
 Page 1

Interchangeable

Instruments
VirtualIVIIVIIVIIVI

IVI-3.10: Measurement and Stimulus
Subsystems (IVI-MSS) Specification

March, 2008 Edition
Revision 1.0.1

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 2 IVI Foundation

Important Information

The IVI Measurement and Stimulus Subsystems Specification (IVI-3.10) is authored by the IVI Foundation

member companies. For a vendor membership roster list, please visit the IVI Foundation web site at

www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation

through the web site at www.ivifoundation.org.

Warranty
The IVI Foundation and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The IVI Foundation and its member companies shall not be liable for errors contained herein or for incidental

or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks
Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

IVI Foundation Page 3 IVI-3.10 Measurement and Stimulus Subsystems Specification

Important Information...2

Warranty ..2

Trademarks ..2

IVI-3.10 Measurement and Stimulus Subsystems (IVI-MSS)
Specification ..5

1. Overview of the IVI-MSS Specification ...6

1.1 Introduction .. 6

1.2 Audience of Specification .. 6

1.3 How this Document is Organized... 6

1.4 IVI-MSS Overview .. 6

1.5 Relationship between IVI-MSS and IVI Drivers.. 7

1.6 References .. 7

1.7 Definitions of Terms and Acronyms .. 7

2. When MSS is Required..9

3. IVI-MSS Architecture ...10

3.1 Architectural Overview Example ... 10

3.2 Role Control Module (RCM) Requirements .. 12

4. Component Models..14

4.1 Simplified Model.. 14

4.2 Detailed Component Model.. 15

4.3 Actors ... 15

4.4 Component Model Walkthrough: ... 16

4.5 Component Requirements .. 16

5. Client Applications ..20

5.1 Graphical User Interfaces ... 20

5.2 ATE System Applications .. 20

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 4 IVI Foundation

6. Compliance ..21

6.1 Solution Provider Responsibilities ... 21

6.2 Verifying Interchangeability... 21

6.3 Customer Verification Process ... 21

6.4 Compliance Document Template ... 22

Appendix A: Design Principles ..23

Appendix B: Example MSS Solution showing Configuration..............24

Appendix C: Bibliography ..31

LIST OF FIGURES

FIGURE 3-1 – EXAMPLE IVI-MSS SOLUTION ..10
FIGURE 3-2 – INSIDE A ROLE CONTROL MODULE (RCM) ...12
FIGURE 4-1 – IVI-MSS SIMPLIFIED COMPONENT MODEL ...14
FIGURE 4-2 – IVI-MSS FULL COMPONENT MODEL ...15

IVI Foundation Page 5 IVI-3.10 Measurement and Stimulus Subsystems Specification

IVI-3.10 Measurement and Stimulus
Subsystems (IVI-MSS) Specification

IVI Driver Architecture Revision History
This section is an overview of the revision history of the IVI-3.10 specification.

Table 1. IVI-3.10 Revisions

Revision Number Date of Revision Revision Notes

Revision 0.1 July 24, 1999 Original draft. (Referred to as Section 12)

Revision 0.2 May 18, 2000 Removal of Asset Server details and introduction of

new terminology

Revision 0.3 Nov 17, 2000 Removal of Event Server details in addition of

UML diagram. This version was not complete in

that the design rules and guidelines material had not

been carried over from the prior version.

Revision 0.4 February 15, 2001 Complete reorganization of material.

Revision 0.5 April 21, 2001 Minor clarifications and inclusion of review

comments.

Revision 0.6 May 15, 2001 New figures and numerous corrections and

clarifications including material on the IVI

configuration store.

Revision 0.7 Aug 20, 2001 Agilent copyright removed.

Alphabetized Glossary. Several definitions

reworded. Solution added.

Clarifications and other minor changes as a result of

review inputs.

Revision 0.8 September 10,2001 Brought style in-line with other IVI specs.

Revision 0.9 November 21, 2001 Added Requirements–Recommendations Section,

Added XML Example

Revision 10.0 March 6-20, 2002 Results of telephone conferences held in March

2002

Revision 10.1 April 15, 2002 Acceptance of numerous format, style, and grammar

errors.

Revision 10.2

April 18, 2002 Corrections to Naming Convention syntax and

XML example

Revision 10.3 April 24, 2002 Review at Fort Collins IVI Meeting

Revision 10.4 July 20, 2002 Final Review draft for San Diego IVI Meeting

Revision 10.5 July 24, 2002 Final Review draft for IVI Foundation 2 week

review

Revision 1.0 Oct 22, 2002 Approved by IVI technical Committee.

Revision numbering reset.

Revision 1.0.1 October 22, 2007 Deprecate Event Server. Remove references to

Event Server in sections 1.4, 1.6, 4.1, 4.2, 4.3, 4.4,

4.5.6, 5.2.1, 6.1 and 6.4.

Revision 1.0.1 March, 2008 Editorial change to update the IVI Foundation

contact information in the Important Information

section to remove obsolete address information and

refer only to the IVI Foundation web site.

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 6 IVI Foundation

1. Overview of the IVI-MSS Specification

1.1 Introduction

The IVI Measurement and Stimulus Subsystem (IVI-MSS) Specification provides architectural guidance and

design principles for software elements which utilize the IVI framework to provide specific software

solutions abstracted one layer above the level of instrument-based control provided by IVI drivers.

The IVI-MSS specification contains architectural guidance and design principles needed to develop

applications that provide two benefits beyond what is provided by IVI drivers alone. These are:

1. Providing for the creation of test and measurement solutions where multiple test assets are used

together under a single software interface.

2. Delivering a higher degree of interchangeability through improved isolation of instruments from

application software.

These two benefits come at the expense of additional cost and complexity relative to IVI drivers alone. Users

who are willing to make some changes in their application programs when an instrument is interchanged or

who do not need to aggregate several instruments together as a product or reusable solution that will

interoperate with multiple vendors, will not need to follow this specification.

IVI-MSS is of particular benefit in the following applications:

1. Applications where the test system is short lived but which contain software elements that can

be reused in future systems independent of instrumentation.

2. Applications that require instrument interchangeability in a way that minimizes the possibility

of test program changes.

3. Applications that require the flexibility of interchanging instruments of different instrument

classes.

The IVI-MSS specification provides a standard way to create measurement and stimulus abstractions that

provide value beyond the capabilities of a physical test instrument and defines the use of the IVI

Configuration Server to maintain portions of the system configuration.

1.2 Audience of Specification

The IVI-MSS specification is for software developers who provide test and measurement solutions. This

specification refers to these developers as solution providers. A solution provider can be an instrument

manufacturer, a third party, an end user, or a system integrator.

1.3 How this Document is Organized

Section 3, IVI-MSS Architecture, explains how IVI-MSS works and what its component pieces are. Section

4, Component Model, provides the details how the IVI-MSS components are used and how they work

together in a COM-based system. Figures 3-1 and 3-2 are conceptual, whereas Figures 4-1 and 4-2 capture

requirements that must be followed for a COM implementation of IVI-MSS. The details of C or other

implementation technologies that may be used to implement the IVI-MSS principles are not contained in this

specification.

Section 5, Client Architectures, reviews how client application programs use IVI-MSS solutions. Appendix

A provides a set of design principles upon which IVI-MSS is based. Appendix B provides an example IVI-

MSS solution that shows details of how the various IVI-MSS pieces are configured for use.

1.4 IVI-MSS Overview

A key aspect of this specification is the requirements of how several IVI components are to be utilized

together in building a PC based test and measurement solution. The specification is an architectural

framework that shows how the following IVI components are to be used:

• IVI Configuration Server

IVI Foundation Page 7 IVI-3.10 Measurement and Stimulus Subsystems Specification

• IVI-COM Session Factory

• IVI Locking Component (future development planned)

This specification defines the following two additional types of components:

• IVI-MSS role control modules

• IVI-MSS servers

The definition of the semantic interfaces required for completed IVI-MSS solutions are outside of the scope

of this specification. These interfaces are used by a client of an IVI-MSS Solution to access functionality.

