
IVI Fundamentals

2013-04-13 www.ivifoundation.org 1

Outline

0:10 IVI Overview (the Foundation and Driver overview)
0:45 Using IVI – an example application
0:20 IVI Repeated capabilities
0:25 IVI Coding Patterns and Features
0:30 Driver Advanced Topics

Conclusion

2013-04-13 www.ivifoundation.org 2

Purpose:

Topics:

Time:

IVI Overview
Summarize the work of the consortium
Introduce the technical material with big picture

•  The Consortium
•  The Driver Specifications
•  Benefits and Features of the Drivers

00:15

2013-04-13 www.ivifoundation.org 3

What is IVI?

The primary purpose of the Consortium is to:
•  Promote the development and adoption of standard

specifications for programming test instrument
•  Focus on the needs of the people that use and develop test

systems who must take off-the-shelf instrument drivers and
build and maintain high-performance test systems

•  Build on existing industry standards to deliver specifications
that simplify interchanging instruments and provide for
better performing and more easily maintainable programs

From IVI Foundation By-laws
2013-04-13 www.ivifoundation.org 4

SCPI

IVI fit with other specs

2013-04-13 www.ivifoundation.org 5

GPIB VXI AXIe
1.0 PXI

Physical
Connection

LXI

PCI, PCIe &
Compact PCI

Ethernet VME GPIB

T&M Specific
Protocols/Standards

IO Interfaces &
SW Protocols

VXI-11 HiSLIP

VXI
plug&play

PXI-2 and PXI-6:
Software

VISA/VISA-COM
 message register

IVI 6.3 PXI plug-in

USB
TMC

USB

IVI 3.x (Arch)
 C COM .NET

IVI 4.x(Classes)

 Sc

op
e

D
C

Pw
r

Sp
ec

A
n

D
M

M

FG
en

A
C

Pw
r

Sw
tc

h
Pw

rM
e

R
FS

ig
G

n
C

ou
nt

er

D
ow

nC
nv

U

pC
on

v
D

ig
iti

z

Programming
Interfaces for
C/C++/C#/VB
LabVIEW, etc

Instrument
Capabilities

AXIe 2.0
AXIe
3.1

SCPI

2013-04-13 www.ivifoundation.org 6

GPIB VXI AXIe
1.0 PXI LXI

PCI, PCIe &
Compact PCI

Ethernet VME GPIB

VXI-11 HiSLIP

VXI
plug&play

PXI-2 and PXI-6:
Software

VISA/VISA-COM
 message register

IVI 6.3 PXI plug-in

USB
TMC

USB

IVI 3.x (Arch)
 C COM .NET

IVI 4.x(Classes)

 Sc

op
e

D
C

Pw
r

Sp
ec

A
n

D
M

M

FG
en

A
C

Pw
r

Sw
tc

h
Pw

rM
e

R
FS

ig
G

n
C

ou
nt

er

D
ow

nC
nv

U

pC
on

v
D

ig
iti

z

AXIe 2.0
AXIe
3.1

IO Interfaces &
SW Protocols

Programming
Interfaces for
C/C++/C#/VB
LabVIEW, etc

Instrument
Capabilities

Physical
Connection

T&M Specific
Protocols/Standards

IVI fit with other specs

IVI Fit with Other Specs

2013-04-13 www.ivifoundation.org 7

•  SCPI provided necessary standards based on GPIB needs
-  Command strings natural match to GPIB
-  HiSLIP allows connection to LXI

•  VXIplug&play added drivers necessary for VXI
- Used with other I/O to provide necessary driver

•  IVI enhances VXIplug&play with new features & support for current tools

GPIB

SCPI

IVI

VXI

VXIplug&play

LXI PXI AXIe
Instrument
Interface

Comparing Drivers and SCPI

2013-04-13 www.ivifoundation.org 8

•  Programming with SCPI
viPrintf(vi, “MEAS:VOLT? %f, %f”, range, resolution);
viScanf(vi, &reading);

–  Program deals with strings sent to/from the instrument
–  Syntax errors caught by instrument when program is run
–  Checking for errors requires another sequence to read error
–  Simple model that requires no driver install

•  Programming with IVI-C
Ag34410_MeasureDCVolt(vi, range, resolution, &reading);

–  Program variables sent directly – no chance for SCPI syntax errors
–  Syntax errors caught by compiler or editor
–  No performance impact due to string manipulation
–  Uses debug tools and techniques the programmers knows

What are IVI Drivers – Really??
•  Architecture specifications
•  Instrument class specifications
•  A library of shared software components

Architecture Specifications
3.1,3.2,3.3,3.4,3.5,3.6,3.9,.3.10,3.12,3.17,3.18

4.
1

Sc
op

e

4.
4

D
C

Pw
r

4.
8

Sp
ec

A
n

4.
2

D
M

M

4.
3

FG
en

4.
5

A
C

Pw
r

4.
6

Sw
tc

h

4.
7

Pw
rM

et
er

4.
10

R
FS

ig
G

en

4.
12

 C
ou

nt
er

4.
13

D
ow

nC
nv

4.
14

 U
pC

on
v

4.
15

D
ig

iti
ze

r
~1140 pages of specs

13 specs @ ~220 pages

2013-04-13 www.ivifoundation.org 9

The IVI Architectures
IVI Provides: C, COM, and .NET
•  C dll for environments that use DLLs
•  COM Components for COM and .NET ADEs
•  .NET Assemblies for .NET ADEs

Architectures make use of same class definition
Architectures have specific rules for installation, style, etc.

Details in next section

2013-04-13 www.ivifoundation.org 10

IVI Shared Components
IVI Provides several common components to enable multi-
vendor systems (more information in the final section)

•  C Shared Components
•  Floating Point Services
•  IVI-COM Session Factory
•  Configuration Server
•  COM Type Libraries
•  .NET PIAs
•  .NET Shared Components

2013-04-13 www.ivifoundation.org 11

What is IVI Compliant -Really??

•  Common behavior model
•  Support for IVI Features

–  Simulation, IO, doc, ….

•  Standard install
•  Common API for common

tasks
–  ~40 common functions
–  Simulation, Caching, Open, Close,

Initialize, SW Trigger, Status check,
Version ….

•  Consistent API
–  Common organization, data types,

naming

•  Instrument Class API
•  Custom API still available

–  Especially for capabilities
beyond the class

•  Simplifies exchanging
instruments

IVI Compliant Class Compliant

2013-04-13 www.ivifoundation.org 12

Why IVI? – Simpler to use

•  Instantiation, initialization, shutdown
•  Controlling driver features – state caching, error query,

simulation, etc.
•  Configuration and installation

–  Fixed locations for binaries, source, headers, documentation, examples
–  Proper registry entries always made
–  Common protocol to open/close (standard I/O address is a big benefit)
–  Consistent solution for managing driver versions

•  Standard mechanism for handling multi-channel devices
–  aka repeated capabilities in IVI parlance

•  Standard error reporting

Uniform way of doing common tasks

2013-04-13 www.ivifoundation.org 13

Why? – Common Features

•  Syntactic Interchangeability
•  Simulation
•  Fine grained control through properties
•  Usable in many ADEs
•  Documentation of SCPI commands used by function
•  DirectIO (drivers provide access to SCPI)
•  Attributes for all parameters (fine grained control)
•  Buildable source for message based instruments (SCPI)
•  Tested using a IVI-defined process

Key Capabilities that simplify program development

IV
I-2014

2013-04-13 www.ivifoundation.org 14

Why IVI? – One Driver for any ADE
•  IVI Drivers (C/COM/.NET) provide a first class

experience in nearly any ADE
–  Visual Basic 6
–  Visual C++
–  Visual C# and Visual Basic.NET
–  VBA (Excel, Word, PowerPoint)
–  LabVIEW
–  LabWindows/CVI
–  MATLAB
–  Agilent VEE

2013-04-13 www.ivifoundation.org 15

IVI Registration Page
•  IVI maintains a registration database
•  IVI requires that drivers claiming compliance be registered
•  For users:

–  List of drivers, supported instruments
–  Mechanism to address defects

2013-04-13 www.ivifoundation.org 16

End of IVI Intro

www.ivifoundation.org 2013-04-13 17

Purpose:

Topics:

Time:

