowable range String

Usage

For a property set, the parameter name is “value”.

Use this exception only if a more specific exception is not appropriate.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 154 IVI Foundation

12.4.19 ResetFailedException

Description

The instrument reset failed.

Exception

Ivi.Driver.ResetFailedException

Constructors

Ivi.Driver.ResetFailedException();

Ivi.Driver.ResetFailedException(String message);

Ivi.Driver.ResetFailedException(String message,

 System.Exception innerException);

Default Message String

The instrument reset failed.

Usage

Under normal circumstances, an instrument reset is done in the constructor and in the Reset() and

ResetWithDefaults() methods in the IiviDriverUtility interface. For particular drivers, other properties and

methods may include a reset if needed for some instrument specific reason.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 155 IVI Foundation

12.4.20 ResetNotSupportedException

Description

The instrument does not support the reset operation.

Exception

Ivi.Driver.ResetNotSupportedException

Constructors

Ivi.Driver.ResetNotSupportedException();

Ivi.Driver.ResetNotSupportedException(String message);

Ivi.Driver.ResetNotSupportedException(String message,

 System.Exception innerException);

Default Message String

The instrument does not support the reset operation.

Usage

If the instrument is capable of doing a reset, but the reset fails, use the Reset Failed exception.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 156 IVI Foundation

12.4.21 SelectorFormatException

Description

The selector is not a simple repeated capability selector, and the selector cannot be parsed.

If the selector is a complex selector that can be parsed, use one of the following exceptions

• SelectorNameException

• SelectorNameUnknownException

• SelectorRangeException

• SelectorHierarchyException

Exception

Ivi.Driver.SelectorFormatException

Constructors

Ivi.Driver.SelectorFormatException(String repeatedCapabilityName,

 String selectorValue);

Ivi.Driver.SelectorFormatException();

Ivi.Driver.SelectorFormatException(String message);

Ivi.Driver.SelectorFormatException(String message,

 System.Exception innerException);

Default Message String

Invalid format for repeated capability selector.

Repeated capability: <repeatedCapabilityName>

Repeated capability selector value: <selectorValue>

Parameters

Inputs Description Base Type

repeatedCapabilityName The name of the repeated capability (not the repeated

capability instance) associated with the method or

property from which the exception was thrown.

String

selectorValue The invalid selector value. String

Usage

Since complex repeated capability selectors may not be used as indexers in IVI.NET, this exception should

never be thrown by an indexer.

If the repeated capability selector does not support complex selectors, use SelectorNameException.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 157 IVI Foundation

12.4.22 SelectorHierarchyException

Description

A hierarchical repeated capability selector includes an invalid number of levels in the hierarchy of nested

identifiers.

If the only problem is an unknown name or names in the range, the Selector Name Exception should be

used.

Exception

Ivi.Driver.SelectorHierarchyException

Constructors

Ivi.Driver.SelectorHierarchyException(String repeatedCapabilityName,

 String selectorValue);

Ivi.Driver.SelectorHierarchyException();

Ivi.Driver.SelectorHierarchyException(String message);

Ivi.Driver.SelectorHierarchyException(String message,

 System.Exception innerException);

Default Message String

The repeated capability selector has the wrong number of levels.

Repeated capability: <repeatedCapabilityName>.

Repeated capability selector value: <selectorValue>.

Parameters

Inputs Description Base Type

repeatedCapabilityName The name of the repeated capability (not the repeated

capability instance) associated with the method or

property from which the exception was thrown.

String

selectorValue The repeated capability selector value that contains the

invalid hierarchy.

String

Usage

Since complex repeated capability selectors may not be used as indexers in IVI.NET, this exception should

never be thrown by an indexer.

If the repeated capability selector does not support complex selectors, use the Invalid Selector exception.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 158 IVI Foundation

12.4.23 SelectorNameException

Description

A repeated capability selector is expected, but the driver does not recognise the provided name.