The definitions for these interfaces may come from any of the following:

• Existing IVI class specifications.

• Future IVI class specifications

• IVI Signal Interface Specification

• Customized interface definitions

Aligning these interfaces with existing standards may decrease the number of test program changes needed

when replacing an IVI-MSS solution.

1.5 Relationship between IVI-MSS and IVI Drivers

IVI class-compliant specific drivers provide standardized API functions for test assets and by themselves

provide a certain measure of instrument interchangeability. It is possible to achieve instrument

interchangeability with IVI drivers if an application does not use instrument functions outside of the common

set of IVI class-compliant specific driver functions and if the response to these functions from an alternative

instrument meets the user’s requirements. In such cases, the additional specifications of IVI-MSS are not

needed to achieve instrument interchangeability.

Neither an instrument vendor nor a driver provider can guarantee that an interchanged asset will deliver the

same answer to an application program if the only thing considered is the availability of an the IVI class

driver interface. This is because the IVI class driver specifications do not rigidly define the actual instrument

behaviors associated with the standardized function calls or methods. Thus, changes to the user application

might be required when interchanging instruments using IVI drivers. By using IVI-MSS principles you

isolate the code that might change. This makes it possible for a solution provider to guarantee that the target

system will produce the “same answer” after an interchange.

1.6 References

The following documents are related to this specification.

• IVI-3.1: Driver Architecture Specification

• IVI-3.4: API Style Guide

• IVI-3.5: Configuration Server Specification

• IVI-3.6: COM Session Factory Specification

• IVI-3.11: Signal Interface Specification

1.7 Definitions of Terms and Acronyms

Term Definition

hardware asset Refer to IVI-5.0: Glossary.

Interchangeability The ability to interchange an instrument of one type with that of

another type, make, or model as long that the new device can

perform the same physical operation. When performing this

interchange using MSS, no change in the user application is

required except replacing Role Control Modules.

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 8 IVI Foundation

IVI Configurable

Component

Refer to IVI-3.5: Configuration Server Specification. IVI-MSS

components are IVI Configurable Components.

IVI-MSS hardware asset

interface

Refer to IVI-5.0: Glossary.

IviSoftwareModule Refer to IVI-5.0: Glossary.

Measurement and Stimulus

Subsystems (MSS)

Software architecture for building IVI-MSS solutions using this

specification.

IVI-MSS server Refer to IVI-5.0: Glossary.

IVI-MSS solution interface Refer to IVI-5.0: Glossary.

IVI-MSS solution Refer to IVI-5.0: Glossary.

Role Refer to IVI-MSS role in IVI-5.0: Glossary.

Role control module

(RCM)

Refer to IVI-MSS role control module (RCM) in IVI-5.0: Glossary.

SCPI Standard Commands for Programmable Instruments. A standard

for the semantics of alphanumeric commanded used to control

instruments.

Second-order effects Characteristics instruments that cause differences in functionality

under the same interface function.

Solution A test and measurement capability that includes instruments or

other hardware devices and associated software to perform a useful

function in a specific application area.

solution provider The organization that develops, delivers, and supports a test and

measurement solution.

TPS Test Program Set. A TPS is a program that performs testing

operations on an electronic module. It is directly associated with

the requirements and capabilities of the module being tested.

IVI Foundation Page 9 IVI-3.10 Measurement and Stimulus Subsystems Specification

2. When MSS is Required
The simplest application of IVI technology is when an application directly utilizes an instrument via an IVI

class-compliant specific driver. In the following cases this simple model breaks down and additional steps

must be taken to achieve desired results:

• The simple model does not provide the ability to use an instrument of one type to fulfill the functions

served by an instrument of another type. There are cases when two dissimilar instruments are capable of

performing the same physical operations. For example, an oscilloscope can make the same DC voltage

measurement as a digital multimeter. Although IVI classes are defined for both of these instruments, the

interface is entirely different and thus the instrument cannot be interchanged.

• The simple model does not address the case where differences in the measurement technology require

slightly different set-up of two similar instruments. For instance, one instrument may require a delay

between presenting an input and initiating a measurement. With the simple model, there are only two

places where this instrument specific software can be put, the IVI driver or the application. Placing user

code in a modified IVI driver has the undesirable ramification of changing the driver, which frequently

comes from a 2
nd
 party and for which the source code is often unavailable. Once a driver has been

modified for use by an application, support for the driver from its provider may be lost. Placing user code

in the end application complicates it by introducing set-up functions that are not normally in the domain

of the end application. This can require that the application be fully tested and validated after the

introduction of a new instrument. To address these issues, a new place needs to be identified where this

code can be put, and this additional layer of code should be under control of whoever is responsible for

achieving instrument interchangeability.

• The simple model that associates one driver with one hardware asset, does not provide a way to create

virtual instruments or solutions that require more than one physical instrument but which present a single

interface or API to an application program.

• The simple model does not provide a place to encapsulate measurement algorithms that are unrelated to a

hardware asset. Frequently, these algorithms are sufficiently complex that it is desirable to encapsulate

them into a reusable form. Achieving a high degree of reusability requires adding an abstraction level

that is higher than general-purpose instrument drivers. A means is needed to achieve measurement or

stimulus reuse that is independent of specific instrumentation.

• The simple model does not identify a specific software module that is controlled by an entity responsible

for instrument interchangeability. Such a layer is necessary if some entity is required to maintain

instrument independence. The driver level is not suitable because the instrument vendor will typically

control it. Similarly, the higher-level software will concentrate on completing the measurement

independently of instrument variations and will be owned by another entity. Therefore, an additional

layer where the interchange can occur needs to be defined.

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 10 IVI Foundation

3. IVI-MSS Architecture
This section explains how IVI-MSS works and what its component pieces are.

3.1 Architectural Overview Example

This is an overview of an example IVI-MSS solution. In this simple example, three instruments are utilized

together to deliver a solution to the user application. FW represents instrument firmware. HW represents

instrument hardware.

Figure 3-1 – Example IVI-MSS Solution

3.1.1 User Application - API Technology

The user application is the software environment in which an IVI-MSS Solution is utilized. Any application

development environment can be used that is capable of interfacing with the software interface provided by

an IVI-MSS Server.

The IVI-MSS specification provides architectural guidance and design principles for software components

which utilize the IVI framework. Unlike IVI instrument drivers, which require standardized architectures and

interfaces, IVI-MSS systems are often custom. As a result, the solution provider and the end user of the IVI-

MSS system select the programming language and interface technology to use.

An IVI-MSS software component may export interfaces in the form of COM or C APIs similar to those used

for standard IVI drivers, or it may use interface styles native to environments such as LabVIEW, MATLAB,

or VEE.

In all cases, IVI-MSS solutions use the IVI Configuration Server to record and access all IVI-MSS

configuration data. IVI-MSS components are recorded in the IVI configuration store using the IVI-MSS

naming conventions set forth in Section 4.5, Component Requirements. The naming conventions make it

possible to discover various IVI-MSS components when examining the IVI configuration store. The IVI

Foundation defines both a COM API and a C API to the IVI Configuration Server. IVI-MSS systems access

the IVI configuration store using one of these two APIs.

For IVI-MSS solutions that use COM interfaces, the IVI Foundation requires the use of the IVI-COM Session

Factory for dynamic loading of components such as role control modules. Refer to IVI-3.6: IVI-COM

Session Factory Specification for more information.

IVI Foundation Page 11 IVI-3.10 Measurement and Stimulus Subsystems Specification

For IVI-MSS solutions that use C interfaces, the IVI Foundation requires the use of the C Shared

Components for dynamic loading of components such as role control modules. Refer to IVI-3.9: C Shared

Components Specification for more information.

For IVI-MSS solutions that use interfaces native to environments such as LabVIEW, MATLAB, or VEE, the

solution provider determines the most appropriate mechanism to use for dynamic loading of components.

3.1.2 IVI-MSS Solution

The software modules that make up an IVI-MSS Solution encapsulate a specific test and measurement

problem. Placing this type of software in a set of components that are independent of the user application

provides for reuse of the encapsulated functionality.