Using an IVI Driver

www.ivifoundation.org

Show how to get started with IVI drivers

•  Basic use (Open/Close/Function/Attribute)
•  Types of IVI drivers
•  Repeated capabilities

00:45

2013-04-13 18

Formal IVI Driver Terminology

•  IVI Driver
–  Implements IVI-3.2: Inherent Capabilities Specification
–  Complies with all of the architecture specifications
–  May or may not comply with an instrument class
–  Is either an IVI specific driver or an IVI class driver

•  IVI Specific Driver
–  Written for a particular instrument

•  IVI Class-compliant Specific Driver
–  IVI specific driver that complies with one (or more) of the IVI-defined class specifications
–  Used when hardware independence is desired

•  IVI Custom Specific Driver
–  IVI specific driver that is not compliant with one of the IVI-defined class specifications
–  Not interchangeable

•  IVI Class Driver
–  IVI driver needed only for interchangeability in IVI-C environments
–  Class may be IVI-defined or customer-define

2013-04-13 www.ivifoundation.org 19

Types of IVI Drivers

IVI Class
Driver

IVI Class-
Compliant

Specific Driver

IVI Custom
Specific Driver

IVI Specific Driver

IVI Driver

2013-04-13 www.ivifoundation.org 20

IVI Driver Terminology in Practice
•  Formal terminology is confusing

–  Overly generic because of need to describe IVI-C, IVI-COM and IVI.NET drivers
–  Much simpler in practice

•  For IVI-COM and .NET:
–  There is no class-driver (more on this later), so the distinction between “class

driver” and “specific driver” is not applicable
–  Only one software component (the specific driver or simply, the “driver”)

•  Implements instrument-specific interfaces and (optionally) class-compliant interfaces

•  For IVI-C:
–  Class driver required for interchangeability

•  Delegates function calls to the specific driver
•  National Instruments is the only supplier (free download)

–  Vendors provide a “specific” driver as a separate component

2013-04-13 www.ivifoundation.org 21

Three API Standards in IVI
•  IVI class and architecture specifications layout rules for

all APIs
–  IVI-COM
–  IVI-C
–  IVI.NET

•  To choose which one you need, consider:
–  Development environment (C, .NET, LabVIEW, MATLAB, …)

•  IVI specs also define and specify “driver wrappers”
–  Specifies how to support multiple types of drivers (C, COM, .NET)
–  IVI-COM on top of IVI-C (unusual)
–  IVI-C on top of IVI-COM (common)

2013-04-13 www.ivifoundation.org 22

Functions and Attributes
•  IVI uses the generic terms functions, attributes to refer to

the elements of the API exported by an IVI driver
•  Functions

–  Refers to standard COM methods in IVI-COM
–  Refers to C entry point functions in IVI-C

•  Attributes
–  Properties in IVI-COM and IVI.NET

•  [propput] and [propget] used in COM IDL definitions
–  IVI-C uses attribute access functions

•  Functions for Get and Set of various data types

Ag34401_GetAttributeViReal64(vi, “”, Ag34401_ATTR_RANGE, &range)

2013-04-13 www.ivifoundation.org 23

Attribute Values
•  Attribute Values

–  Numeric or discrete
–  Discrete values represented by enums in IVI-COM

•  Example: IviScopeTriggerTypeEnum, with defined enum values
•  Enum defined in class-compliant type library provided by IVI

–  Discrete values represented by #defined values (macros) in IVI-C
•  Example: IVISCOPE_VAL_EDGE_TRIGGER
•  Values defined in header file (iviscope.h) supplied by specific or class driver

2013-04-13 www.ivifoundation.org 24

Demonstration: C# Hello World

www.ivifoundation.org

•  This demonstration shows
–  Open/Close a driver
–  Set property
–  Call a method

•  Using IVI-C C++ Demo

2013-04-13 25

Demonstration: C Hello World

www.ivifoundation.org

•  This demonstration shows
–  Creating a C project calling IVI Library
–  Opening a driver in C
–  Calling some functions to get a result
–  Setting and getting an attribute

•  Using IVI-C CVI Demo

2013-04-13 26

Simple IVI-COM Driver Usage
in Visual Basic

‘ Note: Direct reference to Agilent54600 makes

‘ this code not interchangeable

Dim driver as New Agilent54600

Dim scope as IIviScope

Set scope = driver

scope.Initialize “GPIB::10”, False, False, “”

scope.Trigger.Level = 3.4 ‘setting a numeric property

scope.Trigger.Type = IviScopeTriggerEdge ‘setting an enum property

scope.Measurements.Initiate ‘calling a method

scope.Close

2013-04-13 www.ivifoundation.org 27

Simple IVI-C Driver Usage
// Statically link with ag54600.lib

// NOTE: Many changes required to make interchangeable

#include “ag54600.h”

int _tmain(int argc, _TCHAR* argv[])
{

 ViSession vi;

 ViStatus viStatus = ag54600_init(“GPIB::10”, VI_FALSE, VI_FALSE, &vi);

 viStatus = ag54600_SetAttributeViReal64(vi, “”,

 AG54600_ATTR_TRIGGER_LEVEL, 3.2);

 viStatus = ag54600_SetAttributeViInt32(vi, “”,

 AG54600_ATTR_TRIGGER_TYPE,

 AG54600_VAL_EDGE_TRIGGER);

 viStatus = ag54600_InitiateAcquisition();

 viStatus = ag54600_close();

}

2013-04-13 www.ivifoundation.org 28

Simple IVI-C Driver Usage
// Statically link with ag54600.lib

// NOTE: Many changes required to make interchangeable

#include “ag54600.h”

int _tmain(int argc, _TCHAR* argv[])
{

 viSession vi;

 viStatus viStatus = ag54600_init(“GPIB::10”, VI_FALSE, VI_FALSE, &vi);

 viStatus = ag54600_SetAttributeViReal64(vi, “”,

 AG54600_ATTR_TRIGGER_LEVEL,

 3.4)

 viStatus = ag54600_ConfigureTrigger (vi,

 AG54600_VAL_EDGE_TRIGGER,

 200e-9)

 viStatus = ag54600_InitiateAcquisition();

 viStatus = ag54600_close();

}

2013-04-13 www.ivifoundation.org 29

IVI-C Attribute Accessors
// Corresponding group of setters also exist

Prefix_GetAttributeViInt32 (ViSession vi, ViConstString RepCapIdentifier,
 ViAttr AttributeID,
 ViInt32 *AttributeValue);

Prefix_GetAttributeViReal64 (ViSession Vi, ViConstString RepCapIdentifier,
 ViAttr AttributeID,
 ViReal64 *AttributeValue);

Prefix_GetAttributeViBoolean (ViSession Vi, ViConstString RepCapIdentifier,
 ViAttr AttributeID,
 ViBoolean *AttributeValue);

Prefix_GetAttributeViSession (ViSession Vi, ViConstString RepCapIdentifier,
 ViAttr AttributeID,

 ViSession *AttributeValue);

Prefix_GetAttributeViString (ViSession Vi, ViConstString RepCapIdentifier,
 ViAttr AttributeID,
 ViInt32 AttributeValueBufferSize,
 ViChar AttributeValue[]);

2013-04-13 www.ivifoundation.org 30

IVI Capability Groups
•  Inherent IVI Capabilities

–  Functionality all IVI drivers must implement
–  Defined in IVI-3.2: Inherent Capabilities Specification

•  Instrument-Specific Capabilities
–  Instrument functions independent of the instrument class specification
–  Defined by the driver developer

•  Base Class Capabilities
–  Functionality common across all instruments of a particular class
–  Required to implement for class-compliant drivers
–  Defined in the relevant instrument class specification

•  Class Extension Capabilities
–  More specialized features of an instrument class
–  Not required to be class-compliant
–  Defined in the relevant instrument class specification

C
ustom

 Instrum
ent

Specific driver

C
lass C

om
pliant

Specific driver

2013-04-13 www.ivifoundation.org 31

www.ivifoundation.org

IVI Inherent Capabilities – IVI-COM

COM Interface Hierarchy Type

DriverOperation

 Cache P

 ClearInterchangeWarnings M

 DriverSetup P

 GetNextCoercionRecord M

 GetNextInterchangeWarning M

 InterchangeCheck P

 InvalidateAllAttributes M

 LogicalName P

 QueryInstrumentStatus P

 RangeCheck P

 RecordCoercions P

 ResetInterchangeCheck M

 IoResourceDescriptor P

 Simulate P

COM Interface Hierarchy Type

Identity

 Description P

 Identifier P

 Revision P

 Vendor P

 InstrumentManufacturer P

 InstrumentModel P

 InstrumentFirmwareRev… P

 SpecificationMajorVersion P

 SpecificationMinorVersion P

 SupportedInstrumentModels P

 GroupCapabilities P

COM Interface Hierarchy Type

Close M

Initialize M

Initialized P

Utility

 Disable M

 ErrorQuery M

 LockObject M

 Reset M

 ResetWithDefaults M

 SelfTest M

 UnlockObject M

M = Method
P = Property

2013-04-13 32

www.ivifoundation.org

Example Class Capabilities

Group Name Description

IviScopeBase Base Capabilities: Includes the capability to acquire waveforms using edge triggering.