This exception should be used with any repeated capability parameter or indexer when a more specific

exception is not appropriate. More specific exceptions are:

• SelectorFormatException

• SelectorRangeException

• SelectorHierarchyException

Exception

Ivi.Driver.SelectorNameException

Constructors

Ivi.Driver.SelectorNameException(String repeatedCapabilityName,

 String selectorValue);

Ivi.Driver.SelectorNameException();

Ivi.Driver.SelectorNameException(String message);

Ivi.Driver.SelectorNameException(String message,

 System.Exception innerException);

Default Message String

Invalid repeated capability name in selector.

Repeated capability: <repeatedCapabilityName>.

Repeated capability selector value: <selectorValue>.

Parameters

Inputs Description Base Type

repeatedCapabilityName The name of the repeated capability (not the repeated

capability instance).

String

selectorValue The repeated capability selector value that contains the

invalid name.

String

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 159 IVI Foundation

12.4.24 SelectorNameRequiredException

Description

The selector has more than one instance of a repeated capability, but an instance is not specified. An empty

string is only valid for a repeated capability selector if there is only one instance of the repeated capability.

Exception

Ivi.Driver.SelectorNameRequiredException

Constructors

Ivi.Driver.SelectorNameRequiredException(String message,

 String repeatedCapabilityName);

Ivi.Driver.SelectorNameRequiredException();

Ivi.Driver.SelectorNameRequiredException(String message);

Ivi.Driver.SelectorNameRequiredException(String message,

 System.Exception innerException);

Default Message String

The repeated capability selector name is required.

Repeated capability: <repeatedCapabilityName>.

Parameters

Inputs Description Base Type

repeatedCapabilityName The name of the repeated capability (not the repeated

capability instance).

String

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 160 IVI Foundation

12.4.25 SelectorRangeException

Description

A complex repeated capability selector includes an invalid range or list of repeated capability identifiers.

This includes descending, repeated, overlapped ranges and lists.

If there is an invalid range or list of repeated capability identifiers in a hierarchical selector that also has an

invalid number of levels, throw the SelectorHierarchyException.

If the only problem is an unknown name or names in the range, the SelectorNameException should be

used.

Exception

Ivi.Driver.SelectorRangeException

Constructors

Ivi.Driver.SelectorRangeException(String repeatedCapabilityName,

 String selectorValue);

Ivi.Driver.SelectorRangeException();

Ivi.Driver.SelectorRangeException(String message);

Ivi.Driver.SelectorRangeException(String message,

 System.Exception innerException);

Default Message String

The repeated capability selector includes an invalid range or list.

Repeated capability: <repeatedCapabilityName>.

Repeated capability selector value: <selectorValue>.

Parameters

Inputs Description Base Type

repeatedCapabilityName The name of the repeated capability (not the repeated

capability instance).

String

selectorValue The repeated capability selector value that contains the

invalid range.

String

Usage

Since complex repeated capability selectors may not be used as indexers in IVI.NET, this exception should

never be thrown by an indexer.

If the repeated capability selector does not support complex selectors, use the Invalid Selector exception.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 161 IVI Foundation

12.4.26 SimulationStateException

Description

After construction, the simulation property cannot be set to false, only to true. Some drivers may not allow

simulation to be changed at all.

Exception

Ivi.Driver.SimulationStateException

Constructors

Ivi.Driver.SimulationStateException();

Ivi.Driver.SimulationStateException(String message);

Ivi.Driver.SimulationStateException(String message,

 System.Exception innerException);

Default Message String

The simulation state cannot be changed.

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 162 IVI Foundation

12.4.27 TriggerNotSoftwareException

Description

A Send Software Trigger method could not send a software trigger.

Exception

Ivi.Driver.TriggerNotSoftwareException(String message,

 String triggerSource)

Constructors

Ivi.Driver.TriggerNotSoftwareException();

Ivi.Driver.TriggerNotSoftwareException(String message);

Ivi.Driver.TriggerNotSoftwareException(String message,

 System.Exception innerException);

Default Message String

The trigger source is not set to software trigger.