3.1.3 IVI-MSS Solution Interface

Additional interface layers appear in an IVI-MSS solution beyond the simple model where a user application

communicates directly with an instrument’s IVI driver. IVI-MSS solution interfaces with COM or C APIs

have the same style as IVI-COM or IVI-C drivers. What makes these interfaces unique are their semantics.

Refer to Section 3.2.2, IVI-COM and IVI-C API.

3.1.3.1 IVI-MSS Server

The IVI-MSS server is a software module that encapsulates the functionality of a specific test and

measurement domain independent of any specific instrumentation. An IVI-MSS server does not contain any

code that is dependent on either the interfaces or behavior of any specific piece of instrumentation.

When the capabilities of an instrument impose limitations to what an IVI-MSS server can do, data that is

descriptive of these limitations are provided to the IVI-MSS server in a device independent manner. For

example, if an IVI-MSS server needs to know the maximum voltage a power supply provides, this

information should be provided via the IVI-MSS role interface without disclosing to the IVI-MSS server the

make and model of the power supply device. An IVI-MSS server does not directly communicate with test

instrumentation or a general-purpose instrument driver. All test instrument interactions are done via IVI-

MSS role control modules (RCMs).

Making good decisions on which code should be put in an IVI-MSS server and which code should be put in

an RCM is critical to the design of an IVI-MSS solution. Any code that might need to be changed when an

instrument is replaced should not be placed in an IVI-MSS server. IVI-MSS role control modules are the

place to put code that is needed to adapt any specific instrument to the requirements of its associated IVI-

MSS server.

An IVI-MSS server with a COM or C API is an IVI Configurable Component that conforms to the

requirements in IVI-3.1: Driver Architecture Specification, IVI-3.4 API Style Guide, and IVI-3.5:

Configuration Server Specification. Refer to Section 3.2.2, IVI-COM and IVI-C API.

3.1.3.2 Role Control Module (RCM)

An RCM is a software module that connects an instrument or instrument driver with an IVI-MSS Server.

The API for an RCM is the key interface for interchangeability. Replacing an RCM along with its associated

physical instrument is how an interchange is accomplished. An RCM should not expose asset peculiarities

through its interface.

An IVI-MSS role control module with a COM or C API is an IVI Configurable Component that conforms to

the requirements in IVI-3.1: Driver Architecture Specification, IVI-3.4 API Style Guide, and IVI-3.5:

Configuration Server Specification. Refer to Section 3.2.2, IVI-COM and IVI-C API.

3.1.4 Instruments

In the example shown in Figure 3-1, Example IVI-MSS Solution, three instruments are required by the IVI-

MSS solution. Two of these instruments are shown with IVI class-compliant specific drivers and one of them

is shown as being used without an IVI driver.

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 12 IVI Foundation

3.2 Role Control Module (RCM) Requirements

The provider of an IVI-MSS solution shall supply an RCM for each test instrument or asset that is used. An

RCM may also be used for specialized software modules that are hardware independent. An RCM

implements an interface to be used by an IVI-MSS server. Any hardware asset specific software code that

pertains to an IVI-MSS Solution shall be placed in RCMs.

Figure 3-2 – Inside a Role Control Module (RCM)

3.2.1 Role Interfaces

A role is an interface specification established between an IVI-MSS server and an RCM. It is defined by the

solution provider and delivers the specific functionality that is needed by the associated IVI-MSS server.

RCMs are typically solution-specific. Subsystems with different measurement requirements shall use

different RCMs, even if utilizing the same asset. This is necessary to keep the burden of maintaining an

instrument independent interface manageable. For example, a traditional test instrument may have hundreds

of functions whereas an RCM may only have a dozen. If the user replaces this instrument without using an

RCM, it may not be possible to know which of the functions of the original instrument are needed. In that

case, the full set of functions may have to be provided and verified in the replacement driver or instrument.

The interface specifications for RCMs are the responsibility of their client or whoever it is that is making the

claim of interchangeability. Whoever defined the RCM roles and the associated IVI-MSS Server is

responsible for the development and verification of RCMs for that role.

In an IVI-MSS solution, the role interface is the key interface of interchangeability. The specific semantics

defined for any given role shall not identify a particular instrument type so that it will be possible to

interchange instruments of one type with that of another when the required capabilities are common.

A role interface shall not expose functionality beyond what is required by its associated server. This

requirement increases the likelihood that alternative instruments can be found because it reduces the

complexity of validating an RCM. Since role interfaces are the interface of interchangeability in an IVI-MSS

solution, validating at this interface is necessary to “guarantee” the results after an interchange. The

complexity of role interfaces determines the complexity of the validation task.

RCMs are defined and maintained by the solution provider. This means that the solution provider can

guarantee that the solution produce the same or an acceptable result after an interchange. The solution

provider accomplishes this by providing new RCMs and developing the “same answer code” that is contained

IVI Foundation Page 13 IVI-3.10 Measurement and Stimulus Subsystems Specification

therein. It is not possible to use an RCM to achieve interchangeability with an instrument that cannot

perform the physical operations required by the associated role interface.

3.2.2 IVI-COM and IVI-C API

An IVI-MSS role control module with a COM or C API is an IVI Configurable Component that conforms to

the requirements in IVI-3.5: Configuration Server Specification. This means that the IVI Configuration

Server is used to configure an IVI-MSS solution so that IVI-MSS servers are logically connected to their

associated set of role control modules.

IVI-MSS role control modules and IVI-MSS servers comply with selected requirements of IVI-3.1: Driver

Architecture Specification and IVI-3.4: API Style Guide, as indicated here.

Since the IVI-3.1: Driver Architecture Specification is targeted towards IVI drivers not IVI-MSS components

the following requirements are not applicable to MSS: specifying compliance, interchangeability checking,

inherent capabilities, and some aspects of installation such as the IVI Standard Directory Tree. In particular

there are no requirements on the installation location of IVI-MSS solution components. The other

requirements pertain.

All of requirements in the IVI-3.4: API Style Guide pertain except for those specifically formulated for IVI

Drivers an indicated in the guide.

3.2.3 RCM Naming

For the naming conventions for RCMs, refer to Section 4.5.4, IVI-MSS Naming Conventions.

3.2.4 Implementation of Server Specific Role

An RCM shall include all software code or algorithms that are necessary to adapt the capabilities of a specific

test instrument or asset to the interface requirements of its role as specified by its associated IVI-MSS server.

In some cases, where the requirements of a role are much simpler than the capabilities of a selected

instrument, the RCM acts as a filter on the feature set of the more general-purpose instrument. In cases

where the requirements of a role exceed the capabilities of a selected instrument, the RCM shall contain the

software that is necessary to provide those capabilities (where possible).

3.2.5 Role Naming

For the naming conventions for roles, refer to Section 4.5.4, IVI-MSS Naming Conventions.

3.2.6 Driver or Instrument Interface

The RCM may do whatever is necessary to communicate with its associated hardware asset. An IVI driver

can be used for asset communication but is not required. Using an IVI driver provides the benefit that in

some cases, an interchange may be possible without creating a new RCM.

Test instrument or asset producers are responsible for providing the primary instrument control interface for

their assets. Examples of these are SCPI interfaces, VXIplug&play drivers, or IVI drivers. When the test

asset is a general-purpose instrument, it is not likely that the test instrument vendor would be responsible for

developing or proving the RCMs needed by an IVI-MSS Solution.

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 14 IVI Foundation

4. Component Models
This section provides the details how the IVI-MSS components are used and how they work together in a

COM-based system. Although the requirements specified in this section are focused on COM

implementations of IVI-MSS, the general approach applies to IVI-MSS implementations that use other

interface styles.