IviScopeInterpolation IviScope with the ability to configure the oscilloscope to interpolate missing points in a waveform.

IviScopeTVTrigger IviScope with the ability to trigger on standard television signals.

IviScopeRuntTrigger IviScope with the ability to trigger on runts.

IviScopeGlitchTrigger IviScope with the ability to trigger on glitches.

IviScopeWidthTrigger IviScope with the ability to trigger on a variety of conditions regarding pulse widths.

IviScopeAcLineTrigger IviScope with the ability to trigger on zero crossings of a network supply voltage.

IviScopeWaveformMeas IviScope with the ability to calculate waveform measurements, such as rise time or frequency.

IviScopeMinMaxWaveform IviScope with the ability to acquire a min and max waveforms that correspond to the same time range.

IviScopeProbeAutoSense IviScope with the ability to automatically sense the probe attenuation of an attached probe.

IviScopeContinuousAcquisition IviScope with the ability to continuously acquire data from the input and display it on the screen.

IviScopeAverageAcquisition IviScope with the ability to create a waveform that is the average of multiple waveform acquisitions.

IviScopeSampleMode IviScope with the ability to return the actual sample mode.

IviScopeTriggerModifier IviScope with the ability to modify the behavior of the triggering subsystem in the absence of a trigger.

IviScopeAutoSetup IviScope with the ability to perform automatic configuration.

2013-04-13 33

End of Using an IVI Driver

www.ivifoundation.org 2013-04-13 34

Purpose:

Topics:

Time:

IVI Repeated Capabilities

www.ivifoundation.org

Cover IVI Repeated Capabilities

Describe what IVI Repeated Capabilities are
Discuss 3 ways that they are implemented
Use with the IVI Config Store
Show their use in some examples

00:30

2013-04-13 35

Repeated Capabilities

•  Many instruments contain multiple instances of the same type of
functionality – IVI terms these repeated capabilities

–  Example: Channels in an oscilloscope
–  Example: Traces or markers in a spectrum analyzer

•  An instrument may have multiple sets of repeated capabilities
–  Example: A scope with channels and traces
–  Example: A device with analog channels and digital channels

•  Repeated capabilities can be nested
–  Example: Traces within displays

•  IVI specifies 3 ways drivers can implement repeated capabilities
•  Classes partially specify repeated capabilities

–  Defines which functions and attributes apply to repeated capabilities

2013-04-13 www.ivifoundation.org 36

Repeated Capability Concepts

•  Repeated capability name
–  Unique designator for a specific repeated capability in an instrument class
–  Example: IviScope spec defines “Channel” as a repeated capability name
–  Example: IviSpecAn spec defines “Trace” as a repeated capability name

•  Repeated capability identifier
–  Unique designator for an instance of a particular repeated capability
–  Examples: “CH1”, “CH2” represent different instances of the “Channel” repeated capability
–  Two types exist to facilitate interchangeability: physical and virtual repeated capability

identifiers

•  Physical repeated capability identifier
–  Defined by specific driver
–  Placed in IVI Configuration Store by specific driver installer

•  Virtual repeated capability identifier
–  Defined by end-user
–  End user maps virtual name to physical name in IVI Configuration Store
–  Required for interchangeable code

2013-04-13 www.ivifoundation.org 37

Repeated Capability Concepts

www.ivifoundation.org

Repeated Capability Name: Channels

Physical Repeated Capability Identifier: Chan1 Chan2 Chan3

Virtual Repeated Capability Identifier: Antenna PowerAmp Rotor

Defined by
driver or class

Defined by
application

2013-04-13 38

3 Ways to Expose Repeated Capabilities
•  Parameter-style (pass element to every call)

–  Most common technique in IVI-C drivers
–  First parameter to each applicable function is a repeated capability identifier
–  Must include even if repeated capabilities are not applicable for instrument

•  Can pass in VI_NULL or an empty string if specific instrument has only one channel

•  Selector-style (specify the element with a mode switch)
–  Special SetActive function used to set the active repeated capability identifier

•  All subsequent function/attribute calls use active repcap identifier
–  Useful if repcap identifier is complex and used repeatedly in a sequence of calls

•  Collection-style (specify the element as a member of a collection)
–  Most common technique in IVI-COM drivers
–  Much simpler than other repcap styles when nesting is involved
–  Works a lot like standard COM collections

•  But w/o the nice VB for-each syntax

2013-04-13 www.ivifoundation.org 39

3 Ways to Expose Repeated Capabilities
•  Parameter-style (pass element to every call)

AgM950x_FanTraySpeed(vi, “Tray1”, &speed);

•  Selector-style (specify the element with a mode switch)
AgM950x_FanTraySpeedSelect(vi, “Tray1”);

AgM950x_FanTraySpeed(vi, &speed);

•  Collection-style (element indexes into a collection)
–  Available (and preferred) with IVI-COM and IVI .NET (and preferred)

Int32 speed = myChassis.FanTray[“Tray1”].FanTraySpeed

2013-04-13 www.ivifoundation.org 40

www.ivifoundation.org

Repeated Capability Attributes and
Functions

Technique Attributes Functions
Parameter <Capability> Count

<Capability> Name (COM only)
Get <Capability> Name (C only)

Selector <Capability> Count
Active <Capability>
<Capability> Name (COM only)

Get <Capability> Name (C only)
SetActive <Capability>

Collection* <Capability>s.Item
<Capability>s.Count
<Capability>s.Name**

Not supported

* IVI-COM collection attributes are placed in a collection interface with a name
 ending in <Capability> followed by an ‘s’.

** IVI-COM collections are 1-based

2013-04-13 41

“Trace” Repeated Capability Example

www.ivifoundation.org

•  Class specification defines a “Trace” repeated capability

Technique Attributes Functions
Parameter TraceCount

TraceName (COM only)
GetTraceName (C only)

Selector TraceCount
ActiveTrace
TraceName (COM only)

GetTraceName (C only)
SetActiveTrace

Collection* Traces.Item
Traces.Count
Traces.Name**

Not supported

2013-04-13 42

www.ivifoundation.org

Parameter-Style Repeated Capabilities

‘ Repcap identifier must be passed to each method or property

Dim specan as New AgilentPSA

specan.Bandwidth.Item(“Trace1”) = 4E6

specan.Frequency.Item(“Trace1”) = 3E9

specan.Span.Item(“Trace1”) = 2E10

2013-04-13 43

www.ivifoundation.org

Selector-Style Repeated Capabilities

‘ Repcap identifier only specified once => convenient for complex identifiers

Dim specan as New AgilentPSA

specan.ActiveTrace = “Trace1,Trace2,Trace3”

specan.Bandwidth = 4E6

specan.Frequency = 3E9

specan.Span = 2E10

2013-04-13 44

Repeated Capabilities Using Collections
•  For each syntax not supported for IVI-COM collections

–  IVI-COM collections are not “real” COM collections
–  COM collections require IDispatch and IVI-COM interfaces are

intentionally not IDispatch-based

Dim specan as New AgilentPSA

Dim trace as IAgilentPSATrace

Set trace = specan.Traces.Item(“Trace1”)

trace.Bandwidth = 4E6

trace.Frequency = 3E9

trace.Span = 2E10

2013-04-13 www.ivifoundation.org 45

Repeated Capabilities and IVI-C
Attributes

•  All IVI-C attribute accessors accept a repcap identifier as a
parameter

–  Can pass VI_NULL or empty string if repeated capabilities do not apply to the
attribute being read/written

agpsa_SetAttributeViReal64 (ViSession Vi, ViConstString RepCapIdentifier,

 ViAttr AttributeID,
 ViReal64 AttributeValue);

ViSession vi;

ViStatus viStatus = agpsa_init(“GPIB::10”, VI_FALSE, VI_FALSE, &vi);

viStatus = agpsa_SetAttributeViReal64(vi, “Trace1”, AGPSA_ATTR_BANDWIDTH, 3E6);

viStatus = agpsa_SetAttributeViReal64(vi, “Trace1”, AGPSA_ATTR_SPAN, 2E9);

2013-04-13 www.ivifoundation.org 46

Comparing IVI-COM and IVI-C

IVI-COM
•  Collection interfaces indicate what functionality applies to repeated

capabilities.