Actual trigger source: <triggerSource>

Parameters

Inputs Description Base Type

triggerSource The actual trigger source. String

Usage

This exception should only be thrown by SendSoftwareTrigger() methods as defined in Section 2, Software

Triggering Capability, of IVI-3.3, Cross Class Capability Specification.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 163 IVI Foundation

12.4.28 UnexpectedResponseException

Description

The driver received an unexpected response from the instrument.

Exception

Ivi.Driver.UnexpectedResponseException

Constructors

Ivi.Driver.UnexpectedResponseException();

Ivi.Driver.UnexpectedResponseException(String message);

Ivi.Driver.UnexpectedResponseException(String message,

 System.Exception innerException);

Default Message String

The response from the instrument was unexpected.

Usage

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 164 IVI Foundation

12.4.29 UnknownOptionException

Description

The option string contains an option name that it does not recognize.

Exception

Ivi.Driver.UnknownOptionException

Constructors

Ivi.Driver.UnknownOptionException(String message,

 String optionName);

Ivi.Driver.UnknownOptionException();

Ivi.Driver.UnknownOptionException(String message);

Ivi.Driver.UnknownOptionException(String message,

 System.Exception innerException);

Default Message String

The option string contains an unknown option name.

Option name: <optionName>.

Parameters

Inputs Description Base Type

optionName The unknown option name. String

Usage

Since the driver is required to process option strings in the constructor, this exception shall only be thrown

from the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 165 IVI Foundation

12.4.30 UnknownPhysicalNameException

Description

When establishing the map from virtual repeated capability names to physical repeated capability names, a

physical name did not exist.

This exception also applies in cases where any member of a virtual range mapped to a physical name that

did not exist.

Exception

Ivi.Driver.UnknownPhysicalNameException

Constructors

Ivi.Driver.UnknownPhysicalNameException(String driverSession,

 String repeatedCapabilityName,

 String virtualName,

 String physicalName);

Ivi.Driver.UnknownPhysicalNameException();

Ivi.Driver.UnknownPhysicalNameException(String message);

Ivi.Driver.UnknownPhysicalNameException(String message,

 System.Exception innerException);

Default Message String

The configuration store driver session references a physical name that is not

defined by the driver.

Driver session: <driverSession>

Repeated capability: <repeatedCapabilityName>

Virtual name: <virtualName>

Physical name: <physicalName>

Parameters

Inputs Description Base Type

driverSession The name of the driver session in which the unknown

physical name is referenced.

String

repeatedCapabilityName The name of the repeated capability (not the repeated

capability instance).

String

virtualName The virtual name (defined for the repeated capability)

which references the unknown physical name.

String

physicalName The unknown physical name. String

Usage

Since the driver is required to read all relevant configuration store information in the constructor, this

exception shall only be thrown by the constructor.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 166 IVI Foundation

12.4.31 ValueNotSupportedException

Description

An enumerated value or a discrete value from a list of defined values is not supported by the specific

driver.

Drivers should use Ivi.Driver.OutOfRangeException when they encounter other types of invalid values.

Exception

Ivi.Driver.ValueNotSupportedException

Constructors

Ivi.Driver.ValueNotSupportedException(String paramName,

 String value);

Ivi.Driver.ValueNotSupportedException();

Ivi.Driver.ValueNotSupportedException(String message);

Ivi.Driver.ValueNotSupportedException(String message,

 System.Exception innerException);

Default Message String

When instrument model is specified:

Value not supported.

Parameter name: <paramName>.

Value: <value>.

Parameters

Inputs Description Base Type

paramName The name of the parameter to which the unsupported value

is assigned.

String

value The value that is not supported. String

Usage

For a property set, the parameter name is “value”.

If driver developers specify the message string, they are responsible for message string localization.