4.1 Simplified Model

COM Session

Factory

IVI Config

Server

IVI

Configurable

Component

IVI-MSS

Component
IVI DriverIVI-MSS Client

uses

1 used by
*

1 used by

*

*

** 1..*

* *

uses 0..1

uses 0..1

controls not required

Figure 4-1 – IVI-MSS Simplified Component Model

Figure 4-1 is a simplified view that shows how the IVI-COM Session Factory and IVI Configuration Server

components are used in conjunction with other software components to create an IVI-MSS solution. Both

IVI-MSS servers and IVI-MSS role control modules are IVI-MSS components. An IVI-MSS solution can

contain any number of these components, all of which are IVI Configurable Components. The IVI

Configuration Server records the key configuration data and component names in the IVI configuration store.

The IVI-COM Session Factory is used to instantiate all of the IVI-MSS components. IVI drivers are

configured the same as IVI-MSS Components but they are not required.

IVI Foundation Page 15 IVI-3.10 Measurement and Stimulus Subsystems Specification

4.2 Detailed Component Model

IVI COM

Session

Factory

IVI Config

Server

IVI

Configurable

Component

IVI-MSS

Component

IVI-MSS

Server
IVI-MSS RCM

IVI-MSS

Hardware

Asset

Interface

IVI-MSS Role

Interface

IVI-MSS Client

used by

used by

controls

controls

implements

uses

controls

1
*

1

*

*
*

* 1..*

1..*

* *

1..*

1..*

*

* *

Driver
Hardware

Asset
controls

* *

uses

uses

* *

1

1

Specified by IVI-3.10

(IVI-MSS) Specification

implements

Figure 4-2 – IVI-MSS Full Component Model

The shaded areas in Figure 4-2 are covered by this specification. The full component model shows the

additional detail of how IVI-MSS servers and IVI-MSS role control modules can be assembled together into

collections to build a single solution that uses a set of hardware assets. The IVI-MSS client and IVI-MSS

hardware asset interface are conceptual, and their content is not defined by this specification.

4.3 Actors

The actors are the set of software components that participate in the key use cases for IVI-MSS solutions.

• IVI-MSS Client

• IVI-COM Session Factory

• IVI Configuration Server

• IVI-MSS Servers

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 16 IVI Foundation

• IVI-MSS RCMs

• Role Interfaces

• IVI-MSS Hardware Asset Interfaces

• Hardware Assets

• Optional drivers

4.4 Component Model Walkthrough:

Starting at the outside pieces first, IVI-MSS hardware asset interfaces are controlled by one or more role

control modules. The IVI-MSS hardware asset interface may be a hardware asset, or it may be a driver that

operates a hardware asset. When a driver is utilized, it can be an IVI driver, VXIplug&play driver, or any

other type instrument driver. The driver can be compiled into an associated RCM or called from the RCM

and still fit the model. The second outside piece is the IVI-MSS client. This is any client application that

communicates with an IVI-MSS server.

The common components inside the system are:

• The IVI-COM Session Factory, which is used to instantiate a particular class, RCM, or server.

• The IVI Configuration Server, which is used to store and recall the configuration information for a

particular component. This configuration information could include such things as a bus address for a

hardware resource. The IVI Configuration Server is also defined and provided by the IVI Foundation.

The final set of components is usually unique to each particular IVI-MSS system. The main piece is one or

more IVI-MSS servers, which can control zero or more IVI-MSS servers and zero or more RCMs. Each IVI-

MSS server can implement zero or more role interfaces that are usually, but not always, unique to that IVI-

MSS system. A server that does not implement any role interfaces may not use a physical asset since all

physical assets are to be accessed via RCMs. Each RCM can implement zero or more role interfaces and also

control zero or more hardware assets.

The client interface of an IVI-MSS server is also a role interface. For IVI-MSS servers that are accessed

directly by the user application, the role that is the primary interface from the IVI-MSS server to the user

application is called the IVI-MSS solution interface.

A sample scenario would have the IVI-MSS client requesting a particular IVI-MSS server configuration from

the IVI Configuration Server, and then using the IVI-COM Session Factory to instantiate that server. In turn

that server would request the configurations for the RCMs that it needs and get those RCMs instantiated. The

Client would then communicate to the server through a particular role interface and receive callbacks from

the servers. After initialization, each RCM would configure its I/O route and start communicating with its

particular hardware asset. This is just one scenario; many more could be generated using this diagram.

4.5 Component Requirements

4.5.1 IVI-MSS Client

One or more clients may connect to an IVI-MSS solution. Client applications can be stand alone graphical

user interfaces or other applications that do not involve human interaction.

4.5.2 IVI Factory

There is a single out-of-process component called “IVI-COM Session Factory” per physical machine. Refer

to IVI-3.6: COM Session Factory for more information.

4.5.3 IVI Configuration Store

The IVI configuration store is used to record all IVI-MSS configuration data. IVI-MSS components shall be

recorded in the IVI configuration store using the naming conventions specified in Section 4.5.4, IVI-MSS

Naming Conventions. The naming conventions make it possible to discover various IVI-MSS components

when examining the IVI configuration store.

IVI Foundation Page 17 IVI-3.10 Measurement and Stimulus Subsystems Specification

Role names are recorded in the IVI configuration store in a RoleNames collection, referenced from

IviSoftwareModules and the IviConfigStore object. The collection is a string collection of role names as

defined by the role name naming convention.

An IVI-MSS hardware asset interface is represented in the IVI configuration store by a combination of an

IviHardwareAsset and an optional IviSoftwareModule.

Each IVI-MSS server and RCM is represented in the IVI configuration store by an IviSession object and its

associated IVISoftwareModule. The IVI configuration store does not distinguish between RCMs and IVI-

MSS Servers. Solution provider documentation shall specify which IVI-MSS roles are the primary entry

points.

Refer to IVI-3.5: Configuration Server Specification for more information on the IVI configuration store.

4.5.4 IVI-MSS Naming Conventions

The following section describes naming conventions required for IVI-MSS components. This section also

includes naming recommendations. Implementations that follow all of the recommendations should note this

in the compliance document provided with implementation.

This section refers frequently to the example in Appendix B, Example MSS Solution showing Configuration.

4.5.4.1 Solution

A solution is the name for a particular IVI-MSS solution. In the example in Appendix B, the solution is

“LevelFlight”.

4.5.4.2 Role

A role represents a set of functionalities specific to an IVI-MSS solution. In the example in Appendix B,

“Altimeter” is a role.

4.5.4.3 IVI-MSS Solution Server Name

Each IVI-MSS solution shall identify a unique IVI-MSS server for its intended client. This server shall be

recorded in the IVI configuration store as an IviSoftwareModule and associated IviSessions. The

IviSoftwareModule and associated IviSessions shall be identified in the IVI configuration store by an

IviString data component of the following form:

 IviDataComponent name := MSSSolution

 IviDataComponent type := string

 IviDataComponent value := <solution>

The recommended naming convention for the IviSoftwareModule for the unique IVI-MSS server is:

IviSoftwareModule name := MSS + <solution> + Server

In the example in Appendix B, the name IviSoftwareModule for the unique IVI-MSS server is

MSSLevelFlightServer.

4.5.4.4 Role Names

Role names are used to form the names of the interfaces to IVI-MSS servers and role control modules. These

are the formal names for an IVI-MSS role. Each role shall be recorded in the IVI configuration store as an

IviPublishedAPI. The recommended naming convention in cases where the role is used in only one solution

is:

IviPublishedAPI name := IMSS + <solution> + <role>

The required type for any IviPublishedAPI associated with IVI-MSS servers or role control modules is:

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 18 IVI Foundation

IviPublishedAPI type := IVI-MSS

In the example in Appendix B, the role name for the Altimeter is IMSSLevelFlightAltimeter.

4.5.4.5 Role Control Module (RCM) Names

RCM names are chosen by the solution provider. Each RCM shall be recorded in the IVI configuration store

as an IviSoftwareModule and associated IviSessions. The recommended naming convention for the

IviSoftwareModule in cases where the role is used in only one solution is:

IviSoftwareModule name := MSS+<manufacturer>+<model number / family model number>+<solution>+<role>

4.5.5 Discovery of IVI-MSS Components

A client application of the IVI Configuration Server can discover configured IVI-MSS solutions by using the

following procedure:

1. Look for IviSessions and IviSoftwareModules that have attributes named MSSSolution. The

value of these attributes will be the name of the solution that these IviSessions and

IviSoftwareModules are the unique entry point for.