IVI-C
•  Need to know which attributes apply to a repeated capability and which

apply to the driver as a whole.
•  Nested repeated capabilities use an IVI-defined string-based syntax.

 Acme12_WindowTraceStart(vi,“a1:S11”,23)

myNA.Window[“a1”].Trace[“S11”].Start=23;

2013-04-13 www.ivifoundation.org 47

Repeated Capability Access Pitfalls

www.ivifoundation.org

// Wrong – must indicate which trigger repeated capability
ag34401_SetAttributeViReal64(session, VI_NULL,

 AG34401_ATTR_TRIGGER_LEVEL, 0.45);

// Wrong – Range applies to the whole driver, not to Channel1
ag34401_SetAttributeViReal64(session, “Channel1”,

 AG34401_ATTR_RANGE, 100);

// Wrong – Enabled is a property of output repeated capability,
// not the trigger repeated capability
ag34401_SetAttributeViBoolean(session, “Out1:Trig1”,

 AG34401_ATTR_OUTPUT_ENABLED, VI_TRUE);

Strings are not checked until runtime

2013-04-13 48

Selecting Multiple Capabilities At Once

•  Parameter used to specify repeated capability instances is known as
a repeated capability selector

–  Same rules apply for all 3 repeated capability techniques

•  Simple repeated capability selector
–  Single, non-nested repcap instance
–  May be a physical or virtual identifier
–  Example: “chan1”

•  Repeated capability ranges
–  Lower bound to upper bound
–  Example: “1-3”, “8-10”

•  Repeated capability lists
–  Simple comma-separated list
–  Example: “1, 4, 7, 9”
–  Combined Example: “1-3, 6, 8, 10-12”

2013-04-13 www.ivifoundation.org 49

www.ivifoundation.org

•  This demonstration shows
–  Collection style repeated capability in

IVI-COM

Power supply with multiple outputs
Repeated capability allows controlling each output

2013-04-13 50

www.ivifoundation.org

•  This demonstration shows
–  Selector style repeated capability in IVI-C

•  Repeated Capability CVI Demo

Power supply with multiple outputs
Repeated capability allows controlling each output

2013-04-13 51

End of Repeated Capabilities

www.ivifoundation.org 2013-04-13 52

Purpose:

Topics:

Time:

IVI Coding Patterns

www.ivifoundation.org

Show common features and how to use them
Help build a ‘mental model’ around IVI APIs

•  Using IVI Driver Features

00:30

2013-04-13 53

Inherent IVI-COM/.NET API (all drivers)
Disable()
ErrorQuery()
Reset()
ResetWithDefaults()
SelfTest()

Utility

Close()
Initialize()
Initialized()
Utility
Operation
Identity

IVIDriver

Identity

Description
GroupCapabilities
Identifier
InstrumentFirmwareRevision
InstrumentManufacturer
InstrumentModel
Revision
SpecificationMajorRevision
SpecificationMinorRevision
SupportedInstrumentModels
Vendor

Legend:
 Property
 Read Only Property
 Method
 Interface Pointer (Property)
 Interface

Operation

ClearInterchangeWarnings()
GetNextCoercionRecord
GetNextInterchangeWarning()
InvlaidateAllAttributes()
ReseInterchangeCheck()
Cache
DriverSetup
InterchangeCheck
IoResourceDescriptor
LogicalName
QueryInstrumentStatus
RangeCheck
RecordCoercions
Simulate

www.ivifoundation.org 2013-04-13 54

2013-04-13

Base IVI-COM/.NET API for DMM

Abort()
Fetch()
Initiate()
IsOverRange()
Read()

Measurement

Function
Range
Resolution
Configure()
Measurement
Trigger

IVIDmm

Trigger

Delay
Source
Configure() Legend:

 Property
 Read Only Property
 Method
 Interface Pointer (Property)
 Interface

www.ivifoundation.org 55

Full IVI-COM/.NET API for DMM

2013-04-13 www.ivifoundation.org 56

Abort()
Fetch()
Initiate()
IsOverRange()
Read()

Measurement

Function
Range
Resolution
Configure()
Measurement
Trigger
AC
Advanced
Frequency
Temperature

IVIDmm

Trigger

Delay
Source
Configure()
MultiPoint

Legend:
 Property
 Read Only Property
 Method
 Interface Pointer
 Interface

AC

FrequencyMax
FrequencyMin
ConfigureBandwidth()

Advanced

ActualRange
ApertureTime
ApertureTimeUnits
AutoZero
PowerlinFrequency

Frequency

VoltageRange

Temperature

RTD
Thermistor
Thermocouple
TransducerType

MultiPoint

Count
MeasurementComplete
SampleCount
SampleInterval
SampleTrigger
Configure()

RTD

Alpha
Resistance
Configure()

Thermistor

Resistance

Thermocouple

FixedRefJunction
RefJunctionType
Type
Configure()

Using the Hierarchy: Attributes
•  Attributes provide:

–  Fine grain control
–  An easy way to read-back settings

•  Important to:
–  Adjust a single setting independent of others
–  Faster if only a single parameter needs to be changed
–  May be necessary because not all attributes are in high-level config

functions

•  Examples:
 C/COM: Dmm.Resolution = 10e-6;
 C: IviDmm_SetAttributeReal64(Vi,

 IVIDMM_ATTR_RESOLUTION_ABSOLUTE,10e-6)

•  Many important attributes have additional C functions

2013-04-13 www.ivifoundation.org 57

Using the Hierarchy: Configure
•  Sets up a clump of the hierarchy in a single step

 COM/NET: dmm.Trigger.Configure(<trigger source>, <delay>)
 C: IviDmm_ConfigureTrigger

 (Vi,TriggerSource,TriggerDelay)
•  Set attributes in same location of hierarchy or lower
•  Attributes not addressed can usually be left alone
•  Programmer does not have to deal with couplings

 COM/NET: dmm.Configure(<function>, <range>, <resolution>)
 C: IviDmm_ConfigureMeasurement

 (Vi,Function,Range,Resolution);

2013-04-13 www.ivifoundation.org 58

Resolving Couplings with Configure

www.ivifoundation.org

Dmm.Configure(AcmeFunctionEnum.AcmeFunctionDCVolts,23,10e-3)

// … make some measurements)

Dmm.Configure(AcmeFunctionEnum.AcmeFunctionOHMS, 1e6, 10);

// … make some measurements

Dmm.Range = 23;

Dmm.Resolution = 10e-3;

Dmm.Function = AcmeFunctionEnum.AcmeFunctionDCVolts;

// make some measurements

Dmm.Range = 1e6;

Dmm.Resolution = 10;

Dmm.Function = AcmeFunctionEnum.AcmeFunctionOhms;

// make some measurements

Following 2 blue boxes are nominally the same:

2013-04-13 59

Resolving Couplings with Configure

www.ivifoundation.org

Dmm.Configure(AcmeFunctionEnum.AcmeFunctionDCVolts,23,10e-3)

// … make some measurements)

Dmm.Configure(AcmeFunctionEnum.AcmeFunctionOHMS, 1e6, 10);

// … make some measurements

Dmm.Range = 23;

Dmm.Resolution = 10e-3;

Dmm.Function = AcmeFunctionEnum.AcmeFunctionDCVolts;

// make some measurements

Dmm.Range = 1e6;

Dmm.Resolution = 10;

Dmm.Function = AcmeFunctionEnum.AcmeFunctionOhms;

// make some measurements

When using properties, we attempt to set
the voltage range to 1MVolt and get an
error