IVI-3.2: Inherent Capabilities Specification 167 IVI Foundation

12.5 IVI.NET Session Factory Method Exceptions

This section defines the list of IVI.NET session factory methods exceptions.

Refer to Section 2.9.2.2, How Interchangeability Works in COM and .NET, and Section 2.10, The IVI

Configuration Store, of IVI-3.1: Architecture Specifciation for more information about IVI.NET session

factory methods. Refer to IVI-3.5: Configuration Server Specification, for details regarding the

information that is stored in the IVI configuration store.

The following exceptions defined by IVI.NET for use with session factory methods.

• ClassNameNotFoundException

• ConfigurationStoreLoadException

• DriverClassCreationException

• InvalidClassNameException

• SessionNotFoundException

• SoftwareModuleNotFoundException

Other exceptions may be thrown by session factory methods, but only if none of the exceptions listed above

are applicable.

IVI-3.2: Inherent Capabilities Specification 168 IVI Foundation

12.5.1 ClassNameNotFoundException

Description

The IVI.NET session factory method could not find the assembly qualified class name in the configuration

store. Assembly qualified class name is a property of the IVI.NET specific driver's software module entry.

It is needed to create an instance of the specific driver's main class.

This error is thrown after the driver session has been found, and the software module referenced by the

driver session has been found. The cause of the error is either that the assembly qualified class name is

blank, or that the program could not access the ISoftwareModule2 interface which contains the assembly

qualified class name.

If the assembly qualified class name is blank, the driver referenced by the software module is not an

IVI.NET driver, or the driver's software module entry is corrupt. If the driver is an IVI.NET driver, the

problem may be fixed by repairing or reinstalling the driver.

If the assembly qualified class name is not blank, the program could not access the ISoftwareModule2

interface. This interface was added in version 1.5.0 of the IVI Shared Components. If a version of the IVI

Shared Components older than version 1.5.0 is installed, the problem may be fixed by upgrading to a newer

version.

Exception

Ivi.Driver.ClassNameNotFoundException

Constructors

Ivi.Driver.ClassNameNotFoundException(String driverSession,

 String softwareModule);

Ivi.Driver.ClassNameNotFoundException();

Ivi.Driver.ClassNameNotFoundException(String message);

Ivi.Driver.ClassNameNotFoundException(String message,

 System.Exception innerException);

Default Message String

IviSessionFactory: The specific driver’s main class (assembly qualified class

name) is not specified in the configuration store.

Driver session: <driverSession>

Specific driver (software module): <softwareModule>

Parameters

Inputs Description Base Type

driverSession The name of the driver session to be instantiated by the

IVI.NET session factory method.

String

softwareModule The name of the specific driver's software module

referenced by the driver session.

String

IVI-3.2: Inherent Capabilities Specification 169 IVI Foundation

Usage

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVI Foundation

as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 170 IVI Foundation

12.5.2 ConfigurationStoreLoadException

Description

This exception is thrown when the session factory cannot load the configuration store file.

The IVI.NET session factory method could not load the configuration store specified.

This error is thrown if the driver cannot load the configuration store. The cause of the error is either that no

file name can be found, the file specified does not exist, or the file could not be deserialized.

The session factory method gets the configuration store file name from configuration server's process

default location, if it is specified, or from the master location, which should always reference an extant

configuration store file.

If the file cannot be deserialized, then it does not conform to the version of the configuration store XML

schema currently installed by the IVI Shared Components installer.

Exception

Ivi.Driver.ConfigurationStoreLoadException

Constructors

Ivi.Driver.ConfigurationStoreLoadException(System.Exception innerException);

Ivi.Driver.ConfigurationStoreLoadException();

Ivi.Driver.ConfigurationStoreLoadException(String message);

Ivi.Driver.ConfigurationStoreLoadException(String message,

 System.Exception innerException);

Default Message String

IviSessionFactory: There was an error loading the Configuration Server.