2. Follow associated links from the discovered IviSessions and IviSoftwareModules to identify all

components of a particular solution.

4.5.6 Messaging Between Components

An MSS system may require asynchronous messaging between the components of an IVI-MSS solution or

between an IVI-MSS Server and a client application. There are a variety of standard messaging techniques

that can be used. Microsoft Message Queue (MSMQ) is the current recommendation. Each MSS system

shall define conventions for specifying sources and destinations, so that messages can be correctly delivered,

and so the destination component can identify the source. These conventions shall provide the ability to

fully utilize the MSS system’s abstractions (for example, allowing a role to be specified as a source or

destination).

4.5.7 IVI-MSS Server

An IVI-MSS Server is an IVI Configurable Component that implements one or more role interfaces and

controls zero or more RCMs. From a client perspective there is only one IVI-MSS server per IVI-MSS

solution, and that server is the primary entry point for the solution. An IVI-MSS server cannot have any

specific knowledge of any hardware asset.

An IVI-MSS server is represented in the IVI configuration store by an IviSession object and its associated

IVISoftwareModule.

The server must utilize the IVI Configuration Server to identify the set of IVI-MSS role control modules to be

used by the server. The IVI-COM Session Factory shall be used to acquire a handle to each RCM.

4.5.8 IVI-MSS Role Control Module (RCM)

There are zero of more RCMs per IVI-MSS solution. Zero is possible in the case where a server performs

some type of algorithmic function that is not associated with hardware assets. The server must utilize the IVI-

COM Session Factory to acquire a handle to its associated set of IVI-MSS role control modules. Each

physical instrument in an IVI-MSS solution that is to be interchangeable shall have an associated RCM.

IVI-MSS role control modules implement one or more role interfaces and control zero or more IVI-MSS

hardware assets Interfaces. An RCM shall not control other RCMs.

An RCM is represented in the IVI configuration store as an IviSoftwareModule. The configuration is

represented in the IVI configuration store as an IviSesson, which references the underlying

IviSoftwareModule implementation.

IVI Foundation Page 19 IVI-3.10 Measurement and Stimulus Subsystems Specification

When a physical instrument is replaced in an IVI-MSS Solution, its associated RCM is replaced. If a

physical instrument is replaced with two instruments that need to work together to fulfill the functions of the

original instrument, two RCMs and an IVI-MSS server are required. The IVI-MSS server provides the role

interface of the original RCM.

4.5.9 IVI-MSS Role Interface

The role interface of an IVI-MSS server encapsulates a set of attributes and functions needed by the IVI-MSS

server to exercise a role in a particular IVI-MSS solution. The set of exposed attributes and functions should

be as minimal as possible to maximize interchangeability. The role interface of a role control module is its

API. Each RCM exposes one or more role interfaces as defined by the associated IVI-MSS server.

4.5.10 Distinction between RCMs and IVI-MSS Servers

Both RCMs and IVI-MSS servers are IVI Configurable Components IVI-MSS Components. They key

difference is that IVI-MSS servers may utilize one or more RCMs or other IVI-MSS servers. RCMs may

provide multiple role interfaces but they are not allowed to access other RCMs or IVI-MSS servers.

An IVI-MSS solution may include more than one IVI-MSS server. One of the IVI-MSS servers must be

identified as the unique entry point to be used by client applications. This is accomplished through a unique

naming convention in the IVI configuration store. Refer to Section 4.5.4.3, IVI-MSS Solution Server Name

for more information.

4.5.11 IVI-MSS Hardware Asset Interface

An IVI-MSS hardware asset interface is the programming interface to a test and measurement instrument or

other software controllable hardware device such as a card-based or modular instrument, which may or may

not include an associated driver. The connections to a hardware asset’s signal connectors are outside the

scope of this specification.

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 20 IVI Foundation

5. Client Applications

5.1 Graphical User Interfaces

A complete ATE system may have several software layers. Each of these layers is a point where human

interaction may be needed. Graphical user interfaces are helpful in developing and troubleshooting IVI-MSS

solutions and in some cases are required by the end user. Specific layers where graphical user interfaces may

be needed are the individual test instrument, IVI-MSS Role Control Module role interfaces, IVI-MSS Server

interfaces, and the end user ATE interface. The details of graphical user interfaces are outside the scope of

this specification.

5.2 ATE System Applications

5.2.1 Use of Multiple IVI-Servers

Multiple IVI-MSS solutions can be integrated together in a single ATE system. Each of these can provide

unique measurement capabilities. Multiple instances of a single IVI-MSS solution can be utilized in cases

where high throughput or parallelism is required. These can share from the same pool of physical test

instruments or assets. When multiple IVI-MSS servers are used on the same physical computer, they share a

single instantiation of the IVI Configuration Server. If the IVI Locking component is needed, a single

instance is used by multiple IVI-MSS solutions.

5.2.2 Alternative Topologies involving Role Control Modules

In unique cases where a single test instrument or asset is used by multiple client applications and it is

necessary to maintain asset state between the client applications, specialized IVI-MSS role control modules

can be developed that expose multiple role interfaces that make it possible for a single software component to

maintain the state of the associated physical device. This can be used to eliminate redundant device set up

messages, which could improve performance.

5.2.3 ATE Specific Role Control Modules

In cases where an ATE (Automatic Test Equipment) system has a requirement for general purpose instrument

functions that do not require the aggregation of instruments that would justify the overhead of an IVI-MSS

server, the ATE system can be considered as taking over the role of the IVI-MSS server. An ATE system

designed this way would communicate with its test assets via RCMs through an associated set of IVI-MSS

role interfaces that are customized for the system.

In these cases a special set of IVI-MSS role control modules (RCMs) can be developed for this purpose.

These RCMs must be owned, supported and maintained by the developers of the associated ATE system if

claims of interchangeability are to be guaranteed.

IVI Foundation Page 21 IVI-3.10 Measurement and Stimulus Subsystems Specification

6. Compliance

6.1 Solution Provider Responsibilities

A solution provider shall do the following to claim that a work product follows the IVI-MSS specification:

1) Provide a compliance document as outlined in Section 6.4, Compliance Document Template.

2) The logical names of all IVI-MSS servers and role control modules shall be placed in the IVI

configuration store. The names shall be recorded by use of the IVI Configuration Server.

3) Both IVI-MSS Servers and RCMs shall be represented in the IVI Configuration Server by an

IVISession and its associated IVISoftwareModule.

4) When the IVI-COM Session Factory is used in a solution, this shall be stated in the compliance

document.

5) The IVI-MSS server that is the entry point for client interactions shall be named using the

conventions specified in Section 4.5.4, IVI-MSS Naming Conventions.

6) The topology showing the hierarchy of IVI-MSS role control modules that are used to build a

solution shall be provided.

7) The syntactic and semantic details of the role interface of IVI-MSS server that is the entry point for

client access shall be documented.

8) The compliance document shall state whether the solution provider allows other parties to provide

RCMs. When the solution provider allows other parties to provide RCMs the syntactic and

semantic details of the role interfaces of all IVI-MSS servers and RCMs in the system shall be

documented.

6.2 Verifying Interchangeability

Interchangeably is verified by maintaining a suite of tests that thoroughly exercises the interface of each IVI-

MSS Role in the solution. The test suite is used before and after replacing an IVI-MSS Role Control Module

and its associated physical asset. The results of this test are compared to determine if the interchanged asset

is working properly and delivering acceptable results.

6.3 Customer Verification Process

The customer of an IVI-MSS solution can verify that the provider has complied with this specification by

examining the IVI configuration store and verifying that all of the IVI-MSS components are visible for any

asset that an interchange might be expected for. Specifically, any hardware device in the solution must have

an associated IVI-MSS role control module where customization code can be placed if necessary. Where a

solution is delivered with support for alternative devices for a given IVI-MSS role, compliance can be

verified by switching the configuration data in the IVI configuration store. Performing this operation should

cause the new device to be used without any other required interaction with the solution provider’s product.