2013-04-13 60

General IVI Naming Conventions

•  All instrument class names start with “Ivi”
–  Example: IviScope, IviDmm

•  Function names
–  One or more words using Pascal casing
–  First word should be a verb

2013-04-13 www.ivifoundation.org 61

IVI-C Naming Conventions
•  Function names

–  Class-compliant: <ClassName>_<FunctionName>
•  Example: IviScope_ConfigureEdgeTriggerSource

–  Instrument-specific: <DriverName>_<FunctionName>
•  Example: ag54600_ConfigureEdgeTriggerSource

•  Attributes
–  All capitals
–  <CLASS_NAME>_ATTR_<ATTRIBUTE>

•  Example: IVISCOPE_ATTR_TV_TRIGGER_SIGNAL_FORMAT
–  Attribute values: <CLASS_NAME>_VAL_<VALUE>

•  Example: IVISCOPE_VAL_EDGE_TRIGGER

2013-04-13 www.ivifoundation.org 62

IVI-COM Naming Conventions

•  Interface naming
–  Class compliant: Starts with “IIvi”
–  I<ClassName>

•  Example: IIviScope
–  Sub-interfaces add words to the base name that match the C hierarchy as close

as possible
•  Examples: IIviFgenArbitrary, IIviFgenArbitraryWaveform

•  Defined values
–  Enumerations and enum values are used to represent discrete values in IVI-

COM
–  <ClassName><descriptive words>Enum

•  Example: IviScopeTriggerCouplingEnum
–  Enum values don’t end in “Enum” but use the last word to differentiate

•  Examples: IviScopeTriggerCouplingAC and IviScopeTriggerCouplingDC

2013-04-13 www.ivifoundation.org 63

Special Features of IVI Drivers
•  Simulation

–  Driver provides basic operation when no instrument is present

•  Range Checking
–  Drivers validate input values against instrument limits for an attribute

•  State Caching
–  Driver caches values of attributes sent to/retrieved from instrument to improve

performance by reducing I/O traffic

•  Instrument Status Checking
–  Driver checks the status of the instrument at the end of each user operation

•  Coercion and Coercion Recording
–  Driver coerces user-specified values to values accepted by the instrument

•  Interchangeability Checking
–  Driver reports conditions it detects that may result in non-interchangeable

behavior

2013-04-13 www.ivifoundation.org 64

Simulation (required feature)

•  Driver operates without creating an I/O session
•  Allows user to begin working with test code before an

instrument has been obtained
•  IVI provides little guidance on how simulated data should

be generated
–  Difficult to implement meaningful measurement behaviors
–  Ideal measurement simulation requires knowledge of the DUT response

•  IVI Simulation extremely useful when developing system
–  Also provides a starting point for DUT simulation

dmm.Initialize(“GPIB::10”, False, False, ”Simulate=True”)

‘ ... OR ...

dmm.DriverOperation.Simulate = True

‘default value is False

2013-04-13 www.ivifoundation.org 65

Range Checking (required feature)

•  Driver validates parameters against allowed limits
–  IVI defines specific error codes to be returned for out of range values

•  Valid ranges vary based on specific instrument model
•  Difficult to implement in many instruments

–  Allowed ranges may be complex combination of configuration and
measurement settings

•  Many IVI drivers let the instrument perform the range
checking
–  Attempt to set the value, then check if instrument succeeded

dmm.Initialize “GPIB::10”, False, False, ”RangeCheck=True”

‘ ... OR ...

dmm.DriverOperation.RangeCheck = False

‘default value is True

2013-04-13 www.ivifoundation.org 66

State Caching (optional feature)

•  Goal is performance boost
–  Driver caches values sent to and retrieved from instrument in memory
–  Eliminates redundant I/O trips to instrument when settings are read/written more

than once

•  Very, very difficult to implement completely in complex instruments
–  Cache coherency problems occur easily
–  Instrument couplings abound
–  Coerced values complicate cache management
–  Driver may need to replicate significant portion of instrument algorithms

•  Partial state caching frequently beneficial
–  Certain performance critical parameters may benefit
–  Must beware of coupled parameters
–  Most instruments also implement a cache internally, so be sure of the benefit

dmm.Initialize “GPIB::10”, False, False, ”Cache=True”

‘ ... OR ...

dmm.DriverOperation.Cache = False

‘default value is True

2013-04-13 www.ivifoundation.org 67

Instrument Status Checking (required feature)

•  Required where possible (some instruments do not
provide status check)

•  Driver queries the instrument status at the end of each
user operation that communicates with instrument

•  Ensures instrument is operating as the driver expects
•  Useful during implementation and debugging of

application code
–  After validating the program, disable status checking to maximize

performance

dmm.Initialize “GPIB::10”, False, False, ” QueryInstrStatus=True”
‘ ... OR ...

dmm.DriverOperation. QueryInstrStatus = True
‘default value is False

2013-04-13 www.ivifoundation.org 68

Coercion

•  A continuous range of inputs, may need to be coerced into a limited
set of legal values for the instrument

–  Example: User specifies a 25 Volt range for a DMM that has only 3, 30, 300, 3000
Volt ranges

•  IVI class specifications define a coercion direction in which an IVI
specific driver coerces a user-specified value

–  Up: Coerce to next value greater than user-specified value
–  Down: Coerce to next value less than user-specified value
–  None: Don’t coerce => return an error if instrument can’t be set to value
–  Driver allowed to coerce in different direction than spec suggests if the user’s

request can be satisfied

2013-04-13 www.ivifoundation.org 69

Coercion Recording (optional feature)

•  Driver maintains in-memory log of coercions during a session
–  Internally a circular buffer of fixed size
–  Oldest value discarded when max size reached
–  Driver exports function for accessing the log

dmm.Initialize “GPIB::10”, False, False, ”RecordCoercions=True”

‘ ... OR ...

dmm.DriverOperation.RecordCoercions = True

‘default value is False

‘Returns an error if driver doesn’t implement coercion recording

HRESULT DriverOperation.GetNextCoercionRecord(

 [out, retval] BSTR* CoercionRecord);

2013-04-13 www.ivifoundation.org 70

I/O for IVI: GPIB and VXI Bus
•  IVI drivers are required to use VISA for GPIB and VXI

Bus
•  Since IVI drivers use VISA, any driver works with any

vendors GPIB or VXIBus hardware
–  IO Hardware vendor provides the VISA library

•  This ensures the driver works with whatever GPIB or VXI
solution the application uses

•  Driver providers do not have to provide VISA library

2013-04-13 www.ivifoundation.org 71

I/O for IVI: Industry Standard IO
•  IVI does not specify IO solution for other interfaces

–  Network (LAN/WAN)
–  IEEE 1394
–  USB
–  PCI/PCI Express

•  These industry standard interfaces frequently do not
require any special IO library, so IVI permits driver to use
any solution

•  These drivers usually include IO with the driver
–  VISA is still a common choice for T&M protocols
–  NOT an IVI Requirement

2013-04-13 www.ivifoundation.org 72

VISA APIs
•  Both National Instruments and Agilent ship two VISA

APIs as part of VISA
–  VISA-C (aka “classic VISA”, visa32.dll)

•  VPP-4.3.2: VISA Implementation Specification for Textual Languages
–  VISA-COM

•  VPP-4.3.4: VISA Implementation Specification for COM

•  VISA.NET standards effort expected to complete 2014

2013-04-13 www.ivifoundation.org 73

Direct I/O Access with VISA
‘This code uses the IFormattedIO488 interface returned

‘from one of the driver properties

Dim dmm as New Agilent34401A

Dim io as IFormattedIO

dmm.Initialize “GPIB::10”, False, False, ””

Set io = dmm.System.IO ‘retrieve IFormattedIO488 interface
io.WriteString(“SYST:CAL”)

io.WriteNumber(13439)

‘Other functions exist for reading/writing lists, IEEE binary blocks, etc.

ViSession vi;

ViStatus viStatus = ag34401a_init(“GPIB::10”, VI_FALSE, VI_FALSE, &vi);

ViSession io = Ivi_IOSession(vi);

viPrintf (io, “SYST:CAL”)

‘Other functions exist for reading/writing lists, IEEE binary blocks, etc.