Usage

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVI Foundation

as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 171 IVI Foundation

12.5.3 DriverClassCreationException

Description

An instance of the specific driver referenced by the driver session name could not be created, or did not

support the specified type.

This error is thrown after the driver session has been found, and the software module referenced by the

driver session has been found. The cause of the error is that the specific driver could not be instantiated, or

the driver did not support the sepcified type.

For example, the the session factory specifies that the type to be returned is IviDmm, but the driver doesn’t

support the IviDmm instrument class, this exception will be thrown.

Exception

Ivi.Driver.DriverClassCreationException

Constructors

Ivi.Driver.DriverClassCreationException(String softwareModule,

 String type,

 System.Exception exception);

Ivi.Driver.DriverClassCreationException(String softwareModule,

 String type);

Ivi.Driver.DriverClassCreationException();

Ivi.Driver.DriverClassCreationException(String message);

Ivi.Driver.DriverClassCreationException(String message,

 System.Exception innerException);

Default Message String

IviSessionFactory: An instance of the specific driver referenced by the logical

name or driver session name could not be created, or did not support the

specified type.

Specific driver (software module): <softwareModuleName>

Type: <type>

Parameters

Inputs Description Base Type

softwareModule The name of the specific driver's software module. String

type The type, supported by the specific driver, that the

session factory method is trying to return.

String

Usage

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVI Foundation

as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 172 IVI Foundation

12.5.4 InvalidClassNameException

Description

This exception thrown when the session facotry determines that the specific driver’s main class (assembly

qualified class name) is not formatted properly in the configuration store.

 The IVI.NET session factory method has determined that the specific driver’s main class name (assembly

qualified class name) is not formatted properly in the configuration store. The format is

"FullAssemblyName;NamespaceQualifiedTypeName".

This error is thrown after the driver session has been found, and the software module referenced by the

driver session has been found. The cause of the error is that the assembly qualified class name is not

correctly formatted.

Example of a correctly formatted assembly qualified class name:

 "Ivi.Driver.dll, Version=1.0.0.0, Culture=neutral, PublicKeyToken=a128c98f1d7717c1,

processorArchitecture=MSIL"

Exception

Ivi.Driver.InvalidClassNameException

Constructors

Ivi.Driver.InvalidClassNameException(String softwareModule,

 String assemblyQualifiedClassName);

Ivi.Driver.InvalidClassNameException();

Ivi.Driver.InvalidClassNameException(String message);

Ivi.Driver.InvalidClassNameException(String message,

 System.Exception innerException);

Default Message String

IviSessionFactory: The IVI.NET driver’s assembly qualified class name is not

formatted correctly in the configuration store. The correct format is

"FullAssemblyName;NamespaceQualifiedTypeName".

Specific driver (software module): <softwareModule>

Assembly qualified class name: <assemblyQualifiedClassName>

Parameters

Inputs Description Base Type

softwareModule The name of the specific driver's software module. String

assemblyQualifiedClass

Name

The driver's Assembly Qualified Class Name. String

Usage

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVI Foundation

as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 173 IVI Foundation

12.5.5 SessionNotFoundException

Description

The IVI.NET session factory method could not find a driver session that could be used to instantiate an

IVI.NET instrument driver.

Name may refer to either a logical name or a physical name in the configuration store. This error is thrown

if the session factory method cannot find either a logical name or a driver session name that matches the

specified name, or the logical name references a driver session that cannot be found.

Exception

Ivi.Driver.SessionNotFoundException

Constructors

Ivi.Driver.SessionNotFoundException(String message,

 String name);

Ivi.Driver.SessionNotFoundException();

Ivi.Driver.SessionNotFoundException(String message);

Ivi.Driver.SessionNotFoundException(String message,

 System.Exception innerException);

Default Message String

IviSessionFactory: The driver session referenced by the specified Logical Name

or Driver Session Name does not exist in the configuration store.