The customer should verify that all the required documentation as specified in Section 6.1, Solution Provider

Responsibilities, is provided.

If the customer requires the ability to interchange devices without the services of the solution provider, the

customer will need to obtain from the solution provider the interface details for any IVI-MSS role under

which an interchange will take place. In addition, a test suite for this interface will also need to be obtained.

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 22 IVI Foundation

6.4 Compliance Document Template

The solution provider shall provide to users of an IVI-MSS solution a compliance document based on the

following template.

Identification of IVI-MSS components

List the logical names of all IVI-MSS servers.

List the logical names of all IVI-MSS role control modules supported by the IVI-MSS solution. Refer to

Section 4.5.4.5, Role Control Module (RCM) Names.

For each role control module indicate the make and model of the Hardware Asset it supports.

List the formal names of all roles in the solution. Refer to Section 4.5.4.4, Role Names.

Identify the name of the IVI-MSS server that is the entry point for client interactions.

Provide the topology or hierarchy of IVI-MSS role control modules that are used.

Identification of API style

State which of the IVI-MSS components use the IVI-C API style and which ones use the IVI-COM API style.

Disclosure of API Semantics

Document the syntactic and semantic details of the role interface of IVI-MSS server that is the entry point for

client access.

State whether the solution provider allows other parties to provide RCMs. If so, provide the syntactic and

semantic details of the role interfaces of all IVI-MSS servers and RCMs in the system that pertain to this

agreement.

Utilization of the IVI Common Components:

State that the IVI Configuration store holds all of the configuration data for all IVI-MSS servers and role

control modules in the solution.

State that the IVI Configuration server is used as the only means to record the names of IVI-MSS components

into the IVI configuration store.

IVI Foundation Page 23 IVI-3.10 Measurement and Stimulus Subsystems Specification

Appendix A: Design Principles
Following is a summary of the key concepts and design principles that pertain to IVI-MSS solutions.

Adhering to these design principles is necessary to achieve the highest degrees of test asset interchangeability

in ATE systems.

1. Measurements have value independent of instruments, applications, and Test Program Sets (TPS). A

TPS is a program that performs testing operations on an electronic module. Encapsulating

measurements into IVI-MSS solutions will reduce development costs by making them reusable.

2. A measurement’s utilization of the features of instruments must be rigidly controlled by the use of the

defined “roles” of IVI-MSS role control modules.

3. The use of IVI-MSS role control modules allows subsystem providers to guarantee a support life beyond

the life of the utilized instruments.

4. To assure interchangeability it is critical to identify the owners of the various interfaces upon which

interchangeability is dependent. The owners of these interfaces must be available and willing to support

any claims of interchangeability. Support includes having the ability to test and verify capabilities and

accuracies after the interchange.

5. A general-purpose full-featured interface of a test asset should not be the “interface of interchange”

unless the client owns it and can make modifications. Client changes are often not possible with general-

purpose instrumentation. Avoiding dependencies on the native full featured interface of a device is wise

regardless of whether the interface is an ASCII or a driver interface. These interfaces must never be used

directly by application programmers or TPS developers in systems that must guarantee

interchangeability.

6. General-purpose interfaces that expose all of a test asset’s features are difficult to test. For this reason,

IVI-MSS role control modules that have tightly constrained interfaces make interchangeability testing

easier and practical.

7. The ability to validate increases as API complexity decreases. When there is a small, well-defined

interface that exposes the differences between two hardware assets, testing can be limited to this

interface.

8. The ability to interchange test instruments increases as the ability to validate increases.

9. The abstraction of a measurement provides a natural isolation from asset peculiarities.

10. Extra layers of abstraction in a system naturally simplify the burden of test and make it easier to deliver
interchangeability.

11. The number of potential interchangeable test assets is inversely proportional to the number of exposed
features in an API.

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 24 IVI Foundation

Appendix B: Example MSS Solution showing Configuration
The following example shows the IVI configuration store details when two identical hypothetical MSS-based

solutions are used in the same configuration environment. The IVI-MSS solution in this example includes a

server and two associated RCMs. In the following example, there are three sets of hardware but only two sets

are to be configured for use at any one time. This demonstrates how identical IVI-MSS solutions can be

used in the same system. It also shows how a single IVI-MSS solution can have two sets of configured

hardware available for its use though not at the same time.

The solution is named “LevelFlight”. Its purpose is to measure altitude and make control adjustments to

achieve level flight of an aircraft. The two roles used by this solution are “Altimeter” and “Elevator”, and the

roles names of the corresponding RCMs are MSSLevelFlightAltimeter and

MSSLevelFlightElevator.

The example provides sufficient detail to see how the various software components are named and configured

for use in a single computing environment using the IVI Configuration Server. Refer to Figure 2-2: IVI

Configuration Server UML Class Diagram, in IVI-3.5: Configuration Server Specification.

Further details on the example can be found on the IVI Foundation web site. This includes an XML file that

shows the configuration data of the example in the IVI configuration store along with a graphical model of

the configuration data.

Description of configured components:

1. There are two LevelFlight solutions (subsystems) being used in the same computing environment. Both

solutions use the same IVI-MSS server, but the solutions are configured to use different role control

modules.

2. There are three sets of LevelFlight hardware available for use.

3. The names of the two solutions are chosen by the client as: MyLevelFlightSolution1 and

MyLevelFlightSolution2. These logical names are used to refer to IVI sessions representing

associated IVI-MSS servers.

4. The solution provider determined that the primary entry point of the LevelFlight solution is through the

MSSLevelFlightServer role.

5. Because there are two LevelFlight solutions, there are two IviSessions that refer to the

IviSoftwareModule that is configured with the role name of MSSLevelFlightServer. The names of

the two IVISessions are chosen by the client as MyLevelFlightServer1 and

MyLevelFlightServer2. Both IviSessions point to the single IviSoftwareModule configured by the

solution provider and named MSSLevelFlightServer.

6. The IviSoftwareModule named MSSLevelFlightServer aggregates (controls) two RCMs. One RCM

implements the MSSLevelFlightAltimeter role and the other implements the

MSSLevelFlightElevator role.

The client chooses the names of each RCM represented by an IviSession. For example, for

MyLevelFlightSolution1 the client names the two IVISessions that represent configured RCMs as

MyLevelFlightAltimeter1 and MyLevelFlightElevator1.

7. The following identifies the key actors referred to in the “Entry Owner” column of the table below:

A1 is the person who writes the IVI-MSS client.

A2 is the solution provider. The solution provider defines the interfaces for the top level server, any

intermediate servers, and RCMs, and also provides the associated IVI-MSS servers and RCMs.

A3 is the person who configures the system.

Three sets of hardware are available, each associated with an IviSession that represents an RCM. For

example, three RCMs fulfill the MSSLevelFlightElevator role. The user has named the IVISessions for

these RCMs as MyLevelFlightEvelvator1, MyLevelFlightEvelvator2, and

IVI Foundation Page 25 IVI-3.10 Measurement and Stimulus Subsystems Specification

MyLevelFlightEvelvator3. Each IviSession refers to the IviSoftwareModule which implements the

appropriate RCM that is supplied and named by the solution provider.