•  VISA-COM

•  VISA-C

2013-04-13 www.ivifoundation.org 74

Direct I/O
•  Useful for accessing functionality not supported by the

driver
–  IVI drivers encouraged to expose the complete instrument capability

•  Warning: Direct I/O access bypasses the driver
completely
–  State-cached data may be invalidated
–  Other driver state may become invalid

•  IVI-2014
–  IVI drivers for message-based instruments are required to provide a

standardized direct I/O mechanism
–  API is similar to VISA Read and Write

2013-04-13 www.ivifoundation.org 75

Instantiating IVI-COM from .NET

•  .NET programs use a COM Interop (interoperability)
assembly to call when calling IVI-COM from .NET.
–  This assembly is defined by IVI.
–  The Interop assembly code is generated with standard Microsoft tools

which inspect the IVI-COM driver API to create the .NET wrapper.

•  To understand what happens, we need to start by
looking at the underlying COM object

•  The core of every IVI-COM driver is a single object with
many interfaces.
•  The interfaces are organized into two hierarchies.

2013-04-13 www.ivifoundation.org 76

The COM/.NET Hierarchy Implementation

Ag34401
Instrument-Specific
Example

IAg34401
interface

IAg34401Measurement
interface

IAg34401Ac
interface IAg34401Multipoint

interface (Child of
IIviDmmTrigger)

2013-04-13 www.ivifoundation.org 77

The Hierarchy Implementation

•  The single driver object has many interfaces
•  Interface reference pointers on each interface, implement the

hierarchy:
 myDmm.Temperature.RTD.Configure()

Ag34401
Driver
with

IVI DMM

IIviDmm
IIviDmmAC
IIviDmmFrequence
IIviDmmMeasurement
IAgilent34401
IAgilent34401ACVoltage
IAgilent34401DCVoltage
IIviDriver
IAgilent34401Class
Agilent34401Class

Agilent34401

2013-04-13 www.ivifoundation.org 78

The Hierarchy Implementation
•  The class-compliant hierarchy has

IIviDmm at the root.
•  The instrument-specific hierarchy

has IAgilent34401 at the root
(where Agilent34401 is the driver
name).

(The IIviDriver interfaces are incorporated
into both hierarchies.)

Ag34401
Class

IviDmm
Compliant

IIviDmm
IIviDmmAC

IIviDmmFrequence
… (IviDmm interfaces)

IAgilent34401 (Default)
IAgilent34401ACVoltage

… (Driver specific interfaces)

IIviDriver
… (IIviDriver interfaces)

•  IAgilent34401 contains references to child interfaces, which may in turn contain
references to other child interfaces.

•  Collectively, these interfaces define the instrument-specific hierarchy.
•  IAgilent34401, the default, is what you get when you directly instantiate the driver.

•  IIviDmm contains references to child interfaces, which may in turn contain
references to other child interfaces.

•  Collectively, these interfaces define the class compliant hierarchy.

2013-04-13 www.ivifoundation.org 79

.NET Interop Types to Choose From
Type of the driver pointer

IIviDmm Root of class compliant interface
IAgilent34401 Root of instrument specific interface
Agilent34401 Default interface of Agilent34401Class

»  Can be used to instantiate the driver
»  Corresponds to Iagilent34401

Agilent34401Class Class with ALL interfaces

Class to Instantiate
Agilent34401 is the only type instantiable across all
versions of the .NET Framework

2013-04-13 www.ivifoundation.org 80

IVI-COM Interop Type Demonstration

www.ivifoundation.org

•  This demonstration shows
–  How different data types work with the driver

1.  Why the intuitive syntax:
 var Driver = new Agilent34410Class();
 Can be troublesome

2. Getting the IviDmm hierarchy from device specific API

2013-04-13 81

www.ivifoundation.org

static void Main(string[] args)
{

 Agilent34410 myDmm1 = new Agilent34410(); // PREFER:Like IVI.NET

 IAgilent34410 myDmm2 = new Agilent34410(); // PREFER:Explicit
 Agilent34410Class MyDmm3 = new Agilent34410Class(); // CAUTION!
 Agilent34410 myDmm4 = new Agilent34410Class(); // CAUTION! FW Version

 IIviDriver myDriver = myIviDmm as IIviDriver; //Gets IVI Driver intfc

 IIviDmm MyDmm5 = (IIviDmm)myDmm1; //Also gets IVI DMM root

 myDmm.Diode.Configure();

 MyDmm3.RTD.Resistance = 42; // Doesn’t reflect hierarchy

 MyDmm5.Configure(IviDmmFunctionEnum.IviDmmFunction2WireRes,);

}

2013-04-13 82

IVI-C and IVI .NET
•  IVI-C DLL does not have a hierarchy

–  Each function has a unique name in a flat name space.
–  A separate file provides a hierarchy for the tools that can read it (NI CVI)

•  IVI.NET has similar structure to IVI-COM
–  The instrument specific classes are: <Product> (e.g., Agilent34401)
–  The IVI defined classes are: <IviType> (e.g., IviDmm)
–  The root interface for the hierarchy: I<Product> (e.g., IAgilent34401)

•  The preferred method for instantiating a .NET driver is:

Agilent34410 myDmm = new Agilent34410();
 (when interchangeability is not a goal)

2013-04-13 www.ivifoundation.org 83

End of IVI Coding Patterns

www.ivifoundation.org 2013-04-13 84

Purpose:

Topics:

Time:

IVI Advanced Topics

www.ivifoundation.org

Overview of other IVI Driver topics

•  Shared Components
•  Config Store, Config Server
•  Session Factory
•  C Shared Components
•  Interchangeability with Config Store
•  Locking

00:45

2013-04-13 85

IVI Shared Components
•  IVI Foundation develops and maintains several software

components for performing common operations in IVI-
based test systems

•  Different member companies provide the development
horsepower

•  Shared Component Installer also provided by
Foundation
–  Must be used by driver vendors to install Shared Components
–  Illegal for driver suppliers to install Shared Components without it

2013-04-13 www.ivifoundation.org 86

IVI Shared Components (cont)
•  IVI Configuration Store

–  Central repository for driver configuration and initialization data

•  IVI Configuration Server
–  Software component(s) for accessing IVI Configuration Store

•  COM Session Factory
–  COM component for instantiating IVI-COM drivers in an interchangeable

fashion

•  C Shared Components
–  Variety of service components for building IVI-C drivers

2013-04-13 www.ivifoundation.org 87

IVI Configuration Store
•  XML file installed with the IVI Shared Components

–  <IviInstallDir>\Data\IviConfigurationStore.xml

•  Fairly complex schema
–  IviConfigurationStore.xsd

•  Highly self-referential
–  Manual editing officially allowed but discouraged

•  Read/written by drivers and end-users
•  Extensible

–  Supports custom driver, application or end-user data

2013-04-13 www.ivifoundation.org 88

IVI Configuration Server
•  Software component(s) developed and maintained by

the IVI Foundation
•  COM component

–  <IviInstallDir>\Bin\IviConfigServer.dll

•  C API
–  <IviInstallDir>\Bin\IviConfigServerCAPI.dll

•  Recommended way of accessing IVI Configuration Store

2013-04-13 www.ivifoundation.org 89

Using the IVI Configuration Store
•  Typical uses

–  Driver initialization data, such as the I/O address
–  Virtual-to-physical repcap name mapping => needed for

interchangeability
–  Logical name mappings => needed for interchangeability
–  Custom driver features

•  Application related information
–  Associated modular instruments into a meta-instrument

2013-04-13 www.ivifoundation.org 90

Primary Elements in the Config Store
•  Software Module

–  Describes a software component (.dll) installed on the system
–  This represents “the driver”
–  Created by driver installers

•  Hardware Asset
–  Describes a physical instrument
–  Not typically created by driver installers
–  Main purpose is to abstract away the I/O address

•  Driver Session
–  Represents an association of a Software Module with a Hardware Asset
–  Houses property settings that control driver behavior (state-caching, range-checking,

coercion, error checking, etc.)
–  May or may not be created by a driver installer (NI does, Agilent doesn’t)

•  Logical Name
–  User-specified name
–  Never created by driver installers

2013-04-13 www.ivifoundation.org 91

COM Session Factory
•  Very simple COM component
•  Required for full interchangeability