Name: <name>

Parameters

Inputs Description Base Type

name Name may refer to either a logical name or a physical

name in the configuration store.

String

Usage

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVI Foundation

as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 174 IVI Foundation

12.5.6 SoftwareModuleNotFoundException

Description

The IVI.NET session factory method could not find the software module referenced by the driver session in

the configuration store.

This error is thrown after the driver session has been found. The cause of the error is that the software

module referenced by the driver session could not be found.

In some cases, a driver session is connected to a specific driver's software module, and then that driver is

uninstalled, removing the software module entry from the configuration store. In this case, the software

module reference is maintained in the driver session, but the software module itself is missing. This can be

addressed by reinstalling the driver.

Exception

Ivi.Driver.SoftwareModuleNotFoundException

Constructors

Ivi.Driver.SoftwareModuleNotFoundException(String driverSession,

 String softwareModule);

Ivi.Driver.SoftwareModuleNotFoundException();

Ivi.Driver.SoftwareModuleNotFoundException(String message);

Ivi.Driver.SoftwareModuleNotFoundException(String message,

 System.Exception innerException);

Default Message String

IviSessionFactory: The IVI.NET specific driver software module referenced by

the driver session does not exist in the configuration store.

Driver session: <driverSession>

Specific driver (software module): <softwareModuleName>

Parameters

Inputs Description Base Type

driverSession The name of the driver session to be instantiated by the

IVI.NET session factory method.

String

softwareModule The name of the specific driver's software module

referenced by the driver session.

String

Usage

This exception shall only be thrown by IVI.NET session factory methods distributed by the IVI Foundation

as part of the IVI.NET Shared Components.

IVI-3.2: Inherent Capabilities Specification 175 IVI Foundation

12.6 Warnings

Table 12-3 lists the standard IVI.NET warnings that IVI driver developers may use during driver

development. It also specifies the recommended format of the error description string for those error codes.

In the messages listed below, {0} must include the name of the method or property responsible for the

warning.

Table 12-3. IVI.NET Warnings

Name Warning GUID

ID Query Not Supported "37FC4913-27D4-4dee-90FC-87CED0677D72"

“{0}: ID Query is not supported by this instrument.”

Self Test Not Supported "32B87F50-501E-4c95-A782-FBEECF7FB324"

“{0}: Self test is not supported by this instrument.”

Error Query Not Supported "BE37BF5D-FAE5-44d0-8AA4-4B521D1D17DE"

“{0}: Error query is not supported by this instrument.”

Revision Query Not Supported "278665CA-DCCC-49ad-A76C-3B963143DD20"

“{0}: Firmware revision query is not supported by this instrument.”

IVI-3.2: Inherent Capabilities Specification 176 IVI Foundation

13. Inherent Attribute Value Definitions

This section specifies the actual value for each defined attribute value.

LockType

Value Name Language Identifier Actual

Value

AppDomain .NET LockType.AppDomain 0

Machine .NET LockType.Machine 1

	Warranty
	Trademarks
	Inherent Capabilities Specification
	Revision History
	1. Overview of the Inherent Capabilities Specification
	1.1 Introduction
	1.2 Inherent Capabilities Overview
	1.3 References
	1.4 Definitions of Terms and Acronyms

	2. Specification Section Layout
	2.1 Introduction
	2.1.1 Attribute Section Layout
	2.1.2 Function Section Layout

	3. General Requirements
	3.1 Inherent Capabilities Compliance Rules
	3.1.1 Attribute Compliance Rules
	3.1.2 Function Compliance Rules
	3.1.2.1 Additional Compliance Rules for C Functions with ViChar Array Output Parameters
	3.1.2.2 Additional Compliance Rules for Revision String Attributes