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 26 IVI Foundation

Term
IVI Configuration

Server Entry

ConfigStore

Type

Maintains Reference

To

Entry

Owner

Implements

Solution MyLevelFlightSolution1 IviLogicalName MyLevelFlightServer1 A1

“ MyLevelFlightSolution2 IviLogicalName MyLevelFlightServer2 A1

Server

Module

MSSLevelFlightServer IviSoftwareModule ElevatorRole

AltimeterRole

A2 IMSSLevelFlig

htServer

Server

Configuration

MyLevelFlightServer1 IviSession MSSLevelFlightServer,

MyLevelFlightElevator1

,

MyLevelFlightAltimeter

1

A3

(A2

defines

template

)

“

MyLevelFlightServer2 IviSession MSSLevelFlightServer,

MyLevelFlightElevator2

,

MyLevelFlightAltimeter

2

A3

(A2

defines

template

)

“

MyLevelFlightServer3 IviSession MSSLevelFlightServer,

MyLevelFlightElevator3

,

MyLevelFlightAltimeter

3

A3

(A2

defines

template

)

RCM
MSSManufModel1LevelFl

ightElevator

IviSoftwareModule A2 IMSSLevelFlig

htElevator

RCM
MSSManufModel2LevelFl

ightElevator

IviSoftwareModule A2 IMSSLevelFlig

htElevator

RCM
MSSManufModel3LevelFl

ightElevator

IviSoftwareModule A2 IMSSLevelFlig

htElevator

RCM
MSSManufModel4LevelFl

ightAltimeter

IviSoftwareModule A2 IMSSLevelFlig

htAltimeter

RCM
MSSManufModel5LevelFl

ightAltimeter

IviSoftwareModule A2 IMSSLevelFlig

htAltimeter

RCM
MSSManufModel6LevelFl

ightAltimeter

IviSoftwareModule A2 IMSSLevelFlig

htAltimeter

RCM

Configuration

MyLevelFlightElevator1 IviSession MSSManufModel1Leve

lFlightElevator,

ManufModel12

A3

(A2

defines

template

)

“

MyLevelFlightElevator2 IviSession MSSManufModel2Leve

lFlightElevator,

ManufModel13

A3

(A2

defines

template

)

IVI Foundation Page 27 IVI-3.10 Measurement and Stimulus Subsystems Specification

“

MyLevelFlightElevator3 IviSession MSSManufModel3Leve

lFlightElevator,

ManufModel14

A3

(A2

defines

template

)

“

MyLevelFlightAltimeter1 IviSession MSSManufModel4Leve

lFlightAltimeter,

ManufModel15

A3

(A2

defines

template

)

“

MyLevelFlightAltimeter2 IviSession MSSManufMdel5Level

FlightAltimeter,

ManufModel16

A3

(A2

defines

template

)

“

MyLevelFlightAltimeter3 IviSession MSSManufModel6Leve

lFlightAltimeter,

ManufModel17

A3

(A2

defines

template

)

Hardware

Asset

ManufModel11 IviHardwareAsset A3

“ ManufModel12 IviHardwareAsset A3

“ ManufModel13 IviHardwareAsset A3

“ ManufModel14 IviHardwareAsset A3

“ ManufModel15 IviHardwareAsset A3

“ ManufModel16 IviHardwareAsset A3

Role /

Interface

IMSSLevelFlightAltimeter IviPublishedAPI A2

“ IMSSLevelFlightElevator IviPublishedAPI A2

“ IMSSLevelFlightServer IviPublishedAPI A2

Roles to

aggregate

ElevatorRole IviAPIReference IMSSLevelFlightElevat

or

A2

Roles to

aggregate

AltimeterRole IviAPIReference IMSSLevelFlightAltime

ter

A2

Visual Basic program that will create the example’s configuration file

(Note the resultant XML file is available on the IVI Foundation web site.

Private Sub Form_Load()

Dim cs As New IviConfigStore

Dim ss As New IviSession

Dim MSSLevelFlightServer As New IviSoftwareModule

Dim MSSLevelFlightElevator1 As New IviSoftwareModule

Dim MSSLevelFlightElevator2 As New IviSoftwareModule

Dim MSSLevelFlightElevator3 As New IviSoftwareModule

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 28 IVI Foundation

Dim MSSLevelFlightAltimeter1 As New IviSoftwareModule

Dim MSSLevelFlightAltimeter2 As New IviSoftwareModule

Dim MSSLevelFlightAltimeter3 As New IviSoftwareModule

Dim ManufModel1 As New IviHardwareAsset

Dim ManufModel2 As New IviHardwareAsset

Dim ManufModel3 As New IviHardwareAsset

Dim ManufModel4 As New IviHardwareAsset

Dim ManufModel5 As New IviHardwareAsset

Dim ManufModel6 As New IviHardwareAsset

Dim MyLevelFlightServer1 As New IviSession

Dim MyLevelFlightServer2 As New IviSession

Dim MyLevelFlightServer3 As New IviSession

Dim MyLevelFlightElevator1 As New IviSession

Dim MyLevelFlightElevator2 As New IviSession

Dim MyLevelFlightElevator3 As New IviSession

Dim MyLevelFlightAltimeter1 As New IviSession

Dim MyLevelFlightAltimeter2 As New IviSession

Dim MyLevelFlightAltimeter3 As New IviSession

Dim MyLevelFlightSolution1 As New IviLogicalName

Dim MyLevelFlightSolution2 As New IviLogicalName

Dim APIRef As New IviAPIReference

Dim APIRef1 As New IviAPIReference

Dim pubSer As New IviPublishedAPI

Dim pubEle As New IviPublishedAPI

Dim pubAlt As New IviPublishedAPI

ManufModel1.Name = "ManufModel1"

ManufModel2.Name = "ManufModel2"

ManufModel3.Name = "ManufModel3"

ManufModel4.Name = "ManufModel4"

ManufModel5.Name = "ManufModel5"

ManufModel6.Name = "ManufModel6"

‘ add the hardware assets

Call cs.HardwareAssets.Add(ManufModel1)

Call cs.HardwareAssets.Add(ManufModel2)

Call cs.HardwareAssets.Add(ManufModel3)

Call cs.HardwareAssets.Add(ManufModel4)

Call cs.HardwareAssets.Add(ManufModel5)

Call cs.HardwareAssets.Add(ManufModel6)

MSSLevelFlightServer.Name = "MSSLevelFlightServer"

MSSLevelFlightAltimeter1.Name = "MSSManufModel4LevelFlightAltimeter"

MSSLevelFlightAltimeter2.Name = "MSSManufModel5LevelFlightAltimeter"

MSSLevelFlightAltimeter3.Name = "MSSManufModel6LevelFlightAltimeter"

MSSLevelFlightElevator1.Name = "MSSManufModel1LevelFlightElevator"

MSSLevelFlightElevator2.Name = "MSSManufModel2LevelFlightElevator"

MSSLevelFlightElevator3.Name = "MSSManufModel3LevelFlightElevator"

‘ add the software modules

Call cs.SoftwareModules.Add(MSSLevelFlightServer)

IVI Foundation Page 29 IVI-3.10 Measurement and Stimulus Subsystems Specification

Call cs.SoftwareModules.Add(MSSLevelFlightElevator1)

Call cs.SoftwareModules.Add(MSSLevelFlightElevator2)

Call cs.SoftwareModules.Add(MSSLevelFlightElevator3)

Call cs.SoftwareModules.Add(MSSLevelFlightAltimeter1)

Call cs.SoftwareModules.Add(MSSLevelFlightAltimeter2)

Call cs.SoftwareModules.Add(MSSLevelFlightAltimeter3)

pubSer.MajorVersion = 1

pubSer.MinorVersion = 0

pubSer.Name = "IMSSLevelFlightServer"

pubSer.Type = "IVI-MSS"

pubEle.MajorVersion = 1

pubEle.MinorVersion = 0

pubEle.Name = "IMSSLevelFlightElevator"

pubEle.Type = "IVI-MSS"

pubAlt.Name = "IMSSLevelFlightAltimeter"

pubAlt.MajorVersion = 1

pubAlt.MinorVersion = 0

pubAlt.Type = "IVI-MSS"

‘ add the published APIs

Call cs.PublishedAPIs.Add(pubSer)

Call cs.PublishedAPIs.Add(pubEle)

Call cs.PublishedAPIs.Add(pubAlt)

APIRef.Name = "ElevatorRole"

APIRef1.Name = "AltimeterRole"

APIRef.UsedInSession = "Required"

APIRef1.UsedInSession = "Required"

Set APIRef.PublishedAPI = pubEle

Set APIRef1.PublishedAPI = pubAlt

‘ add the APIRef data components to the server

Call MSSLevelFlightServer.DataComponents.Add(APIRef)