–  Used in client code, not driver code
–  Gets reference to a specific model of instrument out of initialization code
–  No changes to client code required when changing IVI-COM drivers and Session

Factory is in use

•  “Create by Name”
–  User-defined LogicalName mapped to specific driver in Configuration Store
–  Session Factory calls CoCreateInstance on the correct specific driver
–  No direct references to a specific driver anywhere in client code

•  Described in detail in IVI-3.6: COM Session Factory Specification

// Defined on IIviSessionFactory interface

HRESULT CreateDriver([in] BSTR LogicalName, [out, retval] IUnknown** Driver);

2013-04-13 www.ivifoundation.org 92

Using the COM Session Factory

Dim factory as New IviSessionFactory

Dim scope as IIviScope

Set scope = factory.CreateDriver(“MyScope”) ‘Factory looks up “MyScope” in

 ‘IVI Configuration Store and

 ‘creates specific driver to which

 ‘it is mapped

scope.Initialize “MyScope”,False,False,””

scope.Acquisition.NumberOfPointsMin = 1000

Config Store

“MyScope” ==
“Ag34401”

2013-04-13 www.ivifoundation.org 93

IVI-C Shared Components
•  Described in detail in IVI-3.9: C Shared Components Specification
•  Dynamic Driver Loader

–  Used by class drivers to dynamically load class-compliant specific drivers

•  Error Message Component
–  Helps driver developers create error messages

•  Session Management Component
–  Creating and destroying IVI driver sessions
–  Managing session instance data and mulithreaded locks

•  Session Error Component
–  Provides access to per-session errors

•  Multithread Lock Component
–  Acquiring and releasing locks

•  Thread-Local Storage Component
–  Provides access to thread-based error information

2013-04-13 www.ivifoundation.org 94

C Shared Components and Intended
Users

Component Intended Users
Dynamic Driver Loader Class Driver

Error Message Specific Driver, Class Driver

Session Management Specific Driver, Class Driver

Session Error Session Management Component

Multithread Lock Session Management Component

Thread Local Error Storage Session Management Component

Thread Local Storage Thread Local Error Storage Component

www.ivifoundation.org 2013-04-13 95

www.ivifoundation.org

Session Management Component
Function Purpose

IviSession_New Creates an IVI driver session.

IviSession_SetDataPtr Associates a pointer to instance data with a session.

IviSession_GetDataPtr Retrieves a pointer to instance data from a session.

IviSession_Lock Obtains a multithreaded lock on a session.

IviSession_Unlock Releases a multithreaded lock on a session.

IviSession_SetError Sets the error information for an IVI session and for
the current execution thread.

IviSession_GetError Retrieves and clears the error information for the
session or the current execution thread.

IviSession_ClearError Clears the error information for the session or the
current execution thread.

IviSession_Dispose Closes an IVI driver session.

2013-04-13 96

Error Message Component

Function Purpose
IviErrorMessage_Get Retrieves the static message associated with

a specific error code.

IviErrorMessage_FormatWithElaboration Formats an error description from two error
messages and places it into an output buffer.

www.ivifoundation.org 2013-04-13 97

IVI Interchangeability Architecture

2013-04-13 www.ivifoundation.org 98

Interchangeability with IVI-COM
•  Requirements for the driver developer

–  Implement one or more class-compliant interfaces

•  Requirements for the client programmer
–  Use the COM Session Factory to instantiate the driver

•  This involves setting up a logical name in the Configuration Store
–  Use only the class-compliant interfaces in the sections of code which

are to be interchangeable
–  Use only virtual repeated capability identifiers

•  Involves setting up virtual-to-physical mappings in the Configuration Store

•  Client code contains no references to any specific driver
•  No proprietary components are required

2013-04-13 www.ivifoundation.org 99

Non-Interchangeable IVI-COM Code

www.ivifoundation.org

‘This code is not interchangeable for a number of
reasons

Dim scope as New Agilent54600

scope.Initialize “GPIB::10”, False, False, ””

scope.Channels(“Chan1”).Range = 10.0

scope.Channels(“Chan1”).Offset = 1.5

scope.Close

2013-04-13 100

Non-Interchangeable IVI-COM Code

www.ivifoundation.org

‘This code is not interchangeable for a number of reasons

Dim scope as New Agilent54600 // refer to model

scope.Initialize “GPIB::10”, False, False, ”” // location

scope.Channels(“Chan1”).Range = 10.0 // “Chan” name is

scope.Channels(“Chan1”).Offset = 1.5 // not in IVI spec

scope.Close

2013-04-13 101

Syntactically Interchangeable Code

www.ivifoundation.org

‘This code is interchangeable

‘No references to a specific driver, device, or channel name

Dim factory as New IviSessionFactory

Dim scope as IIviScope

Set scope = factory.CreateDriver(“MyScope”) ‘use Session Factory with

 ‘logical name

scope.Initialize “MyScope”, False, False, ”” ‘logical name instead of

 ‘fixed GPIB address

scope.Channels(“MyChan”).Range = 10.0 ‘virtual channel name

scope.Channels(“MyChan”).Offset = 1.5 ‘virtual channel name

scope.Close

2013-04-13 102

Interchangeability with IVI-C
•  Requirements for the driver developer

–  Implement a class-compliant capability group (only 1 class allowed)

•  Requirements for the client programmer
–  Download a class driver from National Instruments
–  Use class driver Initialize function with logical name to create a session

•  Involves setting up a logical name in the Configuration Store
–  Use only the class driver APIs in the client application
–  Use only IVI-defined attribute identifiers and attribute values
–  Use only virtual repeated capability identifiers

•  Involves setting up virtual-to-physical mappings in the Configuration Store

•  Client code contains no references to any specific driver
•  National Instruments class driver components required

2013-04-13 www.ivifoundation.org 103

 Non-Interchangeable IVI-C Code

www.ivifoundation.org

// This code is not interchangeable

#include “ag54600.h” // direct reference to driver

 // also links with “ag54600.lib”

int _tmain(int argc, _TCHAR* argv[])
{

 // Functions and attributes from specific driver are used

 ViSession vi;

 ViStatus viStatus = ag54600_init(“GPIB::10”, VI_FALSE, VI_FALSE, &vi);

 viStatus = ag54600_SetAttributeViReal64(vi, “Chan1” /*physical name*/,

 AG54600_ATTR_VERTICAL_RANGE /*specific attribute*/, 10.0);

 viStatus = ag54600a_SetAttributeViInt32(vi, “Chan1” /*physical name*/,

 AG54600_ATTR_TRIGGER_TYPE /*specific attribute*/,

 AG54600_VAL_EDGE_TRIGGER /*specific attribute value*/);

 viStatus = ag54600_close();

}

2013-04-13 104

Interchangeable IVI-C Code

www.ivifoundation.org

// This code is syntactically interchangeable

#include “iviscope.h” // class driver header file

 // also link with iviscope.lib

int _tmain(int argc, _TCHAR* argv[])
{

 // Only functions and attributes from class driver are used

 ViSession vi;

 ViStatus viStatus = IviScope_init(“MyScope”, VI_FALSE, VI_FALSE, &vi);

 viStatus = IviScope_SetAttributeViReal64(vi, “MyChan” /*virtual name*/,

 IVISCOPE_ATTR_VERTICAL_RANGE /*IVI attribute*/, 10.0);

 viStatus = IviScope_SetAttributeViInt32(vi, “MyChan” /*virtual name*/,

 IVISCOPE_ATTR_TRIGGER_TYPE /*IVI attribute*/,

 IVISCOPE_VAL_EDGE_TRIGGER /*IVI attribute value*/);

 viStatus = IviScope_close();

}

2013-04-13 105

 When Interchangeability Isn’t

•  Syntactically interchangeable code is not guaranteed to
produce the same answer
–  syntactic interchangeability versus semantic interchangeability

•  Different answers from syntactically interchangeable
code can come from a variety of sources
–  Different measurement techniques
–  Different default values for state variables
–  Different instrument specifications
–  Timing differences

•  The more complex the instrument, the more difficult it
can be to achieve semantic interchangeability

2013-04-13 www.ivifoundation.org 106

 When Interchangeability Isn’t

•  Syntactically interchangeable code is not guaranteed to
produce the same answer
–  syntactic interchangeability versus semantic interchangeability

•  Different answers from syntactically interchangeable
code can come from a variety of sources
–  Different measurement techniques
–  Different default values for state variables
–  Different instrument specifications
–  Timing differences

•  The more complex the instrument, the more difficult it
can be to achieve semantic interchangeability

2013-04-13 www.ivifoundation.org 107

Interchangeability Checking (optional feature)

•  Identifies where a client program is using default values
–  Warnings generated when program doesn’t fully specify the

configuration
–  It is a poor practice to override all defaults in highly complex instruments
–  Properly chosen defaults may enhance interchangeability

•  Potentially useful for simple instruments during debug
–  Frequently not implemented

dmm.Initialize “GPIB::10”, False, False, ”InterchangeCheck=True”

‘ ... OR ...

dmm.DriverOperation.InterchangeCheck = True

‘default value is False

2013-04-13 www.ivifoundation.org 108

Multithread Safety
•  IVI drivers must be operate correctly in a multithreaded environment

–  IVI isn’t specific about what level of locking
•  Object-level? Method-level? Interprocess locking?