	3.1.3 Boolean Attribute and Parameter Values

	3.2 .NET Namespace

	4. Inherent Capabilities Overview
	4.1 .NET Inherent Capabilities
	4.1.1 Inherent Capabilities Interfaces
	4.1.1.1 IIviDriver
	4.1.1.2 IIviDriverOperation
	4.1.1.3 IIviComponentIdentity
	4.1.1.4 IIviDriverIdentity
	4.1.1.5 IIviDriverUtility
	4.1.1.6 IIviDriverLock

	4.1.2 Interface Reference Properties
	4.1.3 IVI.NET IviDriver Session Factory

	4.2 COM Inherent Capabilities
	4.2.1 Inherent Capabilities Interfaces
	4.2.1.1 IIviDriver
	4.2.1.2 IIviDriverOperation
	4.2.1.3 IIviComponentIdentity
	4.2.1.4 IIviDriverIdentity
	4.2.1.5 IIviDriverUtility

	4.2.2 Interface Reference Properties
	4.2.3 IviDriver COM Category

	4.3 C Inherent Capabilities
	4.4 Relationship of Inherent Attributes and Different Types of IVI Driver

	5. Inherent Property/Attribute Descriptions
	5.1 Cache

	5.2 Class Driver Class Spec Major Version (IVI-C Only)
	5.3 Class Driver Class Spec Minor Version (IVI-C Only)
	5.4 Class Driver Description (IVI-C Only)
	5.5 Class Driver Prefix (IVI-C Only)
	5.6 Class Driver Revision (IVI-C Only)
	5.7 Class Driver Vendor (IVI-C Only)
	5.8 Class Group Capabilities (IVI-C & IVI-COM Only)
	5.9 Component Class Spec Major Version (IVI-COM & IVI.NET Only)
	5.10 Component Class Spec Minor Version (IVI-COM & IVI.NET Only)
	5.11 Component Description (IVI-COM & IVI.NET Only)
	5.12 Component Identifier (IVI-COM & IVI.NET Only)
	5.13 Component Revision (IVI-COM & IVI.NET Only)
	5.14 Component Vendor (IVI-COM & IVI.NET Only)
	5.15 Driver Setup
	5.16 I/O Resource Descriptor
	5.17 Initialized (IVI-COM Only)
	5.18 Instrument Firmware Revision
	5.19 Instrument Manufacturer
	5.20 Instrument Model
	5.21 Interchange Check
	5.22 Logical Name
	5.23 Query Instrument Status
	5.24 Range Check
	5.25 Record Value Coercions
	5.26 Simulate
	5.27 Specific Driver Class Spec Major Version (IVI-C Only)
	5.28 Specific Driver Class Spec Minor Version (IVI-C Only)
	5.29 Specific Driver Description (IVI-C Only)
	5.30 Specific Driver Locator (IVI-C Only)
	5.31 Specific Driver Prefix (IVI-C Only)
	5.32 Specific Driver Revision (IVI-C Only)
	5.33 Specific Driver Vendor (IVI-C Only)
	5.34 Supported Instrument Models (IVI-C & IVI-COM Only)
	6. Inherent Method/Function Descriptions
	6.1 Clear Error (IVI-C Only)

	6.2 Clear Interchange Warnings (IVI-C & IVI-COM Only)
	6.3 Close
	6.4 Disable
	6.5 Error Message (IVI-C Only)
	6.6 Error Query
	6.7 Get Attribute <type> (IVI-C Only)
	6.8 Get Attribute ViString (IVI-C Only)
	6.9 Get Error (IVI-C Only)
	6.10 Get Group Capabilities (IVI.NET Only)
	6.11 Get Next Coercion Record (IVI-C & IVI-COM Only)
	6.12 Get Next Interchange Warning (IVI-C & IVI-COM Only)
	6.13 Get Specific Driver C Handle (IVI-C Only)
	6.14 Get Specific Driver IUnknown Pointer (IVI-C Only)
	6.15 Get Supported Instrument Models (IVI.NET Only)
	6.16 Initialize (IVI-C & IVI-COM Only)
	6.17 Invalidate All Attributes
	6.18 Lock Session
	6.19 Reset
	6.20 Reset Interchange Check
	6.21 Reset With Defaults
	6.22 Revision Query (IVI-C Only)
	6.23 Self Test
	6.24 Set Attribute <type> (IVI-C Only)
	6.25 Unlock Session