Call MSSLevelFlightServer.DataComponents.Add(APIRef1)

Call MSSLevelFlightServer.PublishedAPIs.Add(pubSer)

Call MSSLevelFlightElevator1.PublishedAPIs.Add(pubEle)

Call MSSLevelFlightElevator2.PublishedAPIs.Add(pubEle)

Call MSSLevelFlightElevator3.PublishedAPIs.Add(pubEle)

Call MSSLevelFlightAltimeter1.PublishedAPIs.Add(pubAlt)

Call MSSLevelFlightAltimeter2.PublishedAPIs.Add(pubAlt)

Call MSSLevelFlightAltimeter3.PublishedAPIs.Add(pubAlt)

' add the MSS solution string data component

Dim solution As New IviString

solution.Name = "MSSSolution"

solution.ReadOnly = True

solution.UsedInSession = "Required"

solution.Value = "LevelFlight"

Call MSSLevelFlightServer.DataComponents.Add(solution)

MyLevelFlightServer1.Name = "MyLevelFlightServer1"

MyLevelFlightServer2.Name = "MyLevelFlightServer2"

MyLevelFlightServer3.Name = "MyLevelFlightServer3"

MyLevelFlightElevator1.Name = "MyLevelFlightElevator1"

MyLevelFlightElevator2.Name = "MyLevelFlightElevator2"

MyLevelFlightElevator3.Name = "MyLevelFlightElevator3"

MyLevelFlightAltimeter1.Name = "MyLevelFlightAltimeter1"

MyLevelFlightAltimeter2.Name = "MyLevelFlightAltimeter2"

IVI-3.10 Measurement and Stimulus Subsystems Specification Page 30 IVI Foundation

MyLevelFlightAltimeter3.Name = "MyLevelFlightAltimeter3"

Set MyLevelFlightServer1.SoftwareModule = MSSLevelFlightServer

Set MyLevelFlightServer2.SoftwareModule = MSSLevelFlightServer

Set MyLevelFlightServer3.SoftwareModule = MSSLevelFlightServer

‘ configure the names of the required RCMs used by the servers

Dim elevatorRole As IviAPIReference

Dim altimeterRole As IviAPIReference

Set elevatorRole = MyLevelFlightServer1.DataComponents.Item("ElevatorRole")

Set altimeterRole = MyLevelFlightServer1.DataComponents.Item("AltimeterRole")

elevatorRole.Value = "MyLevelFlightElevator1"

altimeterRole.Value = "MyLevelFlightAltimeter1"

Set elevatorRole = MyLevelFlightServer2.DataComponents.Item("ElevatorRole")

Set altimeterRole = MyLevelFlightServer2.DataComponents.Item("AltimeterRole")

elevatorRole.Value = "MyLevelFlightElevator2"

altimeterRole.Value = "MyLevelFlightAltimeter2"

Set elevatorRole = MyLevelFlightServer3.DataComponents.Item("ElevatorRole")

Set altimeterRole = MyLevelFlightServer3.DataComponents.Item("AltimeterRole")

elevatorRole.Value = "MyLevelFlightElevator3"

altimeterRole.Value = "MyLevelFlightAltimeter3"

‘ set the session’s software module and hardware asset

Set MyLevelFlightElevator1.SoftwareModule = MSSLevelFlightElevator1

Set MyLevelFlightElevator1.HardwareAsset = ManufModel1

Set MyLevelFlightElevator2.SoftwareModule = MSSLevelFlightElevator2

Set MyLevelFlightElevator2.HardwareAsset = ManufModel2

Set MyLevelFlightElevator3.SoftwareModule = MSSLevelFlightElevator3

Set MyLevelFlightElevator3.HardwareAsset = ManufModel3

Set MyLevelFlightAltimeter1.SoftwareModule = MSSLevelFlightAltimeter1

Set MyLevelFlightAltimeter1.HardwareAsset = ManufModel4

Set MyLevelFlightAltimeter2.SoftwareModule = MSSLevelFlightAltimeter2

Set MyLevelFlightAltimeter2.HardwareAsset = ManufModel5

Set MyLevelFlightAltimeter3.SoftwareModule = MSSLevelFlightAltimeter3

Set MyLevelFlightAltimeter3.HardwareAsset = ManufModel6

Call cs.Sessions.Add(MyLevelFlightServer1)

Call cs.Sessions.Add(MyLevelFlightServer2)

Call cs.Sessions.Add(MyLevelFlightServer3)

Call cs.Sessions.Add(MyLevelFlightElevator1)

Call cs.Sessions.Add(MyLevelFlightElevator2)

Call cs.Sessions.Add(MyLevelFlightElevator3)

Call cs.Sessions.Add(MyLevelFlightAltimeter1)

Call cs.Sessions.Add(MyLevelFlightAltimeter2)

Call cs.Sessions.Add(MyLevelFlightAltimeter3)

MyLevelFlightSolution1.Name = "MyLevelFlightSolution1"

MyLevelFlightSolution2.Name = "MyLevelFlightSolution2"

Set MyLevelFlightSolution1.Session = MyLevelFlightServer1

Set MyLevelFlightSolution2.Session = MyLevelFlightServer2

Call cs.LogicalNames.Add(MyLevelFlightSolution1)

Call cs.LogicalNames.Add(MyLevelFlightSolution2)

Call cs.Serialize("c:\temp\MSS-Example.xml")

End Sub

IVI Foundation Page 31 IVI-3.10 Measurement and Stimulus Subsystems Specification

Appendix C: Bibliography

• Architecture Drives Test Standards - Joe Mueller, Roger Oblad, IEEE Spectrum September 2000

• The Role of a Signal Interface in Supporting Instrument Interchangeability – Roger Oblad, Ion Neag,

Autotestcon-2000 Proceedings, Piscataway, New Jersey. IEEE.

• Achieving Robust Interchangeability of Test Assets in ATE Systems - Roger Oblad,

Autotestcon-1999 Proceedings, Piscataway, New Jersey. IEEE

• Connecting You to the Future - Ned Barnholt, Keynote Address Autotestcon-1998 Proceedings,

Piscataway, New Jersey. IEEE.

• Applying New Software Technologies To Solve Key System Integration Issues - Roger Oblad,

Autotestcon-1997 Proceedings, Piscataway, New Jersey. IEEE, pp.181-189.

	Overview of the IVI-MSS Specification
	Introduction
	Audience of Specification
	How this Document is Organized
	IVI-MSS Overview
	Relationship between IVI-MSS and IVI Drivers
	References
	Definitions of Terms and Acronyms

	When MSS is Required
	IVI-MSS Architecture
	Architectural Overview Example
	User Application - API Technology
	IVI-MSS Solution
	IVI-MSS Solution Interface
	IVI-MSS Server
	Role Control Module (RCM)

	Instruments

	Role Control Module (RCM) Requirements
	Role Interfaces
	IVI-COM and IVI-C API
	RCM Naming
	Implementation of Server Specific Role
	Role Naming
	Driver or Instrument Interface

	Component Models
	Simplified Model
	Detailed Component Model
	Actors
	Component Model Walkthrough:
	Component Requirements
	IVI-MSS Client
	IVI Factory
	IVI Configuration Store
	IVI-MSS Naming Conventions
	Solution
	Role
	IVI-MSS Solution Server Name
	Role Names
	Role Control Module (RCM) Names

	Discovery of IVI-MSS Components
	Messaging Between Components
	IVI-MSS Server
	IVI-MSS Role Control Module (RCM)
	IVI-MSS Role Interface
	Distinction between RCMs and IVI-MSS Servers
	IVI-MSS Hardware Asset Interface

	Client Applications
	Graphical User Interfaces
	ATE System Applications
	Use of Multiple IVI-Servers
	Alternative Topologies involving Role Control Modules
	ATE Specific Role Control Modules

	Compliance
	Solution Provider Responsibilities
	Verifying Interchangeability
	Customer Verification Process
	Compliance Document Template

	Appendix A: Design Principles
	Appendix B: Example MSS Solution showing Configuration
	Appendix C: Bibliography