•  Thread safety and locking is often confused with resource locking
–  Resource locking protects the instrument from simultaneous access
–  IVI does not address resource locking

•  IVI-COM drivers must use the “Both” apartment threading model
–  Allows driver to live in same apartment as client
–  Involves protecting all instance data with a synchronization lock

•  Confusingly, LockObject and UnlockObject functions are required by
the IVI specifications to return an error

–  Problem in spec discovered (by us) after approval
–  Not possible to implement locks between method calls in COM

•  IVI-C drivers ensure correct operation of asynchronous calls to
driver sessions by multiple threads in the same process

2013-04-13 www.ivifoundation.org 109

www.ivifoundation.org

Locking Between Method Calls in COM

Driver

RPC Thread Pool

Apartment A Apartment B

‘Client code

Dim sa as New AgilentPSA

sa.Frequency = 1E6

No way to establish any
“owner” thread!

?

Call serviced by random
thread from pool.

T-
Main

T1

T3

T2

T4

2013-04-13 110

End of IVI Advanced Topics

www.ivifoundation.org 2013-04-13 111

Follow-up
•  For more information

–  IVI Website: www.ivifoundation.org
–  IVI Getting Started guides: www.ivifoundation.org
–  IVI Specifications: www.ivifoundation.org
–  IVI Registration page: www.ivifoundation.org

•  Most vendors have documentation and drivers on their
website

•  For questions on these slides, contact
–  Kirk Fertitta kirk@pacificmindworks.com
–  Joe Mueller joe_mueller@agilent.com

2013-04-13 www.ivifoundation.org 112

Purpose:

Topics:

Time:

IVI Organization and Purpose

•  Describe the IVI Organization
•  Describe what an IVI driver is

• 

0:15

2013-04-13 www.ivifoundation.org 113

Goals of the IVI Foundation

Hardware Interchangeability
q  To simplify the task of replacing an

instrument from a system with a similar one
q  To preserve test software when instruments

become obsolete
q  To simplify test code reuse from design

validation to production test

Software Interchangeability
q  To provide an architectural framework

that allows users to easily integrate
software from multiple vendors

q  To provide standard access to driver
capabilities such as simulation, state
caching, range checking and coercion

q  To provide consistent instrument control
in popular programming environments

Quality
q  To improve driver quality
q  To establish guidelines for driver testing

and verification
q  Establish a consistent architectural

framework for multi-vendor systems

2013-04-13 www.ivifoundation.org 114

IVI Driver Standards

•  Architecture specs
•  Requirement for all drivers
•  Ensures all work together
•  Important for any driver
•  Common functionality
•  Common components
•  Common style
•  Installation
•  Driver types: C/COM/.NET

•  Class specs
•  Requirements for a type of

instrument
•  Provides syntactic

interchangeability
•  Establishes common

paradigms for consistency
•  Limited to common

functionality

2013-04-13 www.ivifoundation.org 115

Driver Architecture Specifications
•  IVI-3.1: Driver Architecture Specification
•  IVI-3.2: Inherent Capabilities Specification
•  IVI-3.3: Standard Cross-Class Capabilities Specification
•  IVI-3.4: API Style Guide
•  IVI-3.5: IVI Configuration Server Specification
•  IVI-3.6: COM Session Factory Specification
•  IVI-3.9: C Shared Components
•  IVI-3.12: Floating Point Services Specification
•  IVI-3.14: Primary Interop Assembly Specification
•  IVI-3.15: IviLxiSync Specification
•  IVI-3.17: Installer Requirements Specification
•  IVI-3.18: IVI.NET Utility Classes and Interfaces Specification

2013-04-13 www.ivifoundation.org 116

IVI Instrument Classes

•  DC power supply
•  AC power supply
•  DMM
•  Function generator
•  Oscilloscope
•  Power meter
•  RF signal generator

•  Spectrum analyzer
•  Switch
•  Upconverter
•  Downconverter
•  Digitizer
•  Counter/timer

2013-04-13 www.ivifoundation.org 117

IVI Driver Features
•  Simulation

–  Required of all IVI drivers
–  Very useful for testing in new ADEs
–  Helpful when instruments are difficult to procure

•  State caching
•  Range checking
•  Coercion

–  Coercion recording

•  All extended features enabled and accessed in a
standard fashion

2013-04-13 www.ivifoundation.org 118

The IVI Architectures
IVI Provides: C, COM, and .NET
•  C dll for environments that use DLLs
•  COM Components for COM and .NET ADEs
•  .NET Assemblies for .NET ADEs

Architectures make use of same class definition
Architectures have specific rules for installation, style, etc.

Details in next section

2013-04-13 www.ivifoundation.org 119

IVI Compliance
•  IVI Compliant – Follows Architecture Specs

–  Installation (IVI-3.17)
–  Inherent Capabilities (IVI-3.2)
–  Cross Class Capabilities (IVI-3.3)
–  Style (IVI-3.4)
–  Custom instrument API – complies with IVI-3.4, 3.3, 3.1

•  IVI Class Compliant – Implements Defined Class
–  Also IVI compliant
–  Provides class API in addition to Custom API
–  Custom API may be omitted (unusual)

2013-04-13 www.ivifoundation.org 120

Why IVI for Vendors? – Track Evolving
Customer Needs

•  Vendors relieved from onerous task of keeping pace with
multiple moving targets
–  Windows OSs, Windows Help, Windows Installer, Windows API,

security, .NET platform
–  Six versions of Visual Studio since IVI
–  Vista and UAC complex changes
–  Parallel support for 32-bit and 64-bit OS also complex

•  IVI provides uniform and complete solutions

•  IVI member companies bring experts to meetings to ensure
IVI solutions work with their hardware
–  Users of IVI directly leverage R&D efforts of NI, Agilent, R&S, etc.

2013-04-13 www.ivifoundation.org 121

Why IVI for Vendors
•  Several IVI tools are available to facilitate the creation of

IVI drivers
•  IVI tools can help you with:

–  Creating driver shell that complies with IVI inherent capabilities
and IVI class-defined capabilities

–  Creating and modification of attributes
–  Creating help files
–  Creating installers

•  IVI-3.17 spec dedicated to IVI installers and is 53 pages
–  Creating unit test and regression tests
–  Creating special components for .NET, COM, or C

•  .NET: XML IntelliSense file, interop assembly, version policy files
•  C: function panels

2013-04-13 www.ivifoundation.org 122

IVI Membership Benefits

•  Influence the development of standards
•  Participate in and access future standards
•  Share ideas with developers, users, system

integrators and vendors
•  Access source code for shared components
•  Participate in interoperability sessions
•  Network with test and measurement industry

leaders

2013-04-13 www.ivifoundation.org 123

Purpose:

Topics:

Time:

Architectural Approachs for
Interchangeability

•  Review architectural steps for
greater interchangeability (IVI-MSS)

•  IVI-MSS

00:15

2013-04-13 www.ivifoundation.org 124

IVI-MSS: Protect the Measurement from
Instrument Variations

2013-04-13 www.ivifoundation.org 125

RCM (Role Control Module)
-  API defined by Measurement
-  Hides most of instrument from measurement
-  Enables porting measurement to any instrument, only requiring limited

functionality

Instruments

Application RCM
Meas. or

Stim.
Server

IVI
Driver

RCM IVI
Driver

RCM IVI
Driver