	7. Specific Driver Wrapper Functions
	7.1 C Wrappers for IVI-COM Specific Drivers
	7.1.1 Get Native IUnknown Pointer (IVI-C Only)
	7.1.2 Attach To Existing COM Session (IVI-C Only)

	7.2 IVI-COM and IVI.NET Wrappers for IVI-C Specific Drivers
	7.2.1 Native C Handle (IVI-COM Only)

	7.2.2 Attach To Existing C Session (IVI-COM Only)
	8. IVI.NET Specific Driver Constructor
	9. IVI.NET Event Descriptions
	9.1 IVI.NET Events
	9.1.1 Coercion Record Event (IVI.NET Only)

	9.1.2 Interchange Check Warning Event (IVI.NET Only)
	9.1.3 Driver Warning Event (IVI.NET Only)
	10. IVI Inherent Attribute ID Definitions
	10.1 Inherent Attribute ID Values
	10.2 Reserved Vendor Specific Inherent Extension Attribute ID Values and Constants
	10.3 Reserved Module Private Attribute ID Values
	10.4 Reserved Standard Cross Class Capabilities Attribute ID Values

	11. Common IVI-C and IVI-COM Error and Completion Codes
	11.1 IVI-C and IVI-COM Error and Completion Codes
	11.2 IVI-C Error and Completion Codes

	11.3 IVI-COM Error and Completion Codes
	11.4 Reserved Vendor Specific Error and Completion Code Values and Constants
	11.5 Standard COM Error Codes for Use during Driver Development
	11.6 Unused Standard COM Error Codes

	12. Common IVI.NET Exceptions and Warnings
	12.1 General Information About Exceptions
	12.2 Mapping IVI-C and IVI-COM Error Codes to IVI.NET
	12.3 Mapping IVI-COM Session Factory Error Codes to IVI.NET
	12.4 Common Exceptions
	12.4.1 System.ArgumentNullException (.NET Framework)
	12.4.2 System.InsufficientMemoryException
	12.4.3 System.IO.FileNotFoundException
	12.4.4 ConfigurationServerException
	12.4.5 FileFormatException
	12.4.6 IdQueryFailedException
	12.4.7 InstrumentStatusException
	12.4.8 InvalidOptionValueException
	12.4.9 IOException
	12.4.10 IOTimeoutException
	12.4.11 IviCDriverException
	12.4.12 IviComDriverException
	12.4.13 MaxTimeExceededException
	12.4.14 OperationNotSupportedException
	12.4.15 OperationPendingException
	12.4.16 OptionMissingException
	12.4.17 OptionStringFormatException
	12.4.18 OutOfRangeException
	12.4.19 ResetFailedException
	12.4.20 ResetNotSupportedException
	12.4.21 SelectorFormatException
	12.4.22 SelectorHierarchyException
	12.4.23 SelectorNameException
	12.4.24 SelectorNameRequiredException
	12.4.25 SelectorRangeException
	12.4.26 SimulationStateException
	12.4.27 TriggerNotSoftwareException
	12.4.28 UnexpectedResponseException
	12.4.29 UnknownOptionException
	12.4.30 UnknownPhysicalNameException
	12.4.31 ValueNotSupportedException

	12.5 IVI.NET Session Factory Method Exceptions
	12.5.1 ClassNameNotFoundException
	12.5.2 ConfigurationStoreLoadException
	12.5.3 DriverClassCreationException
	12.5.4 InvalidClassNameException
	12.5.5 SessionNotFoundException
	12.5.6 SoftwareModuleNotFoundException

	12.6 Warnings

	13. Inherent Attribute Value Definitions

